1
|
Shin S, Jo H, Agura T, Jeong S, Ahn H, Pang S, Lee J, Park JH, Kim Y, Kang JS. Anti-Inflammatory Effects of Aptamin C in Pulmonary Fibrosis Induced by Bleomycin. Pharmaceuticals (Basel) 2024; 17:1577. [PMID: 39770419 PMCID: PMC11676684 DOI: 10.3390/ph17121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties. However, its therapeutic applications are limited by rapid oxidation due to heat and light sensitivity. Aptamin C, which employs aptamers to bind vitamin C, has demonstrated enhanced stability and efficacy. This study investigates the potential of Aptamin C to inhibit the progression of pulmonary fibrosis, a prominent inflammatory lung disease with no effective treatment. Methods: Mice bearing bleomycin-induced pulmonary fibrosis were administered vitamin C or Aptamin C, and their weight changes and survival rates were monitored. Inflammatory cell infiltration was assessed in the bronchoalveolar lavage fluid (BALF), and the degree of alveolar fibrosis was measured by H&E and Masson's trichrome staining. To elucidate the mechanism of action of Aptamin C, Western blot analysis was performed in HaCaT and lung tissues from bleomycin-induced pulmonary fibrosis mice. Results: The Aptamin C-treated group showed a notably higher survival rate at 50%, whereas all subjects in the vitamin C-treated group died. Histological examination of lung tissue showed that inflammation was significantly suppressed in the Aptamin C-supplemented group compared to the vitamin C-supplemented group, with a 10% greater reduction in cell infiltrations, along with noticeably less tissue damage. Additionally, it was observed that Aptamin C increased SVCT-1 expression in the HaCaT cells and the lung tissues. Conclusions: Taken together, Aptamin C not only increases the stability of vitamin C but also induces an increase in SVCT-1 expression, facilitating greater vitamin C absorption into cells and tissues, thereby inhibiting the progression of symptoms and associated inflammatory responses in pulmonary fibrosis.
Collapse
Affiliation(s)
- Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul 08813, Republic of Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Soyoung Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
| | - June Lee
- Nexmos, Inc., Yongin-si 168267, Republic of Korea; (J.L.); (J.-H.P.)
| | - Jeong-Ho Park
- Nexmos, Inc., Yongin-si 168267, Republic of Korea; (J.L.); (J.-H.P.)
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (S.S.); (H.J.); (T.A.); (S.J.); (H.A.); (S.P.); (Y.K.)
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Zhu H, Luo H, Wu X, Bao H, Shu Y, Ji X, Fan X, Pan Y, Tang C, Wu X, Ruan H. Vitamin C inactivates c-Jun N-terminal kinase to stabilize heart and neural crest derivatives expressed 1 (Hand1) in regulating placentation and maintenance of pregnancy. Cell Mol Life Sci 2024; 81:303. [PMID: 39008099 PMCID: PMC11335227 DOI: 10.1007/s00018-024-05345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Vitamin C (VC) serves as a pivotal nutrient for anti-oxidation process, metabolic responses, and stem cell differentiation. However, its precise contribution to placenta development and gestation remains obscure. Here, we demonstrated that physiological levels of VC act to stabilize Hand1, a key bHLH transcription factor vital for the development trajectory of trophoblast giant cell (TGC) lineages, thereby promoting the differentiation of trophoblast stem cells into TGC. Specifically, VC administration inactivated c-Jun N-terminal kinase (JNK) signaling, which directly phosphorylates Hand1 at Ser48, triggering the proteasomal degradation of Hand1. Conversely, a loss-of-function mutation at Ser48 on Hand1 not only significantly diminished both intrinsic and VC-induced stabilization of Hand1 but also underscored the indispensability of this residue. Noteworthy, the insufficiency of VC led to severe defects in the differentiation of diverse TGC subtypes and the formation of labyrinth's vascular network in rodent placentas, resulting in failure of maintenance of pregnancy. Importantly, VC deficiency, lentiviral knockdown of JNK or overexpression of Hand1 mutants in trophectoderm substantially affected the differentiation of primary and secondary TGC in E8.5 mouse placentas. Thus, these findings uncover the significance of JNK inactivation and consequential stabilization of Hand1 as a hitherto uncharacterized mechanism controlling VC-mediated placentation and perhaps maintenance of pregnancy.
Collapse
Affiliation(s)
- Haibin Zhu
- Department of Gynaecology, the First Affiliated Hospital, Zhejiang Univerisity School of Medicine, Hangzhou, 310009, China.
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaowei Wu
- Department of Gynaecology, the First Affiliated Hospital, Zhejiang Univerisity School of Medicine, Hangzhou, 310009, China
| | - Hangyang Bao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310053, Zhejiang, China
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China
| | - Yingying Shu
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China
| | - Xueying Fan
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China
| | - Yibin Pan
- Department of Obstetrics and Gynaecology, the Affiliated Sir Run Run Shaw Hospital, Zhejiang Univerisity School of Medicine, Hangzhou, 310016, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China.
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310053, Zhejiang, China.
- Department of Pharmacology, Zhejiang Univerisity School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Portugal CC. Ascorbate and its transporter SVCT2: The dynamic duo's integrated roles in CNS neurobiology and pathophysiology. Free Radic Biol Med 2024; 212:448-462. [PMID: 38182073 DOI: 10.1016/j.freeradbiomed.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ascorbate is a small antioxidant molecule essential for the proper development and function of the brain. Ascorbate is transported into the brain and between brain cells via the Sodium vitamin C co-transporter 2 (SVCT2). This review provides an in-depth analysis of ascorbate's physiology, including how ascorbate is absorbed from food into the CNS, emphasizing cellular mechanisms of ascorbate recycling and release in different CNS compartments. Additionally, the review delves into the various functions of ascorbate in the CNS, including its impact on epigenetic modulation, synaptic plasticity, and neurotransmission. It also emphasizes ascorbate's role on neuromodulation and its involvement in neurodevelopmental processes and disorders. Furthermore, it analyzes the relationship between the duo ascorbate/SVCT2 in neuroinflammation, particularly its effects on microglial activation, cytokine release, and oxidative stress responses, highlighting its association with neurodegenerative diseases, such as Alzheimer's disease (AD). Overall, this review emphasizes the crucial role of the dynamic duo ascorbate/SVCT2 in CNS physiology and pathology and the need for further research to fully comprehend its significance in a neurobiological context and its potential therapeutic applications.
Collapse
Affiliation(s)
- Camila C Portugal
- I3s - Instituto de Investigação e Inovação em Saúde da Universidade do Porto and IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Cao B, Xia Y, Cai Z, Wang Z, Tang C, Song Y. Construction of a Brain-specific SLC23A2 Gene Knockout Mice Model. Neuroscience 2023; 524:137-148. [PMID: 37330196 DOI: 10.1016/j.neuroscience.2023.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
Vitamin C (VC) is a key antioxidant of the Central Nervous System (CNS) and SLC23A2 (SVCT2) is the only transporter that actively transports VC into the brain. While the existing animal models of VC deficiency are in the whole body, the essential role of VC in brain development remains elusive. In our study presented here, the CRISPR/Cas9 technology was applied for the construction of a C57BL/6J-SLC23A2 em1(flox)Smoc mouse model, which was crossed with the Glial fibrillary acidic protein-driven Cre Recombinase (GFAP-Cre) genotype mice to generate a conditional knockout model of SLC23A2(SVCT2) gene in mice brain (GFAP-Cre;SLC23A2 flox/flox) after generations of crossbreeding. Our results showed that the expression of SVCT2 in GFAP-Cre;SLC23A2 flox/flox (Cre;svct2 f/f) mice brain was significantly decreased, and consistently, the expression of Neuronal nuclei antigen (NeuN), Glial fibrillary acidic protein (GFAP), calbindin-28k, brain-derived neurotrophic factor (BDNF) was down-regulated but Ionized calcium binding adapter molecule 1 (Iba-1) was up-regulated in Cre;svct2 f/f mice brain tissues. On the other hand, the levels of Glutathione, Reduced (GSH), myeloperoxidase (MDA), 8-isoprostane, tumor necrosis factor-α (TNF-α) and interleukin-6(IL-6) were significantly increased, but the levels of VC in brain tissue of the model group were decreased in Cre;svct2 f/f mice brain tissues, indicating the protective effect of VC against oxidative stress and inflammation during pregnancy. Thus, the conditional knockout of the SLC23A2 gene in the brain of mouse was successfully established by the CRISPR/Cas9 technology in our study, providing an effective animal model for studying the role of VC in fetal brain development.
Collapse
Affiliation(s)
- Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zengxuan Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ziyu Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
5
|
Arakawa K, Inoue H, Ishigami A, Sato A, Takino Y, Tanaka M, Morimoto H, Takahashi N, Uehara M. Release of SMP30 in Extracellular Vesicles under Conditions of Ascorbic Acid Deficiency Is Involved with Acute Phase Response in ODS Rat. J Nutr Sci Vitaminol (Tokyo) 2023; 69:420-427. [PMID: 38171814 DOI: 10.3177/jnsv.69.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Senescence marker protein-30 (SMP30) is a senescence marker molecule that exhibits lactonase activity in the ascorbic acid (AsA) biosynthesis pathway, except in primate mammals, including humans. Although numerous studies have shown that hepatic AsA deficiency causes acute-phase responses, details of the relationship between SMP30 expression and acute-phase responses in AsA-deficient conditions remain to be elucidated. Here, we investigated the effects of AsA deficiency on the relationship between SMP30 and acute liver injury in osteogenic disorder Shionogi (ODS) rats, which have a hereditary defect in AsA biosynthesis. Male-ODS rats (4 wk old) were pair-fed an AsA-free diet with distilled or 0.1% AsA-dissolved water for 14 d. Under AsA-deficient conditions, hepatic SMP30 protein level was decreased and liver injury markers, the serum aspartate aminotransferase/alanine transaminase ratio and cytokine-induced neutrophil chemoattractant-1 (CINC-1) concentration, were elevated. In contrast, SMP30 protein level in extracellular vesicles (EVs) was significantly increased in addition to the positive acute proteins haptoglobin and asialoglycoprotein receptor 1 (ASGPR1), hepatic-derived specific markers expression under AsA-deficient conditions. AsA deficiency also activated signal transducer and activator of transcription 3 (STAT3) which is linked to EVs release in the liver. These results suggest that the release of SMP30 in EVs by AsA deficiency is involved with acute-phase responses.
Collapse
Affiliation(s)
- Kohta Arakawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Hiromu Morimoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| |
Collapse
|
6
|
Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022; 27:6187. [PMID: 36234722 PMCID: PMC9572970 DOI: 10.3390/molecules27196187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ascorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate. Most mammals are able to synthesize ascorbate from glucose, which is also considered to be an obstacle to verify its action. In addition to animals with natural deficiency in the ascorbate synthesis, such as guinea pigs and ODS rats, three strains of mice with genetic removal of the responsive genes (GULO, RGN, or AKR1A) for the ascorbate synthesis have been established and are being used to investigate the physiological roles of ascorbate. Studies using these mice, along with ascorbate transporter (SVCT)-deficient mice, largely support its ability in protection against oxidative insults. While combined actions of ascorbate in regulating epigenetics and antioxidation appear to effectively prevent cancer development, pharmacological doses of ascorbate and dehydroascorbate may exert tumoricidal activity through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
7
|
Lee D, Jo H, Go C, Jang Y, Chu N, Bae S, Kang D, Kim Y, Kang JS. The Roles of IL-22 and Its Receptor in the Regulation of Inflammatory Responses in the Brain. Int J Mol Sci 2022; 23:757. [PMID: 35054942 PMCID: PMC8775345 DOI: 10.3390/ijms23020757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rβ subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.
Collapse
Affiliation(s)
- Dahae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Cheolhyeon Go
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Yoojin Jang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Naghyung Chu
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Suhyun Bae
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
| | - Dongmin Kang
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA 02215, USA;
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
- Medical Research Center, Institute of Allergy and Clinical Immunology, Seoul National University, Seoul 03080, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (D.L.); (H.J.); (C.G.); (Y.J.); (S.B.)
- Medical Research Center, Institute of Allergy and Clinical Immunology, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
8
|
VITAMIN C DEFICIENCY-ASSOCIATED LESIONS IN A COLONY OF COMMON VAMPIRE BATS ( DESMODUS ROTUNDUS) IN A ZOO FACILITY. J Zoo Wildl Med 2021; 52:806-814. [PMID: 34130429 DOI: 10.1638/2020-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 11/21/2022] Open
Abstract
The Milwaukee County Zoo has housed common vampire bats (Desmodus rotundus) since 1973. The bats are fed defibrinated cow's blood supplemented with a liquid pediatric multivitamin. From July 2013 to May 2014, multiple deaths occurred in colony bats, including five juveniles with multiple bone fractures and failure of endochondral ossification, three adults with cerebellar necrosis, and one adult with subcutaneous hemorrhage. In November 2013, an adult bat developed a nonhealing left wing hematoma and eventually succumbed 9 mo later. A postmortem examination revealed multifocal extensive necrohemorrhagic and suppurative ulcerative dermatitis with no underlying cause determined. From July to December 2014, five of nine adult bats in the colony developed similar hematomas along with gingival bleeding. One euthanized bat had a serum ascorbic acid level of 0.08 mg/dl and marked generalized subcutaneous hemorrhage. A therapeutic trial was initiated in which two bats received defibrinated cow's blood supplemented only with oral vitamin C, 100 mg/kg PO q24h for 3 d, and then 50 mg/kg PO q24h. Two other bats received nonsupplemented defibrinated cow's blood and were given vitamin K 3.3 mg/kg SC q12h for 3 d, and then 3.3 mg/kg SC q24h for 7 d. The bats supplemented with vitamin C improved, supporting a diagnosis of vitamin C deficiency. All bats were subsequently supplemented with vitamin C leading to resolution of all lesions within 10 d to 2 mo. Vitamin C is necessary for collagen synthesis, which is required for proper wound healing, capillary and cartilage strength, osteoid production, and pial membrane formation of the cerebellum. Several bat species cannot synthesize vitamin C and require a dietary source. This is the first report of vitamin C deficiency in a colony of vampire bats leading to severe chronic subcutaneous hemorrhage, bone fragility, microfractures, cerebellar necrosis, and death.
Collapse
|
9
|
The Anti-Inflammatory Effect of Aptamin C on House Dust Mite Extract-Induced Inflammation in Keratinocytes via Regulation of IL-22 and GDNF Production. Antioxidants (Basel) 2021; 10:antiox10060945. [PMID: 34208021 PMCID: PMC8230602 DOI: 10.3390/antiox10060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, is characterized by eczemous lesions on the skin that manifest as severe itching and last a long time. AD is thought to be a response to local allergens, including house dust mites (HDMs). Aptamin C is a modified form of vitamin C comprised of aptamers (DNA fragments) that bind specifically to vitamin C and inhibit its oxidation, thereby increasing its stability and antioxidant effects. It is already known that vitamin C shows an anti-inflammatory effect on skin inflammation. Oxidative stress is one of the major causes of inflammatory diseases, including HDM-induced skin inflammation, suggesting that the antioxidant activity of Aptamin C could regulate inflammatory responses to HDMs in the skin keratinocyte cell line HaCaT and primary skin keratinocytes. Aptamin C not only inhibited HDM-induced proliferation of both type of cells, but suppressed HDM-induced increases in interleukin (IL)-1α and IL-6 production by these cells. In addition, Aptamin C suppressed the production of IL-17 and IL-22 by T cells, which are closely associated with AD pathogenesis, as well as HDM-induced IL-22Rα expression. Aptamin C also reduced the production of thymus and activation-regulated chemokine (TARC) by suppressing the interaction between IL-22 and IL-22Rα, as well as reducing T cell migration. Although HDM treatment markedly increased the expression of glial cell line-derived neurotrophic factor (GDNF), which is associated with itching in AD skin lesions, this increase was reduced by Aptamin C treatment. Taken together, these results suggest that Aptamin C can effectively regulate inflammatory lesions, such as AD, by regulating the production of inflammatory cytokines and GDNF induced by HDM.
Collapse
|
10
|
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain-Findings from Experimental Animal Models. Nutrients 2021; 13:1685. [PMID: 34063417 PMCID: PMC8156420 DOI: 10.3390/nu13051685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe and long-term vitamin C deficiency can lead to fatal scurvy, which is fortunately considered rare today. However, a moderate state of vitamin C (vitC) deficiency (hypovitaminosis C)-defined as a plasma concentration below 23 μM-is estimated to affect up to 10% of the population in the Western world, albeit clinical hallmarks in addition to scurvy have not been linked to vitC deficiency. The brain maintains a high vitC content and uniquely high levels during deficiency, supporting vitC's importance in the brain. Actions include both antioxidant and co-factor functions, rendering vitamin C deficiency likely to affect several targets in the brain, and it could be particularly significant during development where a high cellular metabolism and an immature antioxidant system might increase sensitivity. However, investigations of a non-scorbutic state of vitC deficiency and effects on the developing young brain are scarce. This narrative review provides a comprehensive overview of the complex mechanisms that regulate vitC homeostasis in vivo and in the brain in particular. Functions of vitC in the brain and the potential consequences of deficiency during brain development are highlighted, based primarily on findings from experimental animal models. Perspectives for future investigations of vitC are outlined.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| |
Collapse
|
11
|
Ishii N, Homma T, Takeda Y, Aung NY, Yamada KI, Miyata S, Asao H, Yamakawa M, Fujii J. Developmental retardation in neonates of aldehyde reductase (AKR1A)-deficient mice is associated with low ascorbic acid and high corticosterone levels. J Nutr Biochem 2021; 91:108604. [PMID: 33549889 DOI: 10.1016/j.jnutbio.2021.108604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/02/2020] [Accepted: 01/08/2021] [Indexed: 01/06/2023]
Abstract
Aldehyde reductase encoded by the Akr1a gene catalyzes the NADPH-dependent reduction of a variety of aldehyde compounds, and it plays a role in the biosynthesis of ascorbic acid (AsA) by converting D-glucuronate to L-gulonate. Although supplementing drinking water with AsA (1.5 mg/mL) ameliorates the fertility of Akr1a-/- (KO) female mice, litter sizes in the KO mice are typically smaller than those for Akr1a+/+ (WT) mice, and about one-third of the neonates have a reduced stature. Half of the neonates in the smallest, developmentally retarded group died before weaning, and the remaining half (less than 6 g in weight) also barely grew to adulthood. While no difference was found in the number of fetuses between the KO and WT mice at 14.5-embryonic days, the sizes of the KO fetuses had already diverged. Among the organs of these retarded KO neonates at 30 d, the spleen and thymus were characteristically small. While an examination of spleen cells showed the normal proportion of immune cells, apoptotic cell death was increased in the thymus, which would lead to thymic atrophy in the retarded KO neonates. Plasma AsA levels were lower in the small neonates despite the fact that their mothers had received sufficient AsA supplementation, and the corticosterone levels were inversely higher compared to wild-type mice. Thus, insufficient AsA contents together with a defect in corticosterone metabolism might be the cause of the retarded growth of the AKR1A-deficient mice embryos and neonates.
Collapse
Affiliation(s)
- Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Naing Ye Aung
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, Fukushima-ku, Osaka, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan.
| |
Collapse
|
12
|
Nam SM, Seo JS, Nahm SS, Chang BJ. Effects of ascorbic acid treatment on developmental alterations in calcium-binding proteins and gamma-aminobutyric acid transporter 1 in the cerebellum of lead-exposed rats during pregnancy and lactation. J Toxicol Sci 2020; 44:799-809. [PMID: 31708536 DOI: 10.2131/jts.44.799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the present study, we investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Female rats were randomly divided into the following groups: control, Pb, and Pb plus ascorbic acid (PA) groups. From one week prior to mating, female rats were administered Pb (0.3% Pb acetate in drinking water) and ascorbic acid (100 mg/kg, oral intubation). The chemical administration was stopped on postnatal day 21 when the morphology of the offspring's cerebellum is similar to that of the adult brain. The blood Pb level was significantly increased following long-term Pb exposure. Ascorbic acid reduced Pb levels in the dams and offspring. Nissl staining demonstrated that the number of Purkinje cells was significantly reduced following Pb exposure, while ascorbic acid ameliorated this effect in the cerebellum of the offspring. Calcium-binding proteins, such as calbindin, calretinin, and parvalbumin were commonly expressed in Purkinje cells, and Pb exposure and ascorbic acid treatment resulted in similar patterns of change, namely Pb-induced impairment and ascorbic acid-mediated amelioration. The gamma-aminobutyric acid transporter 1 (GABAT1) is expressed in the pinceau structure where the somata of Purkinje cells are entwined in inhibitory synapses. The number of GABAT1-immunoreactive synapses was reduced following Pb exposure, and ascorbic acid co-treatment prevented this effect in the cerebellar cortex. Therefore, it can be concluded that ascorbic acid supplementation to mothers during gestation and lactation may have potential preventive effects against Pb-induced impairments in the developing cerebellum via protection of inhibitory neurons and synapses.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Korea.,College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Korea
| |
Collapse
|
13
|
Liang X, Liu L, Wang Y, Guo H, Fan H, Zhang C, Hou L, Liu Z. Autophagy-driven NETosis is a double-edged sword - Review. Biomed Pharmacother 2020; 126:110065. [PMID: 32200255 DOI: 10.1016/j.biopha.2020.110065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cellular mechanism responsible for delivering protein aggregates or damaged organelles to lysosomes for degradation. It is also simultaneously a precise regulatory process, which is crucial for dealing with hunger, oxidative stress, and pathogen defense. Neutrophil Extracellular Traps (NETs), which form a part of a newly described bactericidal process, are reticular structures composed of a DNA backbone and multiple functional proteins, formed via a process known as NETosis. NETs exert their anti-infection activity by capturing pathogenic microorganisms, inhibiting their spread and inactivating virulence factors. However, NETs may also activate an immune response in non-infectious diseases, leading to tissue damage. Although the mechanism underlying this phenomenon is unclear, a large number of studies have suggested that autophagy may be involved. Autophagy-mediated NETs not only induce inflammation and tissue damage, but can also lead to cell senescence, malignant transformation, and cell death. Autophagy-dependent NETs also play a beneficial role in the hostwith respect to pathogen clearance and immune defense. Through careful review of the literature, we have found that the distinct roles of autophagy in NETosis may be dependent on the extent of autophagy and the specific manner in which it was induced. This article summarizes numerous recent studies, and reviews the role of autophagy-driven NETosis in various diseases, in the hope that this will lead to the development of more effective treatments.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Li Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China.
| | - Yan Wang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Lili Hou
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Zhibo Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| |
Collapse
|
14
|
Kurihara K, Homma T, Kobayashi S, Shichiri M, Fujiwara H, Fujii S, Yamada KI, Nakane M, Kawamae K, Fujii J. Ascorbic acid insufficiency impairs spatial memory formation in juvenile AKR1A-knockout mice. J Clin Biochem Nutr 2019; 65:209-216. [PMID: 31777422 PMCID: PMC6877411 DOI: 10.3164/jcbn.19-41] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/18/2019] [Indexed: 01/18/2023] Open
Abstract
AKR1A, an aldo-keto reductase, is involved in the synthesis of ascorbic acid as well as the reduction of a variety of aldehyde compounds. AKR1A−/− mice produce considerably less ascorbic acid (about 10%) compared to AKR1A+/+ mice and require ascorbic acid supplementation in order to breed. To elucidate the roles played by AKR1A in spatial memory, AKR1A−/− male mice were weaned at 4 weeks of age and groups that received ascorbic acid supplementation and no supplementation were subjected to a Morris water maze test. Juvenile AKR1A−/− mice that received no supplementation showed impaired spatial memory formation, even though about 70% of the ascorbic acid remained in the brains of the AKR1A−/− mice at day 7 after weaning. To the contrary, the young adult AKR1A−/− mice at 13–15 weeks of age maintained only 15% of ascorbic acid but showed no significant difference in the spatial memory compared with the AKR1A+/+ mice or ascorbic acid-supplemented AKR1A−/− mice. It is conceivable that juvenile mice require more ascorbic acid for the appropriate level of formation of spatial memory and that maturation of the neural system renders the memory forming process less sensitive to an ascorbic acid insufficiency.
Collapse
Affiliation(s)
- Kazuki Kurihara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.,Department of Anesthesiology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hiroki Fujiwara
- Department of Physiology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Satoshi Fujii
- Department of Physiology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Kaneyuki Kawamae
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
15
|
Ascorbic acid attenuates cognitive impairment and brain oxidative stress in ovariectomized mice. Pharmacol Rep 2019; 71:133-138. [DOI: 10.1016/j.pharep.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/15/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
16
|
Hansen SN, Jørgensen JMB, Nyengaard JR, Lykkesfeldt J, Tveden-Nyborg P. Early Life Vitamin C Deficiency Does Not Alter Morphology of Hippocampal CA1 Pyramidal Neurons or Markers of Synaptic Plasticity in a Guinea Pig Model. Nutrients 2018; 10:nu10060749. [PMID: 29890692 PMCID: PMC6024653 DOI: 10.3390/nu10060749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
Approximately 15% of the Western world population, including pregnant women and their children, is characterized as vitamin C (vitC) deficient. In guinea pigs, early life vitC deficiency causes spatial memory deficits, decreased hippocampal volume and neuron numbers, in otherwise clinically healthy animals. We hypothesized that vitC deficiency leads to decreased brain-derived neurotrophic factor and synaptic plasticity markers in selected brain areas (frontal cortex, hippocampus and striatum) and cause morphological changes in cornu ammonis 1 pyramidal neurons of the hippocampus either through a direct effect or indirectly by increased oxidative stress. Fifty-seven female guinea pigs were allocated to three groups receiving either 1390, 100 or 0–50 mg vitC/kg feed for 11 weeks. Dietary vitC levels were reflected in the plasma, cortical and adrenal gland levels, however, redox imbalance was only present in the adrenal glands allowing for the investigation of a direct influence of vitC deficiency on the chosen parameters in the brain. Synaptic plasticity markers were not affected in the investigated brain areas and no differences in isolated pyramidal neuron morphology was recorded. Based on our findings, it appears that vitC deficiency may primarily elicit impaired neuronal function through increased levels of oxidative stress.
Collapse
Affiliation(s)
- Stine N Hansen
- Section for Experimental Animals, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| | - Jane M Bjørn Jørgensen
- Section for Experimental Animals, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| | - Jens R Nyengaard
- Section for Experimental Animals, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
- Core Center of Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Noerrebrogade 44, Building 10G, 3rd Floor, 8000 Aarhus, Denmark.
| | - Jens Lykkesfeldt
- Section for Experimental Animals, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| | - Pernille Tveden-Nyborg
- Section for Experimental Animals, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark.
| |
Collapse
|
17
|
Yu M, Liu Y, Duan Y, Chen Y, Han J, Sun L, Yang X. Inhibition of glutathione production by L-S,R-buthionine sulfoximine activates hepatic ascorbate synthesis – A unique anti-oxidative stress mechanism in mice. Biochem Biophys Res Commun 2017; 484:56-63. [DOI: 10.1016/j.bbrc.2017.01.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
|