1
|
Xiao H, Raza F, Li K, Song J, Zafar H, Yang S, Su J, Qiu M. Cell membrane derived biomimetic nanomedicine for precision delivery of traditional Chinese medicine in cancer therapy. J Control Release 2025; 383:113829. [PMID: 40355044 DOI: 10.1016/j.jconrel.2025.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The rapidly developing modern nanotechnology has brought new vitality to the application of traditional Chinese medicine (TCM), improving the pharmacokinetics and bioavailability of unmodified natural drugs. However, synthetic materials inevitably introduce incompatibilities. This has led to focusing on biomimetic drug delivery systems (DDS) based on biologically derived cell membranes. This "top-down" approach to nanomedicine preparation is simple and effective, as the inherited cell membranes and cell surface substances can mimic nature when delivering drugs back into the body, interacting similarly to the source cells at the biological interface. The concept of biologically derived TCM and biomimetic membranes aligns well with nature, the human body, and medicine, thereby enhancing the in vivo compatibility of TCM. This review focused on the recent progress using biomimetic membranes for TCM in cancer therapy, emphasizing the effective integration of biomimetic nanomedicine and TCM in applications such as cancer diagnosis, imaging, precision treatment, and immunotherapy. The review also provided potential suggestions on the challenges and prospects in this field.
Collapse
Affiliation(s)
- Hang Xiao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinpu Song
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Lu Y, Ling C, Shoti J, Yang H, Nath A, Keeler GD, Qing K, Srivastava A. Enhanced transgene expression from single-stranded AAV vectors in human cells in vitro and in murine hepatocytes in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102196. [PMID: 38766527 PMCID: PMC11101737 DOI: 10.1016/j.omtn.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
We identified that distal 10 nucleotides in the D-sequence in AAV2 inverted terminal repeat (ITR) share partial sequence homology to 1/2 binding site of glucocorticoid receptor-binding element (GRE). Here, we describe that (1) purified GR binds to AAV2 D-sequence, and the D-sequence competes with GR binding to its cognate binding site; (2) dexamethasone-mediated activation of GR pathway significantly increases the transduction efficiency of AAV2 vectors in human cells; (3) human osteosarcoma cells, U2OS, which lack expression of GR, are poorly transduced by AAV2 vectors, but stable transfection with a GR expression plasmid restores vector-mediated transgene expression; (4) replacement of the distal 10 nucleotides in the D-sequence of the AAV2 ITR with a full-length GRE consensus sequence significantly enhances transgene expression in human cells in vitro and in murine hepatocytes in vivo; and (5) none of the ITRs in AAV1, AAV3, AAV4, AAV5, and AAV6 genomes contains the GRE 1/2 binding site, and insertion of a full-length GRE consensus sequence in the AAV6-ITR also significantly enhances transgene expression from AAV6 vectors, both in vitro and in vivo. These novel vectors, termed generation Y AAV vectors, which are serotype, transgene, or promoter agnostic, should be useful in human gene therapy.
Collapse
Affiliation(s)
- Yuan Lu
- Full Circle Therapeutics, Shanghai, China
| | - Chen Ling
- Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jakob Shoti
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hua Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Aneesha Nath
- Department of Pharmacotherapy & Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Geoffrey D. Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Rana J, Marsic D, Zou C, Muñoz-Melero M, Li X, Kondratov O, Li N, de Jong YP, Zolotukhin S, Biswas M. Characterization of a Bioengineered AAV3B Capsid Variant with Enhanced Hepatocyte Tropism and Immune Evasion. Hum Gene Ther 2023; 34:289-302. [PMID: 36950804 PMCID: PMC10125406 DOI: 10.1089/hum.2022.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023] Open
Abstract
Capsid engineering of adeno-associated virus (AAV) can surmount current limitations to gene therapy such as broad tissue tropism, low transduction efficiency, or pre-existing neutralizing antibodies (NAb) that restrict patient eligibility. We previously generated an AAV3B combinatorial capsid library by integrating rational design and directed evolution with the aim of improving hepatotropism. A potential isolate, AAV3B-DE5, gained a selective proliferative advantage over five rounds of iterative selection in hepatocyte spheroid cultures. In this study, we reanalyzed our original dataset derived from the AAV3B combinatorial library and isolated variants from earlier (one to three) rounds of selection, with the assumption that variants with faster replication kinetics are not necessarily the most efficient transducers. We identified a potential candidate, AAV3B-V04, which demonstrated significantly enhanced transduction in mouse-passaged primary human hepatocytes as well as in humanized liver chimeric mice, compared to the parental AAV3B or the previously described isolate, AAV3B-DE5. Interestingly, the AAV3B-V04 capsid variant exhibited significantly reduced seroreactivity to pooled or individual human serum samples. Forty-four percent of serum samples with pre-existing NAbs to AAV3B had 5- to 20-fold lower reciprocal NAb titers to AAV3B-V04. AAV3B-V04 has only nine amino acid substitutions, clustered in variable region IV compared to AAV3B, indicating the importance of the loops at the top of the three-fold protrusions in determining both transduction efficiency and immunogenicity. This study highlights the effectiveness of rational design combined with targeted selection for enhanced AAV transduction via molecular evolution approaches. Our findings support the concept of limiting selection rounds to isolate the best transducing AAV3B variant without outgrowth of faster replicating candidates. We conclude that AAV3B-V04 provides advantages such as improved human hepatocyte tropism and immune evasion and propose its utility as a superior candidate for liver gene therapy.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Porton Biologics, Jiangsu, China
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xin Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ning Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
6
|
Meumann N, Schmithals C, Elenschneider L, Hansen T, Balakrishnan A, Hu Q, Hook S, Schmitz J, Bräsen JH, Franke AC, Olarewaju O, Brandenberger C, Talbot SR, Fangmann J, Hacker UT, Odenthal M, Ott M, Piiper A, Büning H. Hepatocellular Carcinoma Is a Natural Target for Adeno-Associated Virus (AAV) 2 Vectors. Cancers (Basel) 2022; 14:cancers14020427. [PMID: 35053588 PMCID: PMC8774135 DOI: 10.3390/cancers14020427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gene therapy is a novel approach to treat diseases by introducing corrective genetic information into target cells. Adeno-associated virus vectors are the most frequently applied gene delivery tools for in vivo gene therapy and are also studied as part of innovative anticancer strategies. Here, we report on the natural preference of AAV2 vectors for hepatocellular carcinoma (HCC) compared to nonmalignant liver cells in mice and human tissue. This preference in transduction is due to the improved intracellular processing of AAV2 vectors in HCC, resulting in significantly more vector genomes serving as templates for transcription in the cell nucleus. Based on this natural tropism for HCC, novel therapeutic strategies can be designed or existing therapeutic approaches can be strengthened as they currently result in only a minor improvement of the poor prognosis for most liver cancer patients. Abstract Although therapeutic options are gradually improving, the overall prognosis for patients with hepatocellular carcinoma (HCC) is still poor. Gene therapy-based strategies are developed to complement the therapeutic armamentarium, both in early and late-stage disease. For efficient delivery of transgenes with antitumor activity, vectors demonstrating preferred tumor tropism are required. Here, we report on the natural tropism of adeno-associated virus (AAV) serotype 2 vectors for HCC. When applied intravenously in transgenic HCC mouse models, similar amounts of vectors were detected in the liver and liver tumor tissue. In contrast, transduction efficiency, as indicated by the level of transgene product, was moderate in the liver but was elevated up to 19-fold in mouse tumor tissue. Preferred transduction of HCC compared to hepatocytes was confirmed in precision-cut liver slices from human patient samples. Our mechanistic studies revealed that this preference is due to the improved intracellular processing of AAV2 vectors in HCC, resulting, for example, in nearly 4-fold more AAV vector episomes that serve as templates for gene transcription. Given this background, AAV2 vectors ought to be considered to strengthen current—or develop novel—strategies for treating HCC.
Collapse
Affiliation(s)
- Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Christian Schmithals
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
| | - Leroy Elenschneider
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Asha Balakrishnan
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Qingluan Hu
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Sebastian Hook
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Ann-Christin Franke
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
| | - Olaniyi Olarewaju
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Josef Fangmann
- KRH Klinikum Siloah, Liver Center Hannover (LCH), 30459 Hannover, Germany;
| | - Ulrich T. Hacker
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- Institute of Pathology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael Ott
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +49-511-532-5106
| |
Collapse
|
7
|
Yin L, Keeler GD, Zhang Y, Hoffman BE, Ling C, Qing K, Srivastava A. AAV3-miRNA vectors for growth suppression of human hepatocellular carcinoma cells in vitro and human liver tumors in a murine xenograft model in vivo. Gene Ther 2021; 28:422-434. [PMID: 32152434 PMCID: PMC7784898 DOI: 10.1038/s41434-020-0140-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
We have previously reported that recombinant adeno-associated virus serotype 3 (AAV3) vectors transduce human liver tumors more efficiently in a mouse xenograft model following systemic administration. Others have utilized AAV8 vectors expressing miR-26a and miR-122 to achieve near total inhibition of growth of mouse liver tumors. Since AAV3 vectors transduce human hepatic cells more efficiently than AAV8 vectors, in the present studies, we wished to evaluate the efficacy of AAV3-miR-26a/122 vectors in suppressing the growth of human hepatocellular carcinoma (HCC) cells in vitro, and human liver tumors in a mouse model in vivo. To this end, a human HCC cell line, Huh7, was transduced with various multiplicities of infection (MOIs) of AAV3-miR-26a or scAAV3-miR-122 vectors, or both, which also co-expressed a Gaussia luciferase (GLuc) reporter gene. Only a modest level of dose-dependent growth inhibition of Huh7 cells (~12-13%) was observed at the highest MOI (1 × 105 vgs/cell) with each vector. When Huh7 cells were co-transduced with both vectors, the extent of growth inhibition was additive (~26%). However, AAV3-miR-26a and scAAV3-miR-122 vectors led to ~70% inhibition of growth of Huh-derived human liver tumors in a mouse xenograft model in vivo. Thus, the combined use of miR-26a and scAAV3-miR-122 delivered by AAV3 vectors offers a potentially useful approach to target human liver tumors.
Collapse
Affiliation(s)
- Ling Yin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Geoffrey D Keeler
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yuanhui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Brad E Hoffman
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
8
|
Jia F, Li L, Liu H, Lv P, Shi X, Wu Y, Ling C, Xu F. Development of a rabies virus-based retrograde tracer with high trans-monosynaptic efficiency by reshuffling glycoprotein. Mol Brain 2021; 14:109. [PMID: 34238335 PMCID: PMC8265122 DOI: 10.1186/s13041-021-00821-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/04/2021] [Indexed: 11/12/2022] Open
Abstract
Rabies virus (RV) is the most widely used vector for mapping neural circuits. Previous studies have shown that the RV glycoprotein can be a target to improve the retrograde transsynaptic tracing efficiency. However, the current versions still label only a small portion of all presynaptic neurons. Here, we reshuffled the oG sequence, a chimeric glycoprotein, with positive codon pair bias score (CPBS) based on bioinformatic analysis of mouse codon pair bias, generating ooG, a further optimized glycoprotein. Our experimental data reveal that the ooG has a higher expression level than the oG in vivo, which significantly increases the tracing efficiency by up to 12.6 and 62.1-fold compared to oG and B19G, respectively. The new tool can be used for labeling neural circuits Therefore, the approach reported here provides a convenient, efficient and universal strategy to improve protein expression for various application scenarios such as trans-synaptic tracing efficiency, cell engineering, and vaccine and oncolytic virus designs.
Collapse
Affiliation(s)
- Fan Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Translational Research Center for the Nervous System (TRCNS), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems,, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haizhou Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Pei Lv
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems,, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiangwei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems,, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems,, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chen Ling
- Division of Molecular and Cellular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fuqiang Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Translational Research Center for the Nervous System (TRCNS), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems,, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021; 18:85. [PMID: 33892762 PMCID: PMC8067653 DOI: 10.1186/s12985-021-01555-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gene delivery of antiviral therapeutics to anatomical sites where viruses accumulate and persist is a promising approach for the next generation of antiviral therapies. Recombinant adeno-associated viruses (AAV) are one of the leading vectors for gene therapy applications that deliver gene-editing enzymes, antibodies, and RNA interference molecules to eliminate viral reservoirs that fuel persistent infections. As long-lived viral DNA within specific cellular reservoirs is responsible for persistent hepatitis B virus, Herpes simplex virus, and human immunodeficiency virus infections, the discovery of AAV vectors with strong tropism for hepatocytes, sensory neurons and T cells, respectively, is of particular interest. Identification of natural isolates from various tissues in humans and non-human primates has generated an extensive catalog of AAV vectors with diverse tropisms and transduction efficiencies, which has been further expanded through molecular genetic approaches. The AAV capsid protein, which forms the virions' outer shell, is the primary determinant of tissue tropism, transduction efficiency, and immunogenicity. Thus, over the past few decades, extensive efforts to optimize AAV vectors for gene therapy applications have focused on capsid engineering with approaches such as directed evolution and rational design. These approaches are being used to identify variants with improved transduction efficiencies, alternate tropisms, reduced sequestration in non-target organs, and reduced immunogenicity, and have produced AAV capsids that are currently under evaluation in pre-clinical and clinical trials. This review will summarize the most recent strategies to identify AAV vectors with enhanced tropism and transduction in cell types that harbor viral reservoirs.
Collapse
Affiliation(s)
- Rossana Colón-Thillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
10
|
Rodríguez-Márquez E, Meumann N, Büning H. Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opin Biol Ther 2020; 21:749-766. [PMID: 33331201 DOI: 10.1080/14712598.2021.1865303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Gene therapy clinical trials with adeno-associated virus (AAV) vectors report impressive clinical efficacy data. Nevertheless, challenges have become apparent, such as the need for high vector doses and the induction of anti-AAV immune responses that cause the loss of vector-transduced hepatocytes. This fostered research focusing on development of next-generation AAV vectors capable of dealing with these hurdles.Areas Covered: While both the viral vector genome and the capsid are subjects to engineering, this review focuses on the latter. Specifically, we summarize the principles of capsid engineering strategies, and describe developments and applications of engineered capsid variants for liver-directed gene therapy.Expert Opinion: Capsid engineering is a promising strategy to significantly improve efficacy of the AAV vector system in clinical application. Reduction in vector dose will further improve vector safety, lower the risk of host immune responses and the cost of manufacturing. Capsid engineering is also expected to result in AAV vectors applicable to patients with preexisting immunity toward natural AAV serotypes.
Collapse
Affiliation(s)
- Esther Rodríguez-Márquez
- Universidad Autónoma De Madrid, Madrid, Spain.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF, Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
11
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
12
|
Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, He B, Chen A, Heier LA, Sondhi D, Kaminsky SM, Mozley PD, Babich JW, Crystal RG. Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Hum Gene Ther 2020; 31:1237-1259. [PMID: 33233962 PMCID: PMC7769048 DOI: 10.1089/hum.2020.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.
Collapse
Affiliation(s)
- Douglas J. Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center
- Department of Genetic Medicine
| | | | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Paresh Kothari
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Bin He
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Linda A. Heier
- Department of Radiology; Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - John W. Babich
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | |
Collapse
|
13
|
Biswas M, Marsic D, Li N, Zou C, Gonzalez-Aseguinolaza G, Zolotukhin I, Kumar SRP, Rana J, Butterfield JSS, Kondratov O, de Jong YP, Herzog RW, Zolotukhin S. Engineering and In Vitro Selection of a Novel AAV3B Variant with High Hepatocyte Tropism and Reduced Seroreactivity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:347-361. [PMID: 33145371 PMCID: PMC7591349 DOI: 10.1016/j.omtm.2020.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023]
Abstract
Limitations to successful gene therapy with adeno-associated virus (AAV) can comprise pre-existing neutralizing antibodies to the vector capsid that can block cellular entry, or inefficient transduction of target cells that can lead to sub-optimal expression of the therapeutic transgene. Recombinant serotype 3 AAV (AAV3) is an emerging candidate for liver-directed gene therapy. In this study, we integrated rational design by using a combinatorial library derived from AAV3B capsids with directed evolution by in vitro selection for liver-targeted AAV variants. The AAV3B-DE5 variant described herein was undetectable in the original viral library but gained a selective advantage upon in vitro passaging in human hepatocarcinoma spheroid cultures. AAV3B-DE5 contains 24 capsid amino acid substitutions compared with AAV3B, distributed among all five variable regions, with strong selective pressure on VR-IV, VR-V, and VR-VII. In vivo, AAV3B-DE5 demonstrated improved human hepatocyte tropism in a liver chimeric mouse model. Importantly, this variant exhibited reduced seroreactivity to human intravenous immunoglobulin (i.v. Ig), as well as individual serum samples from 100 healthy human donors. Therefore, molecular evolution using a combinatorial library platform generated a viral capsid with high hepatocyte tropism and enhanced evasion of pre-existing AAV neutralizing antibodies.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Damien Marsic
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA.,Porton Biologics, Building 3, Ascendas Park, No. 388 Xinping Street, Suzhou Industrial Park, Jiangsu 215021, China
| | - Ning Li
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chenhui Zou
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA.,Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Irene Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S S Butterfield
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Zhong C, Yu Q, Jia W, Yu X, Yu D, Yang M, Wang L, Ling C, Zhu L. Mechanism for enhanced transduction of hematopoietic cells by recombinant adeno-associated virus serotype 6 vectors. FASEB J 2020; 34:12379-12391. [PMID: 32960474 DOI: 10.1096/fj.201902875r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Hematopoietic gene delivery, such as hematopoietic stem/progenitor cells (HSPCs), is a promising treatment for both inherited and acquired diseases, such as hemophilia. Recently, a combined strategy to achieve more than 90% transduction efficiency was documented using recombinant adeno-associated virus serotype 6 (rAAV6) vectors. However, the mechanisms of enhanced vector transduction efficiency in hematopoietic cells are largely unknown. In this manuscript, we first reported that proteasome inhibitors, which are well-known to facilitate rAAV intracellular trafficking in various cell types, are not effective in hematopoietic cells. From the screening of small molecules derived from traditional Chinese medicine, we demonstrated that shikonin, a potential reactive oxygen species (ROS) generator, significantly increased the in vitro and ex vivo transgene expression mediated by rAAV6 vectors in hematopoietic cells, including human cord blood-derived CD34 + HSPCs. Shikonin mainly targeted vector intracellular trafficking, instead of host cell entry or endonuclear single to double strand vector DNA transition, in a vector serotype-dependent manner. Moreover, a ROS scavenger completely prevented the capability of shikonin to enhance rAAV6 vector-mediated transgene expression. Taken together, these studies expand our understanding of rAAV6-mediated transduction in hematopoietic cells and are informative for improving rAAV6-based treatment of blood diseases.
Collapse
Affiliation(s)
- Chen Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin Yu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wentao Jia
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Yu
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dandan Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lina Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Changquan Ling
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Liqing Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Rambhai HK, Ashby FJ, Qing K, Srivastava A. Role of Essential Metal Ions in AAV Vector-Mediated Transduction. Mol Ther Methods Clin Dev 2020; 18:159-166. [PMID: 32637447 PMCID: PMC7321778 DOI: 10.1016/j.omtm.2020.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Abstract
Metal elements are essential components of approximately half of all cellular proteins, and approximately one-third of all known enzymes thus far are metalloenzymes. Several cellular proteins and enzymes undoubtedly impact the transduction efficiency of recombinant adeno-associated virus (AAV) vectors, but the precise role of metal ions in this process has not been studied in detail. In the present studies, we systematically evaluated the effects of all 10 essential metal ions (calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, potassium, sodium, and zinc) on the transduction efficiency of AAV vectors. We report herein that five essential metal ions (iron, magnesium, manganese, molybdenum, and sodium) had little to no effect, and calcium strongly inhibited the transduction efficiency of AAV2 vectors. Whereas copper and potassium increased the transduction efficiency by ∼5-fold and ∼2-fold, respectively, at low concentrations, both essential metals were strongly inhibitory at higher concentrations. Calcium also inhibited the transduction efficiency by ∼3-fold. Two metal ions (cobalt and zinc) increased the transduction efficiency up to ∼10-fold in a dose-dependent manner. The combined use of cobalt and zinc resulted in more than an additive effect on AAV2 vector transduction efficiency (∼30-fold). The transduction efficiency of AAV serotypes 1 through 6 (AAV1-AAV6) vectors was also augmented by zinc. Similarly, the transduction of both single-stranded (ss) and self-complementary (sc) AAV3 vectors was enhanced by zinc. Zinc treatment also led to a dose-dependent increase in expression of a therapeutic protein, the human clotting factor IX (hF.IX), mediated by scAAV3 vectors in a human hepatic cell line. This simple strategy of essential metal ion-mediated enhancement may be useful to lower the dose of AAV vectors for their optimal use in human gene therapy.
Collapse
Affiliation(s)
- Himanshu K. Rambhai
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Frederick J. Ashby
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611-3633, USA
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
16
|
Brown HC, Doering CB, Herzog RW, Ling C, Markusic DM, Spencer HT, Srivastava A, Srivastava A. Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B. Hum Gene Ther 2020; 31:1114-1123. [PMID: 32657150 DOI: 10.1089/hum.2020.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although recombinant adeno-associated virus serotype 8 (AAV8) and serotype 5 (AAV5) vectors have shown efficacy in Phase 1 clinical trials for gene therapy of hemophilia B, it has become increasingly clear that these serotypes are not optimal for transducing primary human hepatocytes. We have previously reported that among the 10 most commonly used AAV serotypes, AAV serotype 3 (AAV3) vectors are the most efficient in transducing primary human hepatocytes in vitro as well as in "humanized" mice in vivo, and suggested that AAV3 vectors expressing human coagulation factor IX (hFIX) may be a more efficient alternative for clinical gene therapy of hemophilia B. In the present study, we extended these findings to develop an AAV3 vector incorporating a compact yet powerful liver-directed promoter as well as optimized hFIX cDNA sequence inserted between two AAV3 inverted terminal repeats. When packaged into an AAV3 capsid, this vector yields therapeutic levels of hFIX in hemophilia B and in "humanized" mice in vivo. Together, these studies have resulted in an AAV3 vector predicted to achieve clinical efficacy at reduced vector doses, without the need for immune-suppression, for clinical gene therapy of hemophilia B.
Collapse
Affiliation(s)
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - David M Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College and Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Vellore, Tamil Nadu, India
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
17
|
Moscoso CG, Steer CJ. The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes (Basel) 2020; 11:genes11080915. [PMID: 32785089 PMCID: PMC7463482 DOI: 10.3390/genes11080915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Monogenic metabolic disorders of hepatic origin number in the hundreds, and for many, liver transplantation remains the only cure. Liver-targeted gene therapy is an attractive treatment modality for many of these conditions, and there have been significant advances at both the preclinical and clinical stages. Viral vectors, including retroviruses, lentiviruses, adenovirus-based vectors, adeno-associated viruses and simian virus 40, have differing safety, efficacy and immunogenic profiles, and several of these have been used in clinical trials with variable success. In this review, we profile viral vectors and non-viral vectors, together with various payloads, including emerging therapies based on RNA, that are entering clinical trials. Genome editing technologies are explored, from earlier to more recent novel approaches that are more efficient, specific and safe in reaching their target sites. The various curative approaches for the multitude of monogenic hepatic metabolic disorders currently at the clinical development stage portend a favorable outlook for this class of genetic disorders.
Collapse
Affiliation(s)
- Carlos G. Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| | - Clifford J. Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| |
Collapse
|
18
|
Ran G, Chen X, Xie Y, Zheng Q, Xie J, Yu C, Pittman N, Qi S, Yu FX, Agbandje-McKenna M, Srivastava A, Ling C. Site-Directed Mutagenesis Improves the Transduction Efficiency of Capsid Library-Derived Recombinant AAV Vectors. Mol Ther Methods Clin Dev 2020; 17:545-555. [PMID: 32258217 PMCID: PMC7114622 DOI: 10.1016/j.omtm.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors selected from capsid libraries present enormous advantages in high selectivity of tissue tropism and their potential use in human gene therapy applications. For example, rAAV-LK03, was used in a gene therapy trial for hemophilia A (ClinicalTrials.gov: NCT03003533). However, high doses in patients resulted in severe adverse events and subsequent loss of factor VIII (FVIII) expression. Thus, additional strategies are needed to enhance the transduction efficiency of capsid library-derived rAAV vectors such that improved clinical efficacy can be achieved at low vector doses. In this study, we characterized two commonly used library-derived rAAV vectors, rAAV-DJ and rAAV-LK03. It was concluded that rAAV-DJ shared similar transport pathways (e.g., cell surface binding, endocytosis-dependent internalization, and cytoplasmic trafficking) with rAAV serotype 2, while rAAV-LK03 and rAAV serotype 3 shared similar transport pathways. We then performed site-directed mutagenesis of surface-exposed tyrosine (Y), serine (S), aspartic acid (D), and tryptophan (W) residues on rAAV-DJ and rAAV-LK03 capsids. Our results demonstrated that rAAV-DJ-S269T and rAAV-LK03-Y705+731F variants had significantly enhanced transduction efficiency compared to wild-type counterparts. Our studies suggest that the strategy of site-directed mutagenesis should be applicable to other non-natural AAV variants for their optimal use in human gene therapy.
Collapse
Affiliation(s)
- Gai Ran
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiao Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yilin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qingyun Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chenghui Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Nikea Pittman
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Arun Srivastava
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611, USA
- Department of Molecular Genetics and Microbiology
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Liu X, Huang H, Gao Y, Zhou L, Yang J, Li X, Li Y, Zhao H, Su S, Ke C, Pei Z. Visualization of gene therapy with a liver cancer-targeted adeno-associated virus 3 vector. J Cancer 2020; 11:2192-2200. [PMID: 32127946 PMCID: PMC7052912 DOI: 10.7150/jca.39579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: To evaluate the feasibility of a self-complementing recombinant adeno-associated virus 3 (scrAAV3) vector targeting liver cancer and non-invasively monitor gene therapy of liver cancer. Materials and methods: An scrAAV3-HSV1-TK-kallistatin (ATK) gene drug was constructed, which contained the herpes virus thymidine kinase (HSV1-TK) reporter gene and human endogenous angiogenesis inhibitor (kallistatin) gene for non-invasive imaging of gene expression. Subcutaneous xenografted tumors of hepatoma in nude mice were generated for positron emission tomography/computed tomography (PET/CT) imaging. The ATK group was injected with the ATK gene through the tail vein, and an imaging agent was injected 2 weeks later. PET/CT imaging was performed at 1 hour after injection of the imaging agent. The control group was injected with phosphate-buffered saline at the same volume as the ATK gene drug. HE staining is used for pathological observation of tumor sections. HSV1-TK and kallistatin expression was identified by immunofluorescence, real-time quantitative PCR, and western blotting. Results: Radioactivity on PET/CT images was significantly higher in the ATK group compared with the control group. 18F-FHBG uptake values of left forelegs in ATK and control groups were 0.591±0.151% and 0.017 ± 0.011% ID/g (n=5), respectively (P<0.05). After injection of the ATK gene drug, mRNA and protein expression of HSV1-TK and kallistatin in subcutaneous xenograft tumors was detected successfully. In vitro analysis demonstrated significant differences in the expression of HSV1-TK and kallistatin between ATK and control groups (P<0.05). Conclusions: The scrAAV3 vector has a strong liver cancer-targeting ability, and the ATK gene drug can be used for targeted and non-invasive monitoring of liver cancer gene therapy.
Collapse
Affiliation(s)
- Xusheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Hanling Huang
- Health management center, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lumeng Zhou
- Postgraduate Training Base of Taihe Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jianwei Yang
- Postgraduate Training Base of Taihe Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaohui Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yang Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Haiwen Zhao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Shanchun Su
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Changbin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhijun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of WudangLocal Chinese Medicine Research, Shiyan, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, China
| |
Collapse
|
20
|
Chimeric Capsid Proteins Impact Transduction Efficiency of Haploid Adeno-Associated Virus Vectors. Viruses 2019; 11:v11121138. [PMID: 31835440 PMCID: PMC6950324 DOI: 10.3390/v11121138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023] Open
Abstract
Our previous studies have demonstrated that haploid AAV vectors made from capsids of two different serotypes induced high transduction and prevented serotype-specific antibody binding. In this study, we explored the transduction efficiency of several haploid viruses, which were made from the VP1/VP2 of one serotype and VP3 of another compatible serotype. After systemic injection of 2 × 1010 vg of AAV vectors into mice, the haploid AAV vectors, composed of VP1/VP2 from serotypes 8 or 9, and VP3 from AAV2, displayed a two to seven-fold increase in liver transduction compared with those of parental AAV2 vectors. Furthermore, a chimeric AAV2/8 VP1/VP2 with N-terminus of VP1/VP2 from AAV2 and C-terminus (VP3 domain) from AAV8 was constructed, and produced the haploid vector 28m-2VP3 with AAV2 VP3. The haploid 28m-2VP3 vector showed a five-fold higher transduction than that of the vectors composed solely of AAV2 VPs. Remarkably, the 28m-2VP3 vectors also induced a significant increase in transgene expression compared to the vectors composed of AAV8 VP1/VP2 with AAV2 VP3. The results suggest that the difference in the VP1/VP2 N-terminal region between AAV2 and AAV8 may allow better "communication" between the VP1/VP2 N-terminus of AAV2 with its cognate VP3. Similarly, the haploid vectors, VP1/VP2 from serotypes 8 or 9 and VP3 from AAV3, achieved higher transductions in multiple tissue types beyond typical tropism compared with those of AAV3 vectors. Consistently, higher vector genome copy numbers were detected in these tissues, indicating that an incorporation of non-cognate VP1/VP2 might influence the cellular tropism of the haploid vectors. However, there was no significant difference or even decreased transductions when compared with those of parental AAV8 or AAV9 vectors. In summary, these studies provide insight into current development strategies of AAV vectors that can increase AAV transduction across multiple tissues.
Collapse
|
21
|
Lyu C, Fang F, Li B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr Protein Pept Sci 2019; 20:240-250. [PMID: 29895240 DOI: 10.2174/1389203719666180612084615] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Melittin, a major component of bee venom, is a water-soluble toxic peptide of which a various biological effects have been identified to be useful in anti-tumor therapy. In addition, Melittin also has anti-parasitic, anti-bacterial, anti-viral, and anti-inflammatory activities. Therefore, it is a very attractive therapeutic candidate for human diseases. However, melittin induces extensive hemolysis, a severe side effect that dampens its future development and clinical application. Thus, studies of melittin derivatives and new drug delivery systems have been conducted to explore approaches for optimizing the efficacy of this compound, while reducing its toxicity. A number of reviews have focused on each side, respectively. In this review, we summarize the research progress on the anti-tumor effects of melittin and its derivatives, and discuss its future potential clinical applications.
Collapse
Affiliation(s)
- Can Lyu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Berns KI, Srivastava A. Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases. Gastroenterol Clin North Am 2019; 48:319-330. [PMID: 31046978 PMCID: PMC6501830 DOI: 10.1016/j.gtc.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombinant vectors based on a nonpathogenic parvovirus, the adeno-associated virus (AAV), have taken center stage in the past decade. The safety of AAV vectors in clinical trials and clinical efficacy in several human diseases are now well documented. Despite these achievements, it is increasingly clear that the full potential of AAV vectors composed of the naturally occurring capsids is unlikely to be realized. This article describes advances that have been made and challenges that remain in the optimal use of AAV vectors in human gene therapy applications.
Collapse
Affiliation(s)
- Kenneth I. Berns
- Distinguished Professor Emeritus, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, Cancer and Genetics Research Complex, University of Florida College of Medicine, 2033 Mowry Road, Room 492-A, Gainesville, FL 32611, USA; Division of Cellular and Molecular Therapy, Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, Cancer and Genetics Research Complex, University of Florida College of Medicine, 2033 Mowry Road, Room 492-A, Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Büning H, Srivastava A. Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:248-265. [PMID: 30815511 PMCID: PMC6378346 DOI: 10.1016/j.omtm.2019.01.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past decade, recombinant vectors based on a non-pathogenic parvovirus, the adeno-associated virus (AAV), have taken center stage as a gene delivery vehicle for the potential gene therapy for a number of human diseases. To date, the safety of AAV vectors in 176 phase I, II, and III clinical trials and their efficacy in at least eight human diseases are now firmly documented. Despite these remarkable achievements, it has also become abundantly clear that the full potential of first generation AAV vectors composed of naturally occurring capsids is not likely to be realized, since the wild-type AAV did not evolve for the purpose of therapeutic gene delivery. In this article, we provide a brief historical account of the progress that has been made in the development of capsid-modified, next-generation AAV vectors to ensure both the safety and efficacy of these vectors in targeting a wide variety of human diseases.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics & Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
24
|
Feng Y, Yin Z, Zhang D, Srivastava A, Ling C. Chinese Medicine Protein and Peptide in Gene and Cell Therapy. Curr Protein Pept Sci 2018; 20:251-264. [PMID: 29895243 DOI: 10.2174/1389203719666180612082432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023]
Abstract
The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.
Collapse
Affiliation(s)
- Yinlu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao, Shandong 266071, China.,Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Zifei Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Daniel Zhang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| |
Collapse
|
25
|
Spyrelli ED, Kyriazou AV, Virgiliou C, Nakas A, Deda O, Papageorgiou VP, Assimopoulou AN, Gika HG. Metabolic profiling study of shikonin's cytotoxic activity in the Huh7 human hepatoma cell line. MOLECULAR BIOSYSTEMS 2018; 13:841-851. [PMID: 28265634 DOI: 10.1039/c6mb00830e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Shikonin and its enantiomer alkannin, which are natural products, have been extensively studied in vitro and in vivo for, among others, their antitumor activity. The investigation of the molecular pathways involved in their action is of interest, since they are not yet clearly defined. Metabolic profiling in cells can provide a picture of a cell's phenotype upon intervention, assisting in the elucidation of the mechanism of action. In this study, the cytotoxic effect of shikonin on a human hepatocarcinoma cell line was studied. Huh7 cells were treated with shikonin at 5 μM, and it was found that shikonin markedly inhibited cell growth. Metabolic profiling indicated alterations in the metabolic content of the cells and the culture media upon treatment, detecting the metabolic response of the cells. This study demonstrates the potential of metabolomics to improve knowledge on the mechanisms involved in shikonin's antitumor action.
Collapse
Affiliation(s)
- E D Spyrelli
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang Y, Han H, Qiu H, Lin H, Yu L, Zhu W, Qi J, Yang R, Pang Y, Wang X, Lu G, Yang Y. Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism. Biomed Pharmacother 2017; 93:636-645. [PMID: 28688289 DOI: 10.1016/j.biopha.2017.06.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023] Open
Abstract
This study aimed to examine the antiviral effects of shikonin ester ((R)-1-(5, 8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl3-(1H- indol-3-yl) propanoate (PMM-034) against influenza A (H1N1) virus. We investigated PMM-034 anti-H1N1 activity and its effect on caspase 3 gene expression during cellular apoptosis after influenza virus infection in vitro. Neuraminidase (NA) inhibition was assessed in comparison with oseltamivir in the influenza virus standard strains A/PR/8/34 to understand the viral mechanism. MDCK and A549 cells were used to investigate influenza viral infection and the structure-activity relationship between PMM-034 and NA was evaluated by pharmacophore-based docking modeling. The production of viral protein was tested by western blot. A/PR/8/34 induced cell inhibition but this was reduced by PMM-034 to 16μg/mL and this showed a selective index of 10mM. PMM-034 inhibited NA in a dose dependent manner, similar to oseltamivir inhibition. A sharp decrease in viral nucleocapsid protein mRNA was observed in infected cells after treatment with PMM-034. Apoptosis of infected A459 cells was inhibited by PMM-034 with decreased caspase 3 levels. ARG 118, ARG 152, ARG 371 and GLU 227 in the binding pocket of NA bound to PMM-034 in the docking model. Taken together, these results suggest PMM-034 shikonin ester blocked H1N1 infection and might be a potential anti-H1N1 drug.
Collapse
Affiliation(s)
- Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China; Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou 215000, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China
| | - Hanyue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China
| | - Lugang Yu
- Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou 215000, China
| | - Wanzhan Zhu
- Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou 215000, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rongwu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China
| | - Yanjun Pang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
Ling C, Li B, Ma W, Srivastava A. Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses. Hum Gene Ther Methods 2017; 27:143-9. [PMID: 27431826 DOI: 10.1089/hgtb.2016.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have described the development of capsid-modified next-generation AAV vectors for both AAV2 and AAV3 serotypes, in which specific surface-exposed tyrosine (Y), serine (S), threonine (T), and lysine (K) residues on viral capsids were modified to achieve high-efficiency transduction at lower doses. We have also described the development of genome-modified AAV vectors, in which the transcriptionally inactive, single-stranded AAV genome was modified to achieve improved transgene expression. Here, we describe that combination of capsid modifications and genome modifications leads to the generation of optimized AAV serotype vectors, which transduce cells and tissues more efficiently, both in vitro and in vivo, at ∼20-30-fold reduced doses. These studies have significant implications in the potential use of the optimized AAV serotype vectors in human gene therapy.
Collapse
Affiliation(s)
- Chen Ling
- 1 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida.,2 Powell Gene Therapy Center, University of Florida College of Medicine , Gainesville, Florida.,3 Shands Cancer Center, University of Florida College of Medicine , Gainesville, Florida
| | - Baozheng Li
- 1 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida
| | - Wenqin Ma
- 1 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida
| | - Arun Srivastava
- 1 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida.,2 Powell Gene Therapy Center, University of Florida College of Medicine , Gainesville, Florida.,3 Shands Cancer Center, University of Florida College of Medicine , Gainesville, Florida.,4 Genetics Institute, University of Florida College of Medicine , Gainesville, Florida.,5 Department of Molecular Genetics and Microbiology, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
28
|
Markusic DM, Nichols TC, Merricks EP, Palaschak B, Zolotukhin I, Marsic D, Zolotukhin S, Srivastava A, Herzog RW. Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models. J Transl Med 2017; 15:94. [PMID: 28460646 PMCID: PMC5412045 DOI: 10.1186/s12967-017-1200-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. Methods We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. Results AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. Conclusions Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Irene Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Damien Marsic
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Srivastava
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
29
|
Shi W, Wang H, Zheng X, Jiang X, Xu Z, Shen H, Li M. HNF-4alpha Negatively Regulates Hepcidin Expression Through BMPR1A in HepG2 Cells. Biol Trace Elem Res 2017; 176:294-304. [PMID: 27660075 DOI: 10.1007/s12011-016-0846-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022]
Abstract
Hepcidin synthesis is reported to be inadequate according to the body iron store in patients with non-alcoholic fatty liver disease (NAFLD) undergoing hepatic iron overload (HIO). However, the underlying mechanisms remain unclear. We hypothesize that hepatocyte nuclear factor-4α (HNF-4α) may negatively regulate hepcidin expression and contribute to hepcidin deficiency in NAFLD patients. The effect of HNF-4α on hepcidin expression was observed by transfecting specific HNF-4α small interfering RNA (siRNA) or plasmids into HepG2 cells. Both direct and indirect mechanisms involved in the regulation of HNF-4α on hepcidin were detected by real-time PCR, Western blotting, chromatin immunoprecipitation (chIP), and reporter genes. It was found that HNF-4α suppressed hepcidin messenger RNA (mRNA) and protein expressions in HepG2 cells, and this suppressive effect was independent of the potential HNF-4α response elements. Phosphorylation of SMAD1 but not STAT3 was inactivated by HNF-4α, and the SMAD4 response element was found essential to HNF-4α-induced hepcidin reduction. Neither inhibitory SMADs, SMAD6, and SMAD7 nor BMPR ligands, BMP2, BMP4, BMP6, and BMP7 were regulated by HNF-4α in HepG2 cells. BMPR1A, but not BMPR1B, BMPR2, ActR2A, ActR2B, or HJV, was decreased by HNF-4α, and HNF4α-knockdown-induced stimulation of hepcidin could be entirely blocked when BMPR1A was interfered with at the same time. In conclusion, the present study suggests that HNF-4α has a suppressive effect on hepcidin expression by inactivating the BMP pathway, specifically via BMPR1A, in HepG2 cells.
Collapse
Affiliation(s)
- Wencai Shi
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
- Department of Clinical Nutrition, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Heyang Wang
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Xuan Zheng
- Department of Clinical Nutrition, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Jiang
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Zheng Xu
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Hui Shen
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China
| | - Min Li
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
30
|
|
31
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
32
|
Hentzschel F, Herrmann AK, Mueller AK, Grimm D. Plasmodium meets AAV-the (un)likely marriage of parasitology and virology, and how to make the match. FEBS Lett 2016; 590:2027-45. [PMID: 27117587 DOI: 10.1002/1873-3468.12187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/24/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
Abstract
The increasing use of screening technologies in malaria research has substantially expanded our knowledge on cellular factors hijacked by the Plasmodium parasite in the infected host, including those that participate in the clinically silent liver stage. This rapid gain in our understanding of the hepatic interaction partners now requires a means to validate and further disentangle parasite-host networks in physiologically relevant liver model systems. Here, we outline seminal work that contributed to our present knowledge on the intrahepatic Plasmodium host factors, followed by a discussion of surrogate models of mammalian livers or hepatocytes. We finally describe how Adeno-associated viruses could be engineered and used as hepatotropic tools to dissect Plasmodium-host interactions, and to deliberately control these networks for antimalaria vaccination or therapy.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Department of Parasitology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Department of Virology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Anne-Kathrin Herrmann
- Department of Virology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Department of Parasitology, Center for Infectious Diseases, Heidelberg University Hospital, Germany
| | - Dirk Grimm
- Department of Virology, Center for Infectious Diseases, Heidelberg University Hospital, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
33
|
Ling C, Yin Z, Li J, Zhang D, Aslanidi G, Srivastava A. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16029. [PMID: 27200382 PMCID: PMC4856060 DOI: 10.1038/mtm.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023]
Abstract
Although recombinant adeno-associated virus serotype 3 (AAV3) vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs) from AAV3 (ITR3), as well as the trans-acting Rep proteins from AAV3 (Rep3) in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ~10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492) were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of homologous Rep proteins, ITRs, and capsids should also lead to more efficacious other AAV serotype vectors for their optimal use in human gene therapy.
Collapse
Affiliation(s)
- Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine, Gainesville, Florida, USA; Powell Gene Therapy Center; University of Florida College of Medicine, Gainesville, Florida, USA; Shands Cancer Center; University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zifei Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine , Gainesville, Florida, USA
| | - Jun Li
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine , Gainesville, Florida, USA
| | - Daniel Zhang
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine , Gainesville, Florida, USA
| | - George Aslanidi
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine, Gainesville, Florida, USA; Powell Gene Therapy Center; University of Florida College of Medicine, Gainesville, Florida, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics; University of Florida College of Medicine, Gainesville, Florida, USA; Powell Gene Therapy Center; University of Florida College of Medicine, Gainesville, Florida, USA; Shands Cancer Center; University of Florida College of Medicine, Gainesville, Florida, USA; Genetics Institute; University of Florida College of Medicine, Gainesville, Florida, USA; Department of Molecular Genetics & Microbiology; University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
34
|
Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Mol Ther 2016; 24:1042-1049. [PMID: 27019999 DOI: 10.1038/mt.2016.61] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.
Collapse
|
35
|
Aravalli RN, Steer CJ. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 2016; 16:595-608. [PMID: 26914853 DOI: 10.1517/14712598.2016.1158808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
37
|
Wang L, Bell P, Somanathan S, Wang Q, He Z, Yu H, McMenamin D, Goode T, Calcedo R, Wilson JM. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Mol Ther 2015; 23:1877-87. [PMID: 26412589 PMCID: PMC4700115 DOI: 10.1038/mt.2015.179] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Suryanarayan Somanathan
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenning He
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Deirdre McMenamin
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tamara Goode
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Li S, Ling C, Zhong L, Li M, Su Q, He R, Tang Q, Greiner DL, Shultz LD, Brehm MA, Flotte TR, Mueller C, Srivastava A, Gao G. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors. Mol Ther 2015; 23:1867-76. [PMID: 26403887 PMCID: PMC4700112 DOI: 10.1038/mt.2015.174] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.
Collapse
Affiliation(s)
- Shaoyong Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chen Ling
- Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Li Zhong
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mengxin Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ran He
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arun Srivastava
- Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
Ling C, Wang Y, Feng YL, Zhang YN, Li J, Hu XR, Wang LN, Zhong MF, Zhai XF, Zolotukhin I, Srivastava A, Ling CQ. Prevalence of neutralizing antibodies against liver-tropic adeno-associated virus serotype vectors in 100 healthy Chinese and its potential relation to body constitutions. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2015; 13:341-6. [PMID: 26343106 DOI: 10.1016/s2095-4964(15)60200-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recombinant adeno-associated virus (rAAV) serotype 2, 3 and 8 vectors are the most promising liver-tropic AAV serotype vectors. Liver diseases are significant problems in China. However, to date, few studies on AAV neutralizing antibodies (Nabs) were working with the Chinese population or with the rAAV3 vectors. The present study aimed to determine the prevalence of Nabs in Chinese population against wild-type AAV2, AAV3 and AAV8 capsids as well as additional two AAV3 variants. In addition, we performed a preliminary analysis to investigate the potential influence of traditional Chinese medicine body constitutions on AAV Nabs. Our work demonstrated that the majority of healthy Chinese subjects were positive for AAV Nabs, with the order of AAV2>AAV3=AAVLK03>AAV8. There was no difference between: 1) AAV3 and its variants; 2) male and female subjects; and 3) different age cohorts (≤35, 36-50, and ≥51 years old). People in the Qi-deficiency constitution had significantly increased AAV8 Nabs than people in the Gentleness constitution. Our studies may have impact on the future clinical design of AAV-based gene therapy in the Chinese population.
Collapse
Affiliation(s)
- Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, USA.,Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32611, USA
| | - Yuan Wang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ying-lu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao 266071, Shandong Province, China
| | - Ya-ni Zhang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China
| | - Jun Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xin-rui Hu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China.,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-na Wang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China
| | - Mao-feng Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-feng Zhai
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China
| | - Irene Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, USA.,Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32611, USA
| | - Chang-quan Ling
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, China.,E-Institute of TCM Internal Medicine, Shanghai Municipal Education Commission, Shanghai 201203, China
| |
Collapse
|
40
|
Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15040. [PMID: 26605372 PMCID: PMC4632836 DOI: 10.1038/mtm.2015.40] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Recent successes of adeno-associated virus (AAV)-based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE), we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering) differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37) and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9). The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA) resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors' in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.
Collapse
|
41
|
Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells. Gene Ther 2015; 23:18-25. [PMID: 26270885 DOI: 10.1038/gt.2015.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
Viral vectors-based gene therapy is an attractive alternative to common anti-cancer treatments. In the present studies, AAV serotype 6 vectors were identified to be particularly effective in the transduction of human prostate (PC3), breast (T47D) and liver (Huh7) cancer cells. Next, we developed chimeric AAV vectors with Arg-Gly-Asp (RGD) peptide incorporated into the viral capsid to enable specific targeting of integrin-overexpressing malignant cells. These AAV6-RGD vectors improved transduction efficiency approximately 3-fold compared with wild-type AAV6 vectors by enhancing the viral entry into the cells. We also observed that transduction efficiency significantly improved, up to approximately 5-fold, by the mutagenesis of surface-exposed tyrosine and threonine residues involved in the intracellular trafficking of AAV vectors. Therefore, in our study, the AAV6-Y705-731F+T492V vector was identified as the most efficient. The combination of RGD peptide, tyrosine and threonine mutations on the same AAV6 capsid further increased the transduction efficiency, approximately 8-fold in vitro. In addition, we mutated lysine (K531E) to impair the affinity of AAV6 vectors to heparan sulfate proteoglycan. Finally, we showed a significant increase in both specificity and efficiency of AAV6-RGD-Y705-731F+T492V+K531E vectors in a xenograft animal model in vivo. In summary, the approach described here can lead to the development of AAV vectors with selective tropism to human cancer cells.
Collapse
|
42
|
Aravalli RN, Belcher JD, Steer CJ. Liver-targeted gene therapy: Approaches and challenges. Liver Transpl 2015; 21:718-37. [PMID: 25824605 PMCID: PMC9353592 DOI: 10.1002/lt.24122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 12/15/2022]
Abstract
The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.
Collapse
Affiliation(s)
- Rajagopal N. Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 54455
| | - John D. Belcher
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455,Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 54455
| |
Collapse
|
43
|
Yeh YC, Liu TJ, Lai HC. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:620383. [PMID: 25737737 PMCID: PMC4337265 DOI: 10.1155/2015/620383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/11/2023]
Abstract
Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1-2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5-10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Yueh-Chiao Yeh
- Department of Natural Biotechnology, Nanhua University, Sec. 1, No. 55, Nanhua Road, Dalin, Chiayi 62249, Taiwan
| | - Tsun-Jui Liu
- Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Sec. 4, No. 1650 Taiwan Boulevard, Taichung 40705, Taiwan
- Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Sec. 2, No. 155, Linong Street, Taipei 11221, Taiwan
| | - Hui-Chin Lai
- Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Sec. 4, No. 1650 Taiwan Boulevard, Taichung 40705, Taiwan
- Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Sec. 2, No. 155, Linong Street, Taipei 11221, Taiwan
| |
Collapse
|