1
|
Smrcinova L, Kletetschka G. Navajo Sandstone concretions record extended magnetic chronology. Sci Rep 2025; 15:4204. [PMID: 39905127 PMCID: PMC11794945 DOI: 10.1038/s41598-025-88029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates iron oxide concretions from the Jurassic Navajo Sandstone in Utah as potential recorders of long-term magnetic field variations. Using a combination of alternating field and thermal demagnetization, physical abrasion, chemical analysis, and magnetic modeling, we reveal multiple magnetic components with contrasting directions within individual concretions. Finite Element Magnetic Modelling demonstrates the sensitivity of magnetic signatures to small changes in layer thickness. X-Ray Fluorescence spectrometry confirms high iron concentrations in concretion crusts. Our results support a two-stage formation model involving initial iron hydroxide precipitation followed by progressive transformation to hematite. This extended formation process suggests these concretions may record paleomagnetic field changes, though their reliability as magnetic recorders need to be verified in more details. The identification of both goethite and hematite phases, coupled with their distinct magnetic behaviors, has implications for understanding similar concretionary structures observed on Mars. However, environmental differences between terrestrial and Martian settings require careful consideration when making such comparisons.
Collapse
Affiliation(s)
- Lucie Smrcinova
- Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
| | - Gunther Kletetschka
- Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic.
- Geophysical Institute, University of Alaska Fairbanks, 2156 N Koyukuk Drive, Fairbanks, AK, 99775, USA.
| |
Collapse
|
2
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2025; 42:93-112. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
3
|
Aguzzi J, Cuadros J, Dartnell L, Costa C, Violino S, Canfora L, Danovaro R, Robinson NJ, Giovannelli D, Flögel S, Stefanni S, Chatzievangelou D, Marini S, Picardi G, Foing B. Marine Science Can Contribute to the Search for Extra-Terrestrial Life. Life (Basel) 2024; 14:676. [PMID: 38929660 PMCID: PMC11205085 DOI: 10.3390/life14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | - Javier Cuadros
- Natural History Museum, Cromwell Road, London SW7 5D, UK;
| | - Lewis Dartnell
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London W1W 6UW, UK;
| | - Corrado Costa
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Simona Violino
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Agricoltura e Ambiente, 00182 Roma, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marcs (UNIVPM), 60131 Ancona, Italy;
| | - Nathan Jack Robinson
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry, Geochemistry Department—Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Sascha Flögel
- GEOMAR Helmholtz Centre for Ocean Research, 24106 Kiel, Germany;
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | | | - Simone Marini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
- Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), 19032 La Spezia, Italy
| | - Giacomo Picardi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Bernard Foing
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
4
|
Çelekli A, Zariç ÖE. Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:181-190. [PMID: 38670646 DOI: 10.1016/j.lssr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
The Martian environment, characterized by extreme aridity, frigid temperatures, and a lack of atmospheric oxygen, presents a formidable challenge for potential terraforming endeavors. This review article synthesizes current research on utilizing algae as biocatalysts in the proposed terraforming of Mars, assessing their capacity to facilitate Martian atmospheric conditions through photosynthetic bioengineering. We analyze the physiological and genetic traits of extremophile algae that equip them for survival in extreme habitats on Earth, which serve as analogs for Martian surface conditions. The potential for these organisms to mediate atmospheric change on Mars is evaluated, specifically their role in biogenic oxygen production and carbon dioxide sequestration. We discuss strategies for enhancing algal strains' resilience and metabolic efficiency, including genetic modification and the development of bioreactors for controlled growth in extraterrestrial environments. The integration of algal systems with existing mechanical and chemical terraforming proposals is also examined, proposing a synergistic approach for establishing a nascent Martian biosphere. Ethical and ecological considerations concerning introducing terrestrial life to extra-planetary bodies are critically appraised. This appraisal includes an examination of potential ecological feedback loops and inherent risks associated with biological terraforming. Biological terraforming is the theoretical process of deliberately altering a planet's atmosphere, temperature, and ecosystem to render it suitable for Earth-like life. The feasibility of a phased introduction of life, starting with microbial taxa and progressing to multicellular organisms, fosters a supportive atmosphere on Mars. By extending the frontier of biotechnological innovation into space, this work contributes to the foundational understanding necessary for one of humanity's most audacious goals-the terraforming of another planet.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Gaziantep University, Faculty of Art and Science, Department of Biology, Gaziantep, Turkey; Gaziantep University, Environmental Research Center (GÜÇAMER), Gaziantep, Turkey.
| | - Özgür Eren Zariç
- Gaziantep University, Faculty of Art and Science, Department of Biology, Gaziantep, Turkey; Gaziantep University, Environmental Research Center (GÜÇAMER), Gaziantep, Turkey
| |
Collapse
|
5
|
Lorenz C, Bianchi E, Alberini A, Poggiali G, Benesperi R, Papini A, Brucato JR. UV photo-degradation of the secondary lichen substance parietin: A multi-spectroscopic analysis in astrobiology perspective. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:191-201. [PMID: 38670647 DOI: 10.1016/j.lssr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
The cortical anthraquinone yellow-orange pigment parietin is a secondary lichen substance providing UV-shielding properties that is produced by several lichen species. In our work, the secondary metabolite has been extracted from air-dried thalli of Xanthoria parietina. The aims of this study were to characterize parietin absorbance through UV-VIS spectrophotometry and with IR spectroscopy and to evaluate its photodegradability under UV radiation through in situ reflectance IR spectroscopy to understand to what extent the substance may have a photoprotective role. This allows us to relate parietin photo-degradability to the lichen UV tolerance in its natural terrestrial habitat and in extreme environments relevant for astrobiology such as Mars. Extracted crystals were UV irradiated for 5.59 h under N2 flux. After the UV irradiation, we assessed relevant degradations in the 1614, 1227, 1202, 1160 and 755 cm-1 bands. However, in light of Xanthoria parietina survivability in extreme conditions such as space- and Mars-simulated ones, we highlight parietin UV photo-resistance and its relevance for astrobiology as photo-protective substance and possible bio-hint.
Collapse
Affiliation(s)
- Christian Lorenz
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy; Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Elisabetta Bianchi
- Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Andrew Alberini
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy
| | - Giovanni Poggiali
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy; LESIA-Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92190 Meudon, France
| | - Renato Benesperi
- Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Via La Pira 4, 50121 Florence, Italy
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125 Florence, Italy.
| |
Collapse
|
6
|
Wang H, Pijl A, Liu B, Wamelink W, Korthals GW, Costa OYA, Kuramae EE. A Comparison of Different Protocols for the Extraction of Microbial DNA Inhabiting Synthetic Mars Simulant Soil. Microorganisms 2024; 12:760. [PMID: 38674704 PMCID: PMC11051824 DOI: 10.3390/microorganisms12040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Compared with typical Earth soil, Martian soil and Mars simulant soils have distinct properties, including pH > 8.0 and high contents of silicates, iron-rich minerals, sulfates, and metal oxides. This unique soil matrix poses a major challenge for extracting microbial DNA. In particular, mineral adsorption and the generation of destructive hydroxyl radicals through cationic redox cycling may interfere with DNA extraction. This study evaluated different protocols for extracting microbial DNA from Mars Global Simulant (MGS-1), a Mars simulant soil. Two commercial kits were tested: the FastDNA SPIN Kit for soil ("MP kit") and the DNeasy PowerSoil Pro Kit ("PowerSoil kit"). MGS-1 was incubated with living soil for five weeks, and DNA was extracted from aliquots using the kits. After extraction, the DNA was quantified with a NanoDrop spectrophotometer and used as the template for 16S rRNA gene amplicon sequencing and qPCR. The MP kit was the most efficient, yielding approximately four times more DNA than the PowerSoil kit. DNA extracted using the MP kit with 0.5 g soil resulted in 28,642-37,805 16S rRNA gene sequence reads and 30,380-42,070 16S rRNA gene copies, whereas the 16S rRNA gene could not be amplified from DNA extracted using the PowerSoil kit. We suggest that the FastDNA SPIN Kit is the best option for studying microbial communities in Mars simulant soils.
Collapse
Affiliation(s)
- Han Wang
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (H.W.); (A.P.); (O.Y.A.C.)
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Agata Pijl
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (H.W.); (A.P.); (O.Y.A.C.)
| | - Binbin Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China;
| | - Wieger Wamelink
- Biodiversity and Policy, Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands;
| | - Gerard W. Korthals
- Bioindications and Plant Health, Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands;
| | - Ohana Y. A. Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (H.W.); (A.P.); (O.Y.A.C.)
| | - Eiko E. Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (H.W.); (A.P.); (O.Y.A.C.)
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Gutierrez‐Patricio S, Osman JR, Gonzalez‐Pimentel JL, Jurado V, Laiz L, Concepción AL, Saiz‐Jimenez C, Miller AZ. Microbiological exploration of the Cueva del Viento lava tube system in Tenerife, Canary Islands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13245. [PMID: 38643985 PMCID: PMC11033209 DOI: 10.1111/1758-2229.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Cueva del Viento, located in the Canary Islands, Spain, is the Earth's sixth-longest lava tube, spanning 18,500 m, and was formed approximately 27,000 years ago. This complex volcanic cave system is characterized by a unique geomorphology, featuring an intricate network of galleries. Despite its geological significance, the geomicrobiology of Cueva del Viento remains largely unexplored. This study employed a combination of culture-dependent techniques and metabarcoding data analysis to gain a comprehensive understanding of the cave's microbial diversity. The 16S rRNA gene metabarcoding approach revealed that the coloured microbial mats (yellow, red and white) coating the cave walls are dominated by the phyla Actinomycetota, Pseudomonadota and Acidobacteriota. Of particular interest is the high relative abundance of the genus Crossiella, which is involved in urease-mediated biomineralization processes, along with the presence of genera associated with nitrogen cycling, such as Nitrospira. Culture-dependent techniques provided insights into the morphological characteristics of the isolated species and their potential metabolic activities, particularly for the strains Streptomyces spp., Paenarthrobacter sp. and Pseudomonas spp. Our findings underscore the potential of Cueva del Viento as an ideal environment for studying microbial diversity and for the isolation and characterization of novel bacterial species of biotechnological interest.
Collapse
Affiliation(s)
| | - Jorge R. Osman
- Instituto de Geología Económica Aplicada (GEA)Universidad de ConcepciónConcepciónChile
| | - José Luis Gonzalez‐Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | | | - Cesareo Saiz‐Jimenez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
| | - Ana Zélia Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS‐CSIC)SevillaSpain
- Laboratorio HERCULESUniversidade de ÉvoraÉvoraPortugal
| |
Collapse
|
8
|
Palma V, González-Pimentel JL, Jimenez-Morillo NT, Sauro F, Gutiérrez-Patricio S, De la Rosa JM, Tomasi I, Massironi M, Onac BP, Tiago I, González-Pérez JA, Laiz L, Caldeira AT, Cubero B, Miller AZ. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169583. [PMID: 38154629 DOI: 10.1016/j.scitotenv.2023.169583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an in-depth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
Collapse
Affiliation(s)
- Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | | | | | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Italy
| | | | - José M De la Rosa
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ilaria Tomasi
- Geosciences Department, University of Padova, Padova, Italy
| | | | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, USA; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Igor Tiago
- CFE-Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José A González-Pérez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana T Caldeira
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal; Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain.
| |
Collapse
|
9
|
Clodoré L, Foucher F, Hickman-Lewis K, Sorieul S, Jouve J, Réfrégiers M, Collet G, Petoud S, Gratuze B, Westall F. Multi-Technique Characterization of 3.45 Ga Microfossils on Earth: A Key Approach to Detect Possible Traces of Life in Returned Samples from Mars. ASTROBIOLOGY 2024; 24:190-226. [PMID: 38393828 DOI: 10.1089/ast.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (e.g., V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.
Collapse
Affiliation(s)
- Laura Clodoré
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
| | - Frédéric Foucher
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- CNRS-Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France
| | - Keyron Hickman-Lewis
- Natural History Museum, London, United Kingdom
- Dipartimento BiGeA, Università di Bologna, Bologna, Italy
| | | | - Jean Jouve
- University of Bordeaux, CNRS, IN2P3, CENBG, Gradignan, France
| | | | - Guillaume Collet
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- Chair of Cosmetology, AgroParisTech Innovation, Orléans, France
| | | | - Bernard Gratuze
- CNRS-Institut de Recherche sur les ArchéoMATériaux, Orléans, France
| | | |
Collapse
|
10
|
Bonaccorsi R, Glass B, Moreno-Paz M, García-Villadangos M, Warren-Rhodes K, Parro V, Manchado JM, Wilhelm MB, McKay CP. In Situ Real-Time Monitoring for Aseptic Drilling: Lessons Learned from the Atacama Rover Astrobiology Drilling Studies Contamination Control Strategy and Implementation and Application to the Icebreaker Mars Life Detection Mission. ASTROBIOLOGY 2023; 23:1303-1336. [PMID: 38133823 DOI: 10.1089/ast.2022.0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.
Collapse
Affiliation(s)
- Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Kimberley Warren-Rhodes
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | |
Collapse
|
11
|
García-Gómez L, Delgado T, Fortes FJ, Del Rosal Y, Liñán C, Fernández LE, Cabalín LM, Laserna J. Remote Laser-Induced Breakdown Spectroscopy of Bacterial Growths in Carbonate Rocks in a Mars-like Atmosphere. ASTROBIOLOGY 2023; 23:1179-1188. [PMID: 37819713 DOI: 10.1089/ast.2022.0153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Understanding the past habitable environments of Mars increases the requirement to recognize and examine modern analogs and to evaluate the mechanisms that may preserve biosignatures in them. The phenomenon that originates and preserves possible microbial biosignatures in mineral phases is of particular interest in astrobiology. On Earth, the precipitation of carbonate matrices can be mediated by bacteria. Besides microbialites and other sedimentary structures, carbonate formations can be observed in certain karstic caves. The present work is focused on the remote laser-induced breakdown spectroscopy (LIBS) characterization of cyanobacteria, exploring the possibilities for identification and discrimination on carbonate substrates. For this purpose, the extremophile cyanobacterium Chroococcidiopsis sp. (collected from the Nerja Cave, Malaga, Spain) was analyzed under laboratory-simulated martian conditions in terms of chemical composition and gas pressure. LIBS results related to acquired molecular emission features allowed bacterial differentiation from the colonized mineral substrate. In addition, the limits of detection were estimated with a laboratory-grown culture of the cyanobacterium Microcystis aureginosa. Our results reveal LIBS's capability to detect biological traces under simulated martian conditions. Additionally, the time-resolved analysis of the biological samples demonstrates the selection of optimal temporal conditions as a critical parameter for the preferential acquisition of molecular species in organic material.
Collapse
Affiliation(s)
- Laura García-Gómez
- UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, Málaga, Spain
| | - Tomás Delgado
- UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, Málaga, Spain
| | - Francisco J Fortes
- UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, Málaga, Spain
| | | | - Cristina Liñán
- Nerja Cave Foundation, Research Institute, Málaga, Spain
| | | | - Luisa M Cabalín
- UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, Málaga, Spain
| | - Javier Laserna
- UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
12
|
Magnuson E, Altshuler I, Freyria NJ, Leveille RJ, Whyte LG. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. MICROBIOME 2023; 11:203. [PMID: 37697305 PMCID: PMC10494364 DOI: 10.1186/s40168-023-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (~ 7 °C), hypersaline (7-8% salinity), anoxic (~ 0.04 ppm O2), and highly reducing (~ - 430 mV) brines rich in sulfate (2.2 g.L-1) and sulfide (9.5 ppm), making Gypsum Hill an analog to putative sulfate-rich briny habitats on extraterrestrial bodies such as Mars. RESULTS Genome-resolved metagenomics and metatranscriptomics were utilized to describe an active microbial community containing novel metagenome-assembled genomes and dominated by sulfur-cycling Desulfobacterota and Gammaproteobacteria. Sulfate reduction was dominated by hydrogen-oxidizing chemolithoautotrophic Desulfovibrionaceae sp. and was identified in phyla not typically associated with sulfate reduction in novel lineages of Spirochaetota and Bacteroidota. Highly abundant and active sulfur-reducing Desulfuromusa sp. highly transcribed non-coding RNAs associated with transcriptional regulation, showing potential evidence of putative metabolic flexibility in response to substrate availability. Despite low oxygen availability, sulfide oxidation was primarily attributed to aerobic chemolithoautotrophic Halothiobacillaceae. Low abundance and transcription of photoautotrophs indicated sulfur-based chemolithoautotrophy drives primary productivity even during periods of constant illumination. CONCLUSIONS We identified a rare surficial chemolithoautotrophic, sulfur-cycling microbial community active in a unique anoxic, cold, hypersaline Arctic spring. We detected Mars-relevant metabolisms including hydrogenotrophic sulfate reduction, sulfur reduction, and sulfide oxidation, which indicate the potential for microbial life in analogous S-rich brines on past and present Mars. Video Abstract.
Collapse
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Ianina Altshuler
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nastasia J. Freyria
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Richard J. Leveille
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC Canada
- Geosciences Department, John Abbott College, Ste-Anne-de-Bellevue, QC Canada
| | - Lyle G. Whyte
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| |
Collapse
|
13
|
Burnie TM, Power IM, Paulo C, Alçiçek H, Falcón LI, Lin Y, Wilson SA. Environmental and Mineralogical Controls on Biosignature Preservation in Magnesium Carbonate Systems Analogous to Jezero Crater, Mars. ASTROBIOLOGY 2023; 23:513-535. [PMID: 36944136 DOI: 10.1089/ast.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jezero Crater on Mars is a paleolacustrine environment where Mg-carbonates may host evidence of ancient life. To elucidate the environmental and mineralogical controls on biosignature preservation, we examined samples from five terrestrial analogs: Lake Salda (Turkey), Lake Alchichica (Mexico), Qinghai-Tibetan Plateau (China), Mg-carbonate playas (British Columbia, Canada), and a mine with fine-grained ultramafic tailings (Yukon, Canada). The mineralogical compositions of the samples varied, yet were often dominated by either aragonite (CaCO3) or hydromagnesite [Mg5(CO3)4(OH)2·4H2O]. Aragonite-rich samples from Alchichica, Mg-carbonate playas, and the ultramafic mine contained an abundance of entombed microbial biomass, including organic structures that resembled cells, whereas hydromagnesite-rich samples were devoid of microfossils. Aragonite often precipitates subaqueously where microbes thrive, thereby increasing the likelihood of biomass entombment, while hydrated Mg-carbonates typically form by evaporation in subaerial settings where biofilms are less prolific. Magnesite (MgCO3), the most stable Mg-carbonate, forms extremely slowly, which may limit the capture of biosignatures. Hydrated Mg-carbonates are prone to transformation via coupled dissolution-precipitation reactions that may expose biosignatures to degradation. Although less abundant, aragonite is commonly found in Mg-carbonate environments and is a better medium for biosignature preservation due to its fast precipitation rates and relative stability, as well as its tendency to form subaqueously and lithify. Consequently, we propose that aragonite be considered a valuable exploration target on Mars.
Collapse
Affiliation(s)
- Teanna M Burnie
- Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Ian M Power
- Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Carlos Paulo
- Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Hülya Alçiçek
- Department of Geology, Pamukkale University, Denizli, Turkey
| | - Luisa I Falcón
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, México DF, Mexico
| | - Yongjie Lin
- Key Laboratory of Saline Lake Resources and Environments of Ministry of Natural Resources, Institute of Mineral Resource, Chinese Academy of Geological Sciences, Beijing, China
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Siobhan A Wilson
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Corenblit D, Decaux O, Delmotte S, Toumazet JP, Arrignon F, André MF, Darrozes J, Davies NS, Julien F, Otto T, Ramillien G, Roussel E, Steiger J, Viles H. Signatures of Life Detected in Images of Rocks Using Neural Network Analysis Demonstrate New Potential for Searching for Biosignatures on the Surface of Mars. ASTROBIOLOGY 2023; 23:308-326. [PMID: 36668995 DOI: 10.1089/ast.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microorganisms play a role in the construction or modulation of various types of landforms. They are especially notable for forming microbially induced sedimentary structures (MISS). Such microbial structures have been considered to be among the most likely biosignatures that might be encountered on the martian surface. Twenty-nine algorithms have been tested with images taken during a laboratory experiment for testing their performance in discriminating mat cracks (MISS) from abiotic mud cracks. Among the algorithms, neural network types produced excellent predictions with similar precision of 0.99. Following that step, a convolutional neural network (CNN) approach has been tested to see whether it can conclusively detect MISS in images of rocks and sediment surfaces taken at different natural sites where present and ancient (fossil) microbial mat cracks and abiotic desiccation cracks were observed. The CNN approach showed excellent prediction of biotic and abiotic structures from the images (global precision, sensitivity, and specificity, respectively, 0.99, 0.99, and 0.97). The key areas of interest of the machine matched well with human expertise for distinguishing biotic and abiotic forms (in their geomorphological meaning). The images indicated clear differences between the abiotic and biotic situations expressed at three embedded scales: texture (size, shape, and arrangement of the grains constituting the surface of one form), form (outer shape of one form), and pattern of form arrangement (arrangement of the forms over a few square meters). The most discriminative components for biogenicity were the border of the mat cracks with their tortuous enlarged and blistered morphology more or less curved upward, sometimes with thin laminations. To apply this innovative biogeomorphological approach to the images obtained by rovers on Mars, the main physical and biological sources of variation in abiotic and biotic outcomes must now be further considered.
Collapse
Affiliation(s)
- Dov Corenblit
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | | | | | | | | | - José Darrozes
- Université Paul Sabatier, CNRS/IRD, GET, Toulouse, France
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Frédéric Julien
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | - Thierry Otto
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Erwan Roussel
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Johannes Steiger
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Heather Viles
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Rasmussen B, Muhling JR. Organic carbon generation in 3.5-billion-year-old basalt-hosted seafloor hydrothermal vent systems. SCIENCE ADVANCES 2023; 9:eadd7925. [PMID: 36724225 PMCID: PMC9891697 DOI: 10.1126/sciadv.add7925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Carbon is the key element of life, and its origin in ancient sedimentary rocks is central to questions about the emergence and early evolution of life. The oldest well-preserved carbon occurs with fossil-like structures in 3.5-billion-year-old black chert. The carbonaceous matter, which is associated with hydrothermal chert-barite vent systems originating in underlying basaltic-komatiitic lavas, is thought to be derived from microbial life. Here, we show that 3.5-billion-year-old black chert vein systems from the Pilbara Craton, Australia contain abundant residues of migrated organic carbon. Using younger analogs, we argue that the black cherts formed during precipitation from silica-rich, carbon-bearing hydrothermal fluids in vein systems and vent-proximal seafloor sediments. Given the volcanic setting and lack of organic-rich sediments, we speculate that the vent-mound systems contain carbon derived from rock-powered organic synthesis in the underlying mafic-ultramafic lavas, providing a glimpse of a prebiotic world awash in terrestrial organic compounds.
Collapse
|
16
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
17
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
18
|
Tice MM, Hurowitz JA, Allwood AC, Jones MWM, Orenstein BJ, Davidoff S, Wright AP, Pedersen DA, Henneke J, Tosca NJ, Moore KR, Clark BC, McLennan SM, Flannery DT, Steele A, Brown AJ, Zorzano MP, Hickman-Lewis K, Liu Y, VanBommel SJ, Schmidt ME, Kizovski TV, Treiman AH, O’Neil L, Fairén AG, Shuster DL, Gupta S, The PIXL Team. Alteration history of Séítah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars. SCIENCE ADVANCES 2022; 8:eabp9084. [PMID: 36417516 PMCID: PMC9683721 DOI: 10.1126/sciadv.abp9084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases. Olivine grains were then partially dissolved and filled by finely crystalline or amorphous secondary silicate, carbonate, sulfate, and chloride/oxychlorine minerals. These results support the hypothesis that Séítah formation rocks represent olivine cumulates altered by fluids far from chemical equilibrium at low water-rock ratios.
Collapse
Affiliation(s)
- Michael M. Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
| | - Abigail C. Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Michael W. M. Jones
- School of Chemistry and Physics and Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brendan J. Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott Davidoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Austin P. Wright
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A.K. Pedersen
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongbens Lyngby, 2800, Denmark
| | - Jesper Henneke
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongbens Lyngby, 2800, Denmark
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Kelsey R. Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Scott M. McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
| | - David T. Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | | | - Maria-Paz Zorzano
- Centro de Astrobiologia, Instituto National de Tecnica Aerospacial, Madrid, Spain
| | | | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Scott J. VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University of St. Louis, St. Louis, MO 63130, USA
| | - Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Tanya V. Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | - Lauren O’Neil
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - David L. Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
19
|
Wynne JJ, Titus TN, Agha‐Mohammadi A, Azua‐Bustos A, Boston PJ, de León P, Demirel‐Floyd C, De Waele J, Jones H, Malaska MJ, Miller AZ, Sapers HM, Sauro F, Sonderegger DL, Uckert K, Wong UY, Alexander EC, Chiao L, Cushing GE, DeDecker J, Fairén AG, Frumkin A, Harris GL, Kearney ML, Kerber L, Léveillé RJ, Manyapu K, Massironi M, Mylroie JE, Onac BP, Parazynski SE, Phillips‐Lander CM, Prettyman TH, Schulze‐Makuch D, Wagner RV, Whittaker WL, Williams KE. Fundamental Science and Engineering Questions in Planetary Cave Exploration. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007194. [PMID: 36582809 PMCID: PMC9787064 DOI: 10.1029/2022je007194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/17/2023]
Abstract
Nearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.
Collapse
Affiliation(s)
- J. Judson Wynne
- Department of Biological Sciences and Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffAZUSA
| | | | | | - Armando Azua‐Bustos
- Centro de AstrobiologíaCSIC‐INTAUnidad María de MaeztuInstituto Nacional de Técnica Aeroespacial Ctra de Torrejón a AjalvirMadridSpain
- Instituto de Ciencias BiomédicasFacultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| | | | - Pablo de León
- Human Spaceflight LaboratoryDepartment of Space StudiesUniversity of North DakotaGrand ForksNDUSA
| | | | - Jo De Waele
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Heather Jones
- Robotics InstituteCarnegie Mellon UniversityPittsburghPAUSA
| | - Michael J. Malaska
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ana Z. Miller
- Laboratório HERCULESUniversity of ÉvoraÉvoraPortugal
- Instituto de Recursos Naturales y AgrobiologíaConsejo Superior de Investigaciones CientíficasSevilleSpain
| | - Haley M. Sapers
- Department of Earth and Space Science and EngineeringYork UniversityTorontoONCanada
| | - Francesco Sauro
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Derek L. Sonderegger
- Department of Mathematics and StatisticsNorthern Arizona UniversityFlagstaffAZUSA
| | - Kyle Uckert
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - E. Calvin Alexander
- Earth and Environmental Sciences DepartmentUniversity of MinnesotaMinneapolisMNUSA
| | - Leroy Chiao
- Department of Mechanical EngineeringRice UniversityHoustonTXUSA
| | - Glen E. Cushing
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | - John DeDecker
- Center for Mineral Resources ScienceColorado School of MinesGoldenCOUSA
| | - Alberto G. Fairén
- Centro de AstrobiologíaCSIC‐INTAUnidad María de MaeztuInstituto Nacional de Técnica Aeroespacial Ctra de Torrejón a AjalvirMadridSpain
- Department of AstronomyCornell UniversityIthacaNYUSA
| | - Amos Frumkin
- Institute of Earth SciencesThe Hebrew UniversityJerusalemIsrael
| | - Gary L. Harris
- Human Spaceflight LaboratoryDepartment of Space StudiesUniversity of North DakotaGrand ForksNDUSA
| | - Michelle L. Kearney
- Department of Astronomy and Planetary SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | - Laura Kerber
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Richard J. Léveillé
- Department of Earth and Planetary SciencesMcGill UniversityMontrealQCCanada
- Geosciences DepartmentJohn Abbott CollegeSte‐Anne‐de‐BellevueQCCanada
| | | | - Matteo Massironi
- Dipartimento di GeoscienzeUniversità degli Studi di PadovaPadovaItaly
| | - John E. Mylroie
- Department of GeosciencesMississippi State UniversityStarkvilleMSUSA
| | - Bogdan P. Onac
- School of GeosciencesUniversity of South FloridaTampaFLUSA
- Emil G. Racoviță InstituteBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | | | | | | | - Dirk Schulze‐Makuch
- Astrobiology GroupCenter of Astronomy and AstrophysicsTechnische Universität BerlinBerlinGermany
- Section GeomicrobiologyGFZ German Research Centre for GeosciencesPotsdamGermany
- Department of Experimental LimnologyLeibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
| | - Robert V. Wagner
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - William L. Whittaker
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Kaj E. Williams
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| |
Collapse
|
20
|
Naz N, Liu D, Harandi BF, Kounaves SP. Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars. ASTROBIOLOGY 2022; 22:1210-1221. [PMID: 36000998 DOI: 10.1089/ast.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The search for life elsewhere in the Universe goes together with the search for liquid water. Life as we know it requires water; however, it is possible for microbial life to exist under hyperarid conditions with a minimal amount of water. We report on the ability of two typical terrestrial bacteria (Escherichia coli B and Eucapsis sp) and two extremophiles (Gloeocapsa-20201027-1 sp and Planococcus halocryophilus) to grow and survive in three martian soil (regolith) simulants (Mohave Mars Simulant-1 [MMS-1] F, Mars Global Simulant-1 [MGS-1], and JSC Mars-1A [JSC]). Survival and growth were assessed over a 21-day period under terrestrial conditions and with water:soil (vol:wt) ratios that varied from 0.25:1 to 5:1. We found that Eucapsis and Gloeocapsa sp grew best in the simulants MMS and JSC, respectively, while P. halocryophilus growth rates were better in the JSC simulant. As expected, E. coli did not show significant growth. Our results indicate that these martian simulants and thus martian regolith, with minimal or no added nutrients or water, can support the growth of extremophiles such as P. halocryphilus and Gloeocapsa. Similar extremophiles on early Mars may have survived to the present in near-surface ecological niches analogous to those where these organisms exist on Earth.
Collapse
Affiliation(s)
- Neveda Naz
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Dongyu Liu
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Bijan F Harandi
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
21
|
Špaček J, Benner SA. Agnostic Life Finder (ALF) for Large-Scale Screening of Martian Life During In Situ Refueling. ASTROBIOLOGY 2022; 22:1255-1263. [PMID: 35796703 DOI: 10.1089/ast.2021.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Before the first humans depart for Mars in the next decade, hundreds of tons of martian water-ice must be harvested to produce propellant for the return vehicle, a process known as in situ resource utilization (ISRU). We describe here an instrument, the Agnostic Life Finder (ALF), that is an inexpensive life-detection add-on to ISRU. ALF exploits a well-supported view that informational genetic biopolymers in life in water must have two structural features: (1) Informational biopolymers must carry a repeating charge; they must be polyelectrolytes. (2) Their building blocks must fit into an aperiodic crystal structure; the building blocks must be size-shape regular. ALF exploits the first structural feature to extract polyelectrolytes from ∼10 cubic meters of mined martian water by applying a voltage gradient perpendicularly to the water's flow. This gradient diverts polyelectrolytes from the flow toward their respective electrodes (polyanions to the anode, polycations to the cathode), where they are captured in cartridges before they encounter the electrodes. There, they can later be released to analyze their building blocks, for example, by mass spectrometry or nanopore. Upstream, martian cells holding martian informational polyelectrolytes are disrupted by ultrasound. To manage the (unknown) conductivity of the water due to the presence of salts, the mined water is preconditioned by electrodialysis using porous membranes. ALF uses only resources and technology that must already be available for ISRU. Thus, life detection is easily and inexpensively integrated into SpaceX or NASA ISRU missions.
Collapse
Affiliation(s)
- Jan Špaček
- Firebird Biomolecular Sciences, LLC, Alachua, Florida, USA
| | | |
Collapse
|
22
|
Billi D, Blanco Y, Ianneo A, Moreno-Paz M, Aguirre J, Baqué M, Moeller R, de Vera JP, Parro V. Mars-like UV Flux and Ionizing Radiation Differently Affect Biomarker Detectability in the Desert Cyanobacterium Chroococcidiopsis as Revealed by the Life Detector Chip Antibody Microarray. ASTROBIOLOGY 2022; 22:1199-1209. [PMID: 36194868 DOI: 10.1089/ast.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.
Collapse
Affiliation(s)
- Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Yolanda Blanco
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Andrea Ianneo
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mercedes Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Jacobo Aguirre
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Berlin, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center, Cologne, Germany
| | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
23
|
Osterhout JT, Schopf JW, Kudryavtsev AB, Czaja AD, Williford KH. Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for Past Life on Mars. ASTROBIOLOGY 2022; 22:1239-1254. [PMID: 36194869 DOI: 10.1089/ast.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The current strategy for detecting evidence of ancient life on Mars-a primary goal of NASA's ongoing Mars 2020 mission-is based largely on knowledge of Precambrian life and of its preservation in Earth's early rock record. The fossil record of primitive microorganisms consists mainly of stromatolites and other microbially influenced sedimentary structures, which occasionally preserve microfossils or other geochemical traces of life. Raman spectroscopy is an invaluable tool for identifying such signs of life and is routinely performed on Precambrian microfossils to help establish their organic composition, degree of thermal maturity, and biogenicity. The Mars 2020 rover, Perseverance, is equipped with a deep-ultraviolet (UV) Raman spectrometer as part of the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) instrument, which will be used in part to characterize the preservation of organic matter in the ancient sedimentary rocks of Jezero crater and therein search for possible biosignatures. To determine the deep-UV Raman spectra characteristic of ancient microbial fossils, this study analyzes individual microfossils from 14 Precambrian cherts using deep-UV (244 nm) Raman spectroscopy. Spectra obtained were measured and calibrated relative to a graphitic standard and categorized according to the morphology and depositional environment of the fossil analyzed and its Raman-indicated thermal maturity. All acquired spectra of the fossil kerogens include a considerably Raman-enhanced and prominent first-order Raman G-band (∼1600 cm-1), whereas its commonly associated D-band (∼1350 cm-1) is restricted to specimens of lower thermal maturity (below greenschist facies) that thus have the less altered biosignature indicative of relatively well-preserved organic matter. If comparably preserved, similar characteristics would be expected to be exhibited by microfossils or ancient organic matter in rock samples collected and cached on Mars in preparation for future sample return to Earth.
Collapse
Affiliation(s)
- Jeffrey T Osterhout
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - J William Schopf
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - Anatoliy B Kudryavtsev
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
24
|
Baqué M, Backhaus T, Meeßen J, Hanke F, Böttger U, Ramkissoon N, Olsson-Francis K, Baumgärtner M, Billi D, Cassaro A, de la Torre Noetzel R, Demets R, Edwards H, Ehrenfreund P, Elsaesser A, Foing B, Foucher F, Huwe B, Joshi J, Kozyrovska N, Lasch P, Lee N, Leuko S, Onofri S, Ott S, Pacelli C, Rabbow E, Rothschild L, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wagner D, Westall F, Zucconi L, de Vera JPP. Biosignature stability in space enables their use for life detection on Mars. SCIENCE ADVANCES 2022; 8:eabn7412. [PMID: 36070383 PMCID: PMC9451166 DOI: 10.1126/sciadv.abn7412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/20/2022] [Indexed: 06/14/2023]
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Theresa Backhaus
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joachim Meeßen
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Nisha Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Michael Baumgärtner
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz-28850, Madrid, Spain
| | - René Demets
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),, Noordwijk, Netherlands
| | - Howell Edwards
- University of Bradford, University Analytical Centre, Division of Chemical and Forensic Sciences, Raman Spectroscopy Group, West Yorkshire, UK
| | - Pascale Ehrenfreund
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- George Washington University, Space Policy Institute, Washington, DC 20052, USA
| | - Andreas Elsaesser
- Freie Universitaet Berlin, Experimental Biophysics and Space Sciences, Institute of Experimental Physics; Arnimallee 14, 14195 Berlin, Germany
| | - Bernard Foing
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV, Amsterdam, Netherlands
| | - Frédéric Foucher
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Björn Huwe
- Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, D-14469 Potsdam, Germany
- Department Technology Assessment and Substance Cycles, Leibniz- Institute for Agriculture Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jasmin Joshi
- Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Seestrasse 10, 8640 Rapperswil, Switzerland
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str.150, 03680, Kyiv Ukraine
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens (ZBS 6), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Natuschka Lee
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Sieglinde Ott
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Lynn Rothschild
- NASA Ames Research Center, Mail Stop 239-20, P.O. Box 1, Moffett Field, CA 94035-0001, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Dirk Schulze-Makuch
- Technical University Berlin, ZAA, Hardenbergstr. 36, D-10623 Berlin, Germany
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy
| | - Paloma Serrano
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Environmental Microbiology, Technical University Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 Berlin, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Dirk Wagner
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476, Potsdam, Germany
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
25
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Wei XY, Zhu HY, Song L, Zhang RP, Li AH, Niu QH, Liu XZ, Bai FY. Yeast Diversity in the Qaidam Basin Desert in China with the Description of Five New Yeast Species. J Fungi (Basel) 2022; 8:jof8080858. [PMID: 36012846 PMCID: PMC9409814 DOI: 10.3390/jof8080858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
The Qaidam Basin is the highest and one of the largest and driest deserts on Earth. It is considered a mars analog area in China. In contrast to numerous studies concerning its geology, geophysical, and chemistry, relatively few studies have reported microbial diversity and distribution in this area. Here, we investigated culturable yeast diversity in the northeast Qaidam Basin. A total of 194 yeast strains were isolated, and 12 genera and 21 species were identified, among which 19 were basidiomycetous yeasts. Naganishia albida, N. adeliensis, and Filobasidium magnum were the three most dominant species and were distributed in thirteen samples from eight locations. Five new species (Filobasidium chaidanensis, Kondoa globosum, Symmetrospora salmoneus, Teunia nitrariae, and Vishniacozyma pseudodimennae) were found and described based on ITS and D1D2 gene loci together with phenotypic characteristics and physiochemical analysis. Representative strains from each species were chosen for the salt-tolerant test, in which species showed different responses to different levels of NaCl concentrations. Further, the strain from soil can adapt well to the higher salt stress compared to those from plants or lichens. Our study represents the first report of the yeast diversity in the Qaidam Basin, including five new species, and also provides further information on the halotolerance of yeasts from the saline environment in mars analog.
Collapse
Affiliation(s)
- Xu-Yang Wei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ai-Hua Li
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiu-Hong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Xin-Zhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (X.-Z.L.); (F.-Y.B.)
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (X.-Z.L.); (F.-Y.B.)
| |
Collapse
|
27
|
Miller AZ, Jiménez-Morillo NT, Coutinho ML, Gazquez F, Palma V, Sauro F, Pereira MF, Rull F, Toulkeridis T, Caldeira AT, Forti P, Calaforra JM. Organic geochemistry and mineralogy suggest anthropogenic impact in speleothem chemistry from volcanic show caves of the Galapagos. iScience 2022; 25:104556. [PMID: 35789844 PMCID: PMC9250005 DOI: 10.1016/j.isci.2022.104556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The network of lava tubes is one of the most unexploited natural wonders of the Galapagos Islands. Here, we provide the first morphological, mineralogical, and biogeochemical assessment of speleothems from volcanic caves of the Galapagos to understand their structure, composition, and origin, as well as to identify organic molecules preserved in speleothems. Mineralogical analyses revealed that moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves were composed of calcite, opal-A, and minor amounts of clay minerals. Extracellular polymeric substances, fossilized bacteria, silica microspheres, and cell imprints on siliceous minerals evidenced microbe-mineral interactions and biologically-mediated silica precipitation. Alternating depositional layers between siliceous and carbonate minerals and the detection of biomarkers of surface vegetation and anthropogenic stressors indicated environmental and anthropogenic changes (agriculture, human waste, and cave visits) on these unique underground resources. Stable isotope analysis and Py-GC/MS were key to robustly identify biomarkers, allowing for implementation of future protection policies. Speleothems from lava tubes of Galapagos are archives of anthropogenic stressors Moonmilk and coralloids are composed of calcite, opal-A, and clay minerals Microbe-mineral interactions promote mineral dissolution and precipitation Biomarkers of surface vegetation and anthropogenic impacts detected by Py-GC/MS
Collapse
Affiliation(s)
- Ana Z. Miller
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Seville, Spain
- HERCULES Laboratory, University of Évora, Évora, Portugal
- Corresponding author
| | - Nicasio T. Jiménez-Morillo
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | | | - Fernando Gazquez
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain
| | - Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Bologna, Italy
| | | | - Fernando Rull
- CSIC-CAB Associated Unit ERICA, Department of Condensed Matter Physics, Mineralogy and Crystallography, University of Valladolid, Boecillo, Spain
| | | | | | - Paolo Forti
- Department of Earth Sciences and Environmental Geology, University of Bologna, Bologna, Italy
| | - José M. Calaforra
- Department of Biology and Geology, University of Almería, Almería, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain
| |
Collapse
|
28
|
Velbel MA, Cockell CS, Glavin DP, Marty B, Regberg AB, Smith AL, Tosca NJ, Wadhwa M, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Hutzler A, McCubbin FM, Pratt LM, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Westall F, Zorzano MP. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S112-S164. [PMID: 34904892 DOI: 10.1089/ast.2021.0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive-they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report. Executive Summary A high priority of the planned NASA/ESA Mars Sample Return Campaign is to establish whether life on Mars exists or existed where and when allowed by paleoenvironmental conditions. To answer these questions from analyses of the returned samples would require measurement of many different properties and characteristics by multiple and diverse instruments. Planetary Protection requirements may determine that unsterilized subsamples cannot be safely released to non-Biosafety Level-4 (BSL-4) terrestrial laboratories. Consequently, it is necessary to determine what, if any, are the negative effects that sterilization might have on sample integrity, specifically the fidelity of the subsample properties that are to be measured. Sample properties that do not survive sterilization intact should be measured on unsterilized subsamples, and the Sample Receiving Facility (SRF) should support such measurements. This report considers the effects that sterilization of subsamples might have on the science goals of the MSR Campaign. It assesses how the consequences of sterilization affect the scientific usefulness of the subsamples and hence our ability to conduct high-quality science investigations. We consider the sterilization effects of (a) the application of dry heat under two temperature-time regimes (180°C for 3 hours; 250°C for 30 min) and (b) γ-irradiation (1 MGy), as provided to us by the NASA and ESA Planetary Protection Officers (PPOs). Measurements of many properties of volatile-rich materials are sterilization sensitive-they would be compromised by application of either sterilization mode to the subsample. Such materials include organic molecules, hydrous minerals (crystalline solids), and hydrous amorphous (non-crystalline) solids. Either proposed sterilization method would modify the abundances, isotopes, or oxidation-reduction (redox) states of the six most abundant chemical elements in biological molecules (i.e., carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulphur, CHNOPS), and of other key redox-sensitive elements that include iron (Fe), other first-row transition elements (FRTE), and cerium (Ce). As a result of these modifications, such evidence of Mars' life, paleoenvironmental history, potential habitability, and potential biosignatures would be corrupted or destroyed. Modifications of the abundances of some noble gases in samples heated during sterilization would also reset scientifically important radioisotope geochronometers and atmospheric-evolution measurements. Sterilization is designed to render terminally inactive (kill) all living microorganisms and inactivate complex biological structures (including bacterial spores, viruses, and prions). Sterilization processes do so by breaking certain pre-sterilization chemical bonds (including strong C-C, C-O, C-N, and C-H bonds of predominantly covalent character, as well as weaker hydrogen and van der Waals bonds) and forming different bonds and compounds, disabling the biological function of the pre-sterilization chemical compound. The group finds the following: No sterilization process could destroy the viability of cells whilst still retaining molecular structures completely intact. This applies not only to the organic molecules of living organisms, but also to most organic molecular biosignatures of former life (molecular fossils). As a matter of biological principle, any sterilization process would result in the loss of biological and paleobiological information, because this is the mechanism by which sterilization is achieved. Thus, almost all life science investigations would be compromised by sterilizing the subsample by either mode. Sterilization by dry heat at the proposed temperatures would lead to changes in many of the minerals and amorphous solids that are most significant for the study of paleoenvironments, habitability, potential biosignatures, and the geologic context of life-science observations. Gamma-(γ-)irradiation at even sub-MGy doses induces radiolysis of water. The radiolysis products (e.g., free radicals) react with redox-sensitive chemical species of interest for the study of paleoenvironments, habitability, and potential biosignatures, thereby adversely affecting measurements of those species. Heat sterilization and radiation also have a negative effect on CHNOPS and redox-sensitive elements. MSPG2 was unable to identify with confidence any measurement of abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements (e.g., Fe and other FRTE; Ce), or their isotopes that would be affected by only one, but not both, of the considered sterilization methods. Measurements of many attributes of volatile-rich subsamples are sterilization sensitive to both heat and γ-irradiation. Such a measurement is not useful to Mars science if what remains in the subsample is evidence of sterilization conditions and effects instead of evidence of conditions on Mars. Most measurements relating to the detection of evidence for extant or extinct life are sterilization sensitive. Many measurements other than those for life-science seek to retrieve Mars' paleoenvironmental information from the abundances or oxidation-reduction states of CHNOPS elements, other redox-sensitive elements, or their isotopes (and some noble gases) in returned samples. Such measurements inform scientific interpretations of (paleo)atmosphere composition and evolution, (paleo)surface water origin and chemical evolution, potential (paleo)habitability, (paleo)groundwater-porewater solute chemistry, origin and evolution, potential biosignature preservation, metabolic element or isotope fractionation, and the geologic, geochronological, and geomorphic context of life-sciences observations. Most such measurements are also sterilization sensitive. The sterilization-sensitive attributes cannot be meaningfully measured in any such subsample that has been sterilized by heat or γ-irradiation. Unless such subsamples are deemed biohazard-safe for release to external laboratories in unsterilized form, all such measurements must be made on unsterilized samples in biocontainment. An SRF should have the capability to carry out scientific investigations that are sterilization-sensitive to both PPO-provided sterilization methods (Figure SE1). The following findings have been recognized in the Report. Full explanations of the background, scope, and justification precede the presentation of each Finding in the Section identified for that Finding. One or more Findings follow our assessment of previous work on the effects of each provided sterilization method on each of three broad categories of measurement types-biosignatures of extant or ancient life, geological evidence of paleoenvironmental conditions, and gases. Findings are designated Major if they explicitly refer to both PPO-provided sterilization methods or have specific implications for the functionalities that need to be supported within an SRF. FINDING SS-1: More than half of the measurements described by iMOST for investigation into the presence of (mostly molecular) biosignatures (iMOST Objectives 2.1, 2.2 and 2.3) in returned martian samples are sterilization-sensitive and therefore cannot be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2. That proportion rises to 86% of the measurements specific to the investigation of extant or recent life (iMOST Objective 2.3) (see Section 2.5). This Finding supersedes Finding #4 of the MSPG Science in Containment report (MSPG, 2019). FINDING SS-2: Almost three quarters (115 out of 160; 72%) of the measurements described by iMOST for science investigations not associated with Objective 2 but associated with Objectives concerning geological phenomena that include past interactions with the hydrosphere (Objectives 1 and 3) and the atmosphere (Objective 4) are sterilization-tolerant and therefore can (generally) be performed with acceptable analytical precision or sensitivity on subsamples sterilized either by heat or by γ-irradiation at the sterilization parameters supplied to MSPG2 (see Section 2.5). This Finding supports Finding #6 of the MSPG Science in Containment report (MSPG, 2019). MSPG2 endorses the previously proposed strategy of conducting as many measurements as possible outside the SRF where the option exists. FINDING SS-3: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures and, more importantly, the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to temperatures associated with sterilization above those typical of a habitable surface or subsurface environment results in a loss of biological information. If extant life is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 3.2). FINDING SS-4: Suggested strategies for investigating the potential for extant life in returned martian samples lie in understanding biosignatures, including the presence of nucleic acid structures (DNA/RNA) and possible agnostic functionally similar information-bearing polymers. A crucial observation is that exposure of microorganisms to γ-radiation results in a loss of biological information through molecular damage and/or destruction. If extant life is a target for subsample analysis, sterilization of material via γ-radiation would likely compromise any such analysis (see Section 3.3). FINDING SS-5: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), as well as compounds associated with cell membranes such as lipids, sterols, and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via dry heat would likely compromise any such analysis (see Section 4.2). FINDING SS-6: Suggested strategies for investigating biomolecules in returned martian samples lie in detection of a variety of complex molecules, including peptides, proteins, DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), and compounds associated with cell membranes such as lipids, sterols and fatty acids and their geologically stable reaction products (hopanes, steranes, etc.) and possible agnostic functionally similar information-bearing polymers. Exposure to radiation results in a loss of biological information. If the presence of biosignatures is a target for subsample analysis, sterilization of material via γ-irradiation would likely compromise any such analysis (see Section 4.3). [Figure: see text] MAJOR FINDING SS-7: The use of heat or γ-irradiation sterilization should be avoided for subsamples intended to be used for organic biosignature investigations (for extinct or extant life). Studies of organic molecules from extinct or extant life (either indigenous or contaminants, viable or dead cells) or even some organic molecules derived from abiotic chemistry cannot credibly be done on subsamples that have been sterilized by any means. The concentrations of amino acids and other reduced organic biosignatures in the returned martian samples may also be so low that additional heat and/or γ-irradiation sterilization would reduce their concentrations to undetectable levels. It is a very high priority that these experiments be done on unsterilized subsamples inside containment (see Section 4.4). FINDING SS-8: Solvent extraction and acid hydrolysis at ∼100°C of unsterilized martian samples will inactivate any biopolymers in the extract and would not require additional heat or radiation treatment for the subsamples to be rendered sterile. Hydrolyzed extracts should be safe for analysis of soluble free organic molecules outside containment and may provide useful information about their origin for biohazard assessments; this type of approach, if approved, is strongly preferred and endorsed (see Section 4.4). FINDING SS-9: Minerals and amorphous materials formed by low temperature processes on Mars are highly sensitive to thermal alteration, which leads to irreversible changes in composition and/or structure when heated. Exposure to temperatures above MSR Campaign-Level Requirements for sample temperature, up to and including sterilization temperatures, has the potential to alter them from their as-received state. Sterilization by dry heat at the proposed sterilization temperatures would lead to changes in many of the minerals that are most significant for the study of paleoenvironments, habitability, and potential biosignatures or biosignature hosts. It is crucial that the returned samples are not heated to temperatures above which mineral transitions occur (see Section 5.3). FINDING SS-10: Crystal structure, major and non-volatile minor element abundances, and stoichiometric compositions of minerals are unaffected by γ-irradiation of up to 0.3-1 MGy, but crystal structures are completely destroyed at 130 MGy. Measurements of these specific properties cannot be acquired from subsamples γ-irradiated at the notional 1 MGy dose-they are sterilization-sensitive (see Section 5.4). FINDING SS-11: Sterilization by γ-irradiation (even at sub-MGy doses) results in significant changes to the redox state of elements bound within a mineral lattice. Redox-sensitive elements include Fe and other first-row transition elements (FRTE) as well as C, H, N, O, P and S. Almost all minerals and naturally occurring amorphous materials that formed under habitable conditions, including the ambient paleotemperatures of Mars' surface or shallow subsurface, contain at least one of these redox-sensitive elements. Therefore, measurements and investigations of the listed properties of such geological materials are sterilization sensitive and should not be performed on γ-irradiated subsamples (see Section 5.4). FINDING SS-12: A significant fraction of investigations that focus on high-temperature magmatic and impact-related processes, their chronology, and the chronology of Mars' geophysical evolution are sterilization-tolerant. While there may be a few analyses involved in such investigations that could be affected to some degree by heat sterilization, most of these analyses would not be affected by sterilization involving γ-irradiation (see Section 5.6). MAJOR FINDING SS-13: Scientific investigations of materials containing hydrous or otherwise volatile-rich minerals and/or X-ray amorphous materials that formed or were naturally modified at low (Mars surface-/near-surface) temperature are sterilization-sensitive in that they would be compromised by changes in the abundances, redox states, and isotopes of CHNOPS and other volatiles (e.g., noble gases for chronometry), FRTE, and Ce, and cannot be performed on subsamples that have been sterilized by either dry heat or γ-irradiation (see Section 5.7). MAJOR FINDING SS-14: It would be far preferable to work on sterilized gas samples outside of containment, if the technical issues can all be worked out, than to build and operate a large gas chemistry laboratory inside containment. Depending on their reactivity (or inertness), gases extracted from sample tubes could be sterilized by dry heat or γ-irradiation and analyzed outside containment. Alternatively, gas samples could be filtered through an inert grid and the filtered gas analyzed outside containment (see Section 6.5). MAJOR FINDING SS-15: It is fundamental to the campaign-level science objectives of the Mars Sample Return Campaign that the SRF support characterization of samples returned from Mars that contain organic matter and/or minerals formed under habitable conditions that include the ambient paleotemperatures of Mars' surface or subsurface (<∼200°C)-such as most clays, sulfates, and carbonates-in laboratories on Earth in their as-received-at-the-SRF condition (see Section 7.1). MAJOR FINDING SS-16: The search for any category of potential biosignature would be adversely affected by either of the proposed sterilization methods (see Section 7.1). MAJOR FINDING SS-17: Carbon, hydrogen, nitrogen, oxygen, sulfur, phosphorus, and other volatiles would be released from a subsample during the sterilization step. The heat and γ-ray sterilization chambers should be able to monitor weight loss from the subsample during sterilization. Any gases produced in the sample headspace and sterilization chamber during sterilization should be captured and contained for future analyses of the chemical and stable isotopic compositions of the evolved elements and compounds for all sterilized subsamples to characterize and document fully any sterilization-induced alteration and thereby recover some important information that would otherwise be lost (see Section 7.2). This report shows that most of the sterilization-sensitive iMOST measurement types are among either the iMOST objectives for life detection and life characterization (half or more of the measurements for life-science sub-objectives are critically sterilization sensitive) or the iMOST objectives for inferring paleoenvironments, habitability, preservation of potential biosignatures, and the geologic context of life-science observations (nearly half of the measurements for sub-objectives involving geological environments, habitability, potential biosignature preservation, and gases/volatiles are critically sterilization sensitive) (Table 2; see Beaty et al., 2019 for the full lists of iMOST objectives, goals, investigations, and sample measurement types). Sterilization-sensitive science about ancient life on Mars and its relationship to its ancient environment will be severely impaired or lost if the samples collected by Perseverance cannot be analyzed in an unsterilized condition. Summary: ○The SRF should have the capability to carry out or otherwise support scientific investigations that are sensitive to both PPO-provided sterilization methods. ○Measurements of most life-sciences and habitability-related (paleoenvironmental) phenomena are sensitive to both PPO-provided sterilization modes. (Major Finding SS-7, SS-15, SS-16 and Finding SS-1, SS-3, SS-4, SS-5, SS-6, SS-9, SS-11, SS-13) If subsamples for sterilization-sensitive measurement cannot be deemed safe for release, then additional contingency analytical capabilities are needed in the SRF to complete MSR Campaign measurements of sterilization-sensitive sample properties on unsterilized samples in containment (Figure SE1, below). ○Measurements of high-temperature (low-volatile) phenomena are tolerant of both PPO-provided sterilization modes (Finding SS-12). Subsamples for such measurements may be sterilized and released to laboratories outside containment without compromising the scientific value of the measurements. ○Capturing, transporting, and analyzing gases is important and will require careful design of apparatus. Doing so for volatiles present as headspace gases and a dedicated atmosphere sample will enable important atmospheric science (Major Finding SS-14). Similarly, capturing and analyzing gases evolved during subsample sterilization (i.e., gas from the sterilization chamber) would compensate for some sterilization-induced loss of science data from volatile-rich solid (geological) subsamples (Finding SS-14, SS-17; other options incl. SS-8).
Collapse
Affiliation(s)
- Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi Lee Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | | | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
29
|
Goodwin A, Garwood RJ, Tartèse R. A Review of the "Black Beauty" Martian Regolith Breccia and Its Martian Habitability Record. ASTROBIOLOGY 2022; 22:755-767. [PMID: 35230137 DOI: 10.1089/ast.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regolith breccia Northwest Africa (NWA) 7034 and paired samples are unique meteorite representatives of the martian crust. They are water rich, lithologically varied, and preserve the oldest martian zircon grains yet discovered that formed ca. 4500-4300 Ma. The meteorite thus provides us with an invaluable record of the crustal and environmental conditions on early Mars. Resetting of some radioisotopic chronometers occurred in response to a major thermal disturbance event ca. 1500-1400 Ma, likely caused by an impactor that brecciated and redeposited NWA 7034 near the surface in an ejecta blanket. Lithologies comprising NWA 7034 were then aqueously altered by a long-lasting impact-induced hydrothermal system, before being excavated and ejected by a subsequent impact at ca. 5-15 Ma. This review compiles chronological and petrological information into an overarching geochronological summary for NWA 7034 and paired samples. We then provide a synopsis for the volatile (H2O, C) inventory and hydrothermal alteration history of NWA 7034. From this geochronological history and volatile inventory, we interpret and assess two potential periods of martian habitability: (1) an early window of pre-Noachian planetary habitability, and (2) impact-derived hydrothermal systems that allowed intermittent habitable crater environments well into the Amazonian.
Collapse
Affiliation(s)
- Arthur Goodwin
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
- Earth Sciences Department, Natural History Museum, London, United Kingdom
| | - Romain Tartèse
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Touchette D, Altshuler I, Raymond-Bouchard I, Fernández-Martínez MÁ, Bourdages LJ, O'Connor B, Ricco AJ, Whyte LG. Microfluidics Microbial Activity MicroAssay: An Automated In Situ Microbial Metabolic Detection System. ASTROBIOLOGY 2022; 22:158-170. [PMID: 35049343 DOI: 10.1089/ast.2021.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With no direct extant-life detection instrumentation included in a space mission since the 1970s, the advancement of new technologies to be included in future space missions is imperative. We developed, optimized, and tested a semi-automated prototype, the microfluidics Microbial Activity MicroAssay (μMAMA). This system metabolically characterizes and detects extant microbial life by way of metabolism-indicator redox dyes. We first evaluated the robustness and sensitivity of six redox dye/buffer combinations, and we then tested their responses to metabolic activity in astrobiological analog high-Arctic samples. We determined that the Biolog Inoculating Fluid (IF)-C and AlamarBlue buffered in IF-0a (aB-IF0a) dye/buffer combinations were optimal, as they detected metabolic activity from the fewest microbial cells (102 cells/mL) while maintaining efficacy over a broad physiochemical range of pH (0-13), temperature (-10°C to 37°C), salinity and perchlorate (tested up to 30%), and in the presence of a Mars regolith simulant (MMS-2). The μMAMA, which incorporated these redox dyes, detected extant active cold-adapted microbial life from high Arctic analog sites, including samples amended with substrates targeting chemolithoautotrophic metabolisms. Given μMAMA's small size (we estimate a complete planetary instrument could occupy as little as 3 L) and potential for automation, it could easily be incorporated into almost any landed platform for life detection missions.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Miguel Ángel Fernández-Martínez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Brady O'Connor
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | | | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| |
Collapse
|
32
|
Kelbrick M, Oliver JAW, Ramkissoon NK, Dugdale A, Stephens BP, Kucukkilic-Stephens E, Schwenzer SP, Antunes A, Macey MC. Microbes from Brine Systems with Fluctuating Salinity Can Thrive under Simulated Martian Chemical Conditions. Life (Basel) 2021; 12:life12010012. [PMID: 35054406 PMCID: PMC8781782 DOI: 10.3390/life12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
The waters that were present on early Mars may have been habitable. Characterising environments analogous to these waters and investigating the viability of their microbes under simulated martian chemical conditions is key to developing hypotheses on this habitability and potential biosignature formation. In this study, we examined the viability of microbes from the Anderton Brine Springs (United Kingdom) under simulated martian chemistries designed to simulate the chemical conditions of water that may have existed during the Hesperian. Associated changes in the fluid chemistries were also tested using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The tested Hesperian fluid chemistries were shown to be habitable, supporting the growth of all of the Anderton Brine Spring isolates. However, inter and intra-generic variation was observed both in the ability of the isolates to tolerate more concentrated fluids and in their impact on the fluid chemistry. Therefore, whilst this study shows microbes from fluctuating brines can survive and grow in simulated martian water chemistry, further investigations are required to further define the potential habitability under past martian conditions.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Biology Department, Edge Hill University, Ormskirk L39 4QP, UK;
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GJ, UK
- Correspondence: (M.K.); (M.C.M.)
| | | | - Nisha K. Ramkissoon
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - Amy Dugdale
- AstrobiologyOU, School of Physical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes W23 F2H6, UK;
- Biology Department, Maynooth University, Maynooth, W23 F2H6 Kildare, Ireland
| | - Ben P. Stephens
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - Ezgi Kucukkilic-Stephens
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - Susanne P. Schwenzer
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| | - Michael C. Macey
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
- Correspondence: (M.K.); (M.C.M.)
| |
Collapse
|
33
|
Fernández-Remolar DC, Gomez-Ortiz D, Huang T, Anglés A, Shen Y, Hu Q, Amils R, Rodríguez N, Escudero C, Banerjee NR. The Molecular Record of Metabolic Activity in the Subsurface of the Río Tinto Mars Analog. ASTROBIOLOGY 2021; 21:1387-1405. [PMID: 34449260 DOI: 10.1089/ast.2020.2431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the subsurface, the interplay between microbial communities and the surrounding mineral substrate, potentially used as an energy source, results in different mineralized structures. The molecular composition of such structures can record and preserve information about the metabolic pathways that have produced them. To characterize the molecular composition of the subsurface biosphere, we have analyzed some core samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) that were collected in the borehole BH8 during the operations of the Mars Analog and Technology Experiment (MARTE) project. The molecular analysis at a micron-scale mapped the occurrence of several inorganic complexes bearing PO3-, SOx(2 to 4)-, NOx(2,3)-, FeOx(1,2)-, SiO2-, and Cl-. Their distribution correlates with organic molecules that were tentatively assigned to saturated and monounsaturated fatty acids, polyunsaturated fatty acids, saccharides, phospholipids, sphingolipids, and potential peptide fragments. SOx- appear to be mineralizing some microstructures larger than 25 microns, which have branched morphologies, and that source SO3-bearing adducts. PO3-rich compounds occur in two different groups of microstructures which size, morphology, and composition are different. While a group of >40-micron sized circular micronodules lacks organic compounds, an ovoidal microstructure is associated with m/z of other lipids. The NO2-/NO3- and Cl- ions occur as small microstructure clusters (<20 microns), but their distribution is dissimilar to the mineralized microstructures bearing PO3-, and SO3-. However, they have a higher density in areas with more significant enrichment in iron oxides that are traced by different Fe-bearing anions like FeO2-. The distribution of the organic and inorganic negative ions, which we suggest, resulted from the preservation of at least three microbial consortia (PO4--, and NO2--/NO3--mineralizers PO4-lipid bearing microstructures), would have resulted from different metabolic and preservation pathways.
Collapse
Affiliation(s)
- David C Fernández-Remolar
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - David Gomez-Ortiz
- ESCET-Área de Geología, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Ting Huang
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Angélica Anglés
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Yan Shen
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Qitao Hu
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
| | | | - Neil R Banerjee
- Department of Earth Sciences, Faculty of Science, University of Western Ontario, London, Ontario, Canada
- Institute for Earth and Space Exploration, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Cassaro A, Pacelli C, Baqué M, de Vera JPP, Böttger U, Botta L, Saladino R, Rabbow E, Onofri S. Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions. J Fungi (Basel) 2021; 7:jof7100859. [PMID: 34682280 PMCID: PMC8540304 DOI: 10.3390/jof7100859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
The discovery of life on other planets and moons in our solar system is one of the most important challenges of this era. The second ExoMars mission will look for traces of extant or extinct life on Mars. The instruments on board the rover will be able to reach samples with eventual biomarkers until 2 m of depth under the planet’s surface. This exploration capacity offers the best chance to detect biomarkers which would be mainly preserved compared to samples on the surface which are directly exposed to harmful environmental conditions. Starting with the studies of the endolithic meristematic black fungus Cryomyces antarcticus, which has proved its high resistance under extreme conditions, we analyzed the stability and the resistance of fungal biomarkers after exposure to simulated space and Mars-like conditions, with Raman and Gas Chromatography–Mass Spectrometry, two of the scientific payload instruments on board the rover.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-068567466
| | - Mickael Baqué
- German Aerospace Center (DLR), Planetary Laboratories Department, Institute of Planetary Research, Ruthefordstraße 2, 12489 Berlin, Germany;
| | - Jean-Pierre Paul de Vera
- MUSC, German Aerospace Center (DLR), Space Operations and Astronaut Training, 51147 Köln, Germany;
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, 12489 Berlin, Germany;
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Elke Rabbow
- Radiation Biology Division, Institute of Aerospace Medicine, DLR, Linder Höhe, 51147 Köln, Germany;
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| |
Collapse
|
35
|
Antarctica as a reservoir of planetary analogue environments. Extremophiles 2021; 25:437-458. [PMID: 34586500 DOI: 10.1007/s00792-021-01245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.
Collapse
|
36
|
Lukmanov RA, Riedo A, Wacey D, Ligterink NFW, Grimaudo V, Tulej M, de Koning C, Neubeck A, Wurz P. On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry. Front Artif Intell 2021; 4:668163. [PMID: 34497998 PMCID: PMC8419467 DOI: 10.3389/frai.2021.668163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this contribution, we present results of non-linear dimensionality reduction and classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-of-flight mass spectrometer developed for in situ space applications. We discuss the data generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS mass spectra. Further, we define topological biosignatures identified for Precambrian Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic contamination and inorganic quartz matrix were identified using the fs-LIMS data. The topological analysis applied to the fs-LIMS data allows to gain additional knowledge from large datasets, formulate hypotheses and quickly generate insights from spectral data. Our contribution illustrates the utility of applying spatially resolved mass spectrometry in combination with topology-based analytics in detecting signatures of early (primitive) life. Our results indicate that fs-LIMS, in combination with topological methods, provides a powerful analytical framework and could be applied to the study of other complex mineralogical samples.
Collapse
Affiliation(s)
- Rustam A Lukmanov
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Andreas Riedo
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - David Wacey
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Niels F W Ligterink
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Valentine Grimaudo
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Coenraad de Koning
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Wurz
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Moreras-Marti A, Fox-Powell M, Zerkle AL, Stueeken E, Gazquez F, Brand HEA, Galloway T, Purkamo L, Cousins CR. Volcanic controls on the microbial habitability of Mars-analogue hydrothermal environments. GEOBIOLOGY 2021; 19:489-509. [PMID: 34143931 DOI: 10.1111/gbi.12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes. We find that by dictating pool water pH and redox conditions, deep volcanic processes are the primary control on microbial community structure and function, with water input from the proximal glacier acting as a secondary control by regulating pool temperatures. Kerlingarfjöll pools have reduced, circum-neutral CO2 -rich waters with authigenic calcite-, pyrite- and kaolinite-bearing sediments. The dominant metabolisms inferred from community profiles obtained by 16S rRNA gene sequencing are methanogenesis, respiration of sulphate and sulphur (S0 ) oxidation. In contrast, Kverkfjöll pools have oxidised, acidic (pH < 3) waters with high concentrations of SO42- and high argillic alteration, resulting in Al-phyllosilicate-rich sediments. The prevailing metabolisms here are iron oxidation, sulphur oxidation and nitrification. Where analogous ice-fed hydrothermal systems existed on early Mars, similar volcanic processes would likely have controlled localised metabolic potential and thus habitability. Moreover, such systems offer several habitability advantages, including a localised source of metabolic redox pairs for chemolithotrophic microorganisms and accessible trace metals. Similar pools could have provided transient environments for life on Mars; when paired with surface or near-surface ice, these habitability niches could have persisted into the Amazonian. Additionally, they offer a confined site for biosignature formation and deposition that lends itself well to in situ robotic exploration.
Collapse
Affiliation(s)
- Arola Moreras-Marti
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Mark Fox-Powell
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
- AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Aubrey L Zerkle
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Eva Stueeken
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Fernando Gazquez
- Water Resources and Environmental Geology Research Group, Department of Biology and Geology, University of Almería, Almería, Spain
| | | | - Toni Galloway
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | | | - Claire R Cousins
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
38
|
Perl SM, Celestian AJ, Cockell CS, Corsetti FA, Barge LM, Bottjer D, Filiberto J, Baxter BK, Kanik I, Potter-McIntyre S, Weber JM, Rodriguez LE, Melwani Daswani M. A Proposed Geobiology-Driven Nomenclature for Astrobiological In Situ Observations and Sample Analyses. ASTROBIOLOGY 2021; 21:954-967. [PMID: 34357788 PMCID: PMC8403179 DOI: 10.1089/ast.2020.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As the exploration of Mars and other worlds for signs of life has increased, the need for a common nomenclature and consensus has become significantly important for proper identification of nonterrestrial/non-Earth biology, biogenic structures, and chemical processes generated from biological processes. The fact that Earth is our single data point for all life, diversity, and evolution means that there is an inherent bias toward life as we know it through our own planet's history. The search for life "as we don't know it" then brings this bias forward to decision-making regarding mission instruments and payloads. Understandably, this leads to several top-level scientific, theoretical, and philosophical questions regarding the definition of life and what it means for future life detection missions. How can we decide on how and where to detect known and unknown signs of life with a single biased data point? What features could act as universal biosignatures that support Darwinian evolution in the geological context of nonterrestrial time lines? The purpose of this article is to generate an improved nomenclature for terrestrial features that have mineral/microbial interactions within structures and to confirm which features can only exist from life (biotic), features that are modified by biological processes (biogenic), features that life does not affect (abiotic), and properties that can exist or not regardless of the presence of biology (abiogenic). These four categories are critical in understanding and deciphering future returned samples from Mars, signs of potential extinct/ancient and extant life on Mars, and in situ analyses from ocean worlds to distinguish and separate what physical structures and chemical patterns are due to life and which are not. Moreover, we discuss hypothetical detection and preservation environments for extant and extinct life, respectively. These proposed environments will take into account independent active and ancient in situ detection prospects by using previous planetary exploration studies and discuss the geobiological implications within an astrobiological context.
Collapse
Affiliation(s)
- Scott M. Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
- Address correspondence to: Scott M. Perl, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, +USA
| | - Aaron J. Celestian
- Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Charles S. Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura M. Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
| | - David Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | | | - Bonnie K. Baxter
- Great Salt Lake Institute, Westminster College, Salt Lake City, Utah, USA
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Sally Potter-McIntyre
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E. Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Mohit Melwani Daswani
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
39
|
Ryan CH, Daly MG, Brady AL, Slater GF, Lim DSS. Organic Material Distribution in Mars-Analog Volcanic Rocks, as Determined with Ultraviolet Laser-Induced Fluorescence Spectroscopy. ASTROBIOLOGY 2021; 21:981-996. [PMID: 34406806 DOI: 10.1089/ast.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the distribution of trace organic material in a rocky environment is a key to constraining the material requirements for sustaining microbial life. We used an ultraviolet laser-induced fluorescence (LIF) spectroscopy instrument to characterize the distribution of organic biosignatures in basalts collected from two Mars-analog environments. We correlated the fluorescence results with alteration-related sample properties. These samples exhibit a range of alteration conditions found in the volcanic environments of Hawai'i Volcanoes National Park, Hawai'i (HI), and Craters of the Moon National Monument, Idaho (ID), including fumarolic systems. LIF mapping of the sample surfaces and interiors showed a heterogeneous distribution of areas of highly fluorescent material (point[s]-of-interest [POIs])-with fluorescence characteristics indicative of organic material. Results suggest that POIs are associated with secondary alteration mineral deposits in the rock's vesicles, including zeolites and calcite. Scanning electron microscopy with electron-dispersive X-ray spectroscopy was used to characterize the mineralogy present at POIs and support the evidence of carbon-bearing material. Overall, samples collected proximate to active or relict meteoric fumaroles from Hawai'i were shown to contain evidence for organic deposits. This suggests that these minerals are measurable spectroscopic targets that may be used to inform sample-site selection for astrobiology research.
Collapse
Affiliation(s)
- Catheryn H Ryan
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - Michael G Daly
- Centre for Research in Earth and Space Science, Lassonde School of Engineering, York University, Toronto, Canada
| | - Allyson L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Canada
| | - Greg F Slater
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, California, USA
| | - Darlene S S Lim
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
40
|
Rizzo V, Armstrong R, Hua H, Cantasano N, Nicolò T, Bianciardi G. Life on Mars: Clues, Evidence or Proof? SOLAR SYSTEM PLANETS AND EXOPLANETS 2021. [DOI: 10.5772/intechopen.95531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The search for life on Mars is one of the main objectives of space missions. At “Pahrump Hills Field Site” (Gale Crater, Mojave target), inside the mudstones of the Murray lacustrine sequence, Curiosity rover found organic materials and lozenge shaped laths considered by NASA as pseudomorphic crystals. Besides it detected mineral assemblages suggesting both oxidizing (hematite) and reducing (magnetite) environments, as well as acidic (diagenetic and/or authigenic jarosite) and neutral (apatite) conditions, that might suggest bacterially mediated reactions. Our morphological and morphometrical investigations show that such diagenetic microstructures are unlikely to be lozenge shapes and, in addition to several converging features, they suggest the presence of remnants of complex algal-like biota, similar to terrestrial procaryotes and/or eukaryotes; possible microorganisms that, on the base of absolute dating criteria used by other scholars, lived on Mars about 2.12 +/−0.36 Ga ago.
Collapse
|
41
|
Noffke N. Microbially Induced Sedimentary Structures in Clastic Deposits: Implication for the Prospection for Fossil Life on Mars. ASTROBIOLOGY 2021; 21:866-892. [PMID: 34042490 PMCID: PMC8262410 DOI: 10.1089/ast.2021.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Abundant and well-preserved fossil microbenthos occurs in siliciclastic deposits of all Earth ages, from the early Archean to today. Studies in modern settings show how microbenthos responds to sediment dynamics by baffling and trapping, binding, biostabilization, and growth. Results of this microbial-sediment interaction are microbially induced sedimentary structures (MISS). Successful prospection for rich MISS occurrences in the terrestrial lithological record requires unraveling genesis and taphonomy of MISS, both of which are defined only by a narrow range of specific conditions. These conditions have to coincide with high detectability which is a function of outcrop quality, bedding character, and rock type. Assertions on biogenicity of MISS morphologies must be based on the presence of microbially induced sedimentary textures (MIST), which are MISS-internal textures comprising replacement minerals arranged into microscopic biological morphologies, ancient carbonaceous matter, trace fossils, and geochemical signals. MISS serve as possible templates for the decryption of ancient life-processes on Mars. This article closes with a perspective on selected deposits and ancient environments in Meridiani Planum, Gale Crater, and Jezero Crater, Mars, regarding their potential for MISS occurrences. The earlier hypothesis of structures on Mars as potentially being MISS is revised.
Collapse
Affiliation(s)
- Nora Noffke
- Old Dominion University, Department of Ocean and Earth Sciences, Norfolk, Virginia, USA
| |
Collapse
|
42
|
Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. ASTROBIOLOGY 2021; 21:813-830. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to sense gradients efficiently and acquire information about the ambient environment confers many advantages such as facilitating movement toward nutrient sources or away from toxic chemicals. The amplified dispersal evinced by organisms endowed with motility is possibly beneficial in related contexts. Hence, the connections between information acquisition, motility, and microbial size are explored from an explicitly astrobiological standpoint. By using prior theoretical models, the constraints on organism size imposed by gradient detection and motility are elucidated in the form of simple heuristic scaling relations. It is argued that environments such as alkaline hydrothermal vents, which are distinguished by the presence of steep gradients, might be conducive to the existence of "small" microbes (with radii of ≳0.1 μm) in principle, when only the above two factors are considered; other biological functions (e.g., metabolism and genetic exchange) could, however, regulate the lower bound on microbial size and elevate it. The derived expressions are potentially applicable to a diverse array of settings, including those entailing solvents other than water; for example, the lakes and seas of Titan. The article concludes with a brief exposition of how this formalism may be of practical and theoretical value to astrobiology.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Science, Florida Institute of Technology, Melbourne, Florida, USA
- Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
44
|
Tan JSW, Sephton MA. Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit. ASTROBIOLOGY 2021; 21:638-654. [PMID: 33835833 DOI: 10.1089/ast.2020.2344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comparisons between the preservation potential of Mars-analog environments have historically been qualitative rather than quantitative. Recently, however, laboratory-based artificial maturation combined with kinetic modeling techniques have emerged as a potential means by which the preservation potential of solvent-soluble organic matter can be quantified in various Mars-analog environments. These methods consider how elevated temperatures, pressures, and organic-inorganic interactions influence the degradation of organic biomarkers post-burial. We used these techniques to investigate the preservation potential of deposits from a circumneutral iron-rich groundwater system. These deposits are composed of ferrihydrite (Fe5HO8 · 4H2O), an amorphous iron hydroxide mineral that is a common constituent of rocks found in ancient lacustrine environments on Mars, such as those observed in Gale Crater. Both natural and synthetic ferrihydrite samples were subjected to hydrous pyrolysis to observe the effects of long-term burial on the mineralogy and organic content of the samples. Our experiments revealed that organic-inorganic interactions in the samples are dominated by the transformation of iron minerals. As amorphous ferrihydrite transforms into more crystalline species, the decrease in surface area results in the desorption of organic matter, potentially rendering them more susceptible to degradation. We also find that circumneutral iron-rich deposits provide unfavorable conditions for the preservation of solvent-soluble organic matter. Quantitative comparisons between preservation potentials as calculated when using kinetic parameters show that circumneutral iron-rich deposits are ∼25 times less likely to preserve solvent-soluble organic matter compared with acidic, iron-rich environments. Our results suggest that circumneutral iron-rich deposits should be deprioritized in favor of acidic iron- and sulfur-rich deposits when searching for evidence of life with solvent extraction techniques.
Collapse
Affiliation(s)
- Jonathan S W Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Hallsworth JE, Mancinelli RL, Conley CA, Dallas TD, Rinaldi T, Davila AF, Benison KC, Rapoport A, Cavalazzi B, Selbmann L, Changela H, Westall F, Yakimov MM, Amils R, Madigan MT. Astrobiology of life on Earth. Environ Microbiol 2021; 23:3335-3344. [PMID: 33817931 DOI: 10.1111/1462-2920.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Rocco L Mancinelli
- Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | | | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506-6300, USA
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, 16128, Italy
| | - Hitesh Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frances Westall
- CNRS, Ctr Biophys Mol UPR 4301, Rue Charles Sadron, CS 80054, Orleans, F-45071, France
| | - Michail M Yakimov
- Institute of Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, 98122, Italy
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSICUAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
46
|
Picard A, Gartman A, Girguis PR. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection. ASTROBIOLOGY 2021; 21:587-604. [PMID: 33780638 DOI: 10.1089/ast.2020.2276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbe-mineral interactions can produce unique composite materials, which can preserve biosignatures. Geological evidence suggests that iron sulfide (Fe-S) minerals are abundant in the subsurface of Mars. On Earth, the formation of Fe-S minerals is driven by sulfate-reducing microorganisms (SRM) that produce reactive sulfide. Moreover, SRM metabolites, as well as intact cells, can influence the morphology, particle size, aggregation, and composition of biogenic Fe-S minerals. In this work, we evaluated how simple and complex organic molecules-hexoses and amino acid/peptide mixtures, respectively-influence the formation of Fe-S minerals (simulated prebiotic conditions), and whether the observed patterns mimic the biological influence of SRM. To this end, organo-mineral aggregates were characterized with X-ray diffraction, scanning electron microscopy, and scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy. Overall, Fe-S minerals were found to have a strong affinity for proteinaceous organic matter. Fe-S minerals precipitated at simulated prebiotic conditions yielded organic carbon distributions that were more homogeneous than treatments with whole SRM cells. In prebiotic experiments, spectroscopy detected potential organic transformations during Fe-S mineral formation, including conversion of hexoses to sugar acids and polymerization of amino acids/peptides into larger peptides/proteins. In addition, prebiotic mineral-carbon assemblages produced nanometer-scaled filamentous aggregated morphologies. On the contrary, in biotic treatments with cells, organic carbon in minerals displayed a more heterogeneous distribution. Notably, "hot spots" of organic carbon and oxygen-containing functional groups, with the size, shape, and composition of microbial cells, were preserved in mineral aggregates. We propose a list of characteristics that could be used to help distinguish biogenic from prebiotic/abiotic Fe-S minerals and help refine the search of extant or extinct microbial life in the martian subsurface.
Collapse
Affiliation(s)
- Aude Picard
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Amy Gartman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
47
|
Chacon-Baca E, Santos A, Sarmiento AM, Luís AT, Santisteban M, Fortes JC, Dávila JM, Diaz-Curiel JM, Grande JA. Acid Mine Drainage as Energizing Microbial Niches for the Formation of Iron Stromatolites: The Tintillo River in Southwest Spain. ASTROBIOLOGY 2021; 21:443-463. [PMID: 33351707 DOI: 10.1089/ast.2019.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Iberian Pyrite Belt in southwest Spain hosts some of the largest and diverse extreme acidic environments with textural variation across rapidly changing biogeochemical gradients at multiple scales. After almost three decades of studies, mostly focused on molecular evolution and metagenomics, there is an increasing awareness of the multidisciplinary potential of these types of settings, especially for astrobiology. Since modern automatized exploration on extraterrestrial surfaces is essentially based on the morphological recognition of biosignatures, a macroscopic characterization of such sedimentary extreme environments and how they look is crucial to identify life properties, but it is a perspective that most molecular approaches frequently miss. Although acid mine drainage (AMD) systems are toxic and contaminated, they offer at the same time the bioengineering tools for natural remediation strategies. This work presents a biosedimentological characterization of the clastic iron stromatolites in the Tintillo river. They occur as laminated terraced iron formations that are the most distinctive sedimentary facies at the Tintillo river, which is polluted by AMD. Iron stromatolites originate from fluvial abiotic factors that interact with biological zonation. The authigenic precipitation of schwertmannite and jarosite results from microbial-mineral interactions between mineral and organic matrices. The Tintillo iron stromatolites are composed of bacterial filaments and diatoms as Nitzschia aurariae, Pinnularia aljustrelica, Stauroneis kriegeri, and Fragilaria sp. Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black and white coloration of microbial filaments inside stromatolites. AMD systems are hazardous due to physical, chemical, and biological agents, but they also provide biogeochemical sources with which to infer past geochemical conditions on Earth and inform exploration efforts on extraterrestrial surfaces in the future.
Collapse
Affiliation(s)
- Elizabeth Chacon-Baca
- Departamento de Geología, Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo Léon (UANL), Linares, México
| | - Ana Santos
- Department of Applied Geosciences, CCTH-Science and Technology Research Centre, University of Huelva, Huelva, Spain
- Applied Geosciences Research Group (RNM276), Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - Aguasanta Miguel Sarmiento
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Ana Teresa Luís
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- GeoBioTec Research Unit, Department of Geosciences, University of Aveiro, Aveiro, Portugal
| | - Maria Santisteban
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Juan Carlos Fortes
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - José Miguel Dávila
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Jesus M Diaz-Curiel
- Departamento de Geología, Escuela Técnica Superior de Ingenieros de Minas, Madrid, Spain
| | - Jose Antonio Grande
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| |
Collapse
|
48
|
Milojevic T, Kish A, Yamagishi A. Editorial: Astrobiology at the Interface: Interactions Between Biospheres, Geospheres, Hydrospheres and Atmospheres Under Planetary Conditions. Front Microbiol 2021; 12:629961. [PMID: 33643257 PMCID: PMC7906982 DOI: 10.3389/fmicb.2021.629961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | | | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
49
|
Tan JS, Royle SH, Sephton MA. Artificial Maturation of Iron- and Sulfur-Rich Mars Analogues: Implications for the Diagenetic Stability of Biopolymers and Their Detection with Pyrolysis-Gas Chromatography-Mass Spectrometry. ASTROBIOLOGY 2021; 21:199-218. [PMID: 33226839 PMCID: PMC7876361 DOI: 10.1089/ast.2019.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Acidic iron- and sulfur-rich streams are appropriate analogues for the late Noachian and early Hesperian periods of martian history, when Mars exhibited extensive habitable environments. Any past life on Mars may have left behind diagnostic evidence of life that could be detected at the present day. For effective preservation, these remains must have avoided the harsh radiation flux at the martian surface, survived geological storage for billions of years, and remained detectable within their geochemical environment by analytical instrument suites used on Mars today, such as thermal extraction techniques. We investigated the detectability of organic matter within sulfur stream sediments that had been subjected to artificial maturation by hydrous pyrolysis. After maturation, the samples were analyzed by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) to determine whether organic matter could be detected with this commonly used technique. We find that macromolecular organic matter can survive the artificial maturation process in the presence of iron- and sulfur-rich minerals but cannot be unambiguously distinguished from abiotic organic matter. However, if jarosite and goethite are present in the sulfur stream environment, they interfere with the py-GC-MS detection of organic compounds in these samples. Clay reduces the obfuscating effect of the oxidizing minerals by providing nondeleterious adsorption sites. We also find that after a simple alkali and acid leaching process that removes oxidizing minerals such as iron sulfates, oxides, and oxyhydroxides, the sulfur stream samples exhibit much greater organic responses during py-GC-MS in terms of both abundance and diversity of organic compounds, such as the detection of hopanes in all leached samples. Our results suggest that insoluble organic matter can be preserved over billions of years of geological storage while still retaining diagnostic organic information, but sample selection strategies must either avoid jarosite- and goethite-rich outcrops or conduct preparative chemistry steps to remove these oxidants prior to analysis by thermal extraction techniques.
Collapse
Affiliation(s)
- Jonathan S.W. Tan
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Samuel H. Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
50
|
Rouillard J, van Zuilen M, Pisapia C, Garcia-Ruiz JM. An Alternative Approach for Assessing Biogenicity. ASTROBIOLOGY 2021; 21:151-164. [PMID: 33544651 PMCID: PMC7876362 DOI: 10.1089/ast.2020.2282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
The search for signs of life in the ancient rock record, extreme terrestrial environments, and other planetary bodies requires a well-established, universal, and unambiguous test of biogenicity. This is notably true for cellular remnants of microbial life, since their relatively simple morphologies resemble various abiogenic microstructures that occur in nature. Although lists of qualitative biogenicity criteria have been devised, debates regarding the biogenicity of many ancient microfossils persist to this day. We propose here an alternative quantitative approach for assessing the biogenicity of putative microfossils. In this theoretical approach, different hypotheses-involving biology or not and depending on the geologic setting-are put forward to explain the observed objects. These hypotheses correspond to specific types of microstructures/systems. Using test samples, the morphology and/or chemistry of these systems are then characterized at the scale of populations. Morphologic parameters include, for example, circularity, aspect ratio, and solidity, while chemical parameters could include elementary ratios (e.g., N/C ratio), isotopic enrichments (e.g., δ13C), or chirality (e.g., molar proportion of stereoisomers), among others. Statistic trends distinguishing the different systems are then searched for empirically. The trends found are translated into "decision spaces" where the different systems are quantitatively discriminated and where the potential microfossil population can be located as a single point. This approach, which is formulated here on a theoretical level, will solve several problems associated with the classical qualitative criteria of biogenicity. Most importantly, it could be applied to reveal the existence of cellular life on other planets, for which characteristics of morphology and chemical composition are difficult to predict.
Collapse
Affiliation(s)
- Joti Rouillard
- Laboratario de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC—Universidad de Granada, Armilla, Spain
| | - Mark van Zuilen
- Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, France
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, France
| | - Juan-Manuel Garcia-Ruiz
- Laboratario de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC—Universidad de Granada, Armilla, Spain
| |
Collapse
|