1
|
Zhang J, Zhang R, Liu C, Ge X, Wang Y, Jiang F, Zhuang L, Li T, Zhu Q, Jiang Y, Chen Y, Lu M, Wang Y, Jiang M, Liu Y, Liu L. Missense mutation of ISL1 (E283D) is associated with the development of type 2 diabetes. Diabetologia 2024; 67:1698-1713. [PMID: 38819467 DOI: 10.1007/s00125-024-06186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/25/2024] [Indexed: 06/01/2024]
Abstract
AIMS/HYPOTHESIS Mutations in Isl1, encoding the insulin enhancer-binding protein islet-1 (ISL1), may contribute to attenuated insulin secretion in type 2 diabetes mellitus. We made an Isl1E283D mouse model to investigate the disease-causing mechanism of diabetes mellitus. METHODS The ISL1E283D mutation (c. 849A>T) was identified by whole exome sequencing on an early-onset type 2 diabetes family and then the Isl1E283D knockin (KI) mouse model was created and an IPGTT and IPITT were conducted. Glucose-stimulated insulin secretion (GSIS), expression of Ins2 and other ISL1 target genes and interacting proteins were evaluated in isolated pancreas islets. Transcriptional activity of Isl1E283D was evaluated by cell-based luciferase reporter assay and electrophoretic mobility shift assay, and the expression levels of Ins2 driven by Isl1 wild-type (Isl1WT) and Isl1E283D mutation in rat INS-1 cells were determined by RT-PCR and western blotting. RESULTS Impaired GSIS and elevated glucose level were observed in Isl1E283D KI mice while expression of Ins2 and other ISL1 target genes Mafa, Pdx1, Slc2a2 and the interacting protein NeuroD1 were downregulated in isolated islets. Transcriptional activity of the Isl1E283D mutation for Ins2 was reduced by 59.3%, and resulted in a marked downregulation of Ins2 expression when it was overexpressed in INS-1 cells, while overexpression of Isl1WT led to an upregulation of Ins2 expression. CONCLUSIONS/INTERPRETATION Isl1E283D mutation reduces insulin expression and secretion by regulating insulin and other target genes, as well as its interacting proteins such as NeuroD1, leading to the development of glucose intolerance in the KI mice, which recapitulated the human diabetic phenotype. This study identified and highlighted the Isl1E283D mutation as a novel causative factor for type 2 diabetes, and suggested that targeting transcription factor ISL1 could offer an innovative avenue for the precise treatment of human type 2 diabetes.
Collapse
Affiliation(s)
- Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Huanghuai University, Henan, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chanwei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Ge
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fusong Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tiantian Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihan Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, London, UK
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanjun Liu
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Xu M, Xie X, Dong X, Liang G, Gan L. Generation and characterization of Lhx3 GFP reporter knockin and Lhx3 loxP conditional knockout mice. Genesis 2018; 56:e23098. [PMID: 29508544 PMCID: PMC5908734 DOI: 10.1002/dvg.23098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/06/2022]
Abstract
LHX3, a LIM-homeodomain transcription factor, is broadly expressed in the developing pituitary, spinal cord, medulla, retina and inner ear, and plays essential roles during embryonic development. Mice with homozygous Lhx3 null mutation exhibit failure in the formation of pituitary gland and die perinatally. To facilitate the functional study of Lhx3 in mice, we engineered and characterized two novel Lhx3 mouse strains: Lhx3GFP reporter knock-in and Lhx3loxP conditional knockout mice. Coimmunolabeling of LHX3 and GFP shows that the expression pattern of the knock-in GFP reporter recapitulates that of endogenous LHX3 in cochlea, vestibule, retina, and spinal cord. By crossing Lhx3loxP mice with the ubiquitous CMV-Cre mice, we have demonstrated a high efficiency of Cre recombinase-mediated removal of exons 3 to 5 of Lhx3, which encode the second LIM-domain and the HD domain of LHX3, resulting global knockout of Lhx3. Thus, Lhx3GFP and Lhx3loxP mice serve as valuable genetic tools to dissect the tissue-specific roles of Lhx3 at late-gestation and postnatal stages in mice.
Collapse
Affiliation(s)
- Mei Xu
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642
| | - Xiaoling Xie
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642
| | - Xuhui Dong
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642
| |
Collapse
|
3
|
Hou H, Uusküla-Reimand L, Makarem M, Corre C, Saleh S, Metcalf A, Goldenberg A, Palmert MR, Wilson MD. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Hum Mol Genet 2018; 26:3585-3599. [PMID: 28911201 DOI: 10.1093/hmg/ddx246] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
The timing of human puberty is highly variable, sexually dimorphic, and associated with adverse health outcomes. Over 20 genes carrying rare mutations have been identified in known pubertal disorders, many of which encode critical components of the hypothalamic-pituitary-gonadal (HPG) axis. Recent genome-wide association studies (GWAS) have identified more than 100 candidate genes at loci associated with age at menarche or voice breaking in males. We know little about the spatial, temporal or postnatal expression patterns of the majority of these puberty-associated genes. Using a high-throughput and sensitive microfluidic quantitative PCR strategy, we profiled the gene expression patterns of the mouse orthologs of 178 puberty-associated genes in male and female mouse HPG axis tissues, the pineal gland, and the liver at five postnatal ages spanning the pubertal transition. The most dynamic gene expression changes were observed prior to puberty in all tissues. We detected known and novel tissue-enhanced gene expression patterns, with the hypothalamus expressing the largest number of the puberty-associated genes. Notably, over 40 puberty-associated genes in the pituitary gland showed sex-biased gene expression, most of which occurred peri-puberty. These sex-biased genes included the orthologs of candidate genes at GWAS loci that show sex-discordant effects on pubertal timing. Our findings provide new insight into the expression of puberty-associated genes and support the possibility that the pituitary plays a role in determining sex differences in the timing of puberty.
Collapse
Affiliation(s)
- Huayun Hou
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Gene Technology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | - Maisam Makarem
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Christina Corre
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shems Saleh
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Ariane Metcalf
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Mark R Palmert
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Endocrinology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Ramzan K, Bin-Abbas B, Al-Jomaa L, Allam R, Al-Owain M, Imtiaz F. Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss. BMC Endocr Disord 2017; 17:17. [PMID: 28302169 PMCID: PMC5356396 DOI: 10.1186/s12902-017-0164-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Congenital combined pituitary hormone deficiency (CPHD) is a rare heterogeneous group of conditions. CPHD-type 3 (CPHD3; MIM# 221750) is caused by recessive mutations in LHX3, a LIM-homeodomain transcription factor gene. The isoforms of LHX3 are critical for pituitary gland formation and specification of the anterior pituitary hormone-secreting cell types. They also play distinct roles in the development of neuroendocrine and auditory systems. CASE PRESENTATION Here, we summarize the clinical, endocrinological, radiological and molecular features of three patients from two unrelated families. Clinical evaluation revealed severe CPHD coupled with cervical vertebral malformations (rigid neck, scoliosis), mild developmental delay and moderate sensorineural hearing loss (SNHL). The patients were diagnosed with CPHD3 based on the array of hormone deficiencies and other associated syndromic symptoms, suggestive of targeted LHX3 gene sequencing. A novel missense mutation c.437G > T (p. Cys146Phe) and a novel nonsense mutation c.466C > T (p. Arg156Ter), both in homozygous forms, were found. The altered Cys146 resides in the LIM2 domain of the encoded protein and is a phylogenetically conserved residue, which mediates LHX3 transcription factor binding with a zinc cation. The p. Arg156Ter is predicted to result in a severely truncated protein, lacking the DNA binding homeodomain. CONCLUSIONS Considering genotype/phenotype correlation, we suggest that the presence of SNHL and limited neck rotation should be considered in the differential diagnosis of CPHD3 to facilitate molecular diagnosis. This report describes the first LHX3 mutations from Saudi patients and highlights the importance of combining molecular diagnosis with the clinical findings. In addition, it also expands the knowledge of LHX3-related CPHD3 phenotype and the allelic spectrum for this gene.
Collapse
Affiliation(s)
- Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| | - Bassam Bin-Abbas
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lolwa Al-Jomaa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rabab Allam
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
5
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
6
|
The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct 2014; 220:1497-509. [PMID: 24647753 DOI: 10.1007/s00429-014-0740-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.
Collapse
|
7
|
Park S, Mullen RD, Rhodes SJ. Cell-specific actions of a human LHX3 gene enhancer during pituitary and spinal cord development. Mol Endocrinol 2013; 27:2013-27. [PMID: 24100213 DOI: 10.1210/me.2013-1161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system.
Collapse
Affiliation(s)
- Soyoung Park
- PhD, Department of Biology, Indiana University-Purdue University Indianapolis, LD222, 402 North Blackford Street, Indianapolis, IN 46202-5120.
| | | | | |
Collapse
|
8
|
Hunter CS, Malik RE, Witzmann FA, Rhodes SJ. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation. PLoS One 2013; 8:e68898. [PMID: 23861948 PMCID: PMC3701669 DOI: 10.1371/journal.pone.0068898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/07/2013] [Indexed: 01/19/2023] Open
Abstract
LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
| | - Raleigh E. Malik
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon J. Rhodes
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rath MF, Rohde K, Klein DC, Møller M. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance. Neurochem Res 2013; 38:1100-12. [PMID: 23076630 PMCID: PMC3570627 DOI: 10.1007/s11064-012-0906-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/19/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology, Panum Institute 24.2, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | | | | | | |
Collapse
|
10
|
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology 2013; 154:738-48. [PMID: 23288907 PMCID: PMC3548188 DOI: 10.1210/en.2012-1790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.
Collapse
Affiliation(s)
- Kelly L Prince
- Departments of Cellular and Integrative Physiology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
11
|
Bechtold-Dalla Pozza S, Hiedl S, Roeb J, Lohse P, Malik RE, Park S, Durán-Prado M, Rhodes SJ. A recessive mutation resulting in a disabling amino acid substitution (T194R) in the LHX3 homeodomain causes combined pituitary hormone deficiency. Horm Res Paediatr 2012; 77:41-51. [PMID: 22286346 PMCID: PMC3355643 DOI: 10.1159/000335929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Recessive mutations in the LHX3 homeodomain transcription factor gene are associated with developmental disorders affecting the pituitary and nervous system. We describe pediatric patients with combined pituitary hormone deficiency (CPHD) who harbor a novel mutation in LHX3. METHODS Two female siblings from related parents were examined. Both patients had neonatal complications. The index patient had CPHD featuring deficiencies of GH, LH, FSH, PRL, and TSH, with later onset of ACTH deficiency. She also had a hypoplastic anterior pituitary, respiratory distress, hearing impairment, and limited neck rotation. The LHX3 gene was sequenced and the biochemical properties of the predicted altered proteins were characterized. RESULTS A novel homozygous mutation predicted to change amino acid 194 from threonine to arginine (T194R) was detected in both patients. This amino acid is conserved in the DNA-binding homeodomain. Computer modeling predicted that the T194R change would alter the homeodomain structure. The T194R protein did not bind tested LHX3 DNA recognition sites and did not activate the α-glycoprotein and PRL target genes. CONCLUSION The T194R mutation affects a critical residue in the LHX3 protein. This study extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in the LHX3 gene.
Collapse
Affiliation(s)
| | - Stefan Hiedl
- Pediatric Endocrinology and Diabetology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Julia Roeb
- Pediatric Endocrinology and Diabetology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Peter Lohse
- Clinical Chemistry-Grosshadern, Ludwig Maximilians University of Munich, Munich, Germany
| | - Raleigh E. Malik
- Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Ind., USA
| | - Soyoung Park
- Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Ind., USA
| | - Mario Durán-Prado
- Medical Sciences, University of Castilla la Mancha, Ciudad Real, Spain
| | - Simon J. Rhodes
- Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Ind., USA,Cellular and Integrative Physiology, Indiana University-Purdue University Indianapolis, Indianapolis, Ind., USA,Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Ind., USA,*Simon J. Rhodes, PhD, Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 N. Barnhill Drive, Indianapolis, IN 46202-5120 (USA), Tel. +1 317 278 1797, E-Mail
| |
Collapse
|
12
|
Mullen RD, Park S, Rhodes SJ. A distal modular enhancer complex acts to control pituitary- and nervous system-specific expression of the LHX3 regulatory gene. Mol Endocrinol 2011; 26:308-19. [PMID: 22194342 DOI: 10.1210/me.2011-1252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Rachel D Mullen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
13
|
A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature. Eur J Pediatr 2011; 170:1017-21. [PMID: 21249393 DOI: 10.1007/s00431-011-1393-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
The LHX3 LIM-homeodomain transcription factor gene is required for normal pituitary and motoneuron development. LHX3 mutations are associated with growth hormone, prolactin, gonadotropin, and TSH deficiency; abnormal pituitary morphology; and may be accompanied with limited neck rotation and sensorineural hearing loss. We report on a boy, who presented with hypoglycemia in the newborn period. He is the second child of healthy unrelated parents. Short neck, growth hormone deficiency, and central hypothyroidism were diagnosed at a general pediatric hospital. Growth hormone and levothyroxine treatment were started, and blood sugar normalized with this treatment. On cerebral MRI, the anterior pituitary gland was hypoplastic. Sensorineural hearing loss was diagnosed by auditory testing. During follow-up, six repeatedly low morning cortisol levels (<1 μg/dl) and low ACTH levels (<10 pg/ml) were documented, so ACTH deficiency had developed over time and therefore hydrocortisone replacement was started at 1.5 years of age. Mutation analysis of the LHX3 gene revealed a homozygous stop mutation in exon 2: c.229C>T (CGA > TGA), Arg77stop (R77X). A complete loss of function is assumed with this homozygous stop mutation. We report a novel LHX3 mutation, which is associated with combined pituitary hormone deficiency including ACTH deficiency, short neck, and sensorineural hearing loss. All patients with LHX3 defects should undergo longitudinal screening for ACTH deficiency, since corticotrope function may decline over time. All patients should have auditory testing to allow for regular speech development.
Collapse
|
14
|
Prince KL, Walvoord EC, Rhodes SJ. The role of homeodomain transcription factors in heritable pituitary disease. Nat Rev Endocrinol 2011; 7:727-37. [PMID: 21788968 DOI: 10.1038/nrendo.2011.119] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anterior pituitary gland secretes hormones that regulate developmental and physiological processes, including growth, the stress response, metabolic status, reproduction and lactation. During embryogenesis, cellular determination and differentiation events establish specialized hormone-secreting cell types within the anterior pituitary gland. These developmental decisions are mediated in part by the actions of a cascade of transcription factors, many of which belong to the homeodomain class of DNA-binding proteins. The discovery of some of these regulatory proteins has facilitated genetic analyses of patients with hormone deficiencies. The findings of these studies reveal that congenital defects-ranging from isolated hormone deficiencies to combined pituitary hormone deficiency syndromes-are sometimes associated with mutations in the genes encoding pituitary-acting developmental transcription factors. The phenotypes of affected individuals and animal models have together provided useful insights into the biology of these transcription factors and have suggested new hypotheses for testing in the basic science laboratory. Here, we summarize the gene regulatory pathways that control anterior pituitary development, with emphasis on the role of the homeodomain transcription factors in normal pituitary organogenesis and heritable pituitary disease.
Collapse
Affiliation(s)
- Kelly L Prince
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 North Barnhill Drive, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|
15
|
Lents CA, Farmerie TA, Cherrington BD, Clay CM. Multiple core homeodomain binding motifs differentially contribute to transcriptional activity of the murine gonadotropin-releasing hormone receptor gene promoter. Endocrine 2009; 35:356-64. [PMID: 19333792 DOI: 10.1007/s12020-009-9167-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/21/2009] [Accepted: 02/23/2009] [Indexed: 11/25/2022]
Abstract
Multiple homeodomain (Hbox) proteins have been shown to organize expression of key markers of gonadotropes. Nine putative Hbox-binding sites, characterized by the homeospecific TAAT motif, are located within the proximal 600 bp of the murine GnRHR promoter. Homeoproteins bind separate Hbox sites within this promoter, supporting basal- and endocrine-directed transcription. The function of the most proximal sites (Hbox1 and Hbox2) in the murine GnRHR is unknown; thus, understanding of the global contribution of homeospecific TAAT sites to promoter function is incomplete. Site-directed mutagenesis revealed that loss of Hbox2 reduced promoter activity in a cell-specific manner, having no effect in alphaT3-1 cells but reducing promoter function in LbetaT2 cells, another gonadotrope-derived cell line representing a later developmental stage. In contrast, eliminating Hbox1 reduced basal activity in both lines. This region displayed specific binding to homeoprotein Oct-1. Mutagenesis of a previously identified Oct-1-binding site in concert with Hbox1 led to further reduction in activity. We suggest that the two most proximal homeodomain-binding sites in the murine GnRHR promoter may regulate the promoter in a developmentally dependent fashion and that Oct-1 acts at multiple but distinct TAAT sites to support basal transcription.
Collapse
Affiliation(s)
- Clay A Lents
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, The University of Georgia, 316 Rhodes Center ADS, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
16
|
Jing YJ, Lan XY, Chen H, Zhang LZ, Zhang CL, Pan CY, Li MJ, Ren G, Wei TB, Zhao M. Three novel single-nucleotide polymorphisms of the bovine LHX3 gene. J Biosci 2008; 33:673-9. [DOI: 10.1007/s12038-008-0087-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Ikeshita N, Kawagishi M, Shibahara H, Toda K, Yamashita T, Yamamoto D, Sugiyama Y, Iguchi G, Iida K, Takahashi Y, Kaji H, Chihara K, Okimura Y. Identification and analysis of prophet of Pit-1-binding sites in human Pit-1 gene. Endocrinology 2008; 149:5491-9. [PMID: 18653712 DOI: 10.1210/en.2008-0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prophet of Pit-1 (Prop1) is a transcription factor that regulates Pit-1 gene expression. Because Pit-1 regulates the differentiation of pituitary cells and the expressions of GH, prolactin and TSHbeta genes, Prop1 mutation results in combined pituitary hormone deficiency in humans. However, Prop1-binding sites in human Pit-1 gene and the mechanism leading to combined pituitary hormone deficiency have remained unclear. In this study, we identified and analyzed Prop1-binding elements of the human Pit-1 gene. Prop1 stimulated the expression of the reporter plasmid containing Pit-1 gene from translation start site to -1340 dose dependently in GH3 cells. The activation by Prop1 was observed in GH3 and TtT/GF cells but not COS7, HeLa, JEG3, and HuH7 cells. Deletion analysis of Pit-1 gene showed that the Prop1-responsive elements were present within the -257-bp region. Within the -257-bp region, there are four elements similar to consensus sequence of paired-like transcription factors. Because Prop1 is a member of paired-like transcription factors, we assessed the elements. EMSA and transient transfection assay using the mutation of the elements revealed that the element from -63 to -53 (the proximal Prop1 binding element) was essential to Prop1-binding and Prop1-induced activation of Pit-1 reporter plasmid. A region at -8kb of human Pit-1 gene is similar to the distal region containing Prop1-binding elements in mouse Pit-1 gene. We showed the region functioned as an enhancer. Furthermore, chromatin immunoprecipitation assay showed that the proximal element could bind Prop1 in vivo cultured cells. Taken together, these findings indicated the novel functioning binding elements of Prop1 in human Pit-1 gene.
Collapse
Affiliation(s)
- Nobuko Ikeshita
- Department of Basic Allied Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rajab A, Kelberman D, de Castro SCP, Biebermann H, Shaikh H, Pearce K, Hall CM, Shaikh G, Gerrelli D, Grueters A, Krude H, Dattani MT. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum Mol Genet 2008; 17:2150-9. [PMID: 18407919 DOI: 10.1093/hmg/ddn114] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Homozygous loss-of-function mutations in the transcription factor LHX3 have been associated with hypopituitarism with structural anterior pituitary defects and cervical abnormalities with or without restricted neck rotation. We report two novel recessive mutations in LHX3 in four patients from two unrelated pedigrees. Clinical evaluation revealed that all four patients exhibit varying degrees of bilateral sensorineural hearing loss, which has not been previously reported in association with LHX3 mutations, in addition to hypopituitarism including adrenocorticotropic hormone deficiency and an unusual skin and skeletal phenotype in one family. Furthermore, re-evaluation of three patients previously described with LHX3 mutations showed they also exhibit varying degrees of bilateral sensorineural hearing loss. We have investigated a possible role for LHX3 in inner ear development in humans using in situ hybridization of human embryonic and fetal tissue. LHX3 is expressed in defined regions of the sensory epithelium of the developing inner ear in a pattern overlapping that of SOX2, which precedes the onset of LHX3 expression and is known to be required for inner ear and pituitary development in both mice and humans. Moreover, we show that SOX2 is capable of binding to and activating transcription of the LHX3 proximal promoter in vitro. This study therefore extends the phenotypic spectrum associated with LHX3 mutations to encompass variable sensorineural hearing loss and suggests a possible interaction between LHX3 and SOX2 likely to be important for development of both the inner ear and the anterior pituitary in human embryonic development.
Collapse
Affiliation(s)
- Anna Rajab
- Genetics Unit, DGHA, Ministry of Health, Muscat, Sultanate of Oman
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Savage JJ, Mullen RD, Sloop KW, Colvin SC, Camper SA, Franklin CL, Rhodes SJ. Transgenic mice expressing LHX3 transcription factor isoforms in the pituitary: effects on the gonadotrope axis and sex-specific reproductive disease. J Cell Physiol 2007; 212:105-17. [PMID: 17311285 DOI: 10.1002/jcp.21010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The LHX3 transcription factor plays critical roles in pituitary and nervous system development. Mutations in the human LHX3 gene cause severe hormone deficiency diseases. The gene produces two mRNAs which can be translated to three protein isoforms. The LHX3a protein contains a central region with LIM domains and a homeodomain, and a carboxyl terminus with the major transactivation domain. LHX3b is identical to LHX3a except that it has a different amino terminus. M2-LHX3 lacks the amino terminus and LIM domains of LHX3a/b. In vitro experiments have demonstrated these three proteins have different biochemical and gene regulatory properties. Here, to investigate the effects of overexpression of LHX3 in vivo, the alpha glycoprotein subunit (alphaGSU) promoter was used to produce LHX3a, LHX3b, and M2-LHX3 in the pituitary glands of transgenic mice. Alpha GSU-beta galactosidase animals were generated as controls. Male alphaGSU-LHX3a and alphaGSU-LHX3b mice are infertile and die at a young age as a result of complications associated with obstructive uropathy including uremia. These animals have a reduced number of pituitary gonadotrope cells, low circulating gonadotropins, and possible sex hormone imbalance. Female alphaGSU-LHX3a and alphaGSU-LHX3b transgenic mice are viable but have reduced fertility. By contrast, alphaGSU-M2-LHX3 mice and control mice expressing beta galactosidase are reproductively unaffected. These overexpression studies provide insights into the properties of LHX3 during pituitary development and highlight the importance of this factor in reproductive physiology.
Collapse
Affiliation(s)
- Jesse J Savage
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pfaeffle RW, Savage JJ, Hunter CS, Palme C, Ahlmann M, Kumar P, Bellone J, Schoenau E, Korsch E, Brämswig JH, Stobbe HM, Blum WF, Rhodes SJ. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab 2007; 92:1909-19. [PMID: 17327381 DOI: 10.1210/jc.2006-2177] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The Lhx3 LIM-homeodomain transcription factor gene is required for development of the pituitary and motoneurons in mice. Human LHX3 gene mutations have been reported in five subjects with a phenotype consisting of GH, prolactin, TSH, LH, and FSH deficiency; abnormal pituitary morphology; and limited neck rotation. OBJECTIVE The objective of the study was to determine the frequency and nature of LHX3 mutations in patients with isolated GH deficiency or combined pituitary hormone deficiency (CPHD) and characterize the molecular consequences of mutations. DESIGN The LHX3 sequence was determined. The biochemical properties of aberrant LHX3 proteins resulting from observed mutations were characterized using reporter gene and DNA binding experiments. PATIENTS The study included 366 patients with isolated GH deficiency or CPHD. RESULTS In seven patients with CPHD from four consanguineous pedigrees, four novel, recessive mutations were identified: a deletion of the entire gene (del/del), mutations causing truncated proteins (E173ter, W224ter), and a mutation causing a substitution in the homeodomain (A210V). The mutations were associated with diminished DNA binding and pituitary gene activation, consistent with observed hormone deficiencies. Whereas subjects with del/del, E173ter, and A210V mutations had limited neck rotation, patients with the W224ter mutation did not. CONCLUSIONS LHX3 mutations are a rare cause of CPHD involving deficiencies for GH, prolactin, TSH, and LH/FSH in all patients. Whereas most patients have a severe hormone deficiency manifesting after birth, milder forms can be observed, and limited neck rotation is not a universal feature of patients with LHX3 mutations. This study extends the known molecular defects and range of phenotypes found in LHX3-associated diseases.
Collapse
Affiliation(s)
- Roland W Pfaeffle
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 North Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dickinson A, Sive H. Positioning the extreme anterior in Xenopus: cement gland, primary mouth and anterior pituitary. Semin Cell Dev Biol 2007; 18:525-33. [PMID: 17509913 DOI: 10.1016/j.semcdb.2007.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/26/2007] [Accepted: 04/10/2007] [Indexed: 11/28/2022]
Abstract
The extreme anterior of the deuterostome embryo is unusual in that ectoderm and endoderm are directly juxtaposed, without intervening mesoderm. In all vertebrates, this region gives rise to the anterior pituitary, the primary mouth and, in most frogs, to the mucus-secreting cement gland. Using the frog Xenopus laevis as a paradigm, we suggest that, initially, the extreme anterior forms a homogenous domain characterized by expression of pitx genes. Subsequently, this domain becomes subdivided to form these three different structures under the influence of different inductive signals from surrounding tissues.
Collapse
Affiliation(s)
- A Dickinson
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, United States
| | | |
Collapse
|
22
|
Mullen RD, Colvin SC, Hunter CS, Savage JJ, Walvoord EC, Bhangoo AP, Ten S, Weigel J, Pfäffle RW, Rhodes SJ. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol Cell Endocrinol 2007; 265-266:190-5. [PMID: 17210222 PMCID: PMC1853274 DOI: 10.1016/j.mce.2006.12.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Mutations in the genes encoding these regulatory proteins are associated with combined hormone deficiency diseases in humans and animal models. Patients with these diseases have complex syndromes involving short stature, and reproductive and metabolic disorders. Analyses of the features of these diseases and the biochemical properties of the LHX3 and LHX4 proteins will facilitate a better understanding of the molecular pathways that regulate the development of the specialized hormone-secreting cells of the mammalian anterior pituitary gland.
Collapse
Affiliation(s)
- Rachel D. Mullen
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie C. Colvin
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | - Chad S. Hunter
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | - Jesse J. Savage
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | | | | | - Svetlana Ten
- Infants and Children’s Hospital of Brooklyn at Maimonides, Brooklyn, NY
| | | | | | - Simon J. Rhodes
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
23
|
Zhang JH, Liu JL, Wu YJ, Cui S. LIM homeodomain proteins Islet-1 and Lim-3 expressions in the developing pineal gland of chick embryo by immunohistochemistry. J Pineal Res 2006; 41:247-54. [PMID: 16948785 DOI: 10.1111/j.1600-079x.2006.00363.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LIM homeodomain proteins Islet-1 and Lim-3 expression and their role in nervous tissue and endocrine glands have been reported; however, nothing is known concerning Islet-1 and Lim-3 expression in the developing pineal gland of the chick embryo. The aim of the present study was to determine the ontogeny of Islet-1 and Lim-3 expression in the developing pineal gland of chick embryo using immunohistochemistry. The results showed that Islet-1 and Lim-3 immunopositive cells were first detected in the pineal evagination of chick embryos at day 4 (E4) and E4.5 of incubation, respectively. In the later developing stages, both Islet-1 and Lim-3 immunopositive cells were consistently detected in the follicular and parafollicular pinealocytes throughout the pineal gland. The relative percentage of Islet-1 immunopositive (Islet-1+) cells relative to the total cells was about 6% at E4.5, and then kept increasing (P < 0.05) and reached about 40% by E12.5; this was followed by no obvious changes until the chicks were newly hatched. The change in Lim-3 immunopositive (Lim-3+) cell number was parallel to that of Islet-1, although Lim-3+ cell were significantly fewer than Islet-1+ cell numbers from E4.5 to E8.5 (P < 0.05). Dual immunohistochemical staining results showed that almost all the Lim-3+ cells expressed Islet-1 at every stage examined, and about 90% of Islet-1+ cells were proliferating cell nuclear antigen negative. These results suggest that both Islet-1 and Lim-3 may be involved in regulating the development and functional maturation of the pineal gland, although further studies are required in elucidating the functional roles of Islet-1 and Lim-3 and the related mechanisms.
Collapse
Affiliation(s)
- Jin-Hua Zhang
- Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
24
|
Bhangoo APS, Hunter CS, Savage JJ, Anhalt H, Pavlakis S, Walvoord EC, Ten S, Rhodes SJ. Clinical case seminar: a novel LHX3 mutation presenting as combined pituitary hormonal deficiency. J Clin Endocrinol Metab 2006; 91:747-53. [PMID: 16394081 DOI: 10.1210/jc.2005-2360] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT LHX3 encodes LIM homeodomain class transcription factors with important roles in pituitary and nervous system development. The only previous report of LHX3 mutations described patients with two types of recessive mutations displaying combined pituitary hormone deficiency coupled with neck rigidity. OBJECTIVE We report a patient presenting a unique phenotype associated with a novel mutation in the LHX3 gene. PATIENT We report a 6-yr, 9-month-old boy born from a consanguineous relationship who presented shortly after birth with cyanosis, feeding difficulty, persistent jaundice, micropenis, and poor weight gain and growth rate. Laboratory data, including an undetectable TSH, low free T4, low IGF-I and IGF binding protein-3, prolactin deficiency, and LH and FSH deficiency were consistent with hypopituitarism. A rigid cervical spine leading to limited head rotation was noticed on follow-up examination. Magnetic resonance imaging revealed an apparently structurally normal cervical spine and a postcontrast hypointense lesion in the anterior pituitary. RESULTS Analysis of the LHX3 gene revealed homozygosity for a novel single-base-pair deletion in exon 2. This mutation leads to a frame shift predicted to result in the production of short, inactive LHX3 proteins. The results of in vitro translation experiments are consistent with this prediction. The parents of the patients are heterozygotes, indicating a recessive mode of action for the deletion allele. CONCLUSIONS The presence of a hypointense pituitary lesion and other clinical findings broadens the phenotype associated with LHX3 gene mutation.
Collapse
Affiliation(s)
- Amrit P S Bhangoo
- Pediatric Endocrinology Division, Infant's and Children's Hospital of Brooklyn at Maimonides, Brooklyn, New York 11219, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yaden BC, Garcia M, Smith TPL, Rhodes SJ. Two promoters mediate transcription from the human LHX3 gene: involvement of nuclear factor I and specificity protein 1. Endocrinology 2006; 147:324-37. [PMID: 16179410 DOI: 10.1210/en.2005-0970] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The LHX3 transcription factor is required for pituitary and nervous system development in mammals. Mutations in the human gene are associated with hormone-deficiency diseases. The gene generates two mRNAs, hLHX3a and hLHX3b, which encode three proteins with different properties. Here, the cis elements and trans-acting factors that regulate the basal transcription of the two mRNAs are characterized. A comparative approach was taken featuring analysis of seven mammalian Lhx3 genes, with a focus on the human gene. Two conserved, TATA-less, GC-rich promoters that are used to transcribe the mRNAs precede exons 1a and 1b of hLHX3. Transcription start sites were mapped for both promoters. Deletion experiments showed most activity for reporter genes containing the basal promoters in the context of -2.0 kb of hLHX3a and 1.8 kb of intron 1a (hLHX3b). Transfection, site-directed mutation, electrophoretic mobility shift, Southwestern blot, and chromatin immunoprecipitation approaches were used to characterize the interaction of transcription factors with conserved elements in the promoters. Specificity protein 1 is a regulator of both promoters through interaction with GC boxes. In addition, a distal element within intron 1a that is recognized by nuclear factor I is critical for hLHX3b promoter function. We conclude that dual promoters allow regulated production of two hLHX3 mRNAs.
Collapse
Affiliation(s)
- Benjamin C Yaden
- Department of Biology (B.C.Y., M.G.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The human and mouse genomes each contain at least 12 genes encoding LIM homeodomain (LIM-HD) transcription factors. These gene regulatory proteins feature two LIM domains in their amino termini and a characteristic DNA binding homeodomain. Studies of mouse models and human patients have established that the LIM-HD factors are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. In this article, we review the roles of the LIM-HD proteins in mammalian development and their involvement in human diseases.
Collapse
Affiliation(s)
- Chad S Hunter
- Department of Biology and The Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202-5132, USA
| | | |
Collapse
|
27
|
McGillivray SM, Bailey JS, Ramezani R, Kirkwood BJ, Mellon PL. Mouse GnRH receptor gene expression is mediated by the LHX3 homeodomain protein. Endocrinology 2005; 146:2180-5. [PMID: 15705775 PMCID: PMC2930620 DOI: 10.1210/en.2004-1566] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Appropriate expression of GnRH receptor (GnRHR) is necessary for the correct regulation of the gonadotropins, LH and FSH, by GnRH. GnRHR is primarily expressed in the gonadotrope cells of the anterior pituitary, and a number of regulatory elements important for both basal and hormonal regulation of the gene have been identified. Using the gonadotrope-derived cell line, alpha T3-1, that endogenously expresses GnRHR, we have identified an ATTA element located at -298 relative to the transcriptional start site that is essential for basal expression of the GnRHR gene. LHX3, a member of the LIM homeodomain family, binds the -298 ATTA site in vitro as well as to the endogenous GnRHR promoter in vivo. Additionally, LHX3 specifically activates through this -298 ATTA site in transient transfection assays. LHX3 is essential for pituitary development and has been implicated in the regulation of a number of pituitary specific genes; however, this is the first report identifying its role in the regulation of GnRHR.
Collapse
Affiliation(s)
- Shauna M McGillivray
- Department of Reproductive Medicine, the Biomedical Sciences Graduate Program, and the Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093-0674, USA
| | | | | | | | | |
Collapse
|
28
|
Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ. Transcriptional control during mammalian anterior pituitary development. Gene 2004; 319:1-19. [PMID: 14597167 DOI: 10.1016/s0378-1119(03)00804-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mammalian anterior pituitary gland is a compound endocrine organ that regulates reproductive development and fitness, growth, metabolic homeostasis, the response to stress, and lactation, by actions on target organs such as the gonads, the liver, the thyroid, the adrenals, and the mammary gland. The protein and peptide hormones that control these physiological parameters are secreted by specialized pituitary cell types that derive from a common origin in the early ectoderm. Collectively, the broad physiological importance of the pituitary gland, its intriguing organogenesis, and the clinical and agricultural significance of its actions, have established pituitary development as an excellent model system for the study of the gene-regulatory cascades that guide vertebrate cell determination and differentiation. We review the transcriptional pathways that regulate the commitment of the individual pituitary cell lineages and that subsequently modulate trophic hormone gene activity in the differentiated cells of the mature gland.
Collapse
Affiliation(s)
- Jesse J Savage
- Department of Biology, Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA
| | | | | | | |
Collapse
|
29
|
Bachir LK, Garrel G, Lozach A, Laverrière JN, Counis R. The rat pituitary promoter of the neuronal nitric oxide synthase gene contains an Sp1-, LIM homeodomain-dependent enhancer and a distinct bipartite gonadotropin-releasing hormone-responsive region. Endocrinology 2003; 144:3995-4007. [PMID: 12933674 DOI: 10.1210/en.2002-0183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuronal nitric oxide synthase (NOS I) is expressed and hormonally regulated in rat anterior pituitary gonadotropes. In the present study, we investigated the mechanisms that underlie the constitutive and GnRH up-regulated activity of the pituitary exon 1p promoter of the NOS I gene in these cells. Through the use of 5'-deletions and transient transfections in L beta T2, a gonadotrope-derived cell line, we delineated a NOS I cell-specific (NCS) enhancer region (-73/-59) that is required for constitutive activity. Independently of the NCS enhancer, GnRH responsiveness is supported by a bipartite regulatory domain referred to as the GnRH response element I and II located between -33/-10 and -4/+4, the latter consisting of a cAMP-like response element. By combining transient transfections, gel shift, and supershift assays, we demonstrate that Sp1 and LIM-homeodomain-related protein bind the NCS enhancer, whereas cAMP response element binding protein and cAMP regulatory element modulator-like factors bind the GnRH response element II motif. We further show that factors involved in GnRH regulation are also implicated in constitutive activity, suggesting intimate links between constitutive and regulated promoter activity. We speculate that specific expression of the NOS I gene in gonadotropes together with its regulation by GnRH is suggestive of a critical participation of NOS I in gonadotrope function.
Collapse
Affiliation(s)
- Lydia K Bachir
- Signalisation Cellulaire, Régulation de Gènes et Physiologie de l'Axe Gonadotrope, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 7079, Physiologie et Physiopathologie, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Asbreuk CHJ, van Schaick HSA, Cox JJ, Smidt MP, Burbach JPH. Survey for paired-like homeodomain gene expression in the hypothalamus: restricted expression patterns of Rx, Alx4 and goosecoid. Neuroscience 2003; 114:883-9. [PMID: 12379244 DOI: 10.1016/s0306-4522(02)00325-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homeobox genes are important regulators of cellular identity. Several homeobox genes are known to be specifically expressed in subsets of neurons in the forebrain, exclusively, or in distinct combinations. In this study, we explored the expression of homeobox genes in the forebrain of the adult rat by a degenerate polymerase chain reaction cloning strategy. We identified the expression of 12 homeobox genes, several of which display a remarkable restricted expression pattern in the adult brain. We demonstrated the expression of goosecoid in a very small set of neurons in the hypothalamus. By using Otp as a marker, these goosecoid-positive cells were found to constitute a small area just beside the paraventricular nucleus. Furthermore, we found expression of Rx in the pineal gland, along with Alx4. Rx was additionally found in the posterior pituitary and in cells aligning the bottom of the third ventricle. These findings form a starting point to reveal functions of the described homeobox genes in the forebrain.
Collapse
Affiliation(s)
- C H J Asbreuk
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht, Universiteitsweg 100, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Amselem S. Current approaches for deciphering the molecular basis of combined anterior pituitary hormone deficiency in humans. Mol Cell Endocrinol 2002; 197:47-56. [PMID: 12431795 DOI: 10.1016/s0303-7207(02)00278-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review focuses on the general strategies currently used to decipher the molecular bases of combined pituitary hormone deficiency (CPHD) of genetic origin. By summarizing illustrative approaches that turned out to be successful for identifying an increasing number of genes involved in CPHD in the human, this article consider predictable obstacles specific to the investigation of these rare and heterogeneous conditions, while underlining the previously unsuspected roles of several of these genes during the development of extrapituitary structures.
Collapse
Affiliation(s)
- Serge Amselem
- Institut National de la Santé et de la Recherche Médicale (Unité 468), Hôpital Henri-Mondor, Créteil 94010, France.
| |
Collapse
|
32
|
Bachy I, Failli V, Rétaux S. A LIM-homeodomain code for development and evolution of forebrain connectivity. Neuroreport 2002; 13:A23-7. [PMID: 11893924 DOI: 10.1097/00001756-200202110-00002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Isabelle Bachy
- Développement, Evolution et Plasticité du Système Nerveux UPR2197, Institut Alfred Fessard, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
33
|
Abstract
During the development of the pituitary gland, distinct hormone-producing cell types arise from a common population of ectodermal progenitors, providing an instructive model system for elucidating the molecular mechanisms of patterning and cell type specification in mammalian organogenesis. Recent studies have established that the development of the pituitary occurs through multiple sequential steps, allowing the coordinate control of the commitment, early patterning, proliferation, and positional determination of pituitary cell lineages in response to extrinsic and intrinsic signals. The early phases of pituitary development appear to be mediated through the activities of multiple signaling gradients emanating from key organizing centers that give rise to temporally and spatially distinct patterns of transcription factor expression. The induction of these transcriptional mediators in turn acts to positionally organize specific pituitary cell lineages within an apparently uniform field of ectodermal progenitors. Ultimately, pituitary cell types have proven to be both specified and maintained through the combinatorial interactions of a series of cell-type-restricted transcription factors that dictate the cell autonomous programs of differentiation in response to the transient signaling events.
Collapse
Affiliation(s)
- J S Dasen
- Howard Hughes Medical Institute, Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0648, USA.
| | | |
Collapse
|
34
|
Jameson HL, Lillycrop KA. Nerve growth factor induces the expression of the LIM homeodomain transcription factor Isl-1 with the kinetics of an immediate early gene in adult rat dorsal root ganglion. Neurosci Lett 2001; 309:130-4. [PMID: 11502362 DOI: 10.1016/s0304-3940(01)02040-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
LIM-homeodomain genes encode a major class of transcription factors which play a critical role in regulating tissue specific gene expression. In this report, we have shown that three members of the LIM-homeodomain gene family - Isl-1, Rlim and Lim-3 are expressed in adult rat sensory neurons. Furthermore, we show that the addition of nerve growth factor (NGF) to cultures of primary dorsal root ganglion neurons leads to the induction of Isl-1, Rlim and Lim-3 mRNA expression. The increase in Isl-1 mRNA levels upon NGF addition was rapid and occurred even in the presence of cycloheximide. These findings place Isl-1 as a novel member of the immediate early class of genes. In contrast, Rlim and Lim-3mRNA induction by NGF required protein synthesis. The role of LIM-homeodomain genes in mediating responses to NGF in adult sensory neurons is discussed.
Collapse
Affiliation(s)
- H L Jameson
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | |
Collapse
|
35
|
Howard PW, Maurer RA. A point mutation in the LIM domain of Lhx3 reduces activation of the glycoprotein hormone alpha-subunit promoter. J Biol Chem 2001; 276:19020-6. [PMID: 11279219 DOI: 10.1074/jbc.m101782200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lhx3, a member of the LIM homeodomain family of transcription factors, is required for development of the pituitary in mice. A recent report has described a point mutation in the human LHX3 gene that is associated with a combined pituitary hormone disorder. The mutation is predicted to lead to the replacement of a tyrosine residue with a cysteine in the second LIM domain of LHX3. We have characterized the effects of this point mutation (Y114C) when analyzed in the context of the mouse Lhx3 coding sequence. Mobility shift assays demonstrated that the Lhx3 Y114C mutant is capable of binding DNA, although a decrease in the formation of a specific complex was observed. Transfection assays using an expression vector for either full-length Lhx3 or a GAL4-Lhx3 LIM domain fusion provided evidence that the Lhx3 Y114C mutant has a decreased ability to stimulate transcription. In particular, a GAL4-Lhx3 Y114C LIM mutant was unable to support Ras responsiveness of a modified glycoprotein hormone alpha-subunit reporter gene. Protein interaction studies suggest that the Y114C mutation may modestly reduce binding to the POU transcription factor, Pit-1. Interestingly, the Y114C mutation essentially abrogated binding to the putative co-activator/adapter, selective LIM-binding protein. The findings provide insights into the mechanisms mediating transcriptional activation by Lhx3 and suggest that the observed phenotype of the human mutation probably involves reduced transcriptional activity of the mutant LHX3.
Collapse
Affiliation(s)
- P W Howard
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
36
|
Sloop KW, Parker GE, Hanna KR, Wright HA, Rhodes SJ. LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. Gene 2001; 265:61-9. [PMID: 11255008 DOI: 10.1016/s0378-1119(01)00369-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Lhx3 LIM homeodomain transcription factor is critical for pituitary gland formation and specification of the anterior pituitary hormone-secreting cell types. Two mutations in LHX3, a missense mutation changing a tyrosine to a cysteine and an intragenic deletion that results in a truncated protein lacking the DNA-binding homeodomain, have been identified in humans. These mutations were identified in patients with retarded growth and combined pituitary hormone deficiency and also abnormal neck and cervical spine development. For both the LHX3a and LHX3b isoforms, we compared the ability of wild type and mutant LHX3 proteins to trans-activate pituitary genes, bind DNA recognition elements, and interact with partner proteins. The tyrosine missense mutation inhibits the ability of LHX3 to induce transcription from selected target genes but does not prevent DNA binding and interaction with partner proteins such as NLI and Pit-1. Mutant LHX3 proteins lacking a homeodomain do not bind DNA and do not induce transcription from pituitary genes. These studies demonstrate that mutations in the LHX3 isoforms impair their gene regulatory functions and support the hypothesis that defects in the LHX3 gene cause complex pituitary disease in humans.
Collapse
Affiliation(s)
- K W Sloop
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, 46202-5132, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The anterior lobe of the pituitary gland is composed of five hormone-producing cell types and develops from Rathke's pouch, an invagination of oral ectoderm. In mice, rapid cell proliferation occurs in the pouch from embryonic day 12.5 (e12.5) to e14.5, preceding the appearance of most hormone transcripts. Cell-type-specific commitment probably occurs prior to e14.5, but cell differentiation can be demonstrated only by detection of hormone transcripts. Although several transcription factors critical for pouch expansion are known, few of their target genes have been identified. To identify putative transcription factor target genes and cell-type-specific markers, we used differential display PCR analysis of RNA prepared from e12.5 and e14.5 Rathke's pouches. We present an expression profile of the developing pituitary gland including 83 transcripts, 40% of which are novel. The tissue distribution, cell specificity, and developmental regulation were determined for a subset of the transcripts.
Collapse
Affiliation(s)
- K R Douglas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
38
|
Abstract
The pituitary corticotrope AtT-20 stable cell line has been used as a model system to study peptide secretion, glucocorticoid regulation, and several other processes. In order to better understand this model cell line, a phage cDNA library was generated from AtT-20/D-16v cell mRNA and cDNA sequences were obtained for 317 clones representing 203 known genes and 48 novel cDNAs. The sequencing results revealed the prevalence of the mouse leukemia virus in this cell line and also identified a number of putatively secreted molecules that were not previously recognized as being secreted from AtT-20/D-16v cells or pituitary corticotropes. Nine completely novel cDNAs and 39 cDNAs homologous to known ESTs were also identified. A listing of other genes known to be expressed in AtT-20/D-16v cells is also provided.
Collapse
Affiliation(s)
- M R Schiller
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave., Farmington, Connecticut, USA.
| |
Collapse
|
39
|
Parker GE, Sandoval RM, Feister HA, Bidwell JP, Rhodes SJ. The homeodomain coordinates nuclear entry of the Lhx3 neuroendocrine transcription factor and association with the nuclear matrix. J Biol Chem 2000; 275:23891-8. [PMID: 10818088 DOI: 10.1074/jbc.m000377200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LIM homeodomain transcription factors regulate development in complex organisms. To characterize the molecular signals required for the nuclear localization of these proteins, we examined the Lhx3 factor. Lhx3 is essential for pituitary organogenesis and motor neuron specification. By using functional fluorescent derivatives, we demonstrate that Lhx3 is found in both the nucleoplasm and nuclear matrix. Three nuclear localization signals were mapped within the homeodomain, and one was located in the carboxyl terminus. The homeodomain also serves as the nuclear matrix targeting sequence. No individual signal is alone required for nuclear localization of Lhx3; the signals work in combinatorial fashion. Specific combinations of these signals transferred nuclear localization to cytoplasmic proteins. Mutation of nuclear localization signals within the homeodomain inhibited Lhx3 transcriptional function. By contrast, mutation of the carboxyl-terminal signal activated Lhx3, indicating that this region is critical to transcriptional activity and may be a target of regulatory pathways. The pattern of conservation of the nuclear localization and nuclear matrix targeting signals suggests that the LIM homeodomain factors use similar mechanisms for subcellular localization. Furthermore, upon nuclear entry, association of Lhx3 with the nuclear matrix may contribute to LIM homeodomain factor interaction with other classes of transcription factors.
Collapse
Affiliation(s)
- G E Parker
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202-5132, USA
| | | | | | | | | |
Collapse
|
40
|
Sloop KW, Showalter AD, Von Kap-Herr C, Pettenati MJ, Rhodes SJ. Analysis of the human LHX3 neuroendocrine transcription factor gene and mapping to the subtelomeric region of chromosome 9. Gene 2000; 245:237-43. [PMID: 10717474 DOI: 10.1016/s0378-1119(00)00025-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Lhx3 LIM homeodomain transcription factor is critical to pituitary organogenesis and motor neuron development. We determined the genomic structure and chromosomal localization of human LHX3. The gene contains seven coding exons and six introns that span 8.7 kilobases in length. The LHX3 gene codes for two functionally distinct isoforms that differ in their amino termini but share common LIM domains and a homeodomain. The functional domains of the LHX3 proteins are encoded by distinct exons. The alternate amino termini and LIM domains lie within individual exons, and the homeodomain is coded by two exons interrupted by a small intron. Human LHX3 maps to the subtelomeric region of chromosome 9 at band 9q34.3, within a region noted for chromosomal translocation and insertion events. Characterization of the genomic organization and chromosomal localization of LHX3 will enable molecular evaluation and genetic diagnoses of pituitary diseases and central nervous system developmental disorders in humans.
Collapse
Affiliation(s)
- K W Sloop
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
41
|
Li R, Thode S, Zhou J, Richard N, Pardinas J, Rao MS, Sah DW. Motoneuron differentiation of immortalized human spinal cord cell lines. J Neurosci Res 2000; 59:342-52. [PMID: 10679769 DOI: 10.1002/(sici)1097-4547(20000201)59:3<342::aid-jnr7>3.0.co;2-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human motoneuron cell lines will be valuable tools for spinal cord research and drug discovery. To create such cell lines, we immortalized NCAM(+)/neurofilament(+) precursors from human embryonic spinal cord with a tetracycline repressible v-myc oncogene. Clonal NCAM(+)/neurofilament(+) cell lines differentiated exclusively into neurons within 1 week. These neurons displayed extensive processes, exhibited immunoreactivity for mature neuron-specific markers such as tau and synaptophysin, and fired action potentials upon current injection. Moreover, a clonal precursor cell line gave rise to multiple types of spinal cord neurons, including ChAT(+)/Lhx3(+)/Lhx4(+) motoneurons and GABA(+) interneurons. These neuronal restricted precursor cell lines will expedite the elucidation of molecular mechanisms that regulate the differentiation, maturation and survival of specific subsets of spinal cord neurons, and the identification and validation of novel drug targets for motoneuron diseases and spinal cord injury.
Collapse
Affiliation(s)
- R Li
- Signal Pharmaceuticals Incorporated, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
VanderHeyden TC, Wojtkiewicz PW, Voss TC, Mangin TM, Harrelson Z, Ahlers KM, Phelps CJ, Hurley DL. Mouse growth hormone transcription factor Zn-16: unique bipartite structure containing tandemly repeated zinc finger domains not reported in rat Zn-15. Mol Cell Endocrinol 2000; 159:89-98. [PMID: 10687855 DOI: 10.1016/s0303-7207(99)00200-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat Zn-15 is a transcription factor activating GH gene expression by synergistic interactions with Pit-1, named for 15 DNA-binding zinc fingers, including fingers IX, X, and XI that are responsible for GH promoter binding. In this study, a mouse cDNA for Zn-15 was characterized. The predicted 2192-amino acid mouse protein is 89% identical to rat (r) Zn-15 overall, and is 97% similar in the C-terminal domain necessary for binding the GH promoter. However, the mouse cDNA encodes 16 zinc fingers, and sequences of rZn-15 pituitary cDNAs were the same as the mouse (m) Zn-16; the rat sequence in GenBank has a one nucleotide offset of a 17-bp segment in the finger V region. The mouse and corrected rat sequences contain four tandemly repeated fingers in the N-terminus, each separated by seven amino acids, typical of zinc finger proteins of the transcription factor IIIA-type. Analysis of mZn-16 expression by RT-PCR showed that the mRNA is, produced at similar levels in normal and GH-deficient Ames dwarf (Prop-1 <df-/->) mouse pituitaries at postnatal day 1. Mouse Zn-16 mRNA also was detected by ribonuclease protection assay in the pre-somatotrophic mouse cell line GHFT1-5. The Zn-16 protein is bipartite in that the N-terminal half displays tandem spacing typical of most zinc finger proteins, while the C-terminal portion contains long linkers between fingers that cooperatively bind to a DNA response element. Expression in early postnatal pituitary and in pre-somatotrophic cells suggests that Zn-16 could play a role in pituitary development prior to somatotroph differentiation.
Collapse
Affiliation(s)
- T C VanderHeyden
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118-5698, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kato Y, Tomizawa K, Kato T. Multiple binding sites for nuclear proteins of the anterior pituitary are located in the 5'-flanking region of the porcine follicle-stimulating hormone (FSH) beta-subunit gene. Mol Cell Endocrinol 1999; 158:69-78. [PMID: 10630407 DOI: 10.1016/s0303-7207(99)00184-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), are synthesized specifically in the gonadotropes of the anterior pituitary. The aim of this study was to investigate nuclear factors that bind specifically to the porcine FSH beta-subunit gene. We examined nuclear protein binding to 2.75 kilobase pairs (kbp) of DNA adjacent to the porcine FSH beta-subunit gene: about 2.32 kbp of upstream DNA and 0.43 kbp of downstream DNA. The upstream region contains only TATA box, CACCC element, and some imperfect sequences of cAMP-responsive element, activator protein-1 binding site, and activator protein-2 binding site. Gel mobility shift assay using nuclear proteins extracted from the porcine anterior pituitary revealed that the proteins bound to a limited region of DNA, 107 bp long (designated as Fd2), located about -800 bp upstream from the transcription initiation site. Competitive binding assays demonstrated that the protein binding was sequence specific; the addition of excess amounts of several putative regulatory sequences and plasmid (non-homologous) DNA fragments did not reduce the binding. Furthermore, all five subfragments of Fd2 were also bound by the pituitary nuclear proteins, showing that the entire region of Fd2 is involved in this interaction. Southwestern blotting demonstrated that at least seven protein species of 110, 98, 78, 63, 52, 42, and 35 kDa recognize Fd2. Nuclear proteins from several other porcine tissues were also able to bind to the Fd2 fragment but the gel shift patterns were different and the bindings were weak, although only the cerebellum showed a pattern of binding that was similar to that of the anterior pituitary. These data suggest that multiple proteins of the anterior pituitary recognize a specific region of the porcine FSH beta-subunit gene.
Collapse
Affiliation(s)
- Y Kato
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | |
Collapse
|
44
|
Dasen JS, Rosenfeld MG. Signaling mechanisms in pituitary morphogenesis and cell fate determination. Curr Opin Cell Biol 1999; 11:669-77. [PMID: 10600709 DOI: 10.1016/s0955-0674(99)00034-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of the pituitary gland has provided an instructive model system for exploring the mechanisms by which differentiated cell types arise from a common primordium in response to extrinsic and intrinsic signals. Recent studies have established that organ commitment, early patterning, proliferation and positional determination of cell types in the developing pituitary are mediated through the integral actions of multiple signaling gradients acting on an initially uniform ectodermal cell population. Studies of the cell-autonomous transcriptional mediators of the transient signaling events have also provided insight into the molecular mechanisms by which overlapping patterns of transcription factor expression can positionally specify pituitary cell lineages. There is emerging evidence for a morphogenetic code for the development of the pituitary gland based on the cooperative and opposing actions of multiple signaling gradients, mediated by corresponding expression patterns of temporally and spatially induced transcription factors.
Collapse
Affiliation(s)
- J S Dasen
- Howard Hughes Medical Institute, Cellular and Molecular Medicine, University of California, San Diego, CA, USA.
| | | |
Collapse
|
45
|
Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 1999; 13:2212-25. [PMID: 10598593 DOI: 10.1210/mend.13.12.0395] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lhx3 is a LIM homeodomain transcription factor essential for pituitary development and motor neuron specification in mice. We identified two isoforms of human Lhx3, hLhx3a and hLhx3b, which differ in their ability to trans-activate pituitary gene targets. These factors are identical within the LIM domains and the homeodomain, but differ in their amino-terminal sequences preceding the LIM motifs. Both isoforms are localized to the nucleus and are expressed in the adult human pituitary, but gene activation studies demonstrate characteristic functional differences. Human Lhx3a trans-activated the alpha-glycoprotein subunit promoter and a reporter construct containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a synergized with the pituitary POU domain factor, Pit-1, to strongly induce transcription of the TSHbeta-subunit gene, while hLhx3b did not. We demonstrate that the differences in gene activation properties between hLhx3a and hLhx3b correlate with their DNA binding to sites within these genes. The short hLhx3b-specific amino-terminal domain inhibits DNA binding and gene activation functions of the molecule. These data suggest that isoforms of Lhx3 may play distinct roles during development of the mammalian pituitary gland and other neuroendocrine systems.
Collapse
Affiliation(s)
- K W Sloop
- Department of Biology, Indiana University-Purdue University Indianapolis 46202-5132, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The anterior lobe of the pituitary gland is derived from the oral ectoderm early in gestation. A variety of techniques have been used to understand how early precursor cells differentiate to form the five major cell types that populate the adult anterior lobe. Current evidence suggests that corticotropes arise from a lineage distinct from that of the other four cell types. The cells of the other lineage branch - thyrotropes, gonadotropes, somatotropes and lactotropes - appear to be related because of their dependence on common transcription factors and the frequent occurrence of cells that produce multiple hormones. While thyrotropes arise through two routes, the lineage related to somatotropes and lactotropes appears to be the most important for hormone production. Each cell type can populate the organ and function in the absence of the other cell types, except for lactotropes, which have a strong dependence on somatotropes. Our current knowledge of anterior pituitary cell lineage relationships may contribute to a better understanding of the origin of pituitary adenomas and tumors.
Collapse
|
47
|
Gleiberman AS, Fedtsova NG, Rosenfeld MG. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol 1999; 213:340-53. [PMID: 10479452 DOI: 10.1006/dbio.1999.9386] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways.
Collapse
Affiliation(s)
- A S Gleiberman
- Eukaryotic Regulatory Biology Program, Howard Hughes Medical Institute, San Diego, La Jolla, California, 92093-0648, USA
| | | | | |
Collapse
|
48
|
Abstract
Significant advances have been made in defining the transcription cascade that is responsible for the early steps of pituitary formation and the environmental signals that induce, pattern and specify the pituitary gland and its cell types. It is now possible to outline the molecular mechanisms underlying the formation of the pituitary gland, as well as the initial development of organ-specific cell types.
Collapse
Affiliation(s)
- H Z Sheng
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
49
|
Wood WM, Dowding JM, Gordon DF, Ridgway EC. An upstream regulator of the glycoprotein hormone alpha-subunit gene mediates pituitary cell type activation and repression by different mechanisms. J Biol Chem 1999; 274:15526-32. [PMID: 10336446 DOI: 10.1074/jbc.274.22.15526] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeting of alpha-subunit gene expression within the pituitary is influenced by an upstream regulatory region that directs high level expression to thyrotropes and gonadotropes of transgenic mice. The same region also enhanced the activity of the proximal promoter in transfections of pituitary-derived alpha-TSH and alpha-T3 cells. We have localized the activating sequences to a 125-bp region that contains consensus sites for factors that also play a role in proximal promoter activity. Proteins present in alpha-TSH and alpha-T3 cells as well as those from GH3 somatotrope-derived cells interact with this region. The upstream area inhibited proximal alpha-promoter activity by 80% when transfected into GH3 cells. Repression in GH3 cells was mediated through a different mechanism than enhancement, as supported by the following evidence. Reversing the orientation of the area resulted in a loss of proximal promoter activation in alpha-TSH and alpha-T3 cells but did not relieve repression in GH3 cells. Mutation of proximal sites shown to be important for activation had no effect on repression. Finally, bidirectional deletional analysis revealed that multiple elements are involved in activation and repression and, together with the DNA binding studies, suggests that these processes may be mediated through closely juxtaposed or even overlapping elements, thus perhaps defining a new class of bifunctional gene regulatory sequence.
Collapse
Affiliation(s)
- W M Wood
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
50
|
Seuntjens E, Denef C. Progenitor cells in the embryonic anterior pituitary abruptly and concurrently depress mitotic rate before progressing to terminal differentiation. Mol Cell Endocrinol 1999; 150:57-63. [PMID: 10411300 DOI: 10.1016/s0303-7207(99)00028-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The control of progenitor cell proliferation in concert with terminal differentiation during embryonic development is poorly understood. The present paper examines this issue in the different cell lineages of the fetal mouse pituitary. Mouse fetuses were pulse-exposed to 3H-thymidine (3H-T) on a single day between embryonic day (E) 10 and E16 (prior to the onset of hormone phenotype expression) and the 3H-T labeling index of each cell type determined 3 or 4 days later (E13-19), when hormone phenotypes were detectable. In the pars tuberalis primordium, TSHbeta appeared from E13. Of these cells 75.5% were labeled when 3H-T had been administered on E10. Label decreased to 40.8% when it had been incorporated on E11 and was negligible (4.2%) when it had been taken up on E12. In the pars distalis, ACTH appeared on E13, TSHbeta, and PRL on E14, LHbeta/FSHbeta on E15 and GH on E16. When examined on E16, all these cell types were labeled for 50-60% if 3H-T had been injected on E12, but this number dropped to about 15% when 3H-T had been given on E13. Only 5-10% of the hormonal cells had taken up label when E14, 15, and 16 were the days of 3H-T administration. The decline in overall labeling index (LI) within both parts of the pituitary was significantly smaller than that in the hormone expressing cells. It is concluded that an outspoken decline in proliferation of the cells destined to become hormone-expressing cell types occurs one to several days before these hormones come to expression. In the pars distalis, this decline occurs at a common time point i.e. between E12 and E13 for each cell type. Pars tuberalis and pars distalis TSHbeta cells show distinct 3H-T labeling profiles, suggesting distinct cell lineage sources for each.
Collapse
Affiliation(s)
- E Seuntjens
- Laboratory of Cell Pharmacology, University of Leuven, Medical School, Belgium
| | | |
Collapse
|