1
|
Abstract
HTLV-1 is a global infection with 5-20 million infected individuals. Although only a minority of infected individuals develop myelopathy, lymphoproliferative malignancy, or inflammatory disorders, infection is associated with immunosuppression and shorter survival. Transmission of HTLV-1 is through contaminated blood or needles, mother-to-child exposure through breast-feeding, and sexual intercourse. HTLV-1 is a delta retrovirus that expresses immunogenic Gag, Envelope, TAX, and Hbz proteins. Neutralizing antibodies have been identified directed against the surface envelope protein, and cytotoxic T-cell epitopes within TAX have been characterized. Thus far, there have been few investigations of vaccines directed against each of these proteins, with limited responses, thus far. However, with new technologies developed in the last few years, a renewed investigation is warranted in search for a safe and effective HTLV-1 vaccine.
Collapse
|
2
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
3
|
Yamauchi J, Araya N, Yagishita N, Sato T, Yamano Y. An update on human T-cell leukemia virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) focusing on clinical and laboratory biomarkers. Pharmacol Ther 2020; 218:107669. [PMID: 32835825 DOI: 10.1016/j.pharmthera.2020.107669] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a rare inflammatory disease causing unremitting and progressive neurological disorders, such as spastic paraparesis, neurogenic bladder, and sensory disturbance of the lower extremities. Although there is no cure, immune-modulating agents such as corticosteroids are most widely used to slow disease progression. Biomarkers for the clinical assessment of HAM/TSP should be identified because the prediction of functional prognosis and the assessment of treatment efficacy are challenging due to the slowly progressive nature of the disease. The lack of surrogate biomarkers also hampers clinical trials of new drugs. This review summarizes biomarker candidates for the clinical assessment of patients with HAM/TSP. Most of the reported biomarker candidates are associated with viral components or inflammatory mediators because immune dysregulation provoked by HTLV-1 infection is thought to cause chronic inflammation and damage the spinal cord of patients with HAM/TSP. Although information on the diagnostic accuracy of most of the reported biomarkers is insufficient, several molecules, including inflammatory mediators such as CXCL10 and neopterin in the cerebrospinal fluid, have been suggested as potential biomarkers of functional prognosis and treatment response. Several clinical trials for HAM/TSP are currently underway, and we expect that these studies will provide not only evidence pertaining to treatment, but also novel findings regarding the utility of biomarkers in this disease. The establishment of clinical biomarkers will improve patient care and promote the development of therapies for HAM/TSP.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan; Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
4
|
Kodama D, Tanaka M, Matsuzaki T, Izumo K, Nakano N, Matsuura E, Saito M, Nagai M, Horiuchi M, Utsunomiya A, Takashima H, Kubota R, Izumo S. Inhibition of ABL1 tyrosine kinase reduces HTLV-1 proviral loads in peripheral blood mononuclear cells from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS Negl Trop Dis 2020; 14:e0008361. [PMID: 32667912 PMCID: PMC7363079 DOI: 10.1371/journal.pntd.0008361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes incurable adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Patients with HAM/TSP have increased levels of HTLV-1-infected cells compared with asymptomatic HTLV-1 carriers. However, the roles of cellular genes in HTLV-1-infected CD4+ T cells await discovery. We performed microarray analysis of CD4+ T cells from HAM/TSP patients and found that the ABL1 is an important gene in HAM/TSP. ABL1 is a known survival factor for T- and B-lymphocytes and is part of the fused gene (BCR-ABL) known to be responsible for chronic myelogenous leukemia (CML). ABL1 tyrosine kinase inhibitors (TKIs), including imatinib, nilotinib, and dasatinib, are used clinically for treating CML. To evaluate whether ABL1 is indeed important for HAM/TSP, we investigated the effect of TKIs on HTLV-1-infected cells. We developed a propidium monoazide-HTLV-1 viability quantitative PCR assay, which distinguishes DNA from live cells and dead cells. Using this method, we were able to measure the HTLV-1 proviral load (PVL) in live cells alone when peripheral blood mononuclear cells (PBMCs) from HAM/TSP cases were treated with TKIs. Treating the PBMCs with nilotinib or dasatinib induced significant reductions in PVL (21.0% and 17.5%, respectively) in live cells. Furthermore, ABL1 siRNA transfection reduced cell viability in HTLV-1-infected cell lines, but not in uninfected cell lines. A retrospective survey based on our clinical records found a rare case of HAM/TSP who also suffered from CML. The patient showed an 84.2% PVL reduction after CML treatment with imatinib. We conclude that inhibiting the ABL1 tyrosine kinase specifically reduced the PVL in PBMCs from patients with HAM/TSP, suggesting that ABL1 is an important gene for the survival of HTLV-1-infected cells and that TKIs may be potential therapeutic agents for HAM/TSP.
Collapse
Affiliation(s)
- Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
- Medical Corporation Sanshukai Ohkatsu Hospital, Kagoshima City, Kagoshima, JAPAN
| | - Kimiko Izumo
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima City, Kagoshima, JAPAN
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, Kurashiki City, Okayama, JAPAN
| | - Masahiro Nagai
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Toon City, Ehime, JAPAN
| | - Masahisa Horiuchi
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima City, Kagoshima, JAPAN
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| | - Shuji Izumo
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima City, Kagoshima, JAPAN
| |
Collapse
|
5
|
Nozuma S, Jacobson S. Neuroimmunology of Human T-Lymphotropic Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2019; 10:885. [PMID: 31105674 PMCID: PMC6492533 DOI: 10.3389/fmicb.2019.00885] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent of both adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is clinically characterized by chronic progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. Given its well-characterized clinical presentation and pathophysiology, which is similar to the progressive forms of multiple sclerosis (MS), HAM/TSP is an ideal system to better understand other neuroimmunological disorders such as MS. Since the discovery of HAM/TSP, large numbers of clinical, virological, molecular, and immunological studies have been published. The host-virus interaction and host immune response play an important role for the development with HAM/TSP. HTLV-1-infected circulating T-cells invade the central nervous system (CNS) and cause an immunopathogenic response against virus and possibly components of the CNS. Neural damage and subsequent degeneration can cause severe disability in patients with HAM/TSP. Little progress has been made in the discovery of objective biomarkers for grading stages and predicting progression of disease and the development of molecular targeted therapy based on the underlying pathological mechanisms. We review the recent understanding of immunopathological mechanism of HAM/TSP and discuss the unmet need for research on this disease.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Anderson MR, Pleet ML, Enose-Akahata Y, Erickson J, Monaco MC, Akpamagbo Y, Velluci A, Tanaka Y, Azodi S, Lepene B, Jones J, Kashanchi F, Jacobson S. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clin Transl Med 2018; 7:24. [PMID: 30146667 PMCID: PMC6110307 DOI: 10.1186/s40169-018-0204-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types. It is now understood that several viruses take advantage of this mode of intercellular communication for packaging of viral components as well. We sought to understand if this is the case in HTLV-1 infection, and specifically if HTLV-1 proteins can be found in the CSF of HAM/TSP patients where we know free virus is absent, and furthermore, if exosomes containing HTLV-1 Tax have functional consequences. RESULTS Exosomes that were positive for HTLV-1 Tax by Western blot were isolated from HAM/TSP patient PBMCs (25/36) in ex vivo cultures by trapping exosomes from culture supernatants. HTLV-1 seronegative PBMCs did not have exosomes with Tax (0/12), (Fisher exact test, p = 0.0001). We were able to observe HAM/TSP patient CSF (12/20) containing Tax+ exosomes but not in HTLV-1 seronegative MS donors (0/5), despite the absence of viral detection in the CSF supernatant (Fisher exact test p = 0.0391). Furthermore, exosomes cultivated from HAM/TSP PBMCs were capable of sensitizing target cells for HTLV-1 specific CTL lysis. CONCLUSION Cumulatively, these results show that there are HTLV-1 proteins present in exosomes found in virus-free CSF. HAM/TSP PBMCs, particularly CD4+CD25+ T cells, can excrete these exosomes containing HTLV-1 Tax and may be a source of the exosomes found in patient CSF. Importantly, these exosomes are capable of sensitizing an HTLV-1 specific immune response, suggesting that they may play a role in the immunopathology observed in HAM/TSP. Given the infiltration of HTLV-1 Tax-specific CTLs into the CNS of HAM/TSP patients, it is likely that exosomes may also contribute to the continuous activation and inflammation observed in HAM/TSP, and may suggest future targeted therapies in this disorder.
Collapse
Affiliation(s)
- Monique R Anderson
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22901, USA.,Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - James Erickson
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Maria Chiara Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institutes for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yao Akpamagbo
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Ashley Velluci
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Yuetsu Tanaka
- Department of Immunology, University of the Ryukyus Graduate School of Medicine, Okinawa, 903-0125, Japan
| | - Shila Azodi
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Ben Lepene
- Ceres Nanosciences, Manassas, VA, 20109, USA
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Anderson M, Kashanchi F, Jacobson S. Role of Exosomes in Human Retroviral Mediated Disorders. J Neuroimmune Pharmacol 2018; 13:279-291. [PMID: 29656370 DOI: 10.1007/s11481-018-9784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Retroviruses comprise an ancient and varied group of viruses with the unique ability to integrate DNA from an RNA transcript into the genome, a subset of which are able to integrate in humans. The timing of these integrations during human history has dictated whether these viruses have remained exogenous and given rise to various human diseases or have become inseparable from the host genome (endogenous retroviruses). Given the ability of retroviruses to integrate into the host and subsequently co-opt host cellular process for viral propagation, retroviruses have been shown to be closely associated with several cellular processes including exosome formation. Exosomes are 30-150 nm unilamellar extracellular vesicles that originate from intraluminal vesicles (ILVs) that form in the endosomal compartment. Exosomes have been shown to be important in intercellular communication and immune cell function. Almost every cell type studied has been shown to produce these types of vesicles, with the cell type dictating the contents, which include proteins, mRNA, and miRNAs. Importantly, recent evidence has shown that infection by viruses, including retroviruses, alter the contents and subsequent function of produced exosomes. In this review, we will discuss the important retroviruses associated with human health and disease. Furthermore, we will delve into the impact of exosome formation and manipulation by integrated retroviruses on human health, survival, and human retroviral disease pathogenesis.
Collapse
Affiliation(s)
- Monique Anderson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pathology, Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Dynamic acquisition of HTLV-1 tax protein by mononuclear phagocytes: Role in neurologic disease. J Neuroimmunol 2016; 304:43-50. [PMID: 27769524 DOI: 10.1016/j.jneuroim.2016.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022]
Abstract
Pathology of HTLV-1 associated myelopathy/Tropical spastic paraparesis (HAM/TSP) is believed to be the result of "bystander damage" involving effector CD8 (+) T lymphocytes (CTLs) killing of virus infected cells. But the specific cellular events leading up to tissue injury are still unclear. Here, we developed the Microscopy Imaging of Cytotoxic T lymphocyte assay with Fluorescence emission (MI-CaFé), an optimized visualization analysis to explore the interactions between CTLs and virus infected or viral antigen presenting target cells. Various cell-to-cell formations can be observed and our results demonstrate elevated frequencies of CTL-target cell conjugates in HAM/TSP patient PBMCs compared to control PBMCs. Furthermore, HTLV-1 Tax protein expression can be localized at the cell-cell junctions and also tracked moving from an infected cell to a CD14 (+) mononuclear phagocyte (MP). Activation of CD14 (+) MPs in HAM/TSP patient PBMCs and antigenic presentation of HTLV-1 Tax by MPs can be inferred by their spontaneous cytotoxicity after 18h of in vitro culture. Given that CD4 (+) T lymphocytes are the primary reservoirs of HTLV-1 and MPs are scavenger cells responsible for pathogen clearance, spontaneous cytotoxicity against MPs in HAM/TSP PBMCs suggests a mechanism of chronic inflammation, secondary to low level of persistent virus infection within the central nervous system.
Collapse
|
9
|
Abstract
Viruses have evolved many mechanisms by which to evade and subvert the immune system to ensure survival and persistence. However, for each method undertaken by the immune system for pathogen removal, there is a counteracting mechanism utilized by pathogens. The new and emerging role of microvesicles in immune intercellular communication and function is no different. Viruses across many different families have evolved to insert viral components in exosomes, a subtype of microvesicle, with many varying downstream effects. When assessed cumulatively, viral antigens in exosomes increase persistence through cloaking viral genomes, decoying the immune system, and even by increasing viral infection in uninfected cells. Exosomes therefore represent a source of viral antigen that can be used as a biomarker for disease and targeted for therapy in the control and eradication of these disorders. With the rise in the persistence of new and reemerging viruses like Ebola and Zika, exploring the role of exosomes become more important than ever.
Collapse
Affiliation(s)
- Monique R Anderson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA.
- Department of Pathology Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- George Mason University, National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons. J Virol 2016; 90:5280-5291. [PMID: 26984729 DOI: 10.1128/jvi.00281-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/12/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED There are currently 5 million to 10 million human T-lymphotropic virus type 1 (HTLV-1)-infected people, and many of them will develop severe complications resulting from this infection. A vaccine is urgently needed in areas where HTLV-1 is endemic. Many vaccines are best tested in nonhuman primate animal models. As a first step in designing an effective HTLV-1 vaccine, we defined the CD8(+) and CD4(+) T cell response against simian T-lymphotropic virus type 1 (STLV-1), a virus closely related to HTLV-1, in olive baboons (Papio anubis). Consistent with persistent antigenic exposure, we observed that STLV-1-specific CD8(+) T cells displayed an effector memory phenotype and usually expressed CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). To assess the viral targets of the cellular immune response in STLV-1-infected animals, we used intracellular cytokine staining to detect responses against overlapping peptides covering the entire STLV-1 proteome. Our results show that, similarly to humans, the baboon CD8(+) T cell response narrowly targeted the Tax protein. Our findings suggest that the STLV-1-infected baboon model may recapitulate some of the important aspects of the human response against HTLV-1 and could be an important tool for the development of immune-based therapy and prophylaxis. IMPORTANCE HTLV-1 infection can lead to many different and often fatal conditions. A vaccine deployed in areas of high prevalence might reduce the incidence of HTLV-1-induced disease. Unfortunately, there are very few animal models of HTLV-1 infection useful for testing vaccine approaches. Here we describe cellular immune responses in baboons against a closely related virus, STLV-1. We show for the first time that the immune response against STLV-1 in naturally infected baboons is largely directed against the Tax protein. Similar findings in humans and the sequence similarity between the human and baboon viruses suggest that the STLV-1-infected baboon model might be useful for developing a vaccine against HTLV-1.
Collapse
|
11
|
Human T Cell Leukemia Virus Type 1 Infection of the Three Monocyte Subsets Contributes to Viral Burden in Humans. J Virol 2015; 90:2195-207. [PMID: 26608313 DOI: 10.1128/jvi.02735-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Because the viral DNA burden correlates with disease development, we investigated the contribution of monocyte subsets (classical, intermediate, and nonclassical monocytes) to the total viral burden in 22 human T cell leukemia virus type 1 (HTLV-1)-infected individuals by assessing their infectivity status, frequency, as well as chemotactic and phagocytic functions. All three monocyte subsets sorted from HTLV-1-infected individuals were positive for viral DNA, and the frequency of classical monocytes was lower in the blood of HTLV-1-infected individuals than in that of uninfected individuals, while the expression levels of the chemokine receptors CCR5, CXCR3, and CX3CR1 in classical monocytes were higher in HTLV-1-infected individuals than uninfected individuals; the percentage of intermediate monocytes and their levels of chemokine receptor expression did not differ between HTLV-1-infected and uninfected individuals. However, the capacity of intermediate monocytes to migrate to CCL5, the ligand for CCR5, was higher, and a higher proportion of nonclassical monocytes expressed CCR1, CXCR3, and CX3CR1. The level of viral DNA in the monocyte subsets correlated with the capacity to migrate to CCL2, CCL5, and CX3CL1 for classical monocytes, with lower levels of phagocytosis for intermediate monocytes, and with the level of viral DNA in CD8(+) and CD4(+) T cells for nonclassical monocytes. These data suggest a model whereby HTLV-1 infection augments the number of classical monocytes that migrate to tissues and become infected and the number of infected nonclassical monocytes that transmit virus to CD4(+) and CD8(+) T cells. These results, together with prior findings in a macaque model of HTLV-1 infection, support the notion that infection of monocytes by HTLV-1 is likely a requisite for viral persistence in humans. IMPORTANCE Monocytes have been implicated in immune regulation and disease progression in patients with HTLV-1-associated inflammatory diseases. We detected HTLV-1 DNA in all three monocyte subsets and found that infection impacts surface receptor expression, migratory function, and subset frequency. The frequency of nonclassical patrolling monocytes is increased in HTLV-1-infected individuals, and they have increased expression of CCR1, CXCR3, and CX3CR1. The viral DNA level in nonclassical monocytes correlated with the viral DNA level in CD4(+) and CD8(+) T cells. Altogether, these data suggest an increased recruitment of classical monocytes to inflammation sites that may result in virus acquisition and, in turn, facilitate virus dissemination and viral persistence. Our findings thus provide new insight into the importance of monocyte infection in viral spread and suggest targeting of monocytes for therapeutic intervention.
Collapse
|
12
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 25015488 DOI: 10.1016/b978-0-444-0.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:225-47. [PMID: 25015488 DOI: 10.1016/b978-0-444-53488-0.00010-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J Neurovirol 2014; 20:341-51. [PMID: 24781526 PMCID: PMC4085507 DOI: 10.1007/s13365-014-0249-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 11/24/2022]
Abstract
An elevated human T cell lymphotropic virus 1 (HTLV)-1 proviral load (PVL) is the main risk factor for developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-1 infected subjects, and a high cerebrospinal fluid (CSF) to peripheral blood mononuclear cell (PBMC) PVL ratio may be diagnostic of the condition. However, the standard method for quantification of HTLV-1 PVL—real-time PCR—has multiple limitations, including increased inter-assay variability in compartments with low cell numbers, such as CSF. Therefore, in this study, we evaluated a novel technique for HTVL-1 PVL quantification, digital droplet PCR (ddPCR). In ddPCR, PCR samples are partitioned into thousands of nanoliter-sized droplets, amplified on a thermocycler, and queried for fluorescent signal. Due to the high number of independent events (droplets), Poisson algorithms are used to determine absolute copy numbers independently of a standard curve, which enables highly precise quantitation. This assay has low intra-assay variability allowing for reliable PVL measurement in PBMC and CSF compartments of both asymptomatic carriers (AC) and HAM/TSP patients. It is also useful for HTLV-1-related clinical applications, such as longitudinal monitoring of PVL and identification of viral mutations within the region targeted by the primers and probe.
Collapse
|
15
|
Jones RB, Leal FE, Hasenkrug AM, Segurado AC, Nixon DF, Ostrowski MA, Kallas EG. Human endogenous retrovirus K(HML-2) Gag and Env specific T-cell responses are not detected in HTLV-I-infected subjects using standard peptide screening methods. J Negat Results Biomed 2013; 12:3. [PMID: 23305161 PMCID: PMC3560086 DOI: 10.1186/1477-5751-12-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An estimated 10-20 million individuals are infected with the retrovirus human T-cell leukemia virus type 1 (HTLV-1). While the majority of these individuals remain asymptomatic, 0.3-4% develop a neurodegenerative inflammatory disease, termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP results in the progressive demyelination of the central nervous system and is a differential diagnosis of multiple sclerosis (MS). The etiology of HAM/TSP is unclear, but evidence points to a role for CNS-inflitrating T-cells in pathogenesis. Recently, the HTLV-1-Tax protein has been shown to induce transcription of the human endogenous retrovirus (HERV) families W, H and K. Intriguingly, numerous studies have implicated these same HERV families in MS, though this association remains controversial. RESULTS Here, we explore the hypothesis that HTLV-1-infection results in the induction of HERV antigen expression and the elicitation of HERV-specific T-cells responses which, in turn, may be reactive against neurons and other tissues. PBMC from 15 HTLV-1-infected subjects, 5 of whom presented with HAM/TSP, were comprehensively screened for T-cell responses to overlapping peptides spanning HERV-K(HML-2) Gag and Env. In addition, we screened for responses to peptides derived from diverse HERV families, selected based on predicted binding to predicted optimal epitopes. We observed a lack of responses to each of these peptide sets. CONCLUSIONS Thus, although the limited scope of our screening prevents us from conclusively disproving our hypothesis, the current study does not provide data supporting a role for HERV-specific T-cell responses in HTLV-1 associated immunopathology.
Collapse
Affiliation(s)
- R Brad Jones
- Department of Immunology, University of Toronto, 1 King's College Circle, Rm 6352, Toronto, ON M5S 1A8, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Naderi M, Paryan M, Azadmanesh K, Rafatpanah H, Rezvan H, Mirab Samiee S. Design and development of a quantitative real time PCR assay for monitoring of HTLV-1 provirus in whole blood. J Clin Virol 2012; 53:302-7. [PMID: 22306271 DOI: 10.1016/j.jcv.2011.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Proviral load quantification of human T-lymphotropic virus type 1 (HTLV-1) is an essential marker for disease progression. Therefore, accurate and precise quantification of the virus is important. However, many articles published about detection and quantification of HTLV-1 virus neither reported any databank for the pre-validation of their primer and probe sequences nor stressed on its importance. Consequently, this failure may cause proviral load measurement variations of different HTLV-1 strains. OBJECTIVE The aim of this study was to develop a TaqMan assay for HTLV-1 proviral load quantification which is based on a conserved region of tax gene with minimal sequence variability. STUDY DESIGN For the purpose of finding the most conserved region of tax gene, all the HTLV-1 Gene Bank records including tax gene sequence (524 records by December 2009) were aligned in order to design on the most conserved region of this gene. The specificity, sensitivity, inter and intra assay and the dynamic range of the assay were experimentally determined by their respective methodology. RESULT The assay has a dynamic range of 10-10(7) HTLV-1 plasmid DNA/rxn (reaction) and the limit of detection (LOD) less than 10 copies/rxn. The assay gave coefficient of variation (CV) for the Ct values of less than 1% and 4.8% for intra and inter assay, respectively. Clinical sensitivity and specificity were determined to be 97.8% and 100%, respectively. CONCLUSION This TaqMan assay is able to reliably quantify proviral load due to the fact that it has been designed on a conserved region of HTLV-1 tax gene with minimal sequence variability.
Collapse
Affiliation(s)
- Mahmood Naderi
- Department of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
18
|
Is There a Role for HTLV-1-Specific CTL in Adult T-Cell Leukemia/Lymphoma? LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:391953. [PMID: 23259066 PMCID: PMC3504207 DOI: 10.1155/2012/391953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
ATLL is an aggressive malignancy of T cells that affects about 5% of individuals infected with HTLV-1. The precise mechanism of oncogenesis is not known, but there is evidence that two regulatory viral proteins, Tax and HBZ, are involved. A high set point proviral load is associated with development of ATLL or a chronic inflammatory condition, HAM/TSP. Several lines of evidence, including HLA class 1 association studies and in vitro killing assays, indicate that cytotoxic T lymphocytes are instrumental in determining this proviral load set point. Prior studies have focused chiefly on the CTL response to the immunodominant Tax protein: efficient lysis of Tax-expressing cells inversely correlates with proviral load in nonmalignant infection. However, a recent study showed that strong binding of peptides from HBZ, but not Tax, to HLA class 1 molecules was associated with a low proviral load and a reduced risk of developing HAM/TSP, indicating an important role for HBZ-specific CTL in determining infection outcome. In comparison with nonmalignant infection, HTLV-1-specific CTLs in ATLL patients are reduced in frequency and functionally deficient. Here we discuss the nature of protective CTL responses in nonmalignant HTLV-1 infection and explore the potential of CTLs to protect against ATLL.
Collapse
|
19
|
Best I, López G, Talledo M, MacNamara A, Verdonck K, González E, Tipismana M, Asquith B, Gotuzzo E, Vanham G, Clark D. Short communication an interferon-γ ELISPOT assay with two cytotoxic T cell epitopes derived from HTLV-1 tax region 161-233 discriminates HTLV-1-associated myelopathy/tropical spastic paraparesis patients from asymptomatic HTLV-1 carriers in a Peruvian population. AIDS Res Hum Retroviruses 2011; 27:1207-12. [PMID: 21453202 DOI: 10.1089/aid.2011.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic and progressive disorder caused by the human T-lymphotropic virus type 1 (HTLV-1). In HTLV-1 infection, a strong cytotoxic T cell (CTL) response is mounted against the immunodominant protein Tax. Previous studies carried out by our group reported that increased IFN-γ enzyme-linked immunospot (ELISPOT) responses against the region spanning amino acids 161 to 233 of the Tax protein were associated with HAM/TSP and increased HTLV-1 proviral load (PVL). An exploratory study was conducted on 16 subjects with HAM/TSP, 13 asymptomatic carriers (AC), and 10 HTLV-1-seronegative controls (SC) to map the HAM/TSP-associated CTL epitopes within Tax region 161-233. The PVL of the infected subjects was determined and the specific CTL response was evaluated with a 6-h incubation IFN-γ ELISPOT assay using peripheral blood mononuclear cells (PBMCs) stimulated with 16 individual overlapping peptides covering the Tax region 161-233. Other proinflammatory and Th1/Th2 cytokines were also quantified in the supernatants by a flow cytometry multiplex assay. In addition, a set of human leukocyte antigen (HLA) class I alleles that bind with high affinity to the CTL epitopes of interest was determined using computational tools. Univariate analyses identified an association between ELISPOT responses to two new CTL epitopes, Tax 173-185 and Tax 181-193, and the presence of HAM/TSP as well as an increased PVL. The HLA-A*6801 allele, which is predicted to bind to the Tax 181-193 peptide, was overpresented in the HAM/TSP patients tested.
Collapse
Affiliation(s)
- Ivan Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Araya N, Sato T, Yagishita N, Ando H, Utsunomiya A, Jacobson S, Yamano Y. Human T-lymphotropic virus type 1 (HTLV-1) and regulatory T cells in HTLV-1-associated neuroinflammatory disease. Viruses 2011; 3:1532-48. [PMID: 21994794 PMCID: PMC3187691 DOI: 10.3390/v3091532] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 01/12/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that is the causative agent of adult T cell leukemia/lymphoma (ATL) and associated with multiorgan inflammatory disorders, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and uveitis. HTLV-1-infected T cells have been hypothesized to contribute to the development of these disorders, although the precise mechanisms are not well understood. HTLV-1 primarily infects CD4(+) T helper (Th) cells that play a central role in adaptive immune responses. Based on their functions, patterns of cytokine secretion, and expression of specific transcription factors and chemokine receptors, Th cells that are differentiated from naïve CD4(+) T cells are classified into four major lineages: Th1, Th2, Th17, and T regulatory (Treg) cells. The CD4(+)CD25(+)CCR4(+) T cell population, which consists primarily of suppressive T cell subsets, such as the Treg and Th2 subsets in healthy individuals, is the predominant viral reservoir of HTLV-1 in both ATL and HAM/TSP patients. Interestingly, CD4(+)CD25(+)CCR4(+) T cells become Th1-like cells in HAM/TSP patients, as evidenced by their overproduction of IFN-γ, suggesting that HTLV-1 may intracellularly induce T cell plasticity from Treg to IFN-γ(+) T cells. This review examines the recent research into the association between HTLV-1 and Treg cells that has greatly enhanced understanding of the pathogenic mechanisms underlying immune dysregulation in HTLV-1-associated neuroinflammatory disease.
Collapse
Affiliation(s)
- Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan; E-Mails: (N.A.); (T.S.); (N.Y.); (H.A.)
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan; E-Mails: (N.A.); (T.S.); (N.Y.); (H.A.)
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan; E-Mails: (N.A.); (T.S.); (N.Y.); (H.A.)
| | - Hitoshi Ando
- Department of Rare Diseases Research, Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan; E-Mails: (N.A.); (T.S.); (N.Y.); (H.A.)
| | - Atae Utsunomiya
- Department of Hematology, Imamura Bun-in Hospital, Kagoshima 890-0064, Japan; E-Mail:
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; E-Mail:
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan; E-Mails: (N.A.); (T.S.); (N.Y.); (H.A.)
| |
Collapse
|
21
|
Haynes RAH, Phipps AJ, Yamamoto B, Green P, Lairmore MD. Development of a cytotoxic T-cell assay in rabbits to evaluate early immune response to human T-lymphotropic virus type 1 infection. Viral Immunol 2010; 22:397-405. [PMID: 19951176 DOI: 10.1089/vim.2009.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell lymphoma/leukemia (ATL) following a prolonged clinical incubation period, despite a robust adaptive immune response against the virus. Early immune responses that allow establishment of the infection are difficult to study without effective animal models. We have developed a cytotoxic T-lymphocyte (CTL) assay to monitor the early events of HTLV-1 infection in rabbits. Rabbit skin fibroblast cell lines were established by transformation with a plasmid expressing simian virus 40 (SV40) large T antigen and used as autochthonous targets (derived from same individual animal) to measure CTL activity against HTLV-1 infection in rabbits. Recombinant vaccinia virus (rVV) constructs expressing either HTLV-1 envelope surface unit (SU) glycoprotein 46 or Tax proteins were used to infect fibroblast targets in a (51)Cr-release CTL assay. Rabbits inoculated with Jurkat T cells or ACH.2 cells (expressing ACH HTLV-1 molecule clone) were monitored at 0, 2, 4, 6, 8, 13, 21, and 34 wk post-infection. ACH.2-inoculated rabbits were monitored serologically and for viral infected cells following ex vivo culture. Proviral load analysis indicated that rabbits with higher proviral loads had significant CTL activity against HTLV-1 SU as early as 2 wk post-infection, while both low- and high-proviral-load groups had minimal Tax-specific CTL activity throughout the study. This first development of a stringent assay to measure HTLV-1 SU and Tax-specific CTL assay in the rabbit model will enhance immunopathogenesis studies of HTLV-1 infection. Our data suggest that during the early weeks following infection, HTLV-1-specific CTL responses are primarily targeted against Env-SU.
Collapse
Affiliation(s)
- Rashade A H Haynes
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | | | |
Collapse
|
22
|
Manuel SL, Schell TD, Acheampong E, Rahman S, Khan ZK, Jain P. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009; 86:1205-16. [PMID: 19656902 PMCID: PMC2774881 DOI: 10.1189/jlb.0309172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/17/2022] Open
Abstract
HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.
Collapse
Affiliation(s)
- Sharrón L Manuel
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yamano Y, Araya N, Sato T, Utsunomiya A, Azakami K, Hasegawa D, Izumi T, Fujita H, Aratani S, Yagishita N, Fujii R, Nishioka K, Jacobson S, Nakajima T. Abnormally high levels of virus-infected IFN-gamma+ CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder. PLoS One 2009; 4:e6517. [PMID: 19654865 PMCID: PMC2715877 DOI: 10.1371/journal.pone.0006517] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/26/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human T-lymphotropic virus type 1 (HTLV-1) is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL). The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified. PRINCIPAL FINDINGS Here, we demonstrate that CD4(+)CD25(+)CCR4(+) T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2), Th17, and regulatory T (Treg) cells in healthy individuals, we demonstrate that IFN-gamma production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4(+)CD25(+)CCR4(+) T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-gamma-producing CD4(+)CD25(+)CCR4(+)Foxp3(-) T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity. CONCLUSIONS We have defined a unique T cell subset--IFN-gamma(+)CCR4(+)CD4(+)CD25(+) T cells--that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.
Collapse
Affiliation(s)
- Yoshihisa Yamano
- Department of Molecular Medical Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The CTL response plays a central part in deciding the outcome of viral infections. Evidence from host and viral genetics, gene expression microarrays and assays of T-cell phenotype and function indicate that individual differences in the efficiency of the virus-specific CTL response strongly determine the outcome of infection with the human retroviruses HTLV-1 and HIV-1. It is now believed that differences in anti-viral CTL efficiency or "quality" at the single-cell level are critical in determining the efficacy of the host response to viruses. However, it is difficult to identify and quantify the reasons for this apparent individual variation in CTL efficiency, because of the chronic course of infection and the dynamical complexity of the equilibrium that is established between the virus and the host immune response. Specifically, it is unclear whether the observed variations among infected hosts, i.e. in the frequency, phenotype and function or quality of T cells, are the causes or effects - or both - of the variation in the efficiency of virus control.
Collapse
|
25
|
Kattan T, MacNamara A, Rowan AG, Nose H, Mosley AJ, Tanaka Y, Taylor GP, Asquith B, Bangham CRM. The avidity and lytic efficiency of the CTL response to HTLV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5723-9. [PMID: 19380819 DOI: 10.4049/jimmunol.0900069] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In human T-lymphotropic virus type 1 (HTLV-1) infection, a high frequency of HTLV-1-specific CTLs can co-exist stably with a high proviral load and the proviral load is strongly correlated with the risk of HTLV-1-associated inflammatory diseases. These observations led to the hypothesis that HTLV-1 specific CTLs are ineffective in controlling HTLV-1 replication but contribute to the pathogenesis of the inflammatory diseases. But evidence from host and viral immunogenetics and gene expression microarrays suggests that a strong CTL response is associated with a low proviral load and a low risk of HAM/TSP. Here, we quantified the frequency, lytic activity and functional avidity of HTLV-1-specific CD8(+) cells in fresh, unstimulated PBMCs from individuals with natural HTLV-1 infection. The lytic efficiency of the CD8(+) T cell response-the fraction of autologous HTLV-1-expressing cells eliminated per CD8(+) cell per day-was inversely correlated with both the proviral load and the rate of spontaneous proviral expression. The functional avidity of HTLV-1-specific CD8(+) cells was strongly correlated with their lytic efficiency. We conclude that efficient control of HTLV-1 in vivo depends on the CTL lytic efficiency, which depends in turn on CTL avidity of Ag recognition. CTL quality determines the position of virus-host equilibrium in persistent HTLV-1 infection.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Cell Adhesion/immunology
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Chronic Disease
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, tax/genetics
- Gene Products, tax/immunology
- Gene Products, tax/metabolism
- Human T-lymphotropic virus 1/immunology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Proviruses/genetics
- Proviruses/immunology
- Rats
- Viral Load
Collapse
Affiliation(s)
- Tarek Kattan
- Department of Immunology, Wright-Fleming Institute, Imperial College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Best I, López G, Verdonck K, González E, Tipismana M, Gotuzzo E, Vanham G, Clark D. IFN-gamma production in response to Tax 161-233, and frequency of CD4+ Foxp3+ and Lin HLA-DRhigh CD123+ cells, discriminate HAM/TSP patients from asymptomatic HTLV-1-carriers in a Peruvian population. Immunology 2009; 128:e777-86. [PMID: 19740339 DOI: 10.1111/j.1365-2567.2009.03082.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) can cause HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The objective of this study was to gain insight into the pathogenesis of HAM/TSP by focusing on the CD8(+) T-cell response. Twenty-three HTLV-1-seronegative controls (SC), 29 asymptomatic HTLV-1 carriers (AC) and 48 patients with HAM/TSP were enrolled in the study. We evaluated the production of interferon-gamma (IFN-gamma) in peripheral blood mononuclear cells stimulated with Tax overlapping peptides, the expression of genes related to the CD8(+) cytotoxic T-cell response, the frequency of CD4(+) Foxp3(+) cells and of dendritic cells, and the HTLV-1 provirus load (PVL). The frequency of cells producing IFN-gamma in response to Tax 161-233, but not to Tax 11-19, discriminated patients with HAM/TSP from AC. The increased pro-inflammatory response observed in patients with HAM/TSP was shared by AC with a high PVL, who also exhibited lower levels of granzyme H mRNA in unstimulated CD8(+) T cells than AC with a low PVL. Patients with HAM/TSP showed higher frequencies of CD4(+) Foxp3(+) cells and lower frequencies of plasmacytoid dendritic cells (pDC) than AC. Our findings are consistent with a model in which HTLV-1, along with the host genetic background, drives quantitative and qualitative changes in pDC and CD4(+) Foxp3(+) cells that lead to a predominance of inflammatory responses over lytic responses in the CD8(+) T-cell response of individuals predisposed to develop HAM/TSP.
Collapse
Affiliation(s)
- Ivan Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Birmann BM, Breen EC, Stuver S, Cranston B, Martínez-Maza O, Falk KI, Okayama A, Hanchard B, Mueller N, Hisada M. Population differences in immune marker profiles associated with human T-lymphotropic virus type I infection in Japan and Jamaica. Int J Cancer 2009; 124:614-21. [PMID: 18989900 PMCID: PMC2701897 DOI: 10.1002/ijc.24012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The natural history of human T-lymphotropic virus type I (HTLV-I) has been shown to differ markedly by geographic area. The differences include contrasting patterns of risk of adult T-cell lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which may be due in part to differences in host immune response to infection. To characterize variations in host immunity across populations, we compared serologic immune marker patterns in HTLV-I-endemic populations in Japan and Jamaica. We matched 204 participants with archived blood from the Miyazaki Cohort Study (Japan) and the Food Handlers Study (Jamaica)-i.e., 51 HTLV-I-positive ("carriers") and 51 HTLV-I-negative individuals ("noncarriers") from each population-by age, sex and blood collection year. We compared plasma concentrations of markers of T-cell-mediated (antigen-specific) and nonspecific immunity using regression models and correlation coefficients. Compared to Jamaican HTLV-I noncarriers, Japanese noncarriers had higher covariate-adjusted mean levels of T-cell activation markers, including antibody to Epstein-Barr virus nuclear antigen-1 (reciprocal titer 27 vs. 71, respectively, p=0.005), soluble interleukin-2 receptor-alpha (477 vs. 623 pg/mL, p=0.0008) and soluble CD30 (34 vs. 46 U/mL, p=0.0001) and lower levels of C-reactive protein (1.1 vs. 0.43 microg/mL, p=0.0004). HTLV-I infection was associated with activated T-cell immunity in Jamaicans but with diminished T-cell immunity in Japanese persons. The observed population differences in background and HTLV-I-related host immunity correspond closely to the divergent natural histories of infection observed among HTLV-I carriers in Japan and Jamaica and corroborate a role for host immune status in the contrasting patterns of ATL and HAM/TSP risk.
Collapse
Affiliation(s)
- Brenda M Birmann
- Department of Epidemiology, Brigham and Women's Hospital and Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oh U, Jacobson S. Treatment of HTLV-I-associated myelopathy/tropical spastic paraparesis: toward rational targeted therapy. Neurol Clin 2008; 26:781-97, ix-x. [PMID: 18657726 PMCID: PMC2610848 DOI: 10.1016/j.ncl.2008.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The treatment of HAM/TSP is a challenge. No agent has shown to significantly modify the long-term disability associated with HAM/TSP. Advances in our understanding of the pathogenesis of HAM/TSP have led to the identification of several biomarkers and therapeutic targets. Clinical trials in HAM/TSP continue to be opportunities for further qualification and refinement of biomarkers and therapeutic targets. The validation of HAM/TSP relevant biomarkers and the identification of new targets remain key challenges in the development of effective targeted therapy in HAM/TSP.
Collapse
Affiliation(s)
- Unsong Oh
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke. Bethesda, MD
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke. Bethesda, MD
| |
Collapse
|
29
|
Lima MA, Harab RC, Schor D, Andrada-Serpa MJ, Araújo AQC. Subacute progression of human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2008; 13:468-73. [PMID: 17994432 DOI: 10.1080/13550280701510096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although human T-lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is usually described as a chronic disabling disease, a rapid course over months or even weeks has been reported in some patients. The authors describe the clinical features of HAM/TSP in a Brazilian cohort and evaluate the prevalence of patients with a subacute progression of the disease. This was defined as the requirement of a wheelchair during the first 2 years after the onset of symptoms. Patients with this subacute course and patients with the chronic clinical course were compared in terms of their HTLV-I proviral loads (PLs) using real-time polymerase chain reaction (PCR). Seven out of 88 patients (7.9%) had a subacute progression. All patients were women and 5/7 acquired HTLV-I through sexual contact. There was no significant difference in the real-time PLs between the group with subacute evolution (mean 8.5 copies/100 cells, range 6.03 to 12.09) and those patients with a typical course of disease (mean 11.34 copies/100 cells, range 0.4 to 67.72) (P = .68), suggesting that factors other than the number of infected cells are implicated in the development of such an aggressive course of disease. Early recognition of this subgroup is important because immunosuppressive treatment might be beneficial if instituted promptly.
Collapse
Affiliation(s)
- Marco A Lima
- The Reference Center on Neuroinfections and HTLV, Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
30
|
Asquith B, Bangham CRM. How does HTLV-I persist despite a strong cell-mediated immune response? Trends Immunol 2008; 29:4-11. [PMID: 18042431 PMCID: PMC6066088 DOI: 10.1016/j.it.2007.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/23/2007] [Accepted: 09/05/2007] [Indexed: 11/18/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a pathogenic retrovirus that infects human CD4(+) T lymphocytes. Despite its presence in T cells, HTLV-1 causes little overt immunosuppression. This host-virus relationship has therefore been exploited as an excellent model system for studying the dynamic interaction between a persistent retrovirus and the normal human immune system. We use a combination of mathematical and experimental techniques to identify key factors on both sides of the in vivo host-virus interaction that significantly determine HTLV-I proviral load and disease risk. We develop a model to describe how these factors interact to enable viral persistence.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London, W2 1PG, UK.
| | | |
Collapse
|
31
|
Jain P, Mostoller K, Flaig KE, Ahuja J, Lepoutre V, Alefantis T, Khan ZK, Wigdahl B. Identification of Human T Cell Leukemia Virus Type 1 Tax Amino Acid Signals and Cellular Factors Involved in Secretion of the Viral Oncoprotein. J Biol Chem 2007; 282:34581-93. [PMID: 17897946 DOI: 10.1074/jbc.m707317200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of a number of pathologic abnormalities, including adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The viral oncoprotein Tax has been implicated in the pathogenesis of these diseases. Recently, cell-free Tax was detected in the cerebrospinal fluid of HAM/TSP patients, implying that extracellular Tax may be relevant to neurologic disease. Additionally, the presence of a nuclear export signal within Tax and its active secretion has been demonstrated in vitro. However, the mechanism of Tax secretion remains to be established. Studies reported herein elucidate the process of Tax secretion and identify domains of Tax critical to its subcellular localization and secretion. Tax was shown to interact with a number of cellular secretory pathway proteins in both the model cell line BHK (baby hamster kidney)-21 and an HTLV-1-infected T cell line, C8166, physiologically relevant to HTLV-1-induced disease. Silencing of selected components of the secretory pathway affected Tax secretion, further confirming regulated secretion of Tax. Additionally, mutations in two putative secretory signals within Tax DHE and YTNI resulted in aberrant subcellular localization of Tax and significantly altered protein secretion. Together, these studies demonstrate that Tax secretion is a regulated event facilitated by its interactions with proteins of the cellular secretory pathway and the presence of secretory signals within the carboxyl-terminal domain of the protein.
Collapse
MESH Headings
- Animals
- Cricetinae
- Gene Products, tax/cerebrospinal fluid
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- Gene Silencing
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/metabolism
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Jurkat Cells
- Leukemia-Lymphoma, Adult T-Cell/cerebrospinal fluid
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/virology
- Nuclear Export Signals/physiology
- Paraparesis, Tropical Spastic/cerebrospinal fluid
- Paraparesis, Tropical Spastic/genetics
- Paraparesis, Tropical Spastic/virology
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
Collapse
Affiliation(s)
- Pooja Jain
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Despite significant advances in our understanding of the immune response to persistent viruses like human T-cell lymphotropic virus type I (HTLV-I), many important questions remain unanswered. Mathematical modelling enables us to interpret and synthesise diverse experimental data in new ways and thus can contribute to our understanding. Here, we review recent advances in mathematical modelling of HTLV-I infection and illustrate how mathematics has enabled us to identify factors that determine an individual's viral burden and risk of developing HTLV-I-associated diseases.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College London, London, UK.
| | | |
Collapse
|
33
|
Alefantis T, Jain P, Ahuja J, Mostoller K, Wigdahl B. HTLV-1 Tax nucleocytoplasmic shuttling, interaction with the secretory pathway, extracellular signaling, and implications for neurologic disease. J Biomed Sci 2005; 12:961-74. [PMID: 16228291 DOI: 10.1007/s11373-005-9026-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) oncoprotein Tax interacts with numerous cellular pathways promoting both the survival and pathogenesis of the virus in the human population. Tax has been studied extensively with respect to its role in transcriptional transactivation and its involvement in the up-regulation of a number of cellular genes during the process of oncogenic transformation. These processes are dependent on Tax localization to the nucleus where it interacts with a number of cellular transcription factors during its course of nuclear action. However, there is mounting evidence suggesting that Tax may shuttle between the nucleus and cytoplasm, localize to several cytoplasmic organelles with subsequent secretion from both Tax-transfected cells as well as HTLV-1-infected cells. In addition, the presence of cell-free Tax in cerebral spinal fluid (CSF) was recently demonstrated to occur during all stages of HAM/TSP. This has brought about an increased interest in the cytoplasmic localization of Tax and the implications this localization may have with respect to the progression of HTLV-1-associated disease processes. This review addresses the functional implications relevant to the localization and accumulation of Tax in the cytoplasm including the Tax amino acid signals and cellular protein interactions that may regulate this process. Specifically, we have discussed three important processes associated with the cytoplasmic localization of Tax. First, the process of Tax shuttling between the nucleus and cytoplasm will be described and how this process may be involved in regulating different transcriptional activation pathways. Second, cytoplasmic localization of Tax will be discussed with relevance to Tax secretion and the interaction of Tax with proteins in the cellular secretory pathway. Finally, the secretion of Tax and the effects of extracellular Tax on HTLV-1 pathogenesis will be addressed.
Collapse
|
34
|
Abstract
There is strong evidence at the individual level and the population level that an efficient cytotoxic T lymphocyte (CTL) response to HTLV-1 limits the proviral load and the risk of associated inflammatory diseases such as HAM/TSP. This evidence comes from host population genetics, viral genetics, DNA expression microarrays and assays of lymphocyte function. However, until now there has been no satisfactory and rigorous means to define or to measure the efficiency of an antiviral CTL response. Recently, methods have been developed to quantify lymphocyte turnover rates in vivo and the efficiency of anti-HTLV-1 CTLs ex vivo. Data from these new techniques appear to substantiate the conclusion that variation between individual hosts in the rate at which a single CTL kills HTLV-1-infected lymphocytes is an important determinant, perhaps the decisive determinant, of the proviral load and the risk of HAM/TSP. With these experimental data, it is becoming possible to refine, parameterize and test mathematical models of the immune control of HTLV-1, which are a necessary part of an understanding of this complex dynamic system.
Collapse
Affiliation(s)
- Charles R M Bangham
- Department of Immunology, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
35
|
Mosley AJ, Asquith B, Bangham CRM. Cell-mediated immune response to human T-lymphotropic virus type I. Viral Immunol 2005; 18:293-305. [PMID: 16035941 DOI: 10.1089/vim.2005.18.293] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human T-lymphotropic virus type I (HTLV-I) is a retrovirus that causes persistent infection in many populations in tropical and subtropical regions. HTLV-I chronically activates the cell-mediated arm of the host adaptive immune response. There has been much debate about the role of the immune response in determining the outcome of HTLV-I infection: most seropositive individuals remain lifelong asymptomatic carriers of the virus, whereas a small proportion-usually those with higher equilibrium proviral loads-develop an inflammatory disease of the central nervous system known as HAM/TSP. Here we discuss the cell-mediated immune response to HTLV-I infection. We summarize recent data on the HTLV-I-specific CD4(+) cell response and explore its potential role in HAM/TSP pathogenesis. We also explore the controversy surrounding the role of the CD8(+) cell response in controlling HTLV-I infection and/or contributing to HAM/TSP disease, highlighting recent studies of T cell gene expression profiles and a newly developed assay of CD8(+) cell functional efficiency. Finally, we introduce a possible role for cellular innate immune effectors in HTLV-I infection.
Collapse
Affiliation(s)
- Angelina J Mosley
- Department of Immunology, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
36
|
Alefantis T, Mostoller K, Jain P, Harhaj E, Grant C, Wigdahl B. Secretion of the Human T Cell Leukemia Virus Type I Transactivator Protein Tax. J Biol Chem 2005; 280:17353-62. [PMID: 15659397 DOI: 10.1074/jbc.m409851200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. The HTLV-I protein Tax is well known as a transcriptional transactivator and inducer of cellular transformation. However, it is also known that extracellular Tax induces the production and release of cytokines, such as tumor necrosis factor-alpha and interleukin-6, which have adverse effects on cells of the central nervous system. The cellular process by which Tax exits the cell into the extracellular environment is currently unknown. In most cell types, Tax has been shown to localize primarily to the nucleus. However, Tax has also been found to accumulate in the cytoplasm. The results contained herein begin to characterize the process of Tax secretion from the cell. Specifically, cytoplasmic Tax was demonstrated to localize to organelles associated with the cellular secretory process including the endoplasmic reticulum and Golgi complex. Additionally, it was demonstrated that full-length Tax was secreted from both baby hamster kidney cells and a human kidney tumor cell line, suggesting that Tax enters the secretory pathway in a leaderless manner. Tax secretion was partially inhibited by brefeldin A, suggesting that Tax migrated from the endoplasmic reticulum to the Golgi complex. In addition, combined treatment of Tax-transfected BHK-21 cells with phorbol myristate acetate and ionomycin resulted in a small increase in the amount of Tax secreted, suggesting that a fraction of cytoplasmic Tax was present in the regulated secretory pathway. These studies begin to provide a link between Tax localization to the cytoplasm, the detection of Tax in the extracellular environment, its possible role as an extracellular effector molecule, and a potential role in neurodegenerative disease associated with HTLV-I infection.
Collapse
Affiliation(s)
- Timothy Alefantis
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ozden S, Cochet M, Mikol J, Teixeira A, Gessain A, Pique C. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis. J Virol 2004; 78:10320-7. [PMID: 15367598 PMCID: PMC516372 DOI: 10.1128/jvi.78.19.10320-10327.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.
Collapse
Affiliation(s)
- Simona Ozden
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Monsurrò V, Wang E, Yamano Y, Migueles SA, Panelli MC, Smith K, Nagorsen D, Connors M, Jacobson S, Marincola FM. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood 2004; 104:1970-8. [PMID: 15187028 DOI: 10.1182/blood-2004-02-0525] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a human melanoma model of tumor antigen (TA)-based immunization, we tested the functional status of TA-specific CD8+ cytotoxic T lymphocytes. A "quiescent" phenotype lacking direct ex vivo cytotoxic and proliferative potential was identified that was further characterized by comparing its transcriptional profile to that of TA-specific T cells sensitized in vitro by exposure to the same TA and the T-cell growth factor interleukin 2 (IL-2). Quiescent circulating tumor-specific CD8+ T cells were deficient in expression of genes associated with T-cell activation, proliferation, and effector function. This quiescent status may explain the observed lack of correlation between the presence of circulating immunization-induced lymphocytes and tumor regression. In addition, the activation of TA-specific T cells by in vitro antigen recall and IL-2 suggests that a complete effector phenotype might be reinstated in vivo to fulfill the potential of anticancer vaccine protocols.
Collapse
Affiliation(s)
- Vladia Monsurrò
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND Since its discovery in 1980, human T-cell lymphotropic virus type-1 (HTLV-1) has been associated with a number of neurological diseases. The distribution of HTLV-1-associated neurological disease is worldwide. In endemic areas, up to 30% of the population may be infected with HTLV-1; however, only a small percentage of infected persons develops neurological disease. REVIEW SUMMARY In 1986, HTLV-1 infection was reported in patients of chronic progressive myelopathy of uncertain etiology, and the disease entity was called HTLV-1-associated myelopathy/tropical spastic paraparesis. Recently, HTLV-1 infection has been associated with polymyositis and uveitis. Interestingly, a single patient may display more than one syndrome. Although other neurological syndromes occur in HTLV-1-infected individuals, there is not enough epidemiologic data that show a strong association. Treatment of HTLV-1-associated neurological disease is challenging, and well-controlled studies are lacking. CONCLUSION As neurologists and other scientists begin to understand the pathophysiology of HTLV-1 infection, improved therapies should be developed. Randomized trials with longer follow-up are required to understand the effect of treatment on disability and quality of life.
Collapse
Affiliation(s)
- R B Khan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|