1
|
Löser A, Schwarz M, Kipp AP. NRF2 and Thioredoxin Reductase 1 as Modulators of Interactions between Zinc and Selenium. Antioxidants (Basel) 2024; 13:1211. [PMID: 39456464 PMCID: PMC11505002 DOI: 10.3390/antiox13101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Selenium and zinc are essential trace elements known to regulate cellular processes including redox homeostasis. During inflammation, circulating selenium and zinc concentrations are reduced in parallel, but underlying mechanisms are unknown. Accordingly, we modulated the zinc and selenium supply of HepG2 cells to study their relationship. METHODS HepG2 cells were supplied with selenite in combination with a short- or long-term zinc treatment to investigate intracellular concentrations of selenium and zinc together with biomarkers describing their status. In addition, the activation of the redox-sensitive transcription factor NRF2 was analyzed. RESULTS Zinc not only increased the nuclear translocation of NRF2 after 2 to 6 h but also enhanced the intracellular selenium content after 72 h, when the cells were exposed to both trace elements. In parallel, the activity and expression of the selenoprotein thioredoxin reductase 1 (TXNRD1) increased, while the gene expression of other selenoproteins remained unaffected or was even downregulated. The zinc effects on the selenium concentration and TXNRD activity were reduced in cells with stable NRF2 knockdown in comparison to control cells. CONCLUSIONS This indicates a functional role of NRF2 in mediating the zinc/selenium crosstalk and provides an explanation for the observed unidirectional behavior of selenium and zinc.
Collapse
Affiliation(s)
- Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Anna Patricia Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| |
Collapse
|
2
|
Adhya T, Singh S, Gottumukkala HV, Banerjee A, Chongder I, Maity S, Reddy PA. Making Noah's Ark Work for Fishing Cat Conservation: A Blueprint for Connecting Populations across an Interactive Wild Ex Situ Spectrum. Animals (Basel) 2024; 14:2770. [PMID: 39409720 PMCID: PMC11475073 DOI: 10.3390/ani14192770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The One Plan Approach advocates for a hybrid species management framework, wherein captive-bred populations are considered metapopulations nested within a broader network of zoos and wild populations Additionally, the Opportunities to Thrive framework aims to enhance animal welfare by addressing the physiological, psychological, and emotional needs of captive individuals, thereby improving conservation outcomes. Here, we present an integrated framework for the conservation of a globally threatened wetland wild cat species, the fishing cat, by synthesizing optimal ex situ management practices and in situ conservation strategies. Further, we examined the genetic constitution of the founder population in a fishing cat captive breeding program that was recently initiated by the West Bengal Zoo Authority, India and conducted a population viability analysis to suggest how best to maintain the genetic diversity of the population. We found that the present genetic diversity of 56% and maximum carrying capacity of the captive population (30 individuals) can be maintained for more than 100 years with a combination of supplementation and harvesting. Keeping stochastic events in mind, the introduction of two adult males and females to the existing population each year will seamlessly allow the harvesting of two adult males and two adult females every alternate year to supplement wild populations. Further, we adopted the proposed integrated framework to delineate recommendations for the supplementation of wild populations in West Bengal. We used environmental criteria known to influence fishing cat occurrence to identify 21 potential reintroduction zones in the Sundarbans landscape and Terai region in northern West Bengal with habitable areas for the fishing cat that are larger than the maximum known species' home range. Our study is timely and insightful because it provides a holistic blueprint for implementing the One Plan Approach in safeguarding a threatened species.
Collapse
Affiliation(s)
- Tiasa Adhya
- The Fishing Cat Project, Fishing Cat Conservation Alliance, P.O. Box 1488, Navasota, TX 77868, USA; (T.A.); (H.V.G.)
| | - Simran Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India;
| | - Himaja Varma Gottumukkala
- The Fishing Cat Project, Fishing Cat Conservation Alliance, P.O. Box 1488, Navasota, TX 77868, USA; (T.A.); (H.V.G.)
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India;
| | - Aditya Banerjee
- Human and Environment Alliance League, Bosepukur Road, Kolkata 700 042, India;
| | - Ishita Chongder
- West Bengal Zoo Authority, Kolkata 700 106, India; (I.C.); (S.M.)
| | - Sulata Maity
- West Bengal Zoo Authority, Kolkata 700 106, India; (I.C.); (S.M.)
| | - P. Anuradha Reddy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India;
| |
Collapse
|
3
|
Blagov AV, Orekhova VA, Sukhorukov VN, Melnichenko AA, Orekhov AN. Potential Use of Antioxidant Compounds for the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:1150. [PMID: 37631065 PMCID: PMC10458684 DOI: 10.3390/ph16081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Since inflammatory bowel diseases (IBDs) are chronic, the development of new effective therapeutics to combat them does not lose relevance. Oxidative stress is one of the main pathological processes that determines the progression of IBD. In this regard, antioxidant therapy seems to be a promising approach. The role of oxidative stress in the development and progression of IBD is considered in detail in this review. The main cause of oxidative stress in IBD is an inadequate response of leukocytes to dysbiosis and food components in the intestine. Passage of immune cells through the intestinal barrier leads to increased ROS concentration and the pathological consequences of exposure to oxidative stress based on the development of inflammation and impaired intestinal permeability. To combat oxidative stress in IBD, several promising natural (curcumin, resveratrol, quercetin, and melatonin) and artificial antioxidants (N-acetylcysteine (NAC) and artificial superoxide dismutase (aSOD)) that had been shown to be effective in a number of clinical trials have been proposed. Their mechanisms of action on pathological events in IBD and clinical manifestations from their impact have been determined. The prospects for the use of other antioxidants that have not yet been tested in the treatment of IBD, but have the properties of potential therapeutic candidates, have been also considered.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Varvara A. Orekhova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| |
Collapse
|
4
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
5
|
Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol 2023; 14:1147414. [PMID: 36937839 PMCID: PMC10017475 DOI: 10.3389/fphar.2023.1147414] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Maintaining the balance of a cell's redox function is key to determining cell fate. In the critical redox system of mammalian cells, glutathione peroxidase (GPX) is the most prominent family of proteins with a multifaceted function that affects almost all cellular processes. A total of eight members of the GPX family are currently found, namely GPX1-GPX8. They have long been used as antioxidant enzymes to play an important role in combating oxidative stress and maintaining redox balance. However, each member of the GPX family has a different mechanism of action and site of action in maintaining redox balance. GPX1-4 and GPX6 use selenocysteine as the active center to catalyze the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance. In addition to reducing H2O2 and small molecule hydroperoxides, GPX4 is also capable of reducing complex lipid compounds. It is the only enzyme in the GPX family that directly reduces and destroys lipid hydroperoxides. The active sites of GPX5 and GPX7-GPX8 do not contain selenium cysteine (Secys), but instead, have cysteine residues (Cys) as their active sites. GPX5 is mainly expressed in epididymal tissue and plays a role in protecting sperm from oxidative stress. Both enzymes, GPX7 and GPX8, are located in the endoplasmic reticulum and are necessary enzymes involved in the oxidative folding of endoplasmic reticulum proteins, and GPX8 also plays an important role in the regulation of Ca2+ in the endoplasmic reticulum. With an in-depth understanding of the role of the GPX family members in health and disease development, redox balance has become the functional core of GPX family, in order to further clarify the expression and regulatory mechanism of each member in the redox process, we reviewed GPX family members separately.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Xingyu Pan
- Department of Pediatric Surgrey, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children’s Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- *Correspondence: Yi Hua,
| |
Collapse
|
6
|
Huang H, Dai Y, Duan Y, Yuan Z, Li Y, Zhang M, Zhu W, Yu H, Zhong W, Feng S. Effective prediction of potential ferroptosis critical genes in clinical colorectal cancer. Front Oncol 2022; 12:1033044. [PMID: 36324584 PMCID: PMC9619366 DOI: 10.3389/fonc.2022.1033044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 08/30/2023] Open
Abstract
Background Colon cancer is common worldwide, with high morbidity and poor prognosis. Ferroptosis is a novel form of cell death driven by the accumulation of iron-dependent lipid peroxides, which differs from other programmed cell death mechanisms. Programmed cell death is a cancer hallmark, and ferroptosis is known to participate in various cancers, including colon cancer. Novel ferroptosis markers and targeted colon cancer therapies are urgently needed. To this end, we performed a preliminary exploration of ferroptosis-related genes in colon cancer to enable new treatment strategies. Methods Ferroptosis-related genes in colon cancer were obtained by data mining and screening for differentially expressed genes (DEGs) using bioinformatics analysis tools. We normalized the data across four independent datasets and a ferroptosis-specific database. Identified genes were validated by immunohistochemical analysis of pathological and healthy clinical samples. Results We identified DEGs in colon cancer that are involved in ferroptosis. Among these, five core genes were found: ELAVL1, GPX2, EPAS1, SLC7A5, and HMGB1. Bioinformatics analyses revealed that the expression of all five genes, except for EPAS1, was higher in tumor tissues than in healthy tissues. Conclusions The preliminary exploration of the five core genes revealed that they are differentially expressed in colon cancer, playing an essential role in ferroptosis. This study provides a foundation for subsequent research on ferroptosis in colon cancer.
Collapse
Affiliation(s)
- Hongliang Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuexiang Dai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Duan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanxuan Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maomao Zhang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Hang Yu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Wenfei Zhong
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Selistre-de-Araujo HS, Pachane BC, Altei WF. Tumor heterogeneity and the dilemma of antioxidant therapies in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1074. [PMID: 36330399 PMCID: PMC9622474 DOI: 10.21037/atm-22-4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 08/30/2023]
Affiliation(s)
- Heloisa Sobreiro Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Radiation Oncology Department, Barretos Cancer Hospital, Barretos, Brazil
| |
Collapse
|
8
|
Bergandi L, Apprato G, Silvagno F. Antioxidant and Anti-Inflammatory Activity of Combined Phycocyanin and Palmitoylethanolamide in Human Lung and Prostate Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11020201. [PMID: 35204084 PMCID: PMC8868053 DOI: 10.3390/antiox11020201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation involving the innate and adaptive immune systems is a normal response to infection; however, when allowed to continue unchecked, inflammation may result in several pathologies. Natural molecules with antioxidant properties can target the key players of inflammation and exert beneficial health effects. In this study, human normal bronchial (Beas-2B) and prostate (HPrEpiC) epithelial cell lines were exposed to infectious stimulation and treated with phycocyanin (PC) and palmitoylethanolamide (PEA), with the aim of demonstrating the enhanced antioxidant and anti-inflammatory properties of the combination. The cotreatment protected from cytotoxicity and greatly abated both the production of radical oxygen species (ROS) and the transcription of several inflammatory cytokines. Oxidative stress and inflammation were curtailed by affecting three main pathways: (1) inhibition of cyclooxygenase-2 enzyme and consequent decrease of signaling generating ROS; (2) increased synthesis of glutathione and therefore strengthening of the natural antioxidant defenses of the cells; (3) decreased infection-driven mitochondrial respiratory burst which generates oxidative stress. Based on the mounting interest in using nutraceuticals as adjuvants in the clinical practice, the present study unveils new mechanisms of action and enhanced efficacy of PC and PEA, supporting the possible exploitation of this combination in human disorders.
Collapse
|
9
|
Müller AK, Albrecht F, Rohrer C, Koeberle A, Werz O, Schlörmann W, Glei M, Lorkowski S, Wallert M. Olive Oil Extracts and Oleic Acid Attenuate the LPS-Induced Inflammatory Response in Murine RAW264.7 Macrophages but Induce the Release of Prostaglandin E2. Nutrients 2021; 13:4437. [PMID: 34959989 PMCID: PMC8703532 DOI: 10.3390/nu13124437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Olive oil contains high amounts of oleic acid (OA). Although OA has been described to inhibit inflammatory processes, the effects of olive oil on cellular mechanisms remain poorly understood. Therefore, we compared the effects of major fatty acids (FA) from olive oil with those of olive oil extracts (OOE) on inflammatory mediators and alterations in the cellular phospholipid composition in murine macrophages. Upon treatment with different OOE, FA compositions of lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages were analyzed using gas chromatography. Olive oil extracts and OA significantly reduced the LPS-induced expression of inducible nitric oxide synthase (iNos), cyclooxygenase (Cox2), and interleukin-6 mRNA. In addition, a significant decrease in Cox2 and iNos protein expression was observed. The formation of nitric oxide was significantly reduced, while the formation of prostaglandin (PG) E2 from arachidonic acid significantly increased after treatment with OOE or OA. The latter was associated with a shift in the phospholipid FA composition from arachidonic acid to OA, resulting in an elevated availability of arachidonic acid. Together, OOE and OA mediate anti-inflammatory effects in vitro but increase the release of arachidonic acid and hereinafter PGE2, likely due to elongation of OA and competitive incorporation of fatty acids into membrane phospholipids.
Collapse
Affiliation(s)
- Anke Katharina Müller
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.K.M.); (F.A.); (C.R.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany; (W.S.); (M.G.)
| | - Franziska Albrecht
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.K.M.); (F.A.); (C.R.); (S.L.)
| | - Carsten Rohrer
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.K.M.); (F.A.); (C.R.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany; (W.S.); (M.G.)
| | - Andreas Koeberle
- Center for Molecular Biosciences Innsbruck (CMBI), Michael Popp Institute, University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Wiebke Schlörmann
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany; (W.S.); (M.G.)
- Department of Applied Nutritional Toxicology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael Glei
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany; (W.S.); (M.G.)
- Department of Applied Nutritional Toxicology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.K.M.); (F.A.); (C.R.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany; (W.S.); (M.G.)
| | - Maria Wallert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.K.M.); (F.A.); (C.R.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany; (W.S.); (M.G.)
| |
Collapse
|
10
|
Li Z, Dong Y, Chen S, Jia X, Jiang X, Che L, Lin Y, Li J, Feng B, Fang Z, Zhuo Y, Wang J, Xu H, Wu D, Xu S. Organic Selenium Increased Gilts Antioxidant Capacity, Immune Function, and Changed Intestinal Microbiota. Front Microbiol 2021; 12:723190. [PMID: 34484164 PMCID: PMC8415750 DOI: 10.3389/fmicb.2021.723190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Selenium is an indispensable essential micronutrient for humans and animals, and it can affect biological functions by combining into selenoproteins. The purpose of this study was to investigate the effects of 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) on the antioxidant performance, immune function, and intestinal microbiota composition of gilts. From weaning to the 19th day after the second estrus, 36 gilts (Duroc × Landrace × Yorkshire) were assigned to three treatments: control group, sodium selenite group (0.3 mg Se/kg Na2SeO3), and HMSeBA group (0.3 mg Se/kg HMSeBA). Dietary supplementation with HMSeBA improved the gilts tissue selenium content (except in the thymus) and selenoprotein P (SelP1) concentration when compared to the Na2SeO3 or control group. Compared with the control group, the antioxidant enzyme activity in the tissues from gilts in the HMSeBA group was increased, and the concentration of malondialdehyde in the colon had a decreasing trend (p = 0.07). Gilts in the HMSeBA supplemented group had upregulated gene expression of GPX2, GPX4, and SelX in spleen tissue, TrxR1 in thymus; GPX1 and SelX in duodenum, GPX3 and SEPHS2 in jejunum, and GPX1 in the ileum tissues (p < 0.05). In addition, compared with the control group, the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) in the liver, spleen, thymus, duodenum, ileum, and jejunum of gilts in the HMSeBA group were downregulated (p < 0.05), while the expression of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) in the liver, thymus, jejunum, and ileum were upregulated (p < 0.05). Compared with the control group and the Na2SeO3 group, HMSeBA had increased concentration of serum cytokines interleukin-2 (IL-2) and immunoglobulin G (IgG; p < 0.05), increased concentration of intestinal immunoglobulin A (sIgA; p < 0.05), and decreased concentration of serum IL-6 (p < 0.05). Dietary supplementation with HMSeBA also increased the abundance of intestinal bacteria (Ruminococcaceae and Phascolarctobacterium; p < 0.05) and selectively inhibited the abundance of some bacteria (Parabacteroides and Prevotellaceae; p < 0.05). In short, HMSeBA improves the antioxidant performance and immune function of gilts, and changed the structure of the intestinal microflora. And this study provided data support for the application of HMSeBA in gilt and even pig production.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Yanpeng Dong
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Sirun Chen
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Jia
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Haitao Xu
- Animal Husbandry Development Center of Changyi City, Shandong, China
| | - De Wu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Maiorino M. Redox Pioneer: Professor Regina Brigelius-Flohé. Antioxid Redox Signal 2021; 35:595-601. [PMID: 34036804 DOI: 10.1089/ars.2020.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dr. Regina Brigelius-Flohé (PhD 1978) is recognized here as redox pioneer because she has published an article on redox biology, as first author, that has been cited >1000 times, plus four articles cited >500 times, and a total of 30 articles cited >100 times. She obtained her doctorate in biochemistry at the Institute of Biochemistry of the University of Münster, Germany. She held positions in both, academia (Münster, Munich, Düsseldorf, Hannover, and Potsdam, Germany) and industry (Aachen, Germany). Dr. Brigelius-Flohé is the pioneer who, as head of the department of biochemistry of micronutrients of the German Institute of Human Nutrition (DIfE; Potsdam-Rehbrücke, Germany), worked out the metabolism of tocopherols and tocotrienols ("Key Finding 1"). She was the first to sequence glutathione peroxidase 4 (GPx4) ("Key Finding 2"), and unraveled the role of selenium, in particular of GPxs, in inflammation and carcinogenesis ("Key Finding 3"). Her contributions, thus, focused on serious biomedical problems such as nutrition, inflammation, and carcinogenesis. She has been a member of the scientific advisory board of the German Society of Biochemistry and Molecular Biology for 6 years and was president of SFRR-Europe in 2005-2006. She edited several books and serves on the editorial board of journals in the fields of nutrition, free radicals, and redox regulation. Antioxid. Redox Signal. 35, 595-601.
Collapse
Affiliation(s)
- Matilde Maiorino
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
12
|
Kalansuriya DM, Lim R, Lappas M. In vitro selenium supplementation suppresses key mediators involved in myometrial activation and rupture of fetal membranes. Metallomics 2021; 12:935-951. [PMID: 32373896 DOI: 10.1039/d0mt00063a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spontaneous preterm birth, which can affect up to 20% of all pregnancies, is the greatest contributor to perinatal morbidity and mortality. Infection is the leading pathological cause of spontaneous preterm birth. Infection activates the maternal immune system, resulting in the upregulation of pro-inflammatory and pro-labor mediators that activate myometrial contractions and rupture of fetal membranes. Anti-inflammatory agents therefore have the potential for the prevention of spontaneous preterm birth. Selenium, an essential micronutrient, has been shown to be a potent anti-inflammatory regulator. Notably, clinical and epidemiological studies have suggested a link between selenium and preterm birth. Thus, the aim of this study was to assess the effect of selenite (an inorganic form of selenium) on the expression of pro-inflammatory and pro-labor mediators in human gestational tissues. Human fetal membranes and myometrium were pre-incubated with or without selenite before incubation with the bacterial product lipopolysaccharide (LPS) to stimulate inflammation associated with preterm birth. Selenite blocked LPS-induced expression of pro-inflammatory cytokines and chemokines and enzymes involved in remodelling of myometrium and degradation of fetal membranes. Of note, selenite also suppressed myometrial activation induced by inflammation as evidenced by a decrease in LPS-induced prostaglandin signalling and myometrial cell contractility. These effects of selenite were mediated by the MAPK protein ERK as selenite blunted LPS induced activation of ERK. In conclusion, selenite suppresses key mediators involved in inflammation induced activation of mediators involved in active labor in human fetal membranes and myometrium. These findings support recent clinical studies demonstrating selenium supplementation is associated with decreased incidence of spontaneous preterm birth.
Collapse
Affiliation(s)
- Dineli Matheesha Kalansuriya
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Level 4/163 Studley Road, Heidelberg, 3084, Victoria, Australia.
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Level 4/163 Studley Road, Heidelberg, 3084, Victoria, Australia. and Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Level 4/163 Studley Road, Heidelberg, 3084, Victoria, Australia. and Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
13
|
Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021; 10:1030. [PMID: 34202320 PMCID: PMC8300779 DOI: 10.3390/antiox10071030] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.
Collapse
Affiliation(s)
- Tabitha Jenkins
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
14
|
Buday K, Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol Chem 2020; 402:271-287. [PMID: 33055310 DOI: 10.1515/hsz-2020-0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of cellular redox control is pivotal for normal cellular functions and cell fate decisions including cell death. Among the key cellular redox systems in mammals, the glutathione peroxidase (GPX) family of proteins is the largest conferring multifaceted functions and affecting virtually all cellular processes. The endoplasmic reticulum (ER)-resident GPXs, designated as GPX7 and GPX8, are the most recently added members of this family of enzymes. Recent studies have provided exciting insights how both enzymes support critical processes of the ER including oxidative protein folding, maintenance of ER redox control by eliminating H2O2, and preventing palmitic acid-induced lipotoxicity. Consequently, numerous pathological conditions, such as neurodegeneration, cancer and metabolic diseases have been linked with altered GPX7 and GPX8 expression. Studies in mice have demonstrated that loss of GPX7 leads to increased differentiation of preadipocytes, increased tumorigenesis and shortened lifespan. By contrast, GPX8 deficiency in mice results in enhanced caspase-4/11 activation and increased endotoxic shock in colitis model. With the increasing recognition that both types of enzymes are dysregulated in various tumor entities in man, we deem a review of the emerging roles played by GPX7 and GPX8 in health and disease development timely and appropriate.
Collapse
Affiliation(s)
- Katalin Buday
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, 117997Moscow, Russia
| |
Collapse
|
15
|
Abstract
Significance: The selenium-containing Glutathione peroxidases (GPxs)1-4 protect against oxidative challenge, inhibit inflammation and oxidant-induced regulated cell death. Recent Advances: GPx1 and GPx4 dampen phosphorylation cascades predominantly via prevention of inactivation of phosphatases by H2O2 or lipid hydroperoxides. GPx2 regulates the balance between regeneration and apoptotic cell shedding in the intestine. It inhibits inflammation-induced carcinogenesis in the gut but promotes growth of established cancers. GPx3 deficiency facilitates platelet aggregation likely via disinhibition of thromboxane biosynthesis. It is also considered a tumor suppressor. GPx4 is expressed in three different forms. The cytosolic form proved to inhibit interleukin-1-driven nuclear factor κB activation and leukotriene biosynthesis. Moreover, it is a key regulator of ferroptosis, because it reduces hydroperoxy groups of complex lipids and silences lipoxygenases. By alternate substrate use, the nuclear form contributes to chromatin compaction. Mitochondrial GPx4 forms the mitochondrial sheath of spermatozoa and, thus, guarantees male fertility. Out of the less characterized GPxs, the cysteine-containing GPx7 and GPx8 are unique in contributing to oxidative protein folding in the endoplasmic reticulum by reacting with protein isomerase as an alternate substrate. A yeast 2-Cysteine glutathione peroxidase equipped with CP and CR was reported to sense H2O2 for inducing an adaptive response. Critical Issues: Most of the findings compiled are derived from tissue culture and/or animal studies only. Their impact on human physiology is sometimes questionable. Future Directions: The expression of individual GPxs and GPx-dependent regulatory phenomena are to be further investigated, in particular in respect to human health.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition-Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Leopold Flohé
- Depatamento de Biochímica, Universidad de la República, Montevideo, Uruguay.,Dipartimento di Medicina Moleculare, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
16
|
Li Y, Chen J, Yang W, Liu H, Wang J, Xiao J, Xie S, Ma L, Nie D. mPGES-1/PGE2 promotes the growth of T-ALL cells in vitro and in vivo by regulating the expression of MTDH via the EP3/cAMP/PKA/CREB pathway. Cell Death Dis 2020; 11:221. [PMID: 32251289 PMCID: PMC7136213 DOI: 10.1038/s41419-020-2380-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy that is characterized by a high frequency of induction failure and by early relapse. Many studies have revealed that metadherin (MTDH) is highly expressed in a variety of malignant solid tumours and plays an important role in the occurrence and development of tumours. However, the relationship between the expression of MTDH and T-ALL has not yet been reported, and the regulatory factors of MTDH are still unknown. Our previous studies found that mPGES-1/PGE2 was important for promoting the growth of leukaemia cells. In the present study, we found that MTDH was highly expressed in primary T-ALL cells and in the Jurkat cell line. Our results showed that mPGES-1/PGE2 regulates the expression of MTDH through the EP3/cAMP/PKA-CREB pathway in T-ALL cells. Downregulation of MTDH inhibits the growth of Jurkat cells in vitro and in vivo. Our results suggest that MTDH could be a potential target for the treatment of T-ALL.
Collapse
Affiliation(s)
- Yiqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaoting Chen
- Department of Hematology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjuan Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyun Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jieyu Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuangfeng Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Danian Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Qian F, Misra S, Prabhu KS. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 2019; 54:484-516. [PMID: 31996052 PMCID: PMC7122104 DOI: 10.1080/10409238.2020.1717430] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.
Collapse
Affiliation(s)
- Fenghua Qian
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - Sougat Misra
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| |
Collapse
|
18
|
Campo-Sabariz J, Moral-Anter D, Brufau MT, Briens M, Pinloche E, Ferrer R, Martín-Venegas R. 2-Hydroxy-(4-methylseleno)butanoic Acid Is Used by Intestinal Caco-2 Cells as a Source of Selenium and Protects against Oxidative Stress. J Nutr 2019; 149:2191-2198. [PMID: 31504719 DOI: 10.1093/jn/nxz190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selenium (Se) participates in different functions in humans and other animals through its incorporation into selenoproteins as selenocysteine. Inadequate dietary Se is considered a risk factor for several chronic diseases associated with oxidative stress. OBJECTIVE The role of 2-hydroxy-(4-methylseleno)butanoic acid (HMSeBA), an organic form of Se used in animal nutrition, in supporting selenoprotein synthesis and protecting against oxidative stress was investigated in an in vitro model of intestinal Caco-2 cells. METHODS Glutathione peroxidase (GPX) and thioredoxin reductase (TXNRD) activities, selenoprotein P1 protein (SELENOP) and gene (SELENOP) expression, and GPX1 and GPX2 gene expression were studied in Se-deprived (FBS removal) and further HMSeBA-supplemented (0.1-625 μM, 72 h) cultures. The effect of HMSeBA supplementation (12.5 and 625 μM, 24 h) on oxidative stress induced by H2O2 (1 mM) was evaluated by the production of reactive oxygen species (ROS), 4-hydroxy-2-nonenal (4-HNE) adducts, and protein carbonyl residues compared with a sodium selenite control (SS, 5 μM). RESULTS Se deprivation induced a reduction (P < 0.05) in GPX activity (62%), GPX1 expression, and both SELENOP (33%) and SELENOP expression. In contrast, an increase (P < 0.05) in GPX2 expression and no effect in TXNRD activity (P = 0.09) were observed. HMSeBA supplementation increased (P < 0.05) GPX activity (12.5-625 μM, 1.68-1.82-fold) and SELENOP protein expression (250 and 625 μM, 1.87- and 2.04-fold). Moreover, HMSeBA supplementation increased (P < 0.05) GPX1 (12.5 and 625 μM), GPX2 (625 μM), and SELENOP (12.5 and 625 μM) expression. HMSeBA (625 μM) was capable of decreasing (P < 0.05) ROS (32%), 4-HNE adduct (49%), and protein carbonyl residue (75%) production after H2O2 treatment. CONCLUSION Caco-2 cells can use HMSeBA as an Se source for selenoprotein synthesis, resulting in protection against oxidative stress.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - David Moral-Anter
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - M Teresa Brufau
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Ruth Ferrer
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms. Redox Biol 2019; 28:101388. [PMID: 31765890 PMCID: PMC6883322 DOI: 10.1016/j.redox.2019.101388] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Glutathione peroxidase 2 (GPx2) is one of the five selenoprotein GPxs having a selenocysteine in the active center. GPx2 is strongly expressed in the gastrointestinal epithelium, as is another isoform, GPx1, though with a different localization pattern. Both GPxs are redox-active enzymes that are important for the reduction of hydroperoxides. Studies on GPx2-deficient mice and human HT-29 cells with a stable knockdown (kd) of GPx2 revealed higher basal and IL-1β-induced expression of NF-κB target genes in vivo and in vitro. The activation of the IKK–IκBα–NF-κB pathway was increased in cultured GPx2 kd cells. Basal signaling was only restored by re-expressing active GPx2 in GPx2 kd cells but not by redox-inactive GPx2. As it is still not clear if the two isoforms GPx1 and GPx2 have different functions, kd cell lines for either GPx1 or GPx2 were studied in parallel. The inhibitory effect of GPx2 on NF-κB signaling and its target gene expression was stronger than that of GPx1, whereas cyclooxygenase (COX)- and lipoxygenase (LOX)-derived lipid mediator levels increased more strongly in GPx1 kd than in GPx2 kd cells. Under unstimulated conditions, the levels of the COX-derived prostaglandins PGE2 and PGD2 were enhanced in GPx2 as well as in GPx1 kd compared to control cells. Specifically, in GPx1 kd cells IL-1β stimulation led to a dramatic shift of the PGE2/PGD2 ratio towards pro-inflammatory PGE2. Taken together, GPx2 and GPx1 have overlapping functions in controlling inflammatory lipid mediator synthesis and, most probably, exert their anti-inflammatory effects by preventing excessive PGE2 production. In view of the high activity of COX and LOX pathways during inflammatory bowel disease our data therefore provide new insights into the mechanisms of the protective function of GPx1 and GPx2 during colitis as well as inflammation-driven carcinogenesis. Loss of GPx2 results in higher basal and IL-1β-induced NF-κB activation. Suppressive effects of GPx2 on NF-κB are mediated in a redox-dependent manner. Both GPx isoforms modulate the lipid mediator profile in response to IL-1β. COX-derived prostaglandins increase more strongly in GPx1 than in GPx2 kd cells.
Collapse
|
20
|
Bertz M, Kühn K, Koeberle SC, Müller MF, Hoelzer D, Thies K, Deubel S, Thierbach R, Kipp AP. Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free Radic Biol Med 2018; 127:98-107. [PMID: 29330096 DOI: 10.1016/j.freeradbiomed.2018.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/19/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Selenoprotein H (SELENOH) is supposed to be involved in redox regulation as well as in tumorigenesis. However, its role in healthy and transformed cells of the gastrointestinal tract remains elusive. We analyzed SELENOH expression in cells depending on their selenium supply and differentiation status and found that SELENOH expression was increased in tumor tissue, in undifferentiated epithelial cells from mice and in colorectal cancer lines as compared to more differentiated ones. Knockdown studies in human colorectal cancer cells revealed that repression of SELENOH decreased cellular differentiation and increased proliferation and migration. In addition, SELENOH knockdown cells have a higher competence to form colonies or tumor xenografts. In parallel, they show a faster cell cycle transition. The high levels of SELENOH in tumors as well as in undifferentiated, proliferative cells together with its inhibitory effects on proliferation and G1/S phase transition suggest SELENOH as a key regulator for cell cycle progression and for prevention of uncontrolled proliferation. As SELENOH expression is highly dependent on the selenium status, effects of selenium supplementation on cancer initiation and progression appear to involve SELENOH.
Collapse
Affiliation(s)
- Martin Bertz
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Katrin Kühn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Solveigh C Koeberle
- Department of Molecular Nutritional Physiology, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Mike F Müller
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Karolin Thies
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, University of Jena, Jena D-07743, Germany.
| |
Collapse
|
21
|
Sulforaphane Attenuated the Pro-Inflammatory State Induced by Hydrogen Peroxide in SH-SY5Y Cells Through the Nrf2/HO-1 Signaling Pathway. Neurotox Res 2018; 34:241-249. [DOI: 10.1007/s12640-018-9881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
|
22
|
Abstract
Five out of eight human glutathione peroxidases (GPxes) are selenoproteins and thus their expression depends on the selenium (Se) supply. Most Se-dependent GPxes are downregulated in tumor cells, while only GPx2 is considerably upregulated. Whether expression profiles of GPxes predict tumor development and patient survival is controversially discussed. Also, results from in vitro and in vivo studies modulating the expression of GPx isoforms provide evidence for both anti- and procarcinogenic mechanisms. GPxes are able to reduce hydroperoxides, which otherwise would damage DNA, possibly resulting in DNA mutations, modulate redox-sensitive signaling pathways affecting proliferation, differentiation, and cellular metabolism or initiate cell death. Considering these different processes, the role and functions of individual Se-dependent GPx isoforms will be discussed herein in the context of tumorigenesis.
Collapse
Affiliation(s)
- Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
23
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
24
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
25
|
Abstract
Selenium is a micronutrient essential to human health and has long been associated with cancer prevention. Functionally, these effects are thought to be mediated by a class of selenium-containing proteins known as selenoproteins. Indeed, many selenoproteins have antioxidant activity which can attenuate cancer development by minimizing oxidative insult and resultant DNA damage. However, oxidative stress is increasingly being recognized for its "double-edged sword" effect in tumorigenesis, whereby it can mediate both negative and positive effects on tumor growth depending on the cellular context. In addition to their roles in redox homeostasis, recent work has also implicated selenoproteins in key oncogenic and tumor-suppressive pathways. Together, these data suggest that the overall contribution of selenoproteins to tumorigenesis is complicated and may be affected by a variety of factors. In this review, we discuss what is currently known about selenoproteins in tumorigenesis with a focus on their contextual roles in cancer development, growth, and progression.
Collapse
Affiliation(s)
- Sarah P Short
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S Williams
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, United States.
| |
Collapse
|
26
|
Cui ML, Zhang MX, Zhang C, Wang JJ. Role of cancer-related inflammation in colon cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:4343-4353. [DOI: 10.11569/wcjd.v24.i32.4343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is one of the important mechanisms for the development of colon cancer, and the role of cancer-related inflammation (CRI) in tumor development is a hot research topic in recent years. Therefore, it is very important to clarify the effect and regulation of CRI in colon cancer. Accumulating evidence indicates that transcription factors, cytokines, chemokines, cyclooxygenase-2 and microRNAs play key roles in CRI. This review focuses on the research progress about these molecules in colon cancer.
Collapse
|
27
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
28
|
Hiller F, Besselt K, Deubel S, Brigelius-Flohé R, Kipp AP. GPx2 Induction Is Mediated Through STAT Transcription Factors During Acute Colitis. Inflamm Bowel Dis 2015; 21:2078-89. [PMID: 26115075 DOI: 10.1097/mib.0000000000000464] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The selenoprotein glutathione peroxidase 2 (GPx2) is highly expressed in the gastrointestinal epithelium. During inflammatory bowel disease and colorectal cancer, GPx2 expression is enhanced. METHODS We analyzed GPx2 expression and transcriptional regulation during the different phases of dextran sulfate sodium (DSS)-induced colitis in mice and in cytokine-treated colorectal cancer cells. RESULTS In the colon of DSS-treated mice, GPx2 was upregulated during the acute and recovery phase. In the latter, it was specifically localized in regenerating ki67-positive crypts next to ulcerations. In cultured cells, endogenous GPx2 expression and GPx2 promoter activity were enhanced by the anti-inflammatory mediators 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) and interleukin-22 (IL-22), while it was unaffected by classical proinflammatory cytokines like IL-1β. Induction of GPx2 expression by 15d-PGJ2 was mediated through Nrf2. In contrast, in DSS-treated Nrf2-KO mice GPx2 expression remained upregulated during recovery, which appeared to be independent of Nrf2. IL-22 activates transcription factors of the signal transducers and activators of transcription (STAT) family. Therefore, we analyzed the GPx2 promoter for putative STAT-responsive elements and identified 4 of them. Point mutation of the binding element next to the transcription start completely abolished promoter activation after IL-22 treatment and after cotransfection of STAT expression plasmids. To show in vivo relevance of the obtained results, we performed immunohistochemistry for phospho-STAT3 and GPx2. Especially during acute colitis, GPx2 and nuclear STAT3 colocalized in inflamed areas. CONCLUSIONS GPx2 is a novel target of STAT transcription factors. The upregulation of GPx2 by IL-22 indicates that GPx2 might be important for the resolution of inflammation.
Collapse
Affiliation(s)
- Franziska Hiller
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam, Germany
| | | | | | | | | |
Collapse
|
29
|
Kudva AK, Shay AE, Prabhu KS. Selenium and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2015; 309:G71-7. [PMID: 26045617 PMCID: PMC4504954 DOI: 10.1152/ajpgi.00379.2014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/31/2015] [Indexed: 01/31/2023]
Abstract
Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD.
Collapse
Affiliation(s)
- Avinash K. Kudva
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Ashley E. Shay
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
30
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
31
|
GPx2 Suppression of H2O2 Stress Links the Formation of Differentiated Tumor Mass to Metastatic Capacity in Colorectal Cancer. Cancer Res 2014; 74:6717-30. [DOI: 10.1158/0008-5472.can-14-1645] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression. Tumour Biol 2014; 35:8051-64. [PMID: 24839005 DOI: 10.1007/s13277-014-2021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/27/2014] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin E2 (PGE2) involves in progression of various chronic inflammation-related cancers including cholangiocarcinoma (CCA). This study aimed to determine the role of PGE2 signaling, its biosynthesis-related enzymes in a clinical prognosis, and their targeted inhibition in CCA progression. The immunohistochemical staining of cyclooxygenase (COX)-1, COX-2, mPGES-1, EP1, and EP4 was examined in CCA tissues, and their expressions were compared with clinicopathological parameters. The effect of PGE2 on levels of its signaling molecules was examined in CCA cell lines using proteome profiler array. The suppression of mPGES-1 using a small-molecule inhibitor (CAY10526) and small interfering RNA (siRNA) was determined for growth and migration ability in CCA cells. The results indicated that strong expressions of COX-1, COX-2, mPGES-1, EP1, and EP4 were found in CCA tissues as 87.5, 47.5, 52.5, 55, and 80 % of frequencies, respectively. High mPGES-1 expression was significantly correlated with tumor stages III-IV (p = 0.001), lymph node metastasis (p = 0.004), shorter survival (p = 0.009), and prognostic indicator of CCA patients (HR = 2.512, p = 0.041). Expressions of COX-1, COX-2, and EP receptors did not correlate with data tested from patients. PGE2 markedly enhanced protein levels of integrinα6, VE-cadherin, Jagged1, and Notch3, and CAY10526 suppressed those protein levels as well as PGE2 production in CCA cells. CAY10526 and siRNA mPGES-1 markedly suppressed mPGES-1 protein levels, growth, and migration abilities of CCA cell lines. In conclusion, PGE2 signaling strongly promotes CCA progression. Therefore, inhibition of PGE2 synthesis by suppression of its biosynthesis-related enzymes could be useful for prevention and treatment of CCA.
Collapse
|
33
|
Zhou W, Dickerson JA. A novel class dependent feature selection method for cancer biomarker discovery. Comput Biol Med 2014; 47:66-75. [DOI: 10.1016/j.compbiomed.2014.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
34
|
Mattmiller SA, Carlson BA, Gandy JC, Sordillo LM. Reduced macrophage selenoprotein expression alters oxidized lipid metabolite biosynthesis from arachidonic and linoleic acid. J Nutr Biochem 2014; 25:647-54. [PMID: 24746836 DOI: 10.1016/j.jnutbio.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Uncontrolled inflammation is an underlying etiology for multiple diseases and macrophages orchestrate inflammation largely through the production of oxidized fatty acids known as oxylipids. Previous studies showed that selenium (Se) status altered the expression of oxylipids and magnitude of inflammatory responses. Although selenoproteins are thought to mediate many of the biological effects of Se, the direct effect of selenoproteins on the production of oxylipids is unknown. Therefore, the role of decreased selenoprotein activity in modulating the production of biologically active oxylipids from macrophages was investigated. Thioglycollate-elicited peritoneal macrophages were collected from wild-type and myeloid-cell-specific selenoprotein knockout mice to analyze oxylipid production by liquid chromatography/mass spectrometry as well as oxylipid biosynthetic enzyme and inflammatory marker gene expression by quantitative real-time polymerase chain reaction. Decreased selenoprotein activity resulted in the accumulation of reactive oxygen species, enhanced cyclooxygenase and lipoxygenase expression and decreased oxylipids with known anti-inflammatory properties such as arachidonic acid-derived lipoxin A₄ (LXA₄) and linoleic acid-derived 9-oxo-octadecadienoic acid (9-oxoODE). Treating RAW 264.7 macrophages with LXA₄ or 9-oxoODE diminished oxidant-induced macrophage inflammatory response as indicated by decreased production of TNFα. The results show for the first time that selenoproteins are important for the balanced biosynthesis of pro- and anti-inflammatory oxylipids during inflammation. A better understanding of the Se-dependent control mechanisms governing oxylipid biosynthesis may uncover nutritional intervention strategies to counteract the harmful effects of uncontrolled inflammation due to oxylipids.
Collapse
Affiliation(s)
- Sarah A Mattmiller
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff C Gandy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lorraine M Sordillo
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 2013; 19:2157-96. [PMID: 23458328 PMCID: PMC3869543 DOI: 10.1089/ars.2012.4662] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jubayer Al Hossain
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Thomas Kietzmann
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
36
|
Zhang L, Zhou ZQ, Li G, Fu MZ. The effect of deposition Se on the mRNA expression levels of GPxs in goats from a Se-enriched county of China. Biol Trace Elem Res 2013; 156:111-23. [PMID: 24072670 DOI: 10.1007/s12011-013-9830-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/16/2013] [Indexed: 01/18/2023]
Abstract
Previous studies revealed that Se was an important regulatory factor for glutathione peroxidase (GPx) genes. However, the relationship between Se concentrations and mRNA expression levels of GPxs were unclear in goats, especially the goats living in natural Se-enriched area. Thus, the aim of this study was to determine the Se concentrations and the mRNA expression levels of GPx-1, GPx-2, GPx-3, and GPx-4 in goats from Ziyang County (ZY-H and ZY-L goats) and Baoji City (BJ-P goats), which were Se-rich region and Se-poor region in China, respectively. Atomic fluorescence spectrometry was used as an essential method to determine the Se concentrations in heart, liver, spleen, lung, kidney, longissimus, biceps femoris, and serum, and the gene expressions were quantified in mRNA samples extracted from the above tissues by real-time quantitative reverse transcription-polymerase chain reaction. We found that the Se concentrations in ZY-H and ZY-L goats were higher than that in BJ-P goats significantly (P < 0.05), and the pertinence relations of Se levels between serum and heart, liver, spleen, and kidney were significant (P < 0.05). The mRNA levels of GPx-1 in ZY-H and ZY-L goats were higher than that in BJ-P goats very significantly (P < 0.01) except for longissimus (P < 0.05). Our results indicated a significant trend for GPx-2 in the direction of increasing mRNA levels with increasing Se concentrations in goats but had no statistical significance (P > 0.05) in our experimental conditions. As to GPx-3, its mRNA expression in spleen, lung, and kidney (P < 0.05) were upregulated and were consensual to high Se contents in ZY-H goats, but no significant effects were observed in heart, liver, longissimus, and biceps femoris among our three groups (P > 0.05). The mRNA levels of GPx-4 in heart, liver, lung, and kidney of ZY-H and ZY-L goats were higher than that of BJ-P goats (P < 0.05), and the difference was very significant in lung especially (P < 0.01), but no change in spleen, longissimus, and biceps femoris (P > 0.05). In summary, these data suggested that the goats living in Ziyang County were rich in Se, and the deposition Se played important roles in the mRNA expression of GPx-1, GPx-3, and GPx-4 in certain tissues of goats differentially.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang, Shaanxi, 712100, China,
| | | | | | | |
Collapse
|
37
|
Mattmiller SA, Carlson BA, Sordillo LM. Regulation of inflammation by selenium and selenoproteins: impact on eicosanoid biosynthesis. J Nutr Sci 2013; 2:e28. [PMID: 25191577 PMCID: PMC4153324 DOI: 10.1017/jns.2013.17] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/07/2022] Open
Abstract
Uncontrolled inflammation is a contributing factor to many leading causes of human morbidity and mortality including atherosclerosis, cancer and diabetes. Se is an essential nutrient in the mammalian diet that has some anti-inflammatory properties and, at sufficient amounts in the diet, has been shown to be protective in various inflammatory-based disease models. More recently, Se has been shown to alter the expression of eicosanoids that orchestrate the initiation, magnitude and resolution of inflammation. Many of the health benefits of Se are thought to be due to antioxidant and redox-regulating properties of certain selenoproteins. The present review will discuss the existing evidence that supports the concept that optimal Se intake can mitigate dysfunctional inflammatory responses, in part, through the regulation of eicosanoid metabolism. The ability of selenoproteins to alter the biosynthesis of eicosanoids by reducing oxidative stress and/or by modifying redox-regulated signalling pathways also will be discussed. Based on the current literature, however, it is clear that more research is necessary to uncover the specific beneficial mechanisms behind the anti-inflammatory properties of selenoproteins and other Se metabolites, especially as related to eicosanoid biosynthesis. A better understanding of the mechanisms involved in Se-mediated regulation of host inflammatory responses may lead to the development of dietary intervention strategies that take optimal advantage of its biological potency.
Collapse
Key Words
- 15-HETE, 15(S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
- 15-HPETE, 15-hydroperoxyeicosatetraenoic acid
- 15d-PGJ2, 15-deoxy-Δ12,14PGJ2
- AA, arachidonic acid
- ASK-1, apoptosis signal-regulating kinase 1
- COX, cyclo-oxygenase
- Eicosanoid biosynthesis
- FAHP, fatty acid hydroperoxide
- GPx, glutathione peroxidase
- GPx4, glutathione peroxidase-4
- H-PGDS, haematopoietic PGD2 synthase
- HO-1, haeme oxygenase-1
- HPETE, hydroperoxyeicosatetraenoic acid
- HPODE, hydroperoxyoctadecadienoic acid
- Inflammation
- LA, linoleic acid
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LT, leukotriene
- LTA4H, leukotriene A4 hydrolase
- MAPK, itogen-activated protein kinase
- ROS, reactive oxygen species
- Selenium
- Selenoproteins
- Sepp1, selenoprotein P plasma 1
- TX, thromboxane
- TXB2, thromboxane B2
- Trx, thioredoxin
- TrxR, thioredoxin reductase
- ppm, parts per million
Collapse
Affiliation(s)
- S. A. Mattmiller
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| | - Bradley A. Carlson
- Section on the Molecular Biology of Selenium,
Laboratory of Cancer Prevention, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892,
USA
| | - L. M. Sordillo
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| |
Collapse
|
38
|
Müller MF, Florian S, Pommer S, Osterhoff M, Esworthy RS, Chu FF, Brigelius-Flohé R, Kipp AP. Deletion of glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer development. PLoS One 2013; 8:e72055. [PMID: 23977205 PMCID: PMC3747154 DOI: 10.1371/journal.pone.0072055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/08/2013] [Indexed: 12/24/2022] Open
Abstract
The selenoprotein glutathione peroxidase-2 (GPx2) appears to have a dual role in carcinogenesis. While it protected mice from colon cancer in a model of inflammation-triggered carcinogenesis (azoxymethane and dextran sodium sulfate treatment), it promoted growth of xenografted tumor cells. Therefore, we analyzed the effect of GPx2 in a mouse model mimicking sporadic colorectal cancer (azoxymethane-treatment only). GPx2-knockout (KO) and wild-type (WT) mice were adjusted to an either marginally deficient (−Se), adequate (+Se), or supranutritional (++Se) selenium status and were treated six times with azoxymethane (AOM) to induce tumor development. In the −Se and ++Se groups, the number of tumors was significantly lower in GPx2-KO than in respective WT mice. On the +Se diet, the number of dysplastic crypts was reduced in GPx2-KO mice. This may be explained by more basal and AOM-induced apoptotic cell death in GPx2-KO mice that eliminates damaged or pre-malignant epithelial cells. In WT dysplastic crypts GPx2 was up-regulated in comparison to normal crypts which might be an attempt to suppress apoptosis. In contrast, in the +Se groups tumor numbers were similar in both genotypes but tumor size was larger in GPx2-KO mice. The latter was associated with an inflammatory and tumor-promoting environment as obvious from infiltrated inflammatory cells in the intestinal mucosa of GPx2-KO mice even without any treatment and characterized as low-grade inflammation. In WT mice the number of tumors tended to be lowest in +Se compared to −Se and ++Se feeding indicating that selenium might delay tumorigenesis only in the adequate status. In conclusion, the role of GPx2 and presumably also of selenium depends on the cancer stage and obviously on the involvement of inflammation.
Collapse
Affiliation(s)
- Mike F. Müller
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Simone Florian
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stefanie Pommer
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Martin Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - R. Steven Esworthy
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Fong-Fong Chu
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anna P. Kipp
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- * E-mail:
| |
Collapse
|
39
|
Maciel-Dominguez A, Swan D, Ford D, Hesketh J. Selenium alters miRNA profile in an intestinal cell line: evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol Nutr Food Res 2013; 57:2195-205. [PMID: 23934683 DOI: 10.1002/mnfr.201300168] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/30/2022]
Abstract
SCOPE Intake of the essential micronutrient selenium (Se) has health implications. This work addressed whether some effects of Se on gene expression are exerted through microRNAs (miRNA). METHODS AND RESULTS Human colon adenocarcinoma cells (Caco-2) were grown in Se-deficient or Se-adequate medium for 72 h. RNA was extracted and subjected to analysis of 737 miRNA using microarray technology. One hundred and forty-five miRNA were found to be expressed in Caco-2 cells. Twelve miRNA showed altered expression after Se depletion: miR-625, miR-492, miR-373*, miR-22, miR-532-5p, miR-106b, miR-30b, miR-185, miR-203, miR1308, miR-28-5p, miR-10b. These changes were validated by quantitative real-time PCR (RT-qPCR). Transcriptomic analysis showed that Se depletion altered expression of 50 genes including selenoproteins GPX1, SELW, GPX3, SEPN1, SELK, SEPSH2 and GPX4. Pathway analysis identified arachidonic acid metabolism, glutathione metabolism, oxidative stress, positive acute phase response proteins and respiration of mitochondria as Se-sensitive pathways. Bioinformatic analysis identified 13 transcripts as targets for the Se-sensitive miRNA; three were predicted to be recognised by miR-185. Silencing of miR-185 increased GPX2 and SEPSH2 expression. CONCLUSIONS We propose that miR-185 plays a role in up-regulation of GPX2 and SEPHS2 expression. In the case of SEPHS2 this may contribute to maintaining selenoprotein synthesis. The data indicate that micronutrient supply can regulate the cell miRNA expression profile.
Collapse
Affiliation(s)
- Anabel Maciel-Dominguez
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK; Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
40
|
Blum NM, Mueller K, Lippmann D, Metges CC, Linn T, Pallauf J, Mueller AS. Feeding of selenium alone or in combination with glucoraphanin differentially affects intestinal and hepatic antioxidant and phase II enzymes in growing rats. Biol Trace Elem Res 2013; 151:384-99. [PMID: 23271678 DOI: 10.1007/s12011-012-9567-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022]
Abstract
The anti-carcinogenic effects of sulforaphane (SFN) are based on the up-regulation of antioxidant enzymes (AE) and phase II enzymes (PIIE) through the transcription factor Nrf2. Current knowledge on the roles of the SFN precursor glucoraphanin (GRA) on these processes is limited. Anti-carcinogenic effects of Se depending on glutathione peroxidase (GPx) activity have also been reported. We studied effects and possible synergisms of Se and GRA on the expression and activity of a broad spectrum of AE and PIIE in jejunum, colon and the liver of rats fed diets differing in Se and GRA concentration. In all organs, GPx1 mRNA expression was 70 % to 90 % lower in Se deficiency than in Se sufficiency. GPx2 expression increased in jejunum and liver under Se deficiency and decreased in the colon. Se deficiency increased most colonic AE and PIIE compared to Se adequacy. Adequate and in particular supranutritive Se combined with GRA increased colonic AE and PIIE expression up to 3.72-fold. In the liver Se deficiency raised the expression of AE and PIIE up to 4.49-fold. GRA attenuated liver AE and PIIE response in Se deficiency. Expression- and correlation analyses revealed that Keap1 mRNA better reflects AE and PIIE gene expression than Nrf2 mRNA. We conclude that: (1) GPx1 sensitively indicates Se deficiency; (2) the influence of Se and Nrf2/Keap1 on GPx2 expression depends on the organ; (3) GRA combined with supranutritive Se may effectively protect against inflammation and colon cancer; (4) future investigations on AE and PIIE expression should consider the role of Keap1 to a higher extent.
Collapse
Affiliation(s)
- Nicole M Blum
- Institute of Agricultural and Nutritional Sciences, Preventive Nutrition Group, Martin Luther University Halle Wittenberg, Von Danckelmann Platz 2, 06120, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
42
|
Zhou J, Joplin DG, Cross JV, Templeton DJ. Sulforaphane inhibits prostaglandin E2 synthesis by suppressing microsomal prostaglandin E synthase 1. PLoS One 2012; 7:e49744. [PMID: 23166763 PMCID: PMC3500324 DOI: 10.1371/journal.pone.0049744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Sulforaphane (SFN) is a dietary cancer preventive with incompletely characterized mechanism(s) of cancer prevention. Since prostaglandin E2 (PGE2) promotes cancer progression, we hypothesized that SFN may block PGE2 synthesis in cancer cells. We found that SFN indeed blocked PGE2 production in human A549 cancer cells not by inhibiting COX-2, but rather by suppressing the expression of microsomal prostaglandin E synthase (mPGES-1), the enzyme that directly synthesizes PGE2. We identified the Hypoxia Inducible Factor 1 alpha (HIF-1α) as the target of SFN-mediated mPGES-1 suppression. SFN suppressed HIF-1α protein expression and the presence of HIF-1α at the mPGES-1 promoter, resulting in reduced transcription of mPGES-1. Finally, SFN also reduced expression of mPGES-1 and PGE2 production in A549 xenograft tumors in mice. Together, these results point to the HIF-1α, mPGES-1 and PGE2 axis as a potential mediator of the anti-cancer effects of SFN, and illustrate the potential of SFN for therapeutic control of cancer and inflammation. Harmful side effects in patients taking agents that target the more upstream COX-2 enzyme render the downstream target mPGES-1 a significant target for anti-inflammatory therapy. Thus, SFN could prove to be an important therapeutic approach to both cancer and inflammation.
Collapse
Affiliation(s)
- Jiping Zhou
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Denise G. Joplin
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Janet V. Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Dennis J. Templeton
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail: .
| |
Collapse
|
43
|
Brigelius-Flohé R, Kipp AP. Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. Ann N Y Acad Sci 2012; 1259:19-25. [PMID: 22758632 DOI: 10.1111/j.1749-6632.2012.06574.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian glutathione peroxidases (GPxs) are reviewed with emphasis on the role of the gastrointestinal GPx2 in tumorigenesis. GPx2 ranks high in the hierarchy of selenoproteins, corroborating its importance. Colocalization of GPx2 with the Wnt pathway in crypt bases of the intestine and its induction by Wnt signals point to a role in mucosal homeostasis, but GPx2 might also support tumor growth when increased by a dysregulated Wnt pathway. In contrast, the induction of GPx2 by Nrf2 activators and the upregulation of COX2 in cells with a GPx2 knockdown reveal inhibition of inflammation and suggest prevention of inflammation-mediated carcinogenesis. The Janus-faced role of GPx2 has been confirmed in a mouse model of inflammation-associated colon carcinogenesis (AOM/DSS), where GPx2 deletion increased inflammation and consequently tumor development, but decreased tumor size. The model further revealed a GPx2-independent decrease in tumor development by selenium (Se) and detrimental effects of the Nrf2-activator sulforaphane in moderate Se deficiency.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Biochemistry of Micronutrients Department, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
44
|
Abstract
The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.
Collapse
Affiliation(s)
- Cindy D. Davis
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
- Current address: Office of Dietary Supplements, National Institutes of Health, Rockville, Maryland 20892
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, Maryland 21252
| | - John A. Milner
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
| |
Collapse
|
45
|
The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int J Cell Biol 2012; 2012:486147. [PMID: 22654914 PMCID: PMC3357939 DOI: 10.1155/2012/486147] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/20/2012] [Indexed: 02/07/2023] Open
Abstract
The NF-E2-related factor-2 (Nrf2) is a transcription factor which regulates the major cellular defense systems and thereby contributes to the prevention of many diseases including cancer. Selenium deficiency is associated with a higher cancer risk making also this essential trace element a promising candidate for cancer prevention. Two selenoproteins, thioredoxin reductase-1 (TrxR1) and glutathione peroxidase-2 (GPx2), are targets for Nrf2. Selenium deficiency activates Nrf2 as does a TrxR1 knockout making a synergism between both systems plausible. Although this might hold true for healthy cells, the interplay may turn into the opposite in cancer cells. The induction of the detoxifying and antioxidant enzymes by Nrf2 will make cancer cells chemoresistant and will protect them against oxidative damage. The essential role of TrxR1 in maintaining proliferation makes its upregulation in cancer cells detrimental. The anti-inflammatory potential of GPx2 will help to inhibit cancer initiation and inflammation-triggered promotion, but its growth supporting potential will also support tumor growth. This paper considers beneficial and adverse consequences of the activation of Nrf2 and the selenoproteins which appear to depend on the cancer stage.
Collapse
|
46
|
Xu LW, Qian M, Jia RP, Xu Z, Wu JP, Li WC, Huang WB, Chen XG. Expression and Significance of Microsomal Prostaglandin Synthase-1 (mPGES-1) and Beclin-1 in the Development of Prostate Cancer. Asian Pac J Cancer Prev 2012; 13:1639-44. [DOI: 10.7314/apjcp.2012.13.4.1639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Hamilton RT, Walsh ME, Van Remmen H. Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging. ACTA ACUST UNITED AC 2012; Suppl 4. [PMID: 25300955 DOI: 10.4172/2161-0681.s4-005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is a complex process that affects every major system at the molecular, cellular and organ levels. Although the exact cause of aging is unknown, there is significant evidence that oxidative stress plays a major role in the aging process. The basis of the oxidative stress hypothesis is that aging occurs as a result of an imbalance between oxidants and antioxidants, which leads to the accrual of damaged proteins, lipids and DNA macromolecules with age. Age-dependent increases in protein oxidation and aggregates, lipofuscin, and DNA mutations contribute to age-related pathologies. Many transgenic/knockout mouse models over expressing or deficient in key antioxidant enzymes have been generated to examine the effect of oxidative stress on aging and age-related diseases. Based on currently reported lifespan studies using mice with altered antioxidant defense, there is little evidence that oxidative stress plays a role in determining lifespan. However, mice deficient in antioxidant enzymes are often more susceptible to age-related disease while mice overexpressing antioxidant enzymes often have an increase in the amount of time spent without disease, i.e., healthspan. Thus, by understanding the mechanisms that affect healthy aging, we may discover potential therapeutic targets to extend human healthspan.
Collapse
Affiliation(s)
- Ryan T Hamilton
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; GRECC, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
48
|
Krehl S, Loewinger M, Florian S, Kipp AP, Banning A, Wessjohann LA, Brauer MN, Iori R, Esworthy RS, Chu FF, Brigelius-Flohé R. Glutathione peroxidase-2 and selenium decreased inflammation and tumors in a mouse model of inflammation-associated carcinogenesis whereas sulforaphane effects differed with selenium supply. Carcinogenesis 2011; 33:620-8. [PMID: 22180572 DOI: 10.1093/carcin/bgr288] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.
Collapse
Affiliation(s)
- Susanne Krehl
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kipp AP, Banning A, van Schothorst EM, Méplan C, Coort SL, Evelo CT, Keijer J, Hesketh J, Brigelius-Flohé R. Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse. J Nutr Biochem 2011; 23:1170-7. [PMID: 22137268 DOI: 10.1016/j.jnutbio.2011.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 01/14/2023]
Abstract
Moderate selenium deficiency may lead to an impaired capacity to cope with health challenges. Functional effects of suboptimal selenium intake are not fully known, and biomarkers for an insufficient selenium supply are inadequate. We therefore fed mice diets of moderately deficient or adequate selenium intake for 6 weeks. Changes in global gene expression were monitored by microarray analysis in splenic leukocytes. Genes for four selenoproteins, Sepw1, Gpx1, Selh and Sep15, were the most significantly down-regulated in moderate selenium deficiency, and this was confirmed by quantitative polymerase chain reaction (qPCR). Classification of significantly affected genes revealed that processes related to inflammation, heme biosynthesis, DNA replication and transcription, cell cycle and transport were affected by selenium restriction. Down-regulation by moderate selenium deficiency of specific genes involved in inflammation and heme biosynthesis was confirmed by qPCR. Myeloperoxidase and lysozyme activities were decreased in selenium-restricted leukocytes, providing evidence for functional consequences. Genes for 31 nuclear factor (NF)-κB targets were down-regulated in moderate selenium deficiency, indicating an impaired NF-κB signaling. Together, the observed changes point to a disturbance in inflammatory response. The selenoproteins found here to be sensitive to selenium intake in murine leukocytes might also be useful as biomarkers for a moderate selenium deficiency in humans.
Collapse
Affiliation(s)
- Anna P Kipp
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
McCann JC, Ames BN. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 2011; 25:1793-814. [PMID: 21402715 DOI: 10.1096/fj.11-180885] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The triage theory proposes that modest deficiency of any vitamin or mineral (V/M) could increase age-related diseases. V/M-dependent proteins required for short-term survival and/or reproduction (i.e., "essential") are predicted to be protected on V/M deficiency over other "nonessential" V/M-dependent proteins needed only for long-term health. The result is accumulation of insidious damage, increasing disease risk. We successfully tested the theory against published evidence on vitamin K. Here, we review about half of the 25 known mammalian selenoproteins; all of those with mouse knockout or human mutant phenotypes that could be used as criteria for a classification of essential or nonessential. Five selenoproteins (Gpx4, Txnrd1, Txnrd2, Dio3, and Sepp1) were classified as essential and 7 (Gpx1, Gpx 2, Gpx 3, Dio1, Dio2, Msrb1, and SelN) nonessential. On modest selenium (Se) deficiency, nonessential selenoprotein activities and concentrations are preferentially lost, with one exception (Dio1 in the thyroid, which we predict is conditionally essential). Mechanisms include the requirement of a special form of tRNA sensitive to Se deficiency for translation of nonessential selenoprotein mRNAs except Dio1. The same set of age-related diseases and conditions, including cancer, heart disease, and immune dysfunction, are prospectively associated with modest Se deficiency and also with genetic dysfunction of nonessential selenoproteins, suggesting that Se deficiency could be a causal factor, a possibility strengthened by mechanistic evidence. Modest Se deficiency is common in many parts of the world; optimal intake could prevent future disease.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luthur King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|