1
|
Liu J, Guo M, Lv Z, Wang Z, Shao Y, Li C. A cyclophilin A (CypA) from Apostichopus japonicus modulates NF-κB translocation as a cofactor. FISH & SHELLFISH IMMUNOLOGY 2020; 98:728-737. [PMID: 31740398 DOI: 10.1016/j.fsi.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
As a ubiquitously expressed protein, cyclophilin A (CypA) is involved in a variety of pathological process, including immune suppression, inflammation, cell apoptosis, viral infection and stress response. However, the functional roles of CypA were largely unknown in economic marine animals. In this report, a novel CypA gene from sea cucumber Apostichopus japonicus (designated as AjCypA) was cloned and its function roles in immune responses were explored. The full-length cDNA of AjCypA was 1297 bp containing an open reading frame of 489 bp encoding a putative protein of 162 amino acids (aa). A conserved cyclophilin-like domain (CLD) with PPIase signature was located from 5 to 155 aa sequences in AjCypA, in which five necessary aa residues was totally conserved. In healthy sea cucumbers, AjCypA was expressed in all detected tissues, with highly expressed in muscles and weakly expressed in coelomocytes. AjCypA transcripts was significantly induced 8.08-fold and 5.65-fold in coelomocytes when sea cucumbers challenged with Vibrio splendidus in vivo and LPS in vitro, respectively. The expression pattern is similar with the expression of AjRel in the same condition. Moreover, GST pull-down and immunofluorescence analysis both revealed that AjCypA might be interacted with AjRel. Furthermore, AjCypA knockdown not only inhibited the expression of inflammation cytokines, but also suppressed the translocation of AjRel in nucleus induced by LPS. Taken together, our results suggested that AjCypA play key roles in V. splendidus mediated immune responses via suppressing the nuclear translocation of AjRel activity in sea cucumber.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhenhui Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
2
|
Zhu J, Lin F, Li F, Wang Y. Molecular identification and expression analysis of a novel cyclophilin a gene in the red swamp crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2018; 72:383-388. [PMID: 29097323 DOI: 10.1016/j.fsi.2017.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/17/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Cyclophilin A (Cyp A) is the main intracellular receptor of cyclosporin A (CsA) belonging to the immunophilin family, which is known as an effective immunosuppressive drug. This study aimed to gain insights into the structure and biological function of cyclophilin A in the red swamp crayfish, Procambarus clarkii (PcCypA). We cloned PcCypA by homology cloning and anchored polymerase chain reaction (PCR), and assessed its mRNA and protein expression levels in different tissues using quantitative real-time PCR and western blot analysis, respectively. The full-length DNA contained a 5' untranslated region (UTR) comprising 108 base pairs (bp), an open reading frame of 495 bp encoding a polypeptide of 164 amino acids with an estimated molecular mass of 17.3 kDa, and a 3' UTR of 281 bp including a significant poly(A) plus tail sequence. The predicted amino acid sequence of PcCypA shared high identity with CypA in other organisms. PcCypA transcripts were detected in the hepatopancreas, gill, heart, muscle, testis, and ovary of crayfish, with the highest expression levels in the heart. Western blot analysis found one 17-kDa band in all of the tissues examined, except for the ovary. Molecular identification and expression analysis of PcCypA will facilitate further studies of the immune defense mechanisms in red swamp crayfish, and provide new insights into freshwater invertebrate immunology.
Collapse
Affiliation(s)
- Junjie Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; School of Life Sciences, RanHuzhou University, Huzhou, 313000, China
| | - Feng Lin
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Fei Li
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Yan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Mamipour M, Yousefi M, Hasanzadeh M. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int J Biol Macromol 2017; 102:367-375. [PMID: 28412337 PMCID: PMC7185796 DOI: 10.1016/j.ijbiomac.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation.
Collapse
Affiliation(s)
- Mina Mamipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Lilja H, Blanc P, Demetriou AA, Rozga J. Response of Cultured Fetal and Adult Rat Hepatocytes to Growth Factors and Cyclosporine. Cell Transplant 2017; 7:257-66. [PMID: 9647435 DOI: 10.1177/096368979800700304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hepatocyte transplantation is a promising alternative to orthotopic liver transplantation in experimental animal models with genetic disorders of liver metabolism and liver failure. Fetal hepatocytes have several characteristics that make them potentially suitable as donor cells. In contrast to adult hepatocytes, fetal hepatocytes are thought to be highly proliferative, which may facilitate engraftment, expansion of transplanted cell population, and gene transfer requiring active DNA synthesis. The present study was undertaken to evaluate the proliferative capacity of fetal and adult rat hepatocytes under standardized culture conditions. Fetal (20 days of gestation) and adult hepatocytes were cultured in serum-free media at low densities and treated with growth factors. Proliferation was assessed by [3H]-thymidine incorporation and cell cycle analysis by flow cytometry. In nonstimulated cells, DNA synthesis at 4 h was about × 100 higher and after 10 days in culture ×20 higher in fetal compared to adult hepatocytes. When epidermal growth factor (EGF) was added, maximal DNA synthesis in fetal hepatocytes was seen at 48 h, whereas in adult hepatocytes at 72 h. For adult hepatocytes, the average increase compared to untreated cells was × 13.8 with EGF, ×18.5 with transforming growth factor alpha (TGF-α), and ×7.6 with hepatocyte growth factor (HGF). For fetal hepatocytes, the increase was twofold with either EGF, TGF-α or HGF. EGF-, TGF-α- and HGF-dependent DNA synthesis was inhibited by transfroming growth factor beta-1 (TGF-β1) in both fetal and adult hepatocyte cultures; this antiproliferative effect was significantly stronger in adult hepatocyte cultures. With cyclosporine, EGF-, TGF-α- and HGF-dependent DNA synthesis in fetal hepatocyte cultures decreased by 36–46%, whereas in adult hepatocytes by 19–27%. These results show that in contrast to adult hepatocytes, fetal hepatocytes have high spontaneous proliferative activity independently of growth factors and are relatively resistant to the inhibitory effect of TGF-β1. It was also found that cyclosporine suppresses proliferation of cultured fetal hepatocytes.
Collapse
Affiliation(s)
- H Lilja
- Department of Surgery, Burns and Allen Research Institute, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
5
|
Liu XX, Wang CY, Luo C, Sheng JQ, Wu D, Hu BJ, Wang JH, Hong YJ. Characterization of cyclophilin D in freshwater pearl mussel ( Hyriopsis schlegelii). Zool Res 2017; 38:103-109. [PMID: 28409506 PMCID: PMC5396027 DOI: 10.24272/j.issn.2095-8137.2017.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Cyclophilin D (referred to as HsCypD) was obtained from the freshwater pearl mussel (Hyriopsis schlegelii). The full-length cDNA was 2 671 bp, encoding a protein consisting of 367 amino acids. HsCypD was determined to be a hydrophilic intracellular protein with 10 phosphorylation sites and four tetratricopeptide repeat (TPR) domains, but no signal peptide. The core sequence region YKGCIFHRIIKDFMVQGG is highly conserved in vertebrates and invertebrates. Phylogenetic tree analysis indicated that CypD from all species had a common origin, and HsCypD had the closest phylogenetic relationship with CypD from Lottia gigantea. The constitutive mRNA expression levels of HsCypD exhibited tissue-specific patterns, with the highest level detected in the intestines, followed by the gonads, and the lowest expression found in the hemocytes.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Cheng-Yuan Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Chun Luo
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Qing Sheng
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Bei-Juan Hu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Hua Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Yi-Jiang Hong
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China; Key Laboratory of Aquatic Animals Resources and Utilization of Jiangxi, Nanchang University, Nanchang Jiangxi 330031, China.
| |
Collapse
|
6
|
Yu S, Hwang HE, Yun N, Goldenring JR, Nam KT. The mRNA and Protein Levels of Tubulin and β-Actin Are Greatly Reduced in the Proximal Duodenum of Mice Relative to the Rest of the Small Intestines. Dig Dis Sci 2015; 60:2670-6. [PMID: 25976623 DOI: 10.1007/s10620-015-3688-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/24/2015] [Indexed: 12/09/2022]
Abstract
To accurately quantify mRNA and protein levels, it is critical to choose appropriate internal standards. As the expression of housekeeping genes is assumed to remain constant, they are often employed to normalize signals to correct for sample-to-sample variations. However, recent studies have documented that β-actin and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression levels change in response to various stimuli during proliferation, activation, and differentiation. We investigated levels of α-, β-, γ-tubulin, β-actin, and GAPDH vary across the gastrointestinal tract of mice. We found that different regions of the small intestines had dramatically different expression profiles, as measured by western blot, quantitative Reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemical staining. These results revealed that the expression levels of tubulins and β-actin were dramatically lower in the proximal duodenum, relative to the rest of the small intestines. These varying levels of housekeeping genes may reflect differences in the activities of specialized tissues and suggest unique requirements for tubulins in these tissue types. We conclude that the use of a single housekeeping gene to normalize gene expression in the gastrointestinal tracts of mice may introduce errors, as measured differences in gene expression may reflect regulation of the internal control rather than the mRNA or protein under investigation.
Collapse
Affiliation(s)
- Sungsook Yu
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | | | | | | | | |
Collapse
|
7
|
Ulrich A, Wahl MC. Structure and evolution of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27. ACTA ACUST UNITED AC 2014; 70:3110-23. [PMID: 25478830 DOI: 10.1107/s1399004714021695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Cwc27 is a spliceosomal cyclophilin-type peptidyl-prolyl cis-trans isomerase (PPIase). Here, the crystal structure of a relatively protease-resistant N-terminal fragment of human Cwc27 containing the PPIase domain was determined at 2.0 Å resolution. The fragment exhibits a C-terminal appendix and resides in a reduced state compared with the previous oxidized structure of a similar fragment. By combining multiple sequence alignments spanning the eukaryotic tree of life and secondary-structure prediction, Cwc27 proteins across the entire eukaryotic kingdom were identified. This analysis revealed the specific loss of a crucial active-site residue in higher eukaryotic Cwc27 proteins, suggesting that the protein evolved from a prolyl isomerase to a pure proline binder. Noting a fungus-specific insertion in the PPIase domain, the 1.3 Å resolution crystal structure of the PPIase domain of Cwc27 from Chaetomium thermophilum was also determined. Although structurally highly similar in the core domain, the C. thermophilum protein displayed a higher thermal stability than its human counterpart, presumably owing to the combined effect of several amino-acid exchanges that reduce the number of long side chains with strained conformations and create new intramolecular interactions, in particular increased hydrogen-bond networks.
Collapse
Affiliation(s)
- Alexander Ulrich
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
8
|
Exposure to toluene and stress during pregnancy impairs pups' growth and dams' lactation. Neurotoxicol Teratol 2013; 40:9-16. [DOI: 10.1016/j.ntt.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/11/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
|
9
|
Jinnah HA, Hess EJ, Wilson MC, Gage FH, Friedmann T. Localization of hypoxanthine-guanine phosphoribosyltransferase mRNA in the mouse brain by in situ hybridization. Mol Cell Neurosci 2012; 3:64-78. [PMID: 19912847 DOI: 10.1016/1044-7431(92)90010-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/1991] [Indexed: 12/24/2022] Open
Abstract
Congenital deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) in humans results in a severe neurogenetic disorder known as the Lesch-Nyhan syndrome. Since little information concerning the precise localization of HPRT in the brain is currently available, we have used in situ hybridization to examine the expression of HPRT mRNA in the mouse brain. The results showed that HPRT mRNA is expressed in many regions of the normal mouse brain, with high levels in most, but not all neurons. In contrast, glial cells did not express detectable levels of HPRT mRNA. No HPRT mRNA was detected in the brains of mutant mice carrying a deletion in the HPRT gene.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
10
|
Chen L, Mu C, Zhao J, Wang C. Molecular cloning and characterization of two isoforms of cyclophilin A gene from Venerupis philippinarum. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1218-1223. [PMID: 21782028 DOI: 10.1016/j.fsi.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/23/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitously distributed intracellular protein belonging to the immunophilin family, which is recognized as the cell receptor for the potent immunosuppressive drug cyclosporine A. In the present study, two isoforms of cyclophilin A gene (named as VpCypA1 and VpCypA2) were isolated and characterized from Venerupis philippinarum by RACE approaches. Both VpCypA1 and VpCypA2 possessed all conserved features critical for the fundamental structure and function of CypA, indicating that the two isoforms of cyclophilin A should be new members of CypA family. The expression of VpCypA2 mRNA in haemocytes was significantly up-regulated and the highest expression level was detected at 96 h post-infection with 7.7-fold increase compared with that in the blank group. On the contrary, the relative expression level of VpCypA1 mRNA was down-regulated rapidly at 6 h post-infection and reached 0.4-fold of the control group. They exhibited different expression profile and identical effect of immune modulation, which might suggest the two VpCypA isoforms exert their function in a manner of synergy. These results provide valuable information for further exploring the roles of cyclophilin A in the immune responses of V. philippinarum.
Collapse
Affiliation(s)
- Leilei Chen
- Faculty of Life Science and Biotechnology of Ningbo University, Ningbo 315211, PR China
| | | | | | | |
Collapse
|
11
|
A Comparison Between Northern Blotting and Quantitative Real-Time PCR as a Means of Detecting the Nutritional Regulation of Genes Expressed in Roots of Arabidopsis thaliana. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Hernandez A, Martinez de Mena R, Martin E, Obregon MJ. Differences in the Response of UCP1 mRNA to Hormonal Stimulation Between Rat and Mouse Primary Cultures of Brown Adipocytes. Cell Physiol Biochem 2011; 28:969-80. [DOI: 10.1159/000335810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
|
13
|
Park SH, Sim YB, Han PL, Lee JK, Suh HW. Antidepressant-like effect of chlorogenic acid isolated fromArtemisia capillarisThunb. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.528192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Park SH, Sim YB, Han PL, Lee JK, Suh HW. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten. Exp Neurobiol 2010; 19:30-8. [PMID: 22110339 PMCID: PMC3214795 DOI: 10.5607/en.2010.19.1.30] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/20/2010] [Indexed: 12/01/2022] Open
Abstract
Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | |
Collapse
|
15
|
Carreón-Rodríguez A, Charli JL, Pérez-Martínez L. T3 differentially regulates TRH expression in developing hypothalamic neurons in vitro. Brain Res 2009; 1305:20-30. [PMID: 19766610 DOI: 10.1016/j.brainres.2009.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/08/2023]
Abstract
Triiodothyronine (T3) plays an important role during development of the central nervous system. T3 effects on gene expression are determined in part by the type of thyroid hormone receptors (TRs) expressed in a given cell type. Previous studies have demonstrated that thyrotropin releasing hormone (TRH) transcription in the adult hypothalamus is subjected to negative regulation by thyroid hormones. However, the role of T3 on the development of TRH expression is unknown. In this study we used primary cultures derived from 17-day-old fetal rat hypothalamus to analyze the effects of T3 on TRH gene expression during development. T3 increased TRH mRNA expression in immature cultures, but decreased it in mature cultures. In addition, T3 up-regulated TRalpha1 and TRbeta2 mRNA expression. TRalpha1 expression coincided chronologically with that of TRH in the rat hypothalamus in vivo. Maturation of TRH expression in the hypothalamus may involve T3 acting through TRalpha1.
Collapse
Affiliation(s)
- Alfonso Carreón-Rodríguez
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, UNAM, A.P. 510-3, Cuernavaca, Morelos 62271, Mexico
| | | | | |
Collapse
|
16
|
Seo YJ, Kwon MS, Choi SM, Lee JK, Park SH, Jung JS, Sim YB, Suh HW. Possible involvement of the hypothalamic pro-opiomelanocortin gene and beta-endorphin expression on acute morphine withdrawal development. Brain Res Bull 2009; 80:359-70. [PMID: 19723567 DOI: 10.1016/j.brainresbull.2009.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/13/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
Abstract
We studied the effects of supraspinally administered morphine on the expression of the hypothalamic pro-opiomelanocortin (POMC) gene and beta-endorphin. Mice were administered morphine intracerebroventricularly (i.c.v.) either once or 5 times for 5 days (once/day). A single morphine administration significantly increased the hypothalamic POMC gene and beta-endorphin expression at 2h after application in dose-dependent fashion; however, repeated morphine administration had no effect on the hypothalamic POMC gene and beta-endorphin expression. In the immunoblot and immunohistochemical study, the increase of beta-endorphin was observed in the arcuate nucleus of the hypothalamus. Moreover, the expressions of c-Fos, phosphorylated calcium/calmodulin-dependent protein kinase-IIalpha (pCaMK-IIalpha), and phosphorylated cAMP response element-binding protein (pCREB) were increased by a single i.c.v. morphine injection at various time points, but the expressions of phosphorylated extracellular signal-regulated protein kinase1/2 (pERK1/2) and phosphorylated IkappaB (pIkappaB) were not. We also found that the expressions of c-Fos, pCaMKIIalpha, and pCREB were co-localized with the POMC expression. Meanwhile, naloxone as well as muscimol and baclofen significantly attenuated the increases of the POMC gene expression induced by a single morphine administration. Furthermore, the pretreatment of muscimol and baclofen 10 min before morphine injection robustly attenuated the withdrawal behavior induced by a single morphine administration. These results imply that the hypothalamic POMC gene and beta-endorphin expression may play an important role in the development of an acute physical dependency of morphine. In that, GABAergic neurotransmission appear to be involved in the regulation of the hypothalamic POMC gene expression induced by supraspinal morphine administration.
Collapse
Affiliation(s)
- Young-Jun Seo
- Advanced Therapy Products Research Division, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, 194 Tongilro, Eunpyeong-gu, Seoul 122-704, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Landa MS, García SI, Liberjen L, Schuman ML, Finkielman S, Pirola CJ. Parathyroid Hormone-Related Protein Overexpression Decreases Blood Pressure in Spontaneously Hypertensive Rats. Clin Exp Hypertens 2009. [DOI: 10.1081/ceh-57435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
García-Delgado M, Peral MJ, Durán JM, García-Miranda P, Calonge ML, Ilundáin AA. Ontogeny of Na+/l-carnitine transporter and of γ-trimethylaminobutyraldehyde dehydrogenase and γ-butyrobetaine hydroxylase genes expression in rat kidney. Mech Ageing Dev 2009; 130:227-33. [DOI: 10.1016/j.mad.2008.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/20/2008] [Accepted: 12/13/2008] [Indexed: 11/26/2022]
|
19
|
Song X, Wang L, Song L, Zhao J, Zhang H, Zheng P, Qiu L, Liu X, Wu L. A cyclophilin A inducible expressed in gonad of zhikong scallop Chlamys farreri. Mol Biol Rep 2008; 36:1637-45. [PMID: 18819019 DOI: 10.1007/s11033-008-9363-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
Cyclophilin A (CypA), a receptor for the immunosuppressive agent cyclosporin A (CsA), is a cis-trans peptidyl-prolyl isomerase (PPIase) which accelerates the cis-trans isomerization of prolyl-peptide bonds, interacts with a variety of proteins and therefore regulates their activities. One CypA (designated CfCypA) cDNA was cloned from Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CfCypA consisted of 1,248 nucleotides with a canonical polyadenylation signal sequence AATAAA, a poly (A) tail, and an open reading frame (ORF) of 495 nucleotides encoding a polypeptide of 164 amino acids. The deduced amino acid sequence shared high similarity with CypA from the other species, indicating that CfCypA should be a new member of the CypA family. Quantitative real-time (RT) PCR was employed to assess the mRNA expression of CfCypA in various tissues and its temporal expression in haemocytes and gonad of scallops challenged with Vibrio anguillarum. The mRNA transcripts of CfCypA could be detected in all the examined tissues with highest expression level in gonad. After bacterial challenge, the expression level of CfCypA was almost unchanged in haemocytes, but up-regulated in gonad and increased to the peak (22.59-fold; P < 0.05) at 4 h post-injection, and then dropped to the original level at 8 h post-injection. These results indicated that CfCypA was constitutive expressed in haemocytes, but could be induced in gonad, and perhaps played a critical role in response to the bacterial challenge in gonad.
Collapse
Affiliation(s)
- Xiaoyan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee CW, Kim NH, Choi HK, Sun Y, Nam JS, Rhee HJ, Chun J, Huh SO. Lysophosphatidic acid-induced c-fos up-regulation involves cyclic AMP response element-binding protein activated by mitogen- and stress-activated protein kinase-1. J Cell Biochem 2008; 104:785-94. [PMID: 18172855 DOI: 10.1002/jcb.21663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptor-mediated signaling cascades. Recently, we reported that LPA stimulates cAMP response element-binding protein (CREB) through mitogen- and stress-activated protein kinase-1 (MSK1). Previously, LPA has been shown to stimulate c-fos mRNA expression in Rat-2 fibroblast cells via a serum response element binding protein (SRF). However, involvement of CREB in LPA-stimulated c-fos gene expression is not elucidated yet. To investigate the CREB-mediated c-fos activation by LPA, various c-fos promoter-reporter constructs containing wild-type and mutated SRE and CRE were tested for their inducibility by LPA in transient transfection assays. LPA-stimulated c-fos promoter activation was markedly decreased when SRE and CRE were mutated. A dominant negative CREB significantly down-regulated the LPA-stimulated c-fos promoter activation. Chromatin immunoprecipitation assay revealed that LPA induced an increased binding of phosphorylated CREB and CREB-binding protein (CBP) to the CRE region of the endogenous c-fos promoter. Immunoblot analyses with various pharmacological inhibitors further showed that LPA induces up-regulation of c-fos mRNA level by activation of ERK, p38 MAPK, and MSK1. Taken together, our results suggest that CREB plays an important role in up-regulation of c-fos mRNA level in LPA-stimulated Rat-2 fibroblast cells.
Collapse
Affiliation(s)
- Chang-Wook Lee
- Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Following its invention 25 years ago, PCR has been adapted for numerous molecular biology applications. Gene expression analysis by reverse-transcription quantitative PCR (RT-qPCR) has been a key enabling technology of the post-genome era. Since the founding of BioTechniques, this journal has been a resource for the improvements in qPCR technology, experimental design, and data analysis. qPCR and, more specifically, real-time qPCR has become a routine and robust approach for measuring the expression of genes of interest, validating microarray experiments, and monitoring biomarkers. The use of real-time qPCR has nearly supplanted other approaches (e.g., Northern blotting, RNase protection assays). This review examines the current state of qPCR for gene expression analysis now that the method has reached a mature stage of development and implementation. Specifically, the different fluorescent reporter technologies of real-time qPCR are discussed as well as the selection of endogenous controls. The conceptual framework for data analysis methods is also presented to demystify these analysis techniques. The future of qPCR remains bright as the technology becomes more rapid, cost-effective, easier to use, and capable of higher throughput.
Collapse
|
22
|
Escamilla-Hernandez R, Little-Ihrig L, Orwig KE, Yue J, Chandran U, Zeleznik AJ. Constitutively active protein kinase A qualitatively mimics the effects of follicle-stimulating hormone on granulosa cell differentiation. Mol Endocrinol 2008; 22:1842-52. [PMID: 18535249 DOI: 10.1210/me.2008-0103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Activation of the protein kinase A (PKA) signaling system is necessary for FSH-induced granulosa cell differentiation, but it is not known whether activation of PKA is sufficient to account for the complex pattern of gene expression that occurs during this process. We addressed this question by infecting granulosa cells with a lentiviral vector that directs the expression of a constitutively active mutant of PKA (PKA-CQR) and compared the cellular responses to PKA-CQR with cells stimulated by FSH. Expression of PKA-CQR in undifferentiated granulosa cells resulted in the induction of both estrogen and progesterone production in the absence of cAMP. The stimulatory effects of both PKA-CQR and FSH on estrogen and progesterone production were suppressed by the PKA inhibitor H-89 and were mimicked by PKA-selective cAMP agonists. mRNA levels for P450scc and 3beta-HSD were induced to a similar extent by FSH and PKA-CQR, whereas mRNA levels for P450arom and the LHr were induced to a greater extent by FSH. Microarray analysis of gene expression profiles revealed that the majority of genes appeared to be comparably regulated by FSH and PKA-CQR but that some genes appear to be induced to a greater extent by FSH than by PKA-CQR. These results indicate that the PKA signaling pathway is sufficient to account for the induction of most genes (as identified by microarray analysis), including those of the progesterone biosynthetic pathway during granulosa cell differentiation. However, optimal induction of aromatase, the LHr, and other genes by FSH appears to require activation of additional signaling pathways.
Collapse
Affiliation(s)
- Rosalba Escamilla-Hernandez
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Room B309, 204 Craft Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
23
|
Asúa T, Bilbao A, Gorriti MA, Lopez-Moreno JA, Del Mar Alvarez M, Navarro M, Rodríguez de Fonseca F, Perez-Castillo A, Santos A. Implication of the endocannabinoid system in the locomotor hyperactivity associated with congenital hypothyroidism. Endocrinology 2008; 149:2657-66. [PMID: 18218697 DOI: 10.1210/en.2007-1586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in the striatum and a reduction in the number of binding sites in both striatum and projection areas. These findings suggest that hyperactivity may be the consequence of a thyroid hormone deficiency-induced removal of the endocannabinoid tone, normally acting as a brake for hyperactivity at the basal ganglia. In agreement with the decrease in CB(1) receptor gene expression, a lower cannabinoid response, measured by biochemical, genetic and behavioral parameters, was observed in the hypothyroid animals. Finally, both CB(1) receptor gene expression and the biochemical and behavioral dysfunctions found in the hypothyroid animals were improved after a thyroid hormone replacement treatment. Thus, the present study suggests that impairment in the endocannabinoid system can underlay the hyperactive phenotype associated with hypothyroidism.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Behavior, Animal/drug effects
- Cannabinoid Receptor Modulators/agonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoid Receptor Modulators/physiology
- Cerebellum/drug effects
- Cerebellum/metabolism
- Congenital Hypothyroidism/complications
- Congenital Hypothyroidism/physiopathology
- Drug Evaluation, Preclinical
- Endocannabinoids
- Female
- Hyperkinesis/drug therapy
- Hyperkinesis/etiology
- Hyperkinesis/genetics
- Motor Activity/drug effects
- Motor Activity/physiology
- Pregnancy
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Triiodothyronine/pharmacology
- Triiodothyronine/therapeutic use
Collapse
Affiliation(s)
- Teresa Asúa
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of the hypothalamic proopiomelanocortin gene and β-endorphin expression in the hypothalamic arcuate nucleus of mice elicited by inflammatory pain. Neuroscience 2008; 152:1054-66. [DOI: 10.1016/j.neuroscience.2007.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/05/2023]
|
25
|
Lee M, Kim A, Conwell IM, Hruby V, Mayorov A, Cai M, Wardlaw SL. Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression. Peptides 2008; 29:440-7. [PMID: 18155809 PMCID: PMC2278043 DOI: 10.1016/j.peptides.2007.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 11/27/2022]
Abstract
Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.
Collapse
Affiliation(s)
- Michelle Lee
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY
| | - Andrea Kim
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY
| | - Irene M. Conwell
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY
| | - Victor Hruby
- Department of Chemistry, University of Arizona, Tucson, AZ
| | | | - Minying Cai
- Department of Chemistry, University of Arizona, Tucson, AZ
| | - Sharon L. Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY
| |
Collapse
|
26
|
Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ. Inhibition of rat granulosa cell differentiation by overexpression of Galphaq. Endocrine 2008; 33:21-31. [PMID: 18401763 DOI: 10.1007/s12020-008-9064-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 03/17/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Activation of FSH and LH receptors in undifferentiated granulosa cells (i.e., no prior exposure to FSH) results in comparable induction of progesterone production, but activation of the LH receptor is less effective than FSH in inducing aromatase and the native LH receptor. Because the LH receptor can also activate the Galphaq signaling pathway, we investigated whether activation of this pathway could be responsible for these differences. Overexpression of Galphaq inhibited FSH induction of both the estradiol and progesterone biosynthetic pathways as well as mRNA levels for cholesterol side-chain cleavage enzyme (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and P450aromatase (aromatase). This suppression was associated with a reduction (P < 0.05) in FSH-stimulated cAMP production. Lower cAMP levels were not due to reduced FSH receptor (FSHr) mRNA levels or reduced levels of Galphas. Phosphodiesterase (PDE) activity and regulator of G-protein signaling 2 (RGS2) mRNA levels were significantly (P < 0.05) increased by Galphaq, both of which could account for diminished cAMP levels. We conclude that Galphaq signaling pathway inhibits both estradiol and progesterone production comparably and thus activation of this pathway does not seem to account for differences between FSH and LH in the regulation of aromatase and the LH receptor.
Collapse
Affiliation(s)
- Rosalba Escamilla-Hernandez
- Department of Cell Biology and Physiology, Magee-Womens Research Institute B309, University of Pittsburgh, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | | | | |
Collapse
|
27
|
Leriche M, Cote-Vélez A, Méndez M. Presence of pro-opiomelanocortin mRNA in the rat medial prefrontal cortex, nucleus accumbens and ventral tegmental area: studies by RT-PCR and in situ hybridization techniques. Neuropeptides 2007; 41:421-31. [PMID: 17980426 DOI: 10.1016/j.npep.2007.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/01/2007] [Accepted: 08/30/2007] [Indexed: 11/24/2022]
Abstract
Pro-opiomelanocortin (POMC) is a large proteic precursor which originates several biologically actives neuropeptides, such as beta-lipotropin (beta-LPH), beta-endorphin (beta-END), adenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH). The arcuate nucleus of the hypothalamus is the main POMC producing cell group in brain and innervates several areas of the limbic system and brainstem. POMC-derived neuropeptides have been related to several motivated and rewarding behaviours, including sexual facilitation, feeding, and drug addiction. However, POMC mRNA has not been detected in regions of the dopaminergic mesocorticolimbic system, which represents the most important reward pathway. The aim of this work was to investigate if POMC mRNA is expressed in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAcc) and the ventral tegmental area (VTA) of the rat. We used the reverse transcriptase reaction coupled to the polymerase chain reaction (RT-PCR). We also used the in situ hybridization technique to study the regional distribution of POMC mRNA in the same regions. We report that RT-PCR amplification of extracted RNA with two different pairs of primers generates the predicted 94bp and 678bp POMC-PCR products. Both the amplification of RNA obtained from the rat glial C-6 cell line (which does not express POMC mRNA) and the omission of reverse transcriptase from the RT reaction of rat brain samples showed no amplification products. We have shown for the first time that the rat medial prefrontal cortex, the nucleus accumbens and the ventral tegmental area contain POMC mRNA. This mRNA is in low concentration, ranging from 21% to 31% with respect to the hypothalamus. In situ hybridization experiments showed that POMC mRNA is homogeneously distributed in these areas. The presence of POMC mRNA in regions of the mesocorticolimbic system could have functional implications in motivated behaviours.
Collapse
Affiliation(s)
- Mariana Leriche
- Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México DF, Mexico
| | | | | |
Collapse
|
28
|
Sassoè-Pognetto M, Follesa P, Panzanelli P, Perazzini AZ, Porcu P, Sogliano C, Cherchi C, Concas A. Fluctuations in brain concentrations of neurosteroids are not associated to changes in gephyrin levels. Brain Res 2007; 1169:1-8. [PMID: 17698049 DOI: 10.1016/j.brainres.2007.06.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 06/20/2007] [Accepted: 06/23/2007] [Indexed: 11/24/2022]
Abstract
Fluctuations in the brain concentrations of neurosteroids are accompanied by changes in the expression of GABA(A) receptor subunits in the cerebral cortex and hippocampus. Here, we investigated the expression of the postsynaptic molecule gephyrin in the cerebral cortex and hippocampus of pregnant rats, as well as in rats treated chronically with contraceptive drugs. The amounts of gephyrin mRNA and protein did not change during pregnancy and after delivery, as well as in rats treated with ethynylestradiol (EE) and levonorgestrel (LNG) for 4 weeks. Similarly, using immunofluorescence and laser scanning confocal microscopy, we did not detect significant changes in the number and size of gephyrin-immunopositive clusters, which likely represent inhibitory postsynaptic sites. These findings indicate that the expression of gephyrin and the density of cortical inhibitory synapses are not influenced by endogenous neurosteroids.
Collapse
Affiliation(s)
- Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, and Istituto Nazionale di Neuroscienze, Corso Massimo d'Azeglio 52, I-10126 Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bourgin P, Fabre V, Huitrón-Reséndiz S, Henriksen SJ, Prospero-Garcia O, Criado JR, de Lecea L. Cortistatin promotes and negatively correlates with slow-wave sleep. Eur J Neurosci 2007; 26:729-38. [PMID: 17686045 DOI: 10.1111/j.1460-9568.2007.05696.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sleep need is characterized by the level of slow-wave activity (SWA) and increases with time spent awake. The molecular nature of this sleep homeostatic process is practically unknown. Here, we show that intracerebroventricular administration of the neuropeptide, cortistatin (CST-14), enhances EEG synchronization by selectively promoting deep slow-wave sleep (SWS) during both the light and dark period in rats. CST-14 also increases the level of slow-wave activity (SWA) within deep SWS during the first two hours following CST-14 administration. Steady-state levels of preprocortistatin mRNA oscillate during the light:dark cycle and are four-fold higher upon total 24-h sleep deprivation, returning progressively to normal levels after eight hours of sleep recovery. Preprocortistatin mRNA is expressed upon sleep deprivation in a particular subset of cortical interneurons that colocalize with c-fos. In contrast, the number of CST-positive cells coexpressing pERK1/2 decreases under sleep deprivation. The capacity of CST-14 to increase SWA, together with preprocortistatin's inverse correlation with time spent in SWS, suggests a potential role in sleep homeostatic processes.
Collapse
Affiliation(s)
- Patrice Bourgin
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Hoshino A, Yee CJ, Campbell M, Woltjer RL, Townsend RL, van der Meer R, Shyr Y, Holt JT, Moses HL, Jensen RA. Effects of BRCA1 transgene expression on murine mammary gland development and mutagen-induced mammary neoplasia. Int J Biol Sci 2007; 3:281-91. [PMID: 17505536 PMCID: PMC1865089 DOI: 10.7150/ijbs.3.281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/24/2007] [Indexed: 01/19/2023] Open
Abstract
To characterize the role of BRCA1 in mammary gland development and tumor suppression, a transgenic mouse model of BRCA1 overexpression was developed. Using the mouse mammary tumor virus (MMTV) promoter/enhancer, transgenic mice expressing human BRCA1 or select mutant controls were generated. Transgenic animals examined during adolescence were shown to express the human transgene in their mammary glands. The mammary glands of 13-week-old virgin homozygous MMTV-BRCA1 mice presented the morphology of moderately increased lobulo-alveolar development. The mammary ductal trees of both hemizygous and homozygous MMTV-BRCA1t340 were similar to those of control non-transgenic littermates. Interestingly, both hemi- and homozygous mice expressing a splice variant of BRCA1 lacking the N-terminal RING finger domain (MMTV-BRCA1sv) exhibited marked mammary lobulo-alveolar development, particularly terminal end bud proliferation. Morphometric analyses of mammary gland whole mount preparations were used to measure epithelial staining indices of ~35% for homozygous MMTV-BRCA1 mice and ~60% for both hemizygous and homozygous MMTV-BRCA1sv mice versus ~25% for non-transgenic mice. Homozygous MMTV-BRCA1 mice showed delayed development of tumors when challenged with 7,12 dimethylbenzanthracene (DMBA), relative to non-transgenic and homozygous BRCA1t340 expressing mice. In contrast, homozygous MMTV-BRCA1sv transgenic animals were sensitized to DMBA treatment and exhibited a very rapid onset of mammary tumor development and accelerated mortality. MMTV-BRCA1 effects on mortality were restricted to DMBA-induced tumors of the mammary gland. These results demonstrate in vivo roles for BRCA1 in both mammary gland development and in tumor suppression against mutagen-induced mammary gland neoplasia.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- BRCA1 Protein/physiology
- Carcinogens/toxicity
- Female
- Gene Expression
- Gene Transfer Techniques
- Genes, BRCA1
- Mammary Glands, Animal/anatomy & histology
- Mammary Glands, Animal/growth & development
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Tumor Virus, Mouse
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Pregnancy
Collapse
Affiliation(s)
- Arichika Hoshino
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cindy J. Yee
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mel Campbell
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- 4. Kansas Masonic Cancer Research Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7312, USA
| | - Randall L. Woltjer
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rebecca L. Townsend
- 2. Departments of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riet van der Meer
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Shyr
- 3. Departments of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey T. Holt
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- 2. Departments of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Harold L. Moses
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- 2. Departments of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Roy A. Jensen
- 1. Departments of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- 2. Departments of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- 4. Kansas Masonic Cancer Research Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7312, USA
| |
Collapse
|
31
|
Sánchez E, Fekete C, Lechan RM, Joseph-Bravo P. Cocaine- and amphetamine-regulated transcript (CART) expression is differentially regulated in the hypothalamic paraventricular nucleus of lactating rats exposed to suckling or cold stimulation. Brain Res 2007; 1132:120-8. [PMID: 17174283 PMCID: PMC1963438 DOI: 10.1016/j.brainres.2006.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 11/17/2022]
Abstract
Neural stimuli, such as suckling or cold exposure, increase TRH mRNA in the paraventricular nucleus (PVN) of the rat hypothalamus, yet only suckling induces prolactin secretion. As TRH co-localizes with cocaine- and amphetamine-regulated transcript (CART) in hypophysiotropic neurons of the PVN, and CART inhibits TRH-induced prolactin release but not TRH-induced TSH release in adenohypophyseal cell cultures, we raised the possibility that differential regulation of CART gene expression in the PVN may explain the differences in prolactin secretion following each of the two stimuli. Primiparous female rats were mated and handled daily during the pre- and postpartum periods. After delivery, the litter was adjusted to 8 pups and at mid-lactation, dams were separated from their pups for 8 h and exposed to either 1 h of cold or 30 min of suckling. Long-term effects of suckling were studied by separating pups from their mothers for 24 h, followed by a 12 h period of continuous suckling. Serum TSH levels increased in response to cold exposure, while prolactin levels were increased by suckling and diminished by cold exposure. CART mRNA levels increased in rostral and mid parts of the medial parvocellular PVN following cold exposure but not after suckling stimulation. These data demonstrate a differential regulation of CART gene expression in hypophysiotropic neurons in response to stimuli that increase TRH mRNA levels, and suggest that CART activation in the PVN may contribute to the decrease in PRL release when the thyroid axis is activated by cold exposure.
Collapse
Affiliation(s)
- Edith Sánchez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, Cuernavaca, Mor., C.P. 62210, México
| | | | | | | |
Collapse
|
32
|
Saxena D, Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ. Liver receptor homolog-1 and steroidogenic factor-1 have similar actions on rat granulosa cell steroidogenesis. Endocrinology 2007; 148:726-34. [PMID: 17095585 DOI: 10.1210/en.2006-0108] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Granulosa cells express the closely related orphan nuclear receptors steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1). To determine whether SF-1 and LRH-1 have differential effects on steroid production, we compared the effects of overexpressing LRH-1 and SF-1 on estrogen and progesterone production by undifferentiated rat granulosa cells. Adenovirus mediated overexpression of LRH-1 or SF-1 had qualitatively similar effects. Neither LRH-1 nor SF-1 alone stimulated estrogen or progesterone production, but when combined with FSH and testosterone, each significantly augmented progesterone production and mRNAs for cholesterol side-chain cleavage enzyme and 3beta-hydroxysteroid dehydrogenase above that observed with FSH alone, with SF-1 being more effective than LRH-1. LRH-1 did not augment FSH-stimulated estrogen production, whereas SF-1 produced only a slight ( approximately 30%) augmentation of FSH-stimulated estrogen production. The stimulatory actions of both were reduced by overexpression of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1. Expression of either LRH-1 or SF-1 together with constitutively active protein kinase B in the absence of FSH stimulated progesterone production and mRNAs for 3beta-hydroxysteroid dehydrogenase and cholesterol side-chain cleavage enzyme but did not stimulate estrogen production or mRNA for aromatase. These findings demonstrate that LRH-1 and SF-1 have qualitatively similar actions on FSH-stimulated estrogen and progesterone production, which would suggest that these factors may have overlapping actions in the regulation of steroidogenesis that accompanies granulosa cell differentiation.
Collapse
Affiliation(s)
- Deeksha Saxena
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 830 Scaife Hall, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
33
|
Jaworski DM, Beem-Miller M, Lluri G, Barrantes-Reynolds R. Potential regulatory relationship between the nested gene DDC8 and its host gene tissue inhibitor of metalloproteinase-2. Physiol Genomics 2007; 28:168-78. [PMID: 16985004 PMCID: PMC3880020 DOI: 10.1152/physiolgenomics.00160.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nested genes are fairly common within the mammalian nervous system, yet few studies have examined whether the guest and host genes might be coordinately regulated. Tissue inhibitors of metalloproteinase (TIMPs) inhibit extracellular matrix proteolysis mediated by metzincin proteases. TIMP-2 is the only TIMP not nested within a synapsin gene. It does, however, serve as a host for differential display clone 8 (DDC8), a testis-specific gene whose expression is upregulated during spermatogenesis. Here, we demonstrate that DDC8 is not testis specific. Furthermore, DDC8 expression in nonneural and neural tissues mimics that of TIMP-2, including its upregulation in response to traumatic brain injury, suggesting a potential regulatory relationship. The most striking observation is that the TIMP-2 knockout mouse brain contains TIMP-2 mRNA encoding exons 2-5, which are downstream of DDC8, but not exon 1, which contains the signal sequence and cysteine residue required for MMP inhibition, indicating a functional knockout. That TIMP-2 transcripts in wild-type brain contain DDC8 sequence suggests alternative splicing between the two genes.
Collapse
Affiliation(s)
- Diane M Jaworski
- Departments of Anatomy & Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|
34
|
Harvey S, Baudet ML, Sanders EJ. Retinal growth hormone in perinatal and adult rats. J Mol Neurosci 2007; 28:257-64. [PMID: 16691013 DOI: 10.1385/jmn:28:3:257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/30/1999] [Accepted: 08/18/2005] [Indexed: 11/11/2022]
Abstract
Growth hormone (GH) mRNA and protein have recently been localized in the neural retina of embryonic chicks, in which exogenous GH promotes cell survival. GH is also expressed in the rat CNS, in which it has neuroprotective roles, although its presence in the rat neural retina is unknown and is the focus of the present study. GH immunoreactivity, to a 22-kDa protein, was present in extracts of fetal (embryonic day [ED]17) eyes and in extracts from the neural retinas of newborn pups, comparable to GH immunoreactivity in pituitary extracts. The GH immunoreactivity in the neural retina was widespread but was most intense in large rounded cells in the retinal ganglion cell (RGC) layer and in the optic fiber layer derived from the axons of the RGCs. A 693-bp cDNA was also generated by the RT-PCR of RNA extracted from the eyes of ED17 rats and from the neural retinas and eyes of newborn rats, when amplified in the presence of oligonucleotide primers for the rat GH cDNA. Expression of the GH gene in the neural retina was also shown by specific in situ hybridization of an antisense GH riboprobe to cells in the neural retina, particularly those in the RGC layers of fetal and adult rat eyes. These results demonstrate GH expression in the neural retinas of fetal, newborn, and adult rats, in which retinal GH might have neuroprotective roles.
Collapse
Affiliation(s)
- Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
35
|
Gore AC, Attardi B, DeFranco DB. Glucocorticoid repression of the reproductive axis: effects on GnRH and gonadotropin subunit mRNA levels. Mol Cell Endocrinol 2006; 256:40-8. [PMID: 16839661 DOI: 10.1016/j.mce.2006.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/22/2006] [Accepted: 06/05/2006] [Indexed: 11/23/2022]
Abstract
Activation of the stress axis by glucocorticoids suppresses reproductive function in many species. Here, we performed studies to determine whether these effects are mediated at the level of the hypothalamus or pituitary or both, and to dissect the underlying molecular mechanisms, using two established rodent models. Rats were treated either chronically or acutely with glucocorticoids, and circulating gonadotropins, GnRH mRNA levels, and gonadotropin subunit mRNAs levels were measured. In model I, chronic treatment for 6 days with corticosterone (CORT) was used in adult intact male rats. CORT caused a significant decrease in serum LH but not FSH secretion compared to vehicle. Whereas pituitary LHbeta and FSHbeta mRNA levels were not affected by CORT treatment, hypothalamic GnRH mRNA was significantly decreased by 35-40%. In model II, acute blockade of the estradiol (E(2))-induced gonadotropin surge by dexamethasone (DEX) was used in 28-day-old female rats. DEX treatment resulted in substantially lower serum LH and FSH concentrations compared to vehicle, although DEX had no effect on GnRH mRNA and LHbeta mRNA levels. By contrast, FSHbeta mRNA levels were about 14-fold lower in DEX-treated females. Taken together, these results indicate that suppression of gonadotropin levels by chronic elevations in glucocorticoids/stress may be accounted for in part by suppression of GnRH mRNA levels, whereas short-term glucocorticoid treatment to block the gonadotropin surge appears to involve other mechanisms including decreased FSHbeta mRNA levels.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States.
| | | | | |
Collapse
|
36
|
Mostallino MC, Mura ML, Maciocco E, Murru L, Sanna E, Biggio G. Changes in expression of the delta subunit of the GABA (A) receptor and in receptor function induced by progesterone exposure and withdrawal. J Neurochem 2006; 99:321-32. [PMID: 16879715 DOI: 10.1111/j.1471-4159.2006.04055.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type A receptors for GABA (GABA(A) receptors) that contain the delta subunit are located predominantly at extrasynaptic sites and are implicated in modulation of neuronal excitability through tonic inhibition. We have examined the effects of chronic exposure to and subsequent withdrawal of progesterone or the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THPROG) on expression of the delta subunit of GABA(A) receptors and on receptor function in cultured rat hippocampal neurons. Progesterone treatment for 1 day increased the amounts of both delta subunit mRNA and protein, whereas such treatment for 6 days induced marked decreases in the abundance of both the mRNA and protein. Subsequent progesterone withdrawal up-regulated expression of the delta subunit, which was significantly increased at 9-12 h after withdrawal. These effects of progesterone were mimicked by 3alpha,5alpha-THPROG and blocked by the 5alpha-reductase inhibitor finasteride. They were also accompanied by parallel changes in the function of GABA(A) receptors in hippocampal neurons. These results show that chronic exposure to and withdrawal of progesterone induce differential effects on both expression of the delta subunit of GABA(A) receptors and receptor function that are mediated by 3alpha,5alpha-THPROG. They are consistent with the notion that this progesterone metabolite plays a key physiological role in modulation of GABAergic synapses.
Collapse
|
37
|
Xu J, Christian B, Jump DB. Regulation of rat hepatic L-pyruvate kinase promoter composition and activity by glucose, n-3 polyunsaturated fatty acids, and peroxisome proliferator-activated receptor-alpha agonist. J Biol Chem 2006; 281:18351-62. [PMID: 16644726 PMCID: PMC2766394 DOI: 10.1074/jbc.m601277200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X (MLX), and hepatic nuclear factor-4alpha (HNF-4alpha) are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor alpha (PPARalpha) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNA(L-PK) but did not suppress hepatic ChREBP or HNF-4alpha nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNA(LPK) and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4alpha. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4alpha-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4alpha-LPK promoter interaction. Although overexpressed ChREBP or HNF-4alpha did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNA(L-PK) abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA and WY14643/PPARalpha target different transcription factors to control L-PK gene transcription. MLX, the heterodimer partner for ChREBP, has emerged as a novel target for n-3 PUFA regulation.
Collapse
Affiliation(s)
- Jinghua Xu
- From the Departments of Physiology, Biochemistry, and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Barbara Christian
- From the Departments of Physiology, Biochemistry, and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Donald B. Jump
- From the Departments of Physiology, Biochemistry, and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
38
|
Dissen GA, Garcia-Rudaz C, Tapia V, Parada LF, Hsu SYT, Ojeda SR. Expression of the insulin receptor-related receptor is induced by the preovulatory surge of luteinizing hormone in thecal-interstitial cells of the rat ovary. Endocrinology 2006; 147:155-65. [PMID: 16195402 DOI: 10.1210/en.2005-0386] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The insulin receptor-related receptor (IRR) is a member of the insulin receptor family that, on its own, recognizes neither insulin nor any of the identified insulin-related peptides. In both the nervous system and peripheral tissues, IRR mRNA is detected in cells that also express trkA, the nerve growth factor tyrosine kinase receptor. In the ovary, the trkA gene is transiently activated in thecal-interstitial cells of large antral follicles at the time of the preovulatory surge of gonadotropins. The present study shows that the IRR gene is expressed in the same ovarian compartment, that IRR mRNA content increases strikingly in these cells in the afternoon of the first proestrus, and that--as in the case of trkA mRNA--the increase is caused by gonadotropins. The IRR mRNA species primarily affected is that encoding the full-length receptor; its increased abundance was accompanied by a corresponding change in IRR protein content. An extensive molecular search using several approaches, including the screening of cDNA libraries and PCR amplification with degenerate primers, did not yield an IRR ligand. Phylogenetic analysis of 20 insulin-related sequences and 15 relaxin family peptides from selected vertebrates indicated that the mammalian genome is unlikely to contain an additional ligand expressed from a distinct gene that is closely related to the insulin family. Although the functional nature of the relationship between IRR and trkA receptors is unknown, the remarkable temporal and spatial specificities of their coordinated expression in the ovary before ovulation suggests that they target a functionally related set of downstream events associated with the ovulatory process.
Collapse
Affiliation(s)
- Gregory A Dissen
- Division of Neuroscience, Oregon Regional Primate Research Center, 505 N.W. 185th Avenue, Beaverton, Oregon 97006-3448, USA.
| | | | | | | | | | | |
Collapse
|
39
|
de Gortari P, Uribe RM, García-Vázquez A, Aguilar-Valles A, Martínez A, Valdés A, Charli JL, Fernández-Guardiola A, Joseph-Bravo P. Amygdala kindling differentially regulates the expression of the elements involved in TRH transmission. Neurochem Int 2005; 48:31-42. [PMID: 16213061 DOI: 10.1016/j.neuint.2005.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 12/26/2022]
Abstract
Subthreshold electrical stimulation of the amygdala (kindling) activates neuronal pathways increasing the expression of several neuropeptides including thyrotropin releasing-hormone (TRH). Partial kindling enhances TRH expression and the activity or its inactivating ectoenzyme; once kindling is established (stage V), TRH and its mRNA levels are further increased but TRH-binding and pyroglutamyl aminopeptidase II (PPII) activity decreased in epileptogenic areas. To determine whether variations in TRH receptor binding or PPII activity are due to regulation of their synthesis, mRNA levels of TRH receptors (R1, R2) and PPII were semi-quantified by RT-PCR in amygdala, frontal cortex and hippocampus of kindled rats sacrificed at stage II or V. Increased mRNA levels of PPII were found at stage II in amygdala and frontal cortex, and of pro-TRH and TRH-R2, in amygdala and hippocampus. At stage V, pro-TRH mRNA levels increased and those of PPII, decreased in the three regions; TRH-R2 mRNA levels diminished in amygdala and frontal cortex and of TRH-R1 only in amygdala. In situ hybridization analyses revealed, at stage II, enhanced TRH-R1 mRNA levels in dentate gyrus and amygdala while decreased in piriform cortex; those of TRH-R2 increased in amygdala, CA2, dentate gyrus, piriform cortex, thalamus and subiculum and of PPII, in CAs and piriform cortex. In contrast, at stage V decreased expression of TRH-R1 occurred in amygdala, CA2/3, dentate gyrus and piriform cortex; of TRH-R2 in CA2, thalamus and piriform cortex, and of PPII in CA2, and amygdala. The magnitude of changes differed between ipsi and contralateral side. These results support a trans-synaptic modulation of all elements involved in TRH transmission in conditions that stimulate the activity of TRHergic neurons. They show that reported changes in PPII activity or TRH-binding caused by kindling relate to regulation of the expression of TRH receptors and degrading enzyme.
Collapse
Affiliation(s)
- P de Gortari
- Dept. Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Czda. México-Xochimilco 102, Sn. Lorenzo Huipulco, México D.F. 14370, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Follesa P, Mostallino MC, Biggio F, Gorini G, Caria S, Busonero F, Murru L, Mura ML, Sanna E, Biggio G. Distinct patterns of expression and regulation of GABA receptors containing the delta subunit in cerebellar granule and hippocampal neurons. J Neurochem 2005; 94:659-71. [PMID: 16000147 DOI: 10.1111/j.1471-4159.2005.03303.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal plasticity is achieved by regulation of the expression of genes for neurotransmitter receptors such as the type A receptor (GABA(A)R) for gamma-aminobutyric acid. We now show that two different rat neuronal populations in culture manifest distinct patterns of GABA(A)R plasticity in response to identical stimuli. Whereas prolonged exposure to ethanol had no effect on expression of the delta subunit of GABA(A)Rs at the mRNA or protein level in cerebellar granule neurons, it increased the abundance of delta subunit mRNA and protein in hippocampal neurons. Subsequent ethanol withdrawal transiently down-regulated delta subunit expression in cerebellar granule neurons and gradually normalized that in hippocampal neurons. These effects of ethanol exposure and withdrawal were accompanied by corresponding functional changes in GABA(A)Rs. GABA(A)Rs containing the delta subunit were also distributed differentially in the cerebellar and hippocampal neurons. These findings reveal complex and distinct mechanisms of regulation of the expression of GABA(A)Rs that contain the delta subunit in different neuronal types.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Experimental Biology, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu H, Chen R, Ghishan FK. Subcloning, localization, and expression of the rat intestinal sodium-hydrogen exchanger isoform 8. Am J Physiol Gastrointest Liver Physiol 2005; 289:G36-41. [PMID: 15731506 DOI: 10.1152/ajpgi.00552.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na(+) absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | |
Collapse
|
42
|
Zhu D, Wu X, Strauss KI, Lipsky RH, Qureshi Z, Terhakopian A, Novelli A, Banaudha K, Marini AM. N-methyl-D-aspartate and TrkB receptors protect neurons against glutamate excitotoxicity through an extracellular signal-regulated kinase pathway. J Neurosci Res 2005; 80:104-13. [PMID: 15744743 PMCID: PMC2855499 DOI: 10.1002/jnr.20422] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-Methyl-D-aspartate (NMDA) at a subtoxic concentration (100 microM) promotes neuronal survival against glutamate-mediated excitotoxicity via a brain-derived neurotrophic factor (BDNF) autocrine loop in cultured cerebellar granule cells. The signal transduction mechanism(s) underlying NMDA neuroprotection, however, remains elusive. The mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3-K) pathways alter gene expression and are involved in synaptic plasticity and neuronal survival. This study tested whether neuroprotective activation of NMDA receptors, together with TrkB receptors, coactivated the MAPK or PI3-K pathways to protect rat cerebellar neurons. NMDA receptor activation caused a concentration- and time-dependent activation of MAPK lasting 24 hr. This activation was blocked by the NMDA receptor antagonist MK-801 but was attenuated only partially by the tyrosine kinase inhibitor k252a, suggesting that activation of both NMDA and TrkB receptors are required for maximal neuroprotection. The MAPK kinase (MEK) inhibitor U0126 (10 microM) partially blocked NMDA neuroprotection, whereas LY294002, a selective inhibitor of the PI3-K pathway, did not affect the neuroprotective activity of NMDA. Glutamate excitotoxicity decreased bcl-2, bcl-X(L), and bax mRNA levels,. NMDA increases Bcl-2 and Bcl-X(L) protein levels and decreases Bax protein levels. NMDA and TrkB receptor activation thus converge on the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway to protect neurons against glutamate-mediated excitotoxicity. By increasing antiapoptotic proteins of the Bcl-2 family, NMDA receptor activation may also promote neuronal survival by preventing apoptosis.
Collapse
Affiliation(s)
- Daming Zhu
- Department of Neurology and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shen X, Falzon M. PTH-related protein enhances LoVo colon cancer cell proliferation, adhesion, and integrin expression. ACTA ACUST UNITED AC 2005; 125:17-27. [PMID: 15582709 DOI: 10.1016/j.regpep.2004.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 07/21/2004] [Indexed: 12/27/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) has been localized in human colon cancer tissue and cell lines. Tumor cell adhesion to extracellular matrix (ECM) proteins plays a major role in the invasion and metastasis of tumor cells, and is mediated via integrin subunits. The LoVo human colon cancer cell line was used as a model system to study the effects of PTHrP on cell proliferation and adhesion to ECM proteins found in normal liver. Clones of LoVo cells engineered to overexpress PTHrP by stable transfection with a PTHrP cDNA showed enhanced cell proliferation vs. control (empty vector-transfected) cells. PTHrP-overexpressing cells also showed significantly higher adhesion to collagen type I, fibronectin, and laminin, and enhanced expression of the [symbol: see text] integrin subunits. These results indicate that PTHrP may play a role in colon cancer invasion and metastasis by increasing cell proliferation and adhesion to the ECM via upregulation of proinvasive integrin expression.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 10th and Market Streets, Galveston, TX 77555, USA
| | | |
Collapse
|
44
|
Sutherland VL, McReynolds M, Tompkins LS, Brooks HL, Lynch RM. Developmental expression of glucokinase in rat hypothalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:255-8. [PMID: 15707679 DOI: 10.1016/j.devbrainres.2004.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/04/2004] [Accepted: 11/07/2004] [Indexed: 12/01/2022]
Abstract
Neurons in the hypothalamus sense changes in glucose concentration. Glucokinase (GK), a key enzyme for pancreatic (beta)-cell glucose sensing, was found in both the embryonic and adult hypothalamus. GK activity accounted for approximately 20% of total hexokinase (HK) activity in both embryonic and adult hypothalamus with no activity measured in cortical samples, indicating that glucose sensing in the hypothalamus initiates early in development and precedes the maturation of glucose signaling in liver.
Collapse
Affiliation(s)
- Vicki L Sutherland
- Department of Physiology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
45
|
Choi SS, Lee HK, Shim EJ, Kwon MS, Seo YJ, Lee JY, Suh HW. Alterations of c-Fos mRNA expression in hypothalamic-pituitary-adrenal axis and various brain regions induced by intrathecal single and repeated substance P administrations in mice. Arch Pharm Res 2005; 27:863-6. [PMID: 15460449 DOI: 10.1007/bf02980180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effect of substance P (Sub P) injected intrathecally (i.t.) on c-fos mRNA expression in various tissues was examined in the present study. We found that a single administration of Sub P (0.5 nM) caused an increase of the c-fos mRNA level in the hypothalamic-pituitary-adrenal (HPA) axis, hippocampus, and spinal cord. The time-course study showed that c-fos mRNA level was maximal at 10 min and began to decrease 30 min after the Sub P injection in all tissues, and the Sub P-induced increase of the c-fos mRNA level was returned to the control level 1 h after the injection. The kinetics of the c-fos mRNA expression in mice that were repeatedly injected with Sub P (every 30 min interval up to 4 times) were different in the HPA axis, hippocampus, and spinal cord. The increased c-fos mRNA level in the hypothalamus and the spinal cord induced by i.t. injected Sub P remained at a high level. In the pituitary gland, adrenal gland, and hippocampus, the increased level of c-fos mRNA expression gradually returned to the control level during the repeated substance P injections up to 4 times. Our results suggest that spinally injected Sub P-induced pain stress increases c-fos mRNA expression in the spinal cord, hippocampus, and HPA axis. In mice repeatedly injected with Sub P, the kinetics of c-fos mRNA appear to be different varied from tissue to tissue.
Collapse
Affiliation(s)
- Seong-Soo Choi
- Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University, 1 Okchun-dong, Chunchon, Kangwondo 200-702, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Han KJ, Choi SS, Shim EJ, Seo YJ, Kwon MS, Lee JY, Lee HK, Suh HW. Formalin pretreatment attenuates tail-flick inhibition induced by β-endorphin administered intracerebroventricularly or intrathecally in mice. Arch Pharm Res 2005; 28:227-31. [PMID: 15789756 DOI: 10.1007/bf02977720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effect of the subcutaneous (s.c.) pretreatment of formalin into both hind paws of mice on the antinociception induced by the intracerebroventricularly (i.c.v.) or intrathecally (i.t.) administration of beta-endorphin using the tail-flick test. Pretreatment with formalin (5%) for 5 h had no affect on the i.c.v. administered beta-endorphin-induced tail-flick response. However, pretreatment with formalin for 40 h attenuated the tail-flick inhibition induced by i.c.v. administered beta-endorphin. This antinociceptive tolerance to i.c.v. beta-endorphin continued up to 1 week, but to a lesser extent. Pretreatment with formalin for 5 and 40 h significantly reduced the i.t. beta-endorphin-induced inhibition of the tail-flick response, which continued up to 1 week. The s.c. formalin treatment increased the hypothalamic pro-opiomelanocortin (POMC) mRNA level at 2 h, but this returned to the basal level after 40 h. Our results suggest that the increase in the POMC mRNA level in the hypothalamus appears to be involved in the supraspinal or spinal beta-endorphin-induced antinociceptive tolerance in formalin-induced inflammatory pain.
Collapse
Affiliation(s)
- Ki-Jung Han
- Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Gangwondo, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cordray P, Satterwhite DJ. TGF-? induces novel Lef-1 splice variants through a Smad-independent signaling pathway. Dev Dyn 2005; 232:969-78. [PMID: 15736165 DOI: 10.1002/dvdy.20275] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The lymphoid enhancer-binding factor (Lef-1) transcription factor is best known for the ability to transduce Wnt signals during development and to mediate excessive Wnt signaling in certain types of cancer. We recently identified and characterized a novel Wnt-like effect of transforming growth factor-beta (TGF-beta) on beta-catenin, the binding partner of Lef-1. Therefore, we sought to determine the effect of TGF-beta on expression of the Lef/T-cell-specific transcription factor (TCF) components of the Wnt pathway. We found that TGF-beta markedly induced Lef-1 mRNA expression in cell lines originating from fetal lung (Mv1Lu) and newborn skin (Balb/MK), tissues that normally express Lef-1 during development. Lef-1 induction was temporally related to but independent of TGF-beta-induced G1 cell cycle arrest. Furthermore, the induction of Lef-1 was independent of both new protein synthesis and Smad-mediated signaling. Using TGF-beta-treated Mv1Lu cells, we identified multiple splice forms of Lef-1, including novel variants that lack both exons 2 and 3. We conclude that the induction of Lef-1 has permissive effects on the well-characterized TGF-beta signal that inhibits c-myc expression and induces a G1 arrest.
Collapse
Affiliation(s)
- Pauline Cordray
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | |
Collapse
|
48
|
Aguilar-Valles A, Sánchez E, de Gortari P, Balderas I, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology 2005; 82:306-19. [PMID: 16721035 DOI: 10.1159/000093129] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/14/2006] [Indexed: 11/19/2022]
Abstract
Glucocorticoids and corticotropin-releasing hormone (CRH) are key regulators of stress responses. Different types of stress activate the CRH system; in hypothalamus, CRH expression and release are increased by physical or psychological stressors while in amygdala, preferentially by psychological stress. Learning and memory processes are modulated by glucocorticoids and stress at different levels. To characterize the kind of stress provoked by a hippocampal-dependent task such as spatial learning, we compared the expression profile of glucocorticoid receptor (GR), pro-CRH and CRH-R1 mRNAs (analyzed by RT-PCR), in amygdala, hippocampus and hypothalamus and quantified serum corticosterone levels by radioimmunoassay at different stages of training. mRNA levels of brain-derived neurotrophic factor (BDNF) were also quantified due to its prominent role in learning and memory processes. Male Wistar rats trained for 1, 3 or 5 days in the Morris water-maze (10 trials/day) were sacrificed 5-60 min the after last trial. A strong stress response occurred at day one in both yoked and trained animals (increased corticosterone and hypothalamic pro-CRH and CRH-R1 mRNA levels); changes gradually diminished as the test progressed. In amygdala, pro-CRH mRNA levels decreased while those of BDNF augmented when stress was highest, in yoked and trained animals. Hippocampi, of both yoked and trained groups, had decreased levels of GR mRNA on days 1 and 3, normalizing by day 5, while those of pro-CRH and CRH-R1 increased after the 3rd day. Increased gene expression, specifically due to spatial learning, occurred only for hippocampal BDNF since day 3. These results show that the Morris water-maze paradigm induces a strong stress response that is gradually attenuated. Inhibition of CRH expression in amygdala suggests that the stress inflicted is of physical but not of psychological nature and could lead to reduced fear or anxiety.
Collapse
MESH Headings
- Amygdala/chemistry
- Amygdala/physiology
- Animals
- Anxiety/physiopathology
- Brain-Derived Neurotrophic Factor/analysis
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/physiology
- Corticosterone/blood
- Corticotropin-Releasing Hormone/analysis
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/physiology
- Gene Expression Regulation/physiology
- Hippocampus/chemistry
- Hippocampus/physiology
- Hypothalamo-Hypophyseal System/physiology
- Hypothalamus/chemistry
- Hypothalamus/physiology
- In Situ Hybridization
- Limbic System/chemistry
- Limbic System/physiology
- Male
- Maze Learning/physiology
- Pituitary-Adrenal System/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptors, Corticotropin-Releasing Hormone/analysis
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Spatial Behavior/physiology
- Stress, Physiological/etiology
- Stress, Physiological/physiopathology
- Time Factors
- Water
Collapse
Affiliation(s)
- Argel Aguilar-Valles
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), México
| | | | | | | | | | | | | |
Collapse
|
49
|
Alvarez M, Perez-Castillo A, Santos A. Thyroid hormone regulates Galphai1 gene expression in the rat cerebellar cortex during post-natal development. J Neurochem 2005; 92:395-404. [PMID: 15663487 DOI: 10.1111/j.1471-4159.2004.02862.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thyroid hormone regulates the expression of G protein in tissues such as fat and heart. In the brain, very little information is available relative to the regulation by thyroid hormone of G proteins. Here, we show that the expression of the Galphai1 gene is induced by thyroid hormones in the rat cerebellum during development. Hence, the levels of Galphai1 transcripts and protein were decreased in the cerebellum of hypothyroid neonates. In situ hybridization studies showed that the neurons of the cerebellar cortex, particularly Purkinje cells, were affected. Surprisingly, and in contrast with the in vivo stimulatory effect described above, thyroid hormone repressed the activity of the rat Galphai1 promoter in vitro, suggesting that the effect of this hormone in the cerebellum is indirect. In this regard, we present data suggesting that the transcription factor C/EBPbeta could be implicated. First, there are active CEBP binding sites in the Galphai1 promoter. Second, we have found a diminished DNA binding activity of hypothyroid nuclear proteins to a Galphai1 promoter sequence containing a C/EBP binding site. Third, this complex is likely to contain C/EBPbeta protein as it is displaced by specific anti-C/EBPbeta antibodies. Finally, there is a significant decrease in the C/EBPbeta protein content in the hypothyroid cerebellar cortex.
Collapse
Affiliation(s)
- Maria Alvarez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | |
Collapse
|
50
|
Di Sario A, Bendia E, Macarri G, Candelaresi C, Taffetani S, Marzioni M, Omenetti A, De Minicis S, Trozzi L, Benedetti A. The anti-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregulation of procollagen alpha1(I), TIMP-1 and MMP-2. Dig Liver Dis 2004; 36:744-51. [PMID: 15571005 DOI: 10.1016/j.dld.2004.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pirfenidone (5 methyl-1-phenyl-2(1H)-pyridone) is a novel anti-fibrotic agent, which has been shown to decrease collagen deposition in a variety of animal models in vivo, and recently in hepatic fibrosis also. At cellular level, we have recently demonstrated that pirfenidone is able to inhibit proliferation of hepatic stellate cells induced by platelet-derived growth factor, as well as collagen type I accumulation and alpha1(I) procollagen mRNA expression. AIMS To evaluate if pirfenidone maintains its anti-fibrotic properties also when administered after the induction of hepatic damage and to further investigate the molecular mechanisms leading to the anti-fibrotic effect of pirfenidone. METHODS AND RESULTS Rats treated with dimethylnitrosamine (10 mg/kg) for 5 weeks received a liquid diet containing 0.5% pirfenidone starting from the third week. Pirfenidone treatment reduced the degree of liver injury, as determined by alanine aminotransferase values and necro-inflammatory score, which was associated with reduced hepatic stellate cells proliferation and collagen deposition. Treatment with dimethylnitrosamine increased transcripts levels for transforming growth factorbeta1, procollagen alpha1(I), tissue inhibitors of metalloproteinase-1 and matrix metalloproteinase-2 by 7-, 7-, 4- and 15-fold, respectively. Pirfenidone administration downregulated elevated levels of those transcripts by 50-60%, and this was associated with a 70% reduction in collagen deposition. CONCLUSIONS (1) Pirfenidone is effective also if administered after the induction of the hepatic damage; (2) the anti-fibrotic effect of pirfenidone is mainly due to the reduced expression of profibrogenic procollagen alpha1(I) and TIMP-1, most likely through the downregulation of transforming growth factorbeta1 mRNA, and of matrix metalloproteinase-2, which is mainly implicated in the degradation of the normal extracellular matrix.
Collapse
Affiliation(s)
- A Di Sario
- Gastrointestinal Unit, University of Ancona, Polo Didattico, III Piano, Via Tronto 10, 60020 Torrette, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|