1
|
Ukaegbu K, Allen E, Svoboda KKH. Reactive Oxygen Species and Antioxidants in Wound Healing: Mechanisms and Therapeutic Potential. Int Wound J 2025; 22:e70330. [PMID: 40288766 DOI: 10.1111/iwj.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 04/29/2025] Open
Abstract
Wound healing is a complex biological process encompassing haemostasis, inflammation, proliferation and matrix remodelling. Reactive oxygen species (ROS) play a pivotal role in regulating key events such as antimicrobial defence, platelet activation and angiogenesis. However, excessive ROS levels can induce oxidative stress (OS), disrupting the healing cascade and contributing to chronic wounds, inflammation and impaired tissue repair. Systemic conditions like diabetes, obesity, smoking and ageing further exacerbate OS, highlighting its clinical significance in wound management. Antioxidants (AOx), both endogenous and exogenous, have demonstrated therapeutic potential in mitigating OS, promoting wound closure and enhancing cellular recovery. Compounds like Vitamin E, curcumin, ferulic acid and resveratrol improve AOx enzyme activity, reduce oxidative damage and accelerate wound healing in multiple studies. Emerging evidence supports targeting oxidative pathways as a viable strategy to improve outcomes in chronic and systemic OS-related conditions. This review explores the dual role of ROS in wound healing, the impact of OS in systemic diseases, and the therapeutic potential of AOx in fostering optimal healing outcomes, advocating for robust clinical trials to establish standardised interventions.
Collapse
Affiliation(s)
- Kelechi Ukaegbu
- Department of Periodontology, Texas A&M School of Dentistry, Dallas, Texas, USA
- Private Practice, Houston, Texas, USA
| | - Edward Allen
- Department of Periodontology, Texas A&M School of Dentistry, Dallas, Texas, USA
- Center for Advanced Dental Education, Dallas, Texas, USA
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M School of Dentistry, Dallas, Texas, USA
| |
Collapse
|
2
|
Tuğal Aslan D, Göktaş Z. The Therapeutic Potential of Theobromine in Obesity: A Comprehensive Review. Nutr Rev 2025; 83:859-868. [PMID: 39271172 PMCID: PMC11986327 DOI: 10.1093/nutrit/nuae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Obesity, characterized by chronic low-grade inflammation, is a significant health concern. Phytochemicals found in plants are being explored for therapeutic use, particularly in combating obesity. Among these, theobromine, commonly found in cocoa and chocolate, shows promise. Although not as extensively studied as caffeine, theobromine exhibits positive effects on human health. It improves lipid profiles, aids in asthma treatment, lowers blood pressure, regulates gut microbiota, reduces tumor formation, moderates blood glucose levels, and acts as a neuroprotective agent. Studies demonstrate its anti-obesity effects through mechanisms such as browning of white adipose tissue, activation of brown adipose tissue, anti-inflammatory properties, and reduction of oxidative stress. This study aims to suggest theobromine as a potential therapeutic agent against obesity-related complications.
Collapse
Affiliation(s)
- Dilem Tuğal Aslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| |
Collapse
|
3
|
Chen S, Shi M, Chen X, Le Q, He J. Lactiplantibacillus Plantarum YDJ-03 and Limosilactobacillus fermentum YDJ-6 Alleviate Metabolic Syndrome in Mice. INT J VITAM NUTR RES 2025; 95:31275. [PMID: 40298159 DOI: 10.31083/ijvnr31275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Probiotics are increasingly recognized for promoting beneficial effects on intestinal health. However, most probiotic strains have been insufficiently researched, underscoring the need for further studies to fully understand their potential health benefits, especially in metabolic conditions. Therefore, this study aimed to explore the role and possible mechanism of Lactiplantibacillus plantarum YDJ-03 (YDJ-03) and Limosilactobacillus fermentum YDJ-6 (YDJ-6) in metabolic syndrome (MetS) and hyperuricemia. METHODS Twelve mice per group were fed a high-fat, high-fructose, high-cholesterol (HFFC) diet for 90 days. Mice in both the YDJ-03 and YDJ-6 groups were administered a dose of 1.2 × 109 colony-forming units (CFU) intragastrically per mouse for 28 days before being injected with hypoxanthine (400 mg/kg) to induce hyperuricemia. Blood lipids (triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), liver injury markers (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)), oxidative stress indicators (malondialdehyde (MDA) and superoxide dismutase (SOD)), and renal injury markers (uric acid (UA) and creatinine (CREA)) levels were analyzed after the conclusion of the study. RESULTS In contrast to the model group, the YDJ-03 group exhibited a marked decrease in liver TGs (p = 0.033), MDA (p = 0.0041), serum UA (p = 0.0071) and CREA (p = 0.0072). The mRNA levels of renal toll-like receptor 2 (Tlr2) (p = 0.0018), tumor necrosis factor receptor-associated factor 6 (Traf6) (p = 0.0013), and nuclear factor kappa B subunit 1 (Nfkb1) (p = 0.032) were downregulated, accompanied by marked attenuation of inflammatory cell infiltration in renal tissues and alleviation of glomerular epithelial cell swelling. Furthermore, YDJ-6 treatment promoted significant downward adjustments in hepatic TG (p = 0.0055), serum TG (p = 0.0082), and LDL-C (p = 0.0233) levels. YDJ-6 treatment also decreased serum ALT (p = 0.0458) and AST (p = 0.029) concentrations, downregulated the gene expression levels of inflammation-related adhesion G protein-coupled receptor E1 (Adgre1) (p = 0.033) and prostaglandin-endoperoxide synthase 2 (Ptgs2) (p = 0.0077), and effectively ameliorated hepatocellular lipid deposition and ballooning degeneration with hepatocyte necrosis. CONCLUSIONS YDJ-03 may exert nephroprotective effects by regulating the TLR2-mediated NF-κB pathway, and YDJ-6 can effectively reduce hepatic fat deposition and inflammation to alleviate liver injury.
Collapse
Affiliation(s)
- Sisi Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005 Xiamen, Fujian, China
| | - Menglei Shi
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005 Xiamen, Fujian, China
| | - Xiaolu Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005 Xiamen, Fujian, China
| | - Qingqing Le
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005 Xiamen, Fujian, China
| | - Jianlin He
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005 Xiamen, Fujian, China
| |
Collapse
|
4
|
Dhurandhar Y, Tomar S, Das A, Prajapati JL, Singh AP, Bodake SH, Namdeo KP. Chronic inflammation in obesity and neurodegenerative diseases: exploring the link in disease onset and progression. Mol Biol Rep 2025; 52:424. [PMID: 40274681 DOI: 10.1007/s11033-025-10509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Obesity, a worldwide health emergency, is defined by excessive fat accumulation and significantly impacts metabolic health. In addition to its recognized association with cardiovascular disease, diabetes, and other metabolic illnesses, recent studies have revealed the connection between obesity and neurodegeneration. The main reason for this link is inflammation caused by the growth of fat tissue, which activates harmful processes that affect how the brain works. Fat tissue, particularly the fat around the organs, produces various substances that cause inflammation, such as cytokines (TNF-α, IL-6), adipokines (leptin, resistin), and free fatty acids. These chemicals cause low-grade, persistent systemic inflammation, which is becoming more widely acknowledged as a major factor in peripheral metabolic dysfunction and pathology of the central nervous system (CNS). Inflammatory signals in the brain cause neuroinflammatory reactions that harm neuronal structures, change neuroplasticity, and disrupt synaptic function. When obesity-related inflammation is present, the brain's resident immune cells, known as microglia, become hyperactivated, which can lead to the production of neurotoxic chemicals, which can cause neuronal death. This neuroinflammation exacerbates the negative effects of obesity on brain health and is linked to cognitive decline, Alzheimer's disease, and other neurodegenerative disorders. Moreover, the blood-brain barrier (BBB) exhibits increased permeability during inflammatory states, facilitating the infiltration of peripheral immune cells and cytokines into the brain, hence exacerbating neurodegeneration. Adipose tissue is a source of chronic inflammatory mediators, which are examined in this review along with the molecular pathways that connect inflammation brought on by obesity to neurodegeneration. Additionally, it addresses various anti-inflammatory treatment approaches, including lifestyle modifications, anti-inflammatory medications, and gut microbiota modulation, to lessen the metabolic and neurological effects of obesity. Recognizing the link between obesity and inflammation opens up new opportunities for early intervention and the development of targeted treatments to prevent or alleviate neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Shubham Tomar
- Pharmacovigilance Programme of India, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Ghaziabad, Uttar Pradesh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Jeevan Lal Prajapati
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Surendra H Bodake
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
5
|
Lupu A, Mihai CM, Dragan F, Tarnita I, Alecsa M, Chisnoiu T, Morariu ID, Cuciureanu M, Nedelcu AH, Salaru DL, Anton E, Danielescu C, Fotea S, Stoleriu G, Beser OF, Lupu VV. Antioxidant Supplementation in Childhood Obesity: A Path to Improved Metabolic Health? Antioxidants (Basel) 2025; 14:466. [PMID: 40298814 DOI: 10.3390/antiox14040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Childhood obesity is linked to heightened oxidative stress, a key driver of endothelial dysfunction, inflammation, and metabolic complications. Antioxidants, including Vitamins C and E, are vital in neutralizing free radicals and mitigating oxidative damage. This non-systematic review examines the potential advantages of antioxidant supplementation in pediatric obesity, focusing on its effects on vascular health, insulin sensitivity, and inflammatory processes. Emerging data suggest that antioxidants may improve endothelial function, reduce blood pressure, and enhance metabolic homeostasis in obese children. However, the long-term efficacy and safety of antioxidant supplementation remain uncertain, necessitating further rigorous randomized controlled trials. A deeper understanding of antioxidants' role in pediatric obesity could unlock novel therapeutic approaches for managing obesity-related complications and improving children's overall health outcomes.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of Medicine, "Ovidius" University, 900470 Constanta, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Irina Tarnita
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mirabela Alecsa
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of Medicine, "Ovidius" University, 900470 Constanta, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Magdalena Cuciureanu
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Emil Anton
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Danielescu
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Omer Faruk Beser
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, 34776 Istanbul, Turkey
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
6
|
Anamalay K, Er LQ, Balachandran A, Okechukwu PN, Morak-Młodawska B, Billacura MP, Lavilla CA, Abdul Rani AN, Gaurav A, Konefał A, Jeleń M. A Study of Antioxidant, Antihyperlipidemic, and Anti-Glycation Effects of Alkylsulfonic Acids with Quinobenzothiazinyl Substituents: In Vitro and In Silico Investigations. Antioxidants (Basel) 2025; 14:464. [PMID: 40298778 DOI: 10.3390/antiox14040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Hyperlipidemia, marked by high levels of fats in the blood, is a major risk factor for non-communicable diseases such as type 2 diabetes, cardiovascular diseases, and cancer. It has been linked to the action of reactive oxygen species and the formation of advanced glycation end products. Current treatments for hyperlipidemia, like orlistat, simvastatin, and atorvastatin, often present undesirable side effects, prompting the need for new therapeutic agents that are safer, more effective, cost-efficient, and have fewer side effects. In this context, new compounds, specifically propano- and butanosulfonic acids with 9-substituted quinobenzothiazinyl substituents, were synthesized through reactions with 9-substituted quinobenzothiazines and propane sultone or butane sultone. These novel quinobenzothiazine derivatives were verified using 1H NMR, 13C NMR, and HR-MS techniques. The research focused on assessing these compounds for their toxicity, ability to prevent glycation, antioxidant properties, and their potential to combat hyperlipidemia. Toxicity was evaluated on the 3T3 L1 fibroblast cell line using the MTT assay. The capacity to prevent glycation was tested with bovine serum albumin-methylglyoxal and bovine serum albumin-glucose systems. This study measured total reactive oxygen species in the 3T3 L1 cell line using 2',7'-dichlorodihydrofluorescein diacetate staining, and antioxidant capacity was assessed through DPPH scavenging and metal ion chelation tests. The effectiveness against hyperlipidemia was determined by targeting cholesterol esterase and pancreatic lipase activities, with concentrations of the compounds 5 to 12 ranging from 0.0245 to 0.268 μM. Standard drugs such as orlistat, simvastatin, statins, and aminoguanidine were used as positive controls in various assays. Additionally, computational docking studies with AutoDock Vina were performed. The resulting findings indicated that the compounds were non-toxic to cells, effectively inhibited key enzymes related to hyperlipidemia, and showed significant antioxidant properties, including the prevention of advanced glycation end-product formation. Compounds 11 and 12 demonstrated the highest activity levels. These promising results highlight the potential of new quinobenzothiazine derivatives as lead compounds for the development of antihyperlipidemic drugs, although further research is necessary to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Kirthani Anamalay
- Department of Biotechnology, Faculty of Applied Sciences, Ucsi University, No. 1 Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras, Kuala Lumpur 56000, Malaysia
| | - Lee Qiao Er
- Department of Biotechnology, Faculty of Applied Sciences, Ucsi University, No. 1 Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras, Kuala Lumpur 56000, Malaysia
| | - Abbirami Balachandran
- Department of Biotechnology, Faculty of Applied Sciences, Ucsi University, No. 1 Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras, Kuala Lumpur 56000, Malaysia
| | - Patrick Nwabueze Okechukwu
- Department of Biotechnology, Faculty of Applied Sciences, Ucsi University, No. 1 Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras, Kuala Lumpur 56000, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Capital City University, No. 20 Yusuf Maitama Sule Road, Nasarawa GRA, Kano PMB 3409, Nigeria
| | - Beata Morak-Młodawska
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska, Str. 4, 41-200 Sosnowiec, Poland
| | - Merell P Billacura
- Department of Chemistry, College of Natural Sciences and Mathematics, Mindanao State University-Main Campus, Marawi City 9700, Philippines
| | - Charlie A Lavilla
- Chemistry Department, College of Science & Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Anis Najwa Abdul Rani
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adam Konefał
- Institute of Physics, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska, Str. 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Muszka Z, Jenei V, Mácsik R, Mezhonova E, Diyab S, Csősz R, Bácsi A, Mázló A, Koncz G. Life-threatening risk factors contribute to the development of diseases with the highest mortality through the induction of regulated necrotic cell death. Cell Death Dis 2025; 16:273. [PMID: 40216765 PMCID: PMC11992264 DOI: 10.1038/s41419-025-07563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Chronic diseases affecting the cardiovascular system, diabetes mellitus, neurodegenerative diseases, and various other organ-specific conditions, involve different underlying pathological processes. However, they share common risk factors that contribute to the development and progression of these diseases, including air pollution, hypertension, obesity, high cholesterol levels, smoking and alcoholism. In this review, we aim to explore the connection between four types of diseases with different etiologies and various risk factors. We highlight that the presence of risk factors induces regulated necrotic cell death, leading to the release of damage-associated molecular patterns (DAMPs), ultimately resulting in sterile inflammation. Therefore, DAMP-mediated inflammation may be the link explaining how risk factors can lead to the development and maintenance of chronic diseases. To explore these processes, we summarize the main cell death pathways activated by the most common life-threatening risk factors, the types of released DAMPs and how these events are associated with the pathophysiology of diseases with the highest mortality. Various risk factors, such as smoking, air pollution, alcoholism, hypertension, obesity, and high cholesterol levels induce regulated necrosis. Subsequently, the release of DAMPs leads to chronic inflammation, which increases the risk of many diseases, including those with the highest mortality rates.
Collapse
Affiliation(s)
- Zsuzsa Muszka
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Evgeniya Mezhonova
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Silina Diyab
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Réka Csősz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| |
Collapse
|
8
|
Catana OM, Nemes AF, Cioboata R, Toma CL, Mitroi DM, Calarasu C, Streba CT. Leptin and Insulin in COPD: Unveiling the Metabolic-Inflammatory Axis-A Narrative Review. J Clin Med 2025; 14:2611. [PMID: 40283443 PMCID: PMC12027990 DOI: 10.3390/jcm14082611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and debilitating condition characterized by airflow limitations and systemic inflammation. The interaction between the metabolic and inflammatory pathways plays a key role in disease progression, with leptin and insulin emerging as pivotal metabolic regulators. Leptin, an adipokine that regulates energy homeostasis, and insulin, the primary regulator of glucose metabolism, are both altered in COPD patients. This narrative review provides an in-depth examination of the roles of leptin and insulin in COPD pathogenesis, focusing on the molecular mechanisms through which these metabolic regulators interact with inflammatory pathways and how their dysregulation contributes to a spectrum of extrapulmonary manifestations. These disturbances not only exacerbate COPD symptoms but also increase the risk of comorbidities such as metabolic syndrome, diabetes, cardiovascular disease, or muscle wasting. By exploring the underlying mechanisms of leptin and insulin dysregulation in COPD, this review underscores the significance of the metabolic-inflammatory axis, suggesting that restoring metabolic balance through leptin and insulin modulation could offer novel therapeutic strategies for improving clinical outcomes.
Collapse
Affiliation(s)
- Oana Maria Catana
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (O.M.C.); (D.M.M.)
| | | | - Ramona Cioboata
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| | - Claudia Lucia Toma
- Pneumology Department, University of Medicine Carol Davila, 020021 Bucharest, Romania
| | - Denisa Maria Mitroi
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (O.M.C.); (D.M.M.)
| | - Cristina Calarasu
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| | - Costin Teodor Streba
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania; (C.C.); (C.T.S.)
| |
Collapse
|
9
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
10
|
Jahan I, Shuvo AUH, Alimullah M, Rahman ASMN, Siddiqua S, Rafia S, Khan F, Ahmed KS, Hossain H, Akramuddaula K, Alam MA, Subhan N. Purple potato extract modulates fat metabolizing genes expression, prevents oxidative stress, hepatic steatosis, and attenuates high-fat diet-induced obesity in male rats. PLoS One 2025; 20:e0318162. [PMID: 40168333 PMCID: PMC11960900 DOI: 10.1371/journal.pone.0318162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/03/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVE In this investigation, the significance of purple potato (Solanum tuberosum L.) extract treatment was assessed against oxidative stress and fat metabolizing transcription factors in the liver of high-fat (HF) diet-fed rats. METHODS Wistar (male) rats were arranged into several groups and provided with a control and HF diet along with the purple potato extract. Body weights, oral glucose tolerance test (OGTT), insulin, plasma lipids, and oxidative stress-related indicators were analyzed in plasma and tissue samples. Additionally, real-time PCR was performed to evaluate the gene expression for oxidative stress and fat metabolism in the liver. Histological staining was also performed on pancreatic and hepatic tissues. RESULTS Purple potato extract lowered body weights and improved glucose utilization in the OGTT test in HF diet-fed rats. Purple potato extract also suppressed HF-diet-induced oxidative stress in plasma and hepatic tissues. Purple potato extract also restored the Nrf-2 expression in the liver, followed by the improved expression of HO-1, HO-2, and other antioxidant genes in HF diet-fed rats. In addition, genes involved in lipid metabolism were also positively modulated due to purple potato extract treatment. Furthermore, histological examination revealed the reduction of lipid accumulation and amelioration of inflammation due to the consumption of purple potato extract. CONCLUSION This investigation revealed that antioxidant-rich purple potato extract can modulate the antioxidant and fat metabolizing genes expression, ameliorated oxidative stress and glucose intolerance as well as lowered blood lipids in male rats.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Asif Ul Haque Shuvo
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mirza Alimullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | | | - Shatil Rafia
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Alzuwaydi A, Alshammari GM, Mohammed MA, Qaisar R, Hussain MA, Alkahtani SA. The association between daily movement behavior and adjusted handgrip strength in post-menopausal women. Front Nutr 2025; 12:1538002. [PMID: 40230719 PMCID: PMC11994423 DOI: 10.3389/fnut.2025.1538002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Background The factors driving the sarcopenia phenotype in post-menopausal women remain partly elusive. We thus investigated the associations of physical activity, sedentary behavior, and metabolic biomarkers with handgrip strength (HGS) as a marker of probable sarcopenia in Saudi post-menopausal women. Methods We recruited 268 post-menopausal women aged 50 years or above. Physical activity was assessed using Global Physical Activity Questionnaire (GPAQ), and body composition was measured with a BIA device. Blood samples were used to measure cholesterol and triglyceride levels. Blood pressure and waist circumference (WC) were measured. HGS was measured using a digital HGS dynamometer and an HGS < 16 kg was used to define probable sarcopenia. We applied the ordinary least squares (OLS) regression approach for the dependent variables HGS, HGS relative to skeletal muscle mass (SMM) and HGS relative to fat-to-mass ratio (FMR). Results Physical activity was positively associated with HGS, and sedentary behavior was negatively associated with HGS (p < 0.05). HGS relative to body mass index (BMI) and SMM revealed significant negative relationships with WC (p < 0.05). Taking into account age and FMR, the association with HGS or HGS/SMM existed for physical activity (p < 0.05), sedentary behavior (p < 0.01), and WC (p < 0.001). Conclusion Altogether, we report that high physical activity, low sedentary behavior and low WC are negatively associated with a risk of low HGS among Saudi post-menopausal women.
Collapse
Affiliation(s)
- Aishah Alzuwaydi
- Department of Nutrition, College of Agriculture and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Nutrition, College of Agriculture and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A. Mohammed
- Department of Nutrition, College of Agriculture and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - M. Azhar Hussain
- Department of Finance and Economics, College of Business Administration, University of Sharjah, Sharjah, United Arab Emirates
- Department of Social Sciences and Business, Roskilde University, Roskilde, Denmark
| | - Shaea A. Alkahtani
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
13
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
14
|
To M, Arimoto Y, Honda N, Furusho N, Kinouchi T, Takeshita Y, Haruki K, To Y. Elevated oxidative stress and steroid insensitivity in patients with asthma and high body fat percentage. Ann Allergy Asthma Immunol 2025:S1081-1206(25)00126-7. [PMID: 40097096 DOI: 10.1016/j.anai.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Obesity is a risk factor for poor asthma control. Previous research suggests that patients with asthma and obesity have reduced responsiveness to corticosteroids. Recent studies indicate that body fat percentage may be more strongly associated with obesity-related diseases compared with body mass index. However, the relationship between body fat percentage and asthma, particularly regarding steroid sensitivity, remains unclear. OBJECTIVE To investigate the association between body fat percentage and steroid sensitivity in patients with asthma and elucidate the potential mechanisms underlying this association. METHODS Adult patients with asthma were enrolled and categorized into patients with high body fat percentage (HBF) and control groups. Peripheral blood mononuclear cells were isolated from the blood samples. These cells were cultured with dexamethasone followed by stimulation with tumor necrosis factor-α to assess the half-maximal inhibitory concentration of dexamethasone (IC50-Dex). Serum adipocytokines and oxidative stress markers were also measured. The effects of metformin on steroid sensitivity and oxidative stress in peripheral blood mononuclear cells were evaluated ex vivo. RESULTS The HBF group exhibited significantly higher IC50-Dex values than the control group. In the HBF group, IC50-Dex correlated with the number of acute exacerbations per year and serum oxidative stress marker levels. Treatment with metformin significantly reduced both IC50-Dex and oxidative stress marker levels in the HBF group. CONCLUSION Oxidative stress associated with increased body fat may contribute to impaired steroid sensitivity in patients with asthma. Metformin may improve steroid sensitivity by reducing oxidative stress, suggesting a potential therapeutic approach in this patient population.
Collapse
Affiliation(s)
- Masako To
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan; Department of Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan.
| | - Yoshihito Arimoto
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | - Natsue Honda
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | - Naho Furusho
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Toru Kinouchi
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuichiro Takeshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Kosuke Haruki
- Department of Laboratory Medicine, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | - Yasuo To
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
15
|
Damianaki A, Marmarinos A, Avgeris M, Gourgiotis D, Vlachopapadopoulou EA, Charakida M, Tsolia M, Kossiva L. Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine. Diseases 2025; 13:78. [PMID: 40136618 PMCID: PMC11940919 DOI: 10.3390/diseases13030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The aim of this study was to evaluate whether increased body mass index (BMI) and biochemical and lifestyle parameters linked to obesity and smoke exposure disrupt immune responses of children and adolescents following vaccination with the mRNA BNT162b2 vaccine. METHODS A prospective, single-center, cohort study was conducted. Participants were assigned to receive two doses of the mRNA vaccine. Anti-SARS-CoV-2 IgG and neutralizing antibodies (AB) were measured before vaccination (T0) and 14 days after the second dose (T1). BMI and biochemical parameters were evaluated at T0. A questionnaire on lifestyle characteristics was filled in. RESULTS IgG optical density (OD) ratio at T1 was lower in the overweight-obese group regardless of COVID-19 disease positive history [p = 0.028 for the seronegative group, p = 0.032 for the seropositive group]. Neutralizing AB were lower in overweight-obese participants in the seronegative group at T1 [p = 0.008]. HDL, fasting glucose/insulin ratio (FGIR), C-reactive protein (CRP), HBA1c, uric acid, and smoke exposure were significantly correlated with BMI [p = 0.006, p < 0.001, p < 0.001, p = 0.006, p = 0.009, p < 0.001, respectively]. The main biochemical parameters that were inversely correlated with IgG and neutralizing AB titers at T1 were uric acid [p = 0.018, p = 0.002], FGIR [p = 0.001, p = 0.008] and HBA1C [p = 0.027, p = 0.038], while smoke exposure negatively affected the humoral immune responses at T0 in the convalescent group [p = 0.004, p = 0.005]. CONCLUSIONS Current data suggests that uric acid, insulin resistance (IR), and smoke exposure could adversely affect the immune responses in overweight-obese vaccinated children, highlighting the need for actions to enhance the protection of this particular subgroup.
Collapse
Affiliation(s)
- Anthie Damianaki
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (M.C.); (M.T.); (L.K.)
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (A.M.); (M.A.); (D.G.)
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (A.M.); (M.A.); (D.G.)
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (A.M.); (M.A.); (D.G.)
| | | | - Marietta Charakida
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (M.C.); (M.T.); (L.K.)
| | - Maria Tsolia
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (M.C.); (M.T.); (L.K.)
| | - Lydia Kossiva
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Children’s Hospital P. and A. Kyriakou, 115 27 Athens, Greece; (M.C.); (M.T.); (L.K.)
| |
Collapse
|
16
|
Benmoussa A, Kientega T, Morel S, B Cardin G, Bérard S, Wajnberg M, Valtchev P, Blondin Masse A, Curnier D, Krajinovic M, Laverdière C, Sinnett D, Levy E, Marcoux S, Rodier F, Marcil V. Poor Diet Quality is Associated with Premature Senescence of the Immune System in Survivors of Childhood Acute Lymphoblastic Leukaemia. Nutr Cancer 2025; 77:490-505. [PMID: 40059323 DOI: 10.1080/01635581.2025.2474263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Contributory factors such as inflammation and oxidative stress, in response to drug therapies, may induce premature aging and cellular senescence with a severe impact on cardiometabolic health. Premature immunoaging through cellular senescence can lead to lower thymic output of T-cell lymphocytes translated into lower circulating T-cell receptor excision circles (TRECs). We hypothesized TRECs levels are associated with diet quality and impacted by oxidative and inflammatory status in survivors of childhood ALL (cALL). Adolescents and young adults cALL survivors from the PETALE cohort (n = 241, 22.1 ± 6.3 years at diagnosis, 49.4% males) were assessed for TREC levels and adherence to six diet quality indexes. Healthy Diet Indicator (HDI) was associated with TREC levels (β = 50.0, p = 0.005, adjusted p = 0.03). Interleukin-6 (IL-6) and C-reactive protein (CRP) were found negatively associated with TREC levels (β = -80 and -80.1, p = 0.017 and 0.026, respectively) HDI. Further analysis revealed IL-6 and CRP to be moderating factors, but not mediators, of the association between HDI and TRECs. This study supports a positive impact of a healthy diet on premature aging of the immune system in survivors of cALL and unveils the moderating role of inflammation in this association.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
| | - Tibila Kientega
- CRCHUM and Institut du cancer de Montréal, Montréal, Québec, Canada
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sophia Morel
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume B Cardin
- CRCHUM and Institut du cancer de Montréal, Montréal, Québec, Canada
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sophie Bérard
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
| | - Mickaël Wajnberg
- Center for Artificial intelligence Research. Department of Computer Science, Université du Québec A Montréal (UQAM), Montréal, Québec, Canada
| | - Petko Valtchev
- Center for Artificial intelligence Research. Department of Computer Science, Université du Québec A Montréal (UQAM), Montréal, Québec, Canada
| | - Alexandre Blondin Masse
- Center for Artificial intelligence Research. Department of Computer Science, Université du Québec A Montréal (UQAM), Montréal, Québec, Canada
| | - Daniel Curnier
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
- Department of Kinesiology, Université de Montréal, Montréal, Québec, Canada
| | - Maja Krajinovic
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | | | - Daniel Sinnett
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Emile Levy
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
- Department of Nutrition, Université de Montréal, Montréal, Québec, Canada
| | - Sophie Marcoux
- CRCHUM and Institut du cancer de Montréal, Montréal, Québec, Canada
- Department of Public Health and Preventive Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Francis Rodier
- CRCHUM and Institut du cancer de Montréal, Montréal, Québec, Canada
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Valérie Marcil
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montréal, Québec, Canada
- Department of Nutrition, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Taha AE, Amer I, Sharawy SE, Ghazy AA. Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study. Viruses 2025; 17:378. [PMID: 40143306 PMCID: PMC11946420 DOI: 10.3390/v17030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
It is essential to comprehend the humoral immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its vaccines to maximize the effectiveness of anti-SARSCoV-2 community immunization efforts. The aim of this cross-sectional study was to determine the seroprevalence of anti-SARS-CoV-2 IgM/IgG among newcomer students at Kafr Elsheikh University in Egypt, whether they had been vaccinated or not. Blood samples from 400 healthy newcomer students (200 non-vaccinated and 200 vaccinated) were evaluated for the presence of anti-SARS-CoV-2 IgM/IgG using colloidal gold immunochromatography lateral flow immunoassay cards, and then the results were confirmed by using specific ELISA tests. The prevalence of anti-SARS-CoV-2 antibodies among the participants (n = 400) was 56.3% for IgG and 13.3% for IgM. Regarding the non-vaccinated participants, 55.0% were females, the mean age was 18.2 years, and the mean BMI was 25.35. Regarding the vaccinated participants, 58.5% were females, the mean age was 18.1 years, and the mean BMI was 25.3. There were statistically non-significant correlations (p ˃ 0.05) between gender, BMI, and each of IgM- or IgG-positivity in both vaccinated and non-vaccinated groups. In total, 41.5% and 48.5% of the anti-SARS-CoV-2 IgM-positive and anti-SARS-CoV-2 IgG-positive participants were non-vaccinated, respectively. Furthermore, 58.5% and 51.5% of the anti-SARS-CoV-2 IgM-positive and anti-SARS-CoV-2 IgG-positive participants were vaccinated, respectively. No statistically significant association (p ˃ 0.05) in immunoglobulins positivity between the anti-SARS-CoV-2 non-vaccinated, and vaccinated groups. The anti-SARS-CoV-2 immunological response of nonsmokers, people who exercise regularly, and those who take vitamin supplements, eat a balanced diet, and use certain herbs is noteworthy. Among the vaccinated subjects, 96.6%, 25.0%, 31.9%, 45.7%, and 7.8% of the IgG-positive group, versus 97.2%, 60.6%, 64.2%, 52.3%, and 6.4% of the IgG-positive non-vaccinated group, were nonsmokers, exercisers, and those taking vitamin supplements, eating a balanced diet, and using herbs, respectively. Furthermore, 93.5%, 32.3%, 35.5%, 48.4%, and 6.5% of the IgM-positive vaccinated group, versus 100.0%, 63.6%, 81.8%, 45.5%, and 4.5% of the IgM-positive non-vaccinated participants, were nonsmokers, physical exercisers, vitamin supplement users, balanced eaters, and herbalists, respectively. Persons who are free from comorbidities, young, non-obese, non-smokers, engage in physical exercise, take vitamins, eat a balanced diet, and use certain immunostimulant herbal supplements, all have a strong anti-SARS-CoV-2 humoral immune response, even if they were not vaccinated. During pandemics, vaccination of this group should not be a priority to preserve vaccine doses for high-risk vulnerable people. Even if there is a lockdown during an anticipated future epidemic or pandemic, we should prioritize healthy eating and lifestyle choices, along with increasing physical activity.
Collapse
Affiliation(s)
- Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Amer
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Shimaa El Sharawy
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Amany A. Ghazy
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
18
|
Yang Q, Cao Y. Cardiometabolic Index and Stress Urinary Incontinence in US Women: The Mediating Role of the Triglyceride Glucose Index. Int Urogynecol J 2025; 36:615-625. [PMID: 39812814 DOI: 10.1007/s00192-025-06044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Stress urinary incontinence (SUI) is a prevalent condition among women, significantly impairing their quality of life. Emerging evidence suggests that metabolic dysfunction may play a role in the development of SUI, although the underlying mechanisms remain unclear. This study aims to examine the association between the cardiometabolic index (CMI), a novel marker of metabolic health, and the risk of SUI in women. METHODS Cross-sectional data from the 2001-2020 NHANES were analyzed. Weighted multivariable logistic regression models assessed the relationship between CMI and SUI risk, while restricted cubic spline (RCS) models examined potential nonlinear associations. Subgroup analyses and interaction tests were performed to explore how specific characteristics influenced the CMI-SUI relationship. Mediation analysis was performed to evaluate whether the triglyceride glucose (TyG) index mediated the CMI-SUI association. Sensitivity analyses using propensity score matching (PSM) ensured the robustness of the findings. RESULTS Higher CMI was significantly associated with increased SUI risk in women (P < 0.001). RCS analysis revealed a nonlinear relationship, with a threshold at 1.64. Below this point, reducing CMI was significantly associated with a lower risk of SUI (overall P < 0.001, linear P < 0.001). Subgroup and interaction analyses showed stronger associations among women under 65 years, those with higher education, those without a history of hypertension or diabetes, and women taking oral contraceptives (P for interaction < 0.05). Mediation analysis showed that the TyG index completely mediated the relationship between CMI and SUI, accounting for 97.67% of the total effect. Sensitivity analyses using PSM confirmed the robustness of these results. CONCLUSION This study highlights that a higher CMI is associated with an increased risk of SUI in women, and this relationship may be largely mediated by the TyG index.
Collapse
Affiliation(s)
- Qian Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yue Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Jack BU, Dias S, Pheiffer C. Comparative Effects of Tumor Necrosis Factor Alpha, Lipopolysaccharide, and Palmitate on Mitochondrial Dysfunction in Cultured 3T3-L1 Adipocytes. Cell Biochem Biophys 2025; 83:905-918. [PMID: 39269560 PMCID: PMC11870959 DOI: 10.1007/s12013-024-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
We have previously reported that dysregulated lipid metabolism and inflammation in 3T3-L1 adipocytes is attributed to tumor necrosis factor alpha (TNFα) rather than lipopolysaccharide (LPS) and palmitate (PA). In this study, we further compared the modulative effects of TNFα, LPS, and PA on mitochondrial function by treating 3T3-L1 adipocytes with TNFα (10 ng/mL), LPS (100 ng/mL), and PA (0.75 mM) individually or in combination for 24 h. Results showed a significant reduction in intracellular adenosine triphosphate (ATP) content, mitochondrial bioenergetics, total antioxidant capacity, and the mRNA expression of citrate synthase (Cs), sirtuin 3 (Sirt3), protein kinase AMP-activated catalytic subunit alpha 2 (Prkaa2), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1α), nuclear respiratory factor 1 (Nrf1), and superoxide dismutase 1 (Sod1) in cells treated with TNFα individually or in combination with LPS and PA. Additionally, TNFα treatments decreased insulin receptor substrate 1 (Irs1), insulin receptor substrate 2 (Irs2), solute carrier family 2, facilitated glucose transporter member 4 (Slc2a4), and phosphoinositide 3 kinase regulatory subunit 1 (Pik3r1) mRNA expression. Treatment with LPS and PA alone, or in combination, did not affect the assessed metabolic parameters, while the combination of LPS and PA increased lipid peroxidation. These results show that TNFα but not LPS and PA dysregulate mitochondrial function, thus inducing oxidative stress and impaired insulin signaling in 3T3-L1 adipocytes. This suggests that TNFα treatment can be used as a basic in vitro model for studying the pathophysiology of mitochondrial dysfunction and related metabolic complications and screening potential anti-obesity therapeutics in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Babalwa Unice Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
20
|
Crintea IN, Cindrea AC, Mederle OA, Trebuian CI, Timar R. Electrolyte Imbalances and Metabolic Emergencies in Obesity: Mechanisms and Clinical Implications. Diseases 2025; 13:69. [PMID: 40136609 PMCID: PMC11941549 DOI: 10.3390/diseases13030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Electrolyte imbalances are a frequently overlooked yet critical component of obesity-related metabolic dysfunction, contributing to an increased risk of cardiovascular disease, kidney impairment, and metabolic emergencies such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and acute kidney injury (AKI). These disturbances arise from insulin resistance, chronic inflammation, hormonal dysregulation, and renal dysfunction, leading to sodium retention, potassium depletion, and deficiencies in calcium and magnesium homeostasis. Managing electrolyte imbalances is essential in obesity management, as imbalances exacerbate hypertension, metabolic acidosis, neuromuscular complications, and insulin resistance. This review explores the pathophysiology of electrolyte disturbances in obesity and their impact on fluid balance, acid-base status, and metabolic health. Effective management strategies include individualized electrolyte monitoring, dietary sodium restriction, potassium supplementation, vitamin D and magnesium correction, and pharmacologic interventions targeting renin-angiotensin-aldosterone system (RAAS) activity and insulin resistance. Additionally, lifestyle interventions, including dietary modification, weight loss strategies, and hydration optimization, play a key role in preventing metabolic complications. Future research should investigate the long-term impact of electrolyte imbalances in obesity, the role of emerging therapies, and how lifestyle interventions can optimize electrolyte homeostasis and metabolic outcomes. A personalized, multidisciplinary approach integrating endocrinology, nephrology, and clinical nutrition is essential to improving the prevention and management of electrolyte imbalances in obese individuals.
Collapse
Affiliation(s)
- Iulia Najette Crintea
- Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.N.C.); (A.C.C.); (C.I.T.)
- Emergency Department, Emergency Clinical Municipal Hospital, 300079 Timisoara, Romania
| | - Alexandru Cristian Cindrea
- Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.N.C.); (A.C.C.); (C.I.T.)
- Emergency Department, Emergency Clinical Municipal Hospital, 300079 Timisoara, Romania
| | - Ovidiu Alexandru Mederle
- Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.N.C.); (A.C.C.); (C.I.T.)
- Emergency Department, Emergency Clinical Municipal Hospital, 300079 Timisoara, Romania
| | - Cosmin Iosif Trebuian
- Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.N.C.); (A.C.C.); (C.I.T.)
- Department of Anesthesia and Intensive Care, Emergency County Hospital, 320210 Resita, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania;
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
21
|
Voros C, Mavrogianni D, Bananis K, Varthaliti A, Papahliou AM, Topalis V, Kondili P, Darlas M, Daskalaki MA, Pantou A, Athanasiou D, Mathiopoulos D, Theodora M, Antsaklis P, Loutradis D, Daskalakis G. Unlocking Fertility: How Nitric Oxide Pathways Connect Obesity and Reproductive Health-The Role of Bariatric Surgery. Antioxidants (Basel) 2025; 14:240. [PMID: 40002424 PMCID: PMC11851409 DOI: 10.3390/antiox14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the relationship between obesity, oxidative stress, and reproductive dysfunction. It focuses on the effects of sleeve gastrectomy on gene expression and hormone profiles in 29 women with severe obesity (BMI ≥ 40 kg/m2). Pre- and post-surgical investigations revealed significant differences in major gene expressions and hormonal markers. CART expression reduced significantly from 0.27 ± 4.43 to -3.42 ± 1.14 (p < 0.001), while leptin expression decreased from -1.87 ± 1.75 to -0.13 ± 1.55 (p < 0.001), indicating better metabolic regulation. In contrast, eNOS expression increased considerably from -4.87 ± 1.70 to 1.18 ± 2.31 (p = 0.003), indicating improved endothelial function and nitric oxide bioavailability, which is critical for vascular health and reproduction. Correlation research before surgery indicated no significant relationships between eNOS, CART, or leptin and clinical indicators, implying that these genes function independently in pre-surgical metabolism. While most associations remained negligible after surgery, a significant negative connection between eNOS expression and SHBG levels appeared (r = -0.365, p = 0.049), indicating potential interactions in hormonal regulation pathways following metabolic improvements. These findings emphasize the importance of bariatric surgery in reducing the negative effects of obesity on reproductive health by altering critical cellular pathways. Significant increases in CART, leptin, and eNOS expression indicate reduced oxidative stress, improved vascular tone, and hormonal balance, all of which contribute to increased reproductive capacity. This study sheds light on the molecular processes that link obesity, metabolic health, and fertility, underlining bariatric surgery's therapeutic potential for women experiencing obesity-related infertility.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Kyriakos Bananis
- King’s College Hospitals NHS Foundation Trust, London SE5 9RS, UK;
| | - Antonia Varthaliti
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Anthi-Maria Papahliou
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Vasileios Topalis
- Department of Internal Medicine, Hospital of Thun, 3600 Thun, Switzerland;
| | - Panagiota Kondili
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Maria Anastasia Daskalaki
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Agni Pantou
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | | | - Dimitris Mathiopoulos
- Rea Maternity Hospital S.A., Avenue Siggrou 383 &Pentelis 17, P. Faliro, 17564 Athens, Greece;
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Panagiotis Antsaklis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| | - Dimitrios Loutradis
- Fertility Institute-Assisted Reproduction Unit, Paster 15, 11528 Athens, Greece;
- Athens Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.V.); (A.-M.P.); (P.K.); (M.D.); (A.P.); (M.T.); (P.A.); (G.D.)
| |
Collapse
|
22
|
Bashandy SAE, Elbaset MA, Ibrahim FAA, Abdelrahman SS, Moussa SAA, El-Seidy AMA. Management of cardiovascular disease by cerium oxide nanoparticles via alleviating oxidative stress and adipokine abnormalities. Sci Rep 2025; 15:5709. [PMID: 39962072 PMCID: PMC11833101 DOI: 10.1038/s41598-025-85794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
The current study aimed to evaluate the role of cerium oxide nanoparticles (C-1), a potent antioxidant, in the medication of cardiovascular disease in obese animal model. C-1 was prepared using a modified sonication sol-gel method. Thirty-two adult male rats were equally divided into 4 groups (n=8/each). The first (control) and second (obese) groups are not treated while the obese rats in the third and fourth groups were given 15 and 30 mg/kg C-1(IP), respectively, for 8 weeks. Parameters of insulin resistance, adipocyte hormones, inflammatory markers, lipid profile, cardiac enzymes and cardiac iron content (C-Fe) were estimated. Moreover, histological study and immunohistochemical stain for inducible nitric oxide synthase (INOS) for cardiac and aortic tissues were performed. The XRD patterns of C-1 showed narrow symmetric diffraction peaks. The particle diameters were calculated from the TEM histogram (21.09 nm) and the Debye-Scherrer Method (20.74 nm) which were very similar. Using the most intense peak ( 28 . 47 ∘ ), structural parameters were calculated including nano-crystallite size, Micro-strain, Lorentz factor, Thomson polarization parameter, and Lorentz polarization parameter. BET was used to calculate The total surface area (ST ), and specific surface area (SBET ). The XPS survey spectrum of C-1 showed peaks for C-1s, O-1s and Ce-3d. The treatment of obese rats with C-1 led to a significant decrease in body weight, C-Fe , plasma leptin, tumor necrosis factor-alpha (TNF α ), interleukin-6 (IL6), C-reactive protein (CRP), resistin, cholesterol, triglycerides, low-density lipoprotein (LDL), Troponin, Creatinine Kinase-MB (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA) in cardiac tissue or in plasma. Also, C-1 lowered plasma monocyte chemoattractant protein-1 (MCP-1), Epithelial Neutrophil-Activating Peptide (ENA-78), and insulin and glucose levels in obese rats. Furthermore, C-1 alleviated the increase of cardiac iNOS. Moreover, C-1 mitigated pathological changes of cardiac muscle and aorta observed in obese rats. On the other hand, C-1 enhanced adiponectin, cardiac glutathione (GSH) and superoxide dismutase (SOD) in obese rats. The effect of C-1 is dose-dependent ( 30 mg/kg of C-1 is more evident than 15 mg/kg). The modified synthesis method may lead to a smaller particle size than that reported in our previously reported work. The XRD patterns of C-1 indicate its cubic structure with space group F m -3 m (225) which was matched by code id 4343161 from COD. The Raman spectrum of C-1 indicates the absence of rearrangement oxygen atoms, the presence of oxygen in its fluorite lattice positions, and the oxygen vacancies in C-1 and the Ce vibration model (F2g). The presence of ten peaks in the high-resolution Ce-3d XP spectrum indicates the existence of both Ce3+ and Ce4+. C-1 showed therapeutic efficacy in atherosclerosis and cardiac muscle abnormalities associated with obese rats, probably because of their antioxidant and anti-inflammatory properties, which lead to lowering oxidative stress.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt
| | - Marawan A Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt.
| | - Fatma A A Ibrahim
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt
| | - Sahar S Abdelrahman
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sherif A Abdelmottaleb Moussa
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt
| | - Ahmed M A El-Seidy
- Inorganic Chemistry Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt.
| |
Collapse
|
23
|
Osman AAM, Laczkó D, Vágvölgyi M, Seres-Bokor A, Sztojkov-Ivanov A, Kemény KK, Hunyadi A, Ducza E. Investigation of calonysterone and 20-hydroxyecdysone effects in high-fat, high-sugar diet-induced obesity rat model. Heliyon 2025; 11:e42435. [PMID: 39991217 PMCID: PMC11847253 DOI: 10.1016/j.heliyon.2025.e42435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Globally, the incidence of obesity among adults has significantly risen since 1990, with a more than twofold rise in prevalence. Similarly, the incidence of obesity among adolescents has increased fourfold. Overweight constitutes a significant health and social issue in developed nations globally. Conventional therapies such as lifestyle modification (nutrition and physical activity) have limited weight reduction. Drug therapy is often not possible or cannot be afforded due to poor patient compliance or therapeutic side effects. 20-hydroxyecdysone (20E) is a worldwide used 'green anabolic' dietary supplement that has beneficial effects in some animal models of metabolic diseases. Our ongoing research examines the impacts of 20E and calonysterone (CAL) in an animal model with a diet high in fats and sugars (HFHSD). Glucose tolerance tests assessed prediabetic status and RT-PCR and Western blot analysis determined interleukin-6 (IL6) expression. The concertations of superoxide dismutase, catalase, adiponectin, leptin, and IL-6 were quantified by ELISA. Total antioxidant capacity was assessed using a colorimetric assay kit, and global DNA methylation was also measured. CAL entirely prevented HFHSD-induced obesity and decreased the inflammatory cytokine (IL6) level and antioxidant activity in our model. Both 20E and CAL normalized the changed plasma concentration of adiponectin and leptin after the HFHS diet. The administration of CAL and 20E in obese rats significantly increased the percent of total DNA methylation. This is the first in vivo study on this natural ecdysteroid, which may offer new alternatives for treating metabolic diseases. Based on our findings, we are supposed to show new preventive possibilities for overweight-induced chronic progressive diseases.
Collapse
Affiliation(s)
- Alaa AM. Osman
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Dávid Laczkó
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
- RotaChrom Technologies PLC, H-6000, Kecskemét, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
- HUN-REN-SZTE, Biologically Active Natural Products Research Group, H-6720, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| |
Collapse
|
24
|
Wang K, Huang K, Li X, Wu H, Wang L, Bai F, Tan M, Su W. Kelp nanocellulose combined with fucoxanthin achieves lipid-lowering function by reducing oxidative stress with activation of Nrf2/HO-1/NQO1 pathway. Food Chem 2025; 464:141588. [PMID: 39406147 DOI: 10.1016/j.foodchem.2024.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
This study innovatively utilized kelp-derived nanocellulose and sodium caseinate (SC) to prepare fucoxanthin (Fx)-loaded nanoparticles, exploring their efficacy in reducing oxidative stress and inhibiting lipid accumulation. 2, 2, 6, 6-Tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation produced well-dispersed, kelp-derived nanocellulose. When these celluloses were mixed with SC at varying mass ratios, the composite nanoparticles showed excellent stability. Specifically, at a TEMPO-oxidized kelp nanocellulose (TKNC) to SC mass ratio of 1:3, the encapsulation efficiency for Fx reached 82.2 %, with a retention of 56.12 % after 14 days of storage. In vitro, the nanoparticles demonstrated good biocompatibility and were efficiently absorbed by cells, significantly enhancing Fx bioavailability. This enhanced delivery efficiency alleviates oxidative stress by activating the Nrf2/HO-1/NQO1 signaling pathways and effectively inhibits lipid droplet formation induced by excessive free fatty acids (FFAs). Moreover, distribution studies in mice revealed effective accumulation of nanoparticles in the intestines and liver, indicating their potential for targeted drug delivery. These findings provide strong experimental support for the use of TKNC and SC as biocompatible materials in nanoparticles for drug delivery and treatment applications.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueqian Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hao Wu
- Department of Oncology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, Shanxi, China.
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Fengyu Bai
- School of Fashion, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
25
|
Xia Y, Zhang Y, Zhang Z, Yan N, Sawaswong V, Sun L, Guo W, Wang P, Krausz KW, Gavrilova O, Ntambi JM, Hao H, Yan T, Gonzalez FJ. Intestinal stearoyl-coenzyme A desaturase-inhibition improves obesity-associated metabolic disorders. Acta Pharm Sin B 2025; 15:892-908. [PMID: 40177566 PMCID: PMC11959918 DOI: 10.1016/j.apsb.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the rate-limiting step of de novo lipogenesis and modulates lipid homeostasis. Although numerous SCD1 inhibitors were tested for treating metabolic disorders both in preclinical and clinic studies, the tissue-specific roles of SCD1 in modulating obesity-associated metabolic disorders and determining the pharmacological effect of chemical SCD1 inhibition remain unclear. Here a novel role for intestinal SCD1 in obesity-associated metabolic disorders was uncovered. Intestinal SCD1 was found to be induced during obesity progression both in humans and mice. Intestine-specific, but not liver-specific, SCD1 deficiency reduced obesity and hepatic steatosis. A939572, an SCD1-specific inhibitor, ameliorated obesity and hepatic steatosis dependent on intestinal, but not hepatic, SCD1. Mechanistically, intestinal SCD1 deficiency impeded obesity-induced oxidative stress through its novel function of inducing metallothionein 1 in intestinal epithelial cells. These results suggest that intestinal SCD1 could be a viable target that underlies the pharmacological effect of chemical SCD1 inhibition in the treatment of obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Zhang
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Third Hospital, Peking University, Beijing 100191, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lulu Sun
- State Key Laboratory of Female Fertility Promotion, Department of Endocrinology and Metabolism, Third Hospital, Peking University, Beijing 100191, China
| | - Wanwan Guo
- State Key Laboratory of Female Fertility Promotion, Department of Endocrinology and Metabolism, Third Hospital, Peking University, Beijing 100191, China
| | - Ping Wang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Zhang T, Park S. Energy Intake-Dependent Genetic Associations with Obesity Risk: BDNF Val66Met Polymorphism and Interactions with Dietary Bioactive Compounds. Antioxidants (Basel) 2025; 14:170. [PMID: 40002356 PMCID: PMC11851519 DOI: 10.3390/antiox14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity represents a complex interplay between genetics, nutrition, and lifestyle. This study aimed to elucidate the intricate relationship between genetic variants, energy intake, and bioactive compounds in influencing obesity risk, particularly in low energy intake, to reveal how dietary intake modulates molecular-level interactions. We analyzed 53,117 participants stratified by obesity status and energy intake levels. Genome-wide association studies explored the genetic variants associated with obesity risk in low-energy- and high-energy-intake subgroups. Advanced computational approaches, including molecular docking, k-means clustering, and uniform manifold approximation and projection (UMAP), were employed to analyze interactions between missense variants and natural compounds. Ten genetic variants were significantly associated with obesity, particularly in participants with low energy intake. The most prominent variants included brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265). Molecular docking identified 152 bioactive compounds with strong binding affinity to BDNF Val66Met, including 107 compounds binding to both wild and mutant types. Citrus fruits and green vegetables showed selective binding to the mutant type. Antioxidant nutrient intake (anthocyanins, isoflavonoids, vitamins C and E, selenium) was higher in lean versus obese individuals in the high-energy-intake group. Alcohol consumption and selenium intake modulated polygenic risk scores' influence on obesity risk in high-energy-intake individuals. Notably, citrus fruit intake correlated with lower BMI across all BDNF rs6265 genotypes. In conclusion, energy intake-specific genetic associations with obesity and identifies potential bioactive compounds for targeted interventions. The findings suggest that antioxidant nutrient intake, particularly from citrus fruits, may help manage obesity risk, especially in individuals with specific genetic variants.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
27
|
Huang Q, Shire D, Hollis F, Abuaish S, Picard M, Monk C, Duman EA, Trumpff C. Associations between prenatal distress, mitochondrial health, and gestational age: findings from two pregnancy studies in the USA and Turkey. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618719. [PMID: 39464008 PMCID: PMC11507865 DOI: 10.1101/2024.10.16.618719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Objective This study examined associations between mitochondrial markers-circulating cell-free mitochondrial DNA (cf-mtDNA) and Growth Differentiation Factor-15 (GDF15)-with maternal distress and pregnancy outcomes. Method Participants were drawn from two pregnancy studies, EPI (N=187, USA) and BABIP (N=198, Turkey). Plasma cf-mtDNA and GDF15 levels were quantified using qPCR and ELISA assays. Results Plasma cf-mtDNA levels did not significantly vary across pregnancy, while plasma GDF15 levels increased from early to late pregnancy and decreased postpartum. Late 2nd trimester plasma GDF15 was negatively correlated with pre-pregnancy BMI (p=0.035) and gestational age (p=0.0048) at birth. Early 2nd trimester maternal distress was associated with lower cf-mtDNA (p<0.05) and a trend for lower GDF15. Higher pre-pregnancy BMI and late-pregnancy maternal distress were linked to smaller postpartum GDF15 declines in EPI (p<0.05). Conclusion This study reveals distinct plasma cf-mtDNA and GDF15 patterns during the perinatal period, linking mitochondrial markers to maternal distress and pregnancy outcomes.
Collapse
Affiliation(s)
- Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Neuromuscular Medicine Division, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Catherine Monk
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elif Aysimi Duman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey
- Institute of Natural and Applied Sciences, Acibadem University, Istanbul, Turkey
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Oyerinde AS, Selvaraju V, Boersma M, Babu JR, Geetha T. Effect of H 2O 2 induced oxidative stress on volatile organic compounds in differentiated 3T3-L1 cells. Sci Rep 2025; 15:2597. [PMID: 39833444 PMCID: PMC11747074 DOI: 10.1038/s41598-025-86778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Oxidative stress (OS) refers to the disruption in the balance between free radical generation and antioxidant defenses, leading to potential tissue damage. Reactive oxygen species (ROS) can interact with biological components, triggering processes like protein oxidation, lipid peroxidation, or DNA damage, resulting in the generation of several volatile organic compounds (VOCs). Recently, VOCs provided new insight into cellular metabolism and can serve as potential biomarkers. The objective is to investigate the impact of OS on cell metabolism by analyzing the release or alterations of VOCs in the headspace of differentiated 3T3-L1 adipocytes. An OS model in differentiated 3T3-L1 cell lines was constructed using hydrogen peroxide (H2O2) treatment. The effect of OS on cell metabolism was analyzed by detecting VOCs in the headspace of the cells using solid phase micro extraction (SPME) and gas chromatography-mass spectrometry (GCMS). Our findings indicate that H2O2 concentrations exceeding 300 µM induce significant OS, leading to adipocyte apoptosis, as evidenced by various assays. Of the twenty VOCs identified, ten were upregulated in the cells. VOCs such as diphenyl ether, 1,3,5-trioxane, 5-methyl tridecane, 2-ethyl-1-hexanol, and 2,4-di-tert-butyl phenol emerged as potential biomarkers for OS. This study demonstrates that elevated OS alters VOC profiles in differentiated 3T3-L1 adipocytes, providing insights into the effects of OS on adipose tissue and identifying potential OS biomarkers.
Collapse
Affiliation(s)
| | | | - Melissa Boersma
- Department of Chemistry, Auburn University, Auburn, AL, 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
29
|
Pourmontaseri H, Bazmi S, Sepehrinia M, Mostafavi A, Arefnezhad R, Homayounfar R, Vahid F. Exploring the application of dietary antioxidant index for disease risk assessment: a comprehensive review. Front Nutr 2025; 11:1497364. [PMID: 39885868 PMCID: PMC11781229 DOI: 10.3389/fnut.2024.1497364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Oxidative stress contributes to the development of cardiometabolic diseases and cancers. Numerous studies have highlighted the adverse effects of high reactive oxygen species (ROS) levels in the progression of chronic noncommunicable diseases and also during infections. On the other hand, antioxidants play a crucial role in preventing oxidative stress or postponing cell damage via the direct scavenging of free radicals or indirectly via the Keap1/Nrf2/ARE pathway, among others. Dietary antioxidants can be obtained from various sources, mainly through a plant-based diet, including fruits and vegetables. The dietary antioxidant index (DAI) has been developed to assess total antioxidant intake from diet. This review delineated the performance of DAI in the risk assessment of different diseases. It is suggested that a high DAI score prevents obesity-related diseases, including diabetes mellitus, hyperuricemia, dyslipidemia, and metabolic (dysfunction)-associated steatotic liver disease (MASLD). Additionally, DAI is negatively associated with Helicobacter pylori and Human papillomavirus infection, thus reducing the risk of gastric and cervical cancer. Also, a high intake of antioxidants prevents the development of osteoporosis, miscarriage, infertility, and mental illnesses. However, further prospective observations and clinical trials are warranted to confirm the application of DAI in preventing diseases that have been studied.
Collapse
Affiliation(s)
| | - Sina Bazmi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Matin Sepehrinia
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ayda Mostafavi
- Department of Psychology, Panjab University, Chandigarh, India
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute (WHO Collaborating Center), Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
30
|
Boldori JR, Nogueira JCC, Munieweg FR, Lunardi AG, de Freitas Rodrigues C, Cibin FWS, Denardin CC. Jabuticaba (Myrciaria trunciflora) extract improves metabolic and behavioral markers of obese rats fed on a hypercaloric diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:473-482. [PMID: 39207125 DOI: 10.1002/jsfa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity is a metabolic disease that affects many individuals around the world, related to imbalance between energy consumption and expenditure, which can lead to comorbidities. A healthy diet can significantly contribute to the prevention or treatment of this condition. Jabuticaba is an emerging fruit presenting a wide range of bioactive compounds and is being extensively studied due to its effects on lipid metabolism. The aim of this study was to evaluate the jabuticaba extract in the anxious-like behavior and in the lipid and oxidative metabolism in the context of obesity. METHODS Forty male Wistar rats divided into five groups were used. The animals received a standard diet and/or a hypercaloric diet and after 60 days of induction, interventions were carried out with jabuticaba extract (5% and 10%) via gavage for 30 days. RESULTS It can be observed that the jabuticaba extract was able to reverse the anxious behavior observed in obese animals and modulate parameters of lipid and oxidative metabolism. We observed a reduction in cholesterol and triglyceride levels compared to obese animals. Furthermore, we observed an improvement in oxidative parameters, with a reduction in protein carbonylation in the liver and modulation of antioxidant enzymes such as superoxide dismutase and catalase. Contrary to expectations, we did not observe changes in leptin, adiponectin and tumor necrosis factor alpha (TNF-α) levels. CONCLUSION Our work demonstrates that jabuticaba extract can improve metabolic, oxidative and behavioral changes in animals with obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jean Ramos Boldori
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Jean Carlos Costa Nogueira
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Félix Roman Munieweg
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Annelize Gruppi Lunardi
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Cristiane de Freitas Rodrigues
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | | | - Cristiane Casagrande Denardin
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| |
Collapse
|
31
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
32
|
Liang X, Mounier N, Apfel N, Khalid S, Frayling TM, Bowden J. Using clustering of genetic variants in Mendelian randomization to interrogate the causal pathways underlying multimorbidity from a common risk factor. Genet Epidemiol 2025; 49:e22582. [PMID: 39138631 PMCID: PMC11647065 DOI: 10.1002/gepi.22582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Mendelian randomization (MR) is an epidemiological approach that utilizes genetic variants as instrumental variables to estimate the causal effect of an exposure on a health outcome. This paper investigates an MR scenario in which genetic variants aggregate into clusters that identify heterogeneous causal effects. Such variant clusters are likely to emerge if they affect the exposure and outcome via distinct biological pathways. In the multi-outcome MR framework, where a shared exposure causally impacts several disease outcomes simultaneously, these variant clusters can provide insights into the common disease-causing mechanisms underpinning the co-occurrence of multiple long-term conditions, a phenomenon known as multimorbidity. To identify such variant clusters, we adapt the general method of agglomerative hierarchical clustering to multi-sample summary-data MR setup, enabling cluster detection based on variant-specific ratio estimates. Particularly, we tailor the method for multi-outcome MR to aid in elucidating the causal pathways through which a common risk factor contributes to multiple morbidities. We show in simulations that our "MR-AHC" method detects clusters with high accuracy, outperforming the existing methods. We apply the method to investigate the causal effects of high body fat percentage on type 2 diabetes and osteoarthritis, uncovering interconnected cellular processes underlying this multimorbid disease pair.
Collapse
Affiliation(s)
- Xiaoran Liang
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Ninon Mounier
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Nicolas Apfel
- Department of EconomicsUniversity of SouthamptonSouthamptonUK
| | - Sara Khalid
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Timothy M. Frayling
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Department of Genetic Medicine and Development, Faculty of MedicineCMUGenevaSwitzerland
| | - Jack Bowden
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
33
|
Mahdavifard S, Malekzadeh HR. Symbiotic anti-oxidant, anti-glycation, and anti-inflammatory qualities of a combination of thiamine and niacin protected type-2 diabetic male rats against both macro and micro-vascular complications. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:98-104. [PMID: 39877627 PMCID: PMC11771336 DOI: 10.22038/ijbms.2024.77553.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/11/2024] [Indexed: 01/31/2025]
Abstract
Objectives Increased nuclear factor (NF-kβ) and carbonyl stress due to decreased glyoxalase-1 activity (Glo-I) contribute significantly to insulin resistance and vascular complications. Therefore, we aimed to study the impact of the combination of thiamine and niacin on hepatic NF-kβ signaling, metabolic profile, and Glo-I activity in male rats with type-2 diabetes (T2DM). Materials and Methods Forty male rats were divided equally into five groups: control, diabetic, diabetic treated with thiamine (180 mg/l in drinking water), niacin (180 mg/l), and a combination of both. The treated groups received the treatments daily in drinking water for two months. T2DM was induced using a combination of nicotinamide and alloxan. Metabolic profile and renal dysfunction parameters were assessed. Additionally, various glycation, oxidative stress, and inflammatory markers were measured. Results The treated group with both vitamins showed the lowest blood sugar and insulin resistance indices, cardiovascular indices, renal dysfunction parameters, hepatic NF-kβ expression, oxidative stress, inflammatory and glycation markers, and the highest anti-oxidant and anti-glycation markers, β cell activity, and insulin sensitivity. Thiamine exhibited more anti-inflammatory activity than niacin in diabetic rats, while niacin demonstrated stronger anti-oxidant activity (P<0.001). Conclusion The combined use of vitamins had a more beneficial impact on macro and microvascular complications in diabetes than each alone, attributed to their higher anti-oxidant, anti-inflammatory, and anti-glycation characteristics. The vitamins also had a more corrective effect on glucose-lipid metabolism, insulin sensitivity, and renal function through a stronger lowering effect on hepatic NF-kβ expression.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | |
Collapse
|
34
|
Voros C, Mavrogianni D, Minaoglou A, Karakasis A, Papahliou AM, Topalis V, Varthaliti A, Mantzioros R, Kondili P, Darlas M, Sotiropoulou R, Athanasiou D, Loutradis D, Daskalakis G. Nitrate-Nitrite-Nitric Oxide Pathway, Oxidative Stress, and Fertility Outcomes in Morbidly Obese Women Following Bariatric Surgery: A Systematic Review. Biomedicines 2024; 13:64. [PMID: 39857648 PMCID: PMC11762565 DOI: 10.3390/biomedicines13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity reduces nitric oxide (NO) production due to endothelial nitric oxide synthase (eNOS) dysfunction, resulting in oxidative stress, mitochondrial dysfunction, and chronic inflammation. These factors have a negative impact on reproductive health, including oocyte quality, endometrial receptivity, and embryo implantation. When oxidative stress affects eNOS function, the nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway provides an alternate route for NO production. Bariatric surgery has been found to restore NO production, reduce oxidative stress, and improve fertility in morbidly obese women. This review investigates the molecular mechanisms by which bariatric surgery affects eNOS activity, the NO3-NO2-NO pathway, and oxidative stress reduction, with an emphasis on intracellular activities including mitochondrial biogenesis and NO production. A systematic review employing PRISMA criteria included articles published between 2000 and 2024 from PubMed, Scopus, and Embase that investigated NO3-NO2 pathways, oxidative stress markers, hormonal alterations, and reproductive outcomes in morbidly obese women following bariatric surgery. After evaluating 1542 studies, 11 were selected for the final analysis. Results showed a 45% increase in NO3-NO2 levels (p < 0.001), a 35% reduction in oxidative stress indicators (p < 0.01), a 60% increase in pregnancy rates, and a 50% increase in spontaneous ovulation rates following surgery. These benefits were connected to improved mitochondrial function and endometrial receptivity as a result of reduced oxidative stress and inflammation. The NO3-NO2-NO route is critical in compensating for lower NO generation under oxidative stress and hypoxia, and bariatric surgery significantly improves this pathway to optimize blood flow, mitochondrial function, and reproductive results.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Aspasia Minaoglou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Alexios Karakasis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Anthi-Maria Papahliou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Vasileios Topalis
- Department of Internal Medicine, Hospital of Thun, 3600 Thun, Switzerland;
| | - Antonia Varthaliti
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Raphail Mantzioros
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Panagiota Kondili
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | - Regina Sotiropoulou
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| | | | - Dimitrios Loutradis
- Fertility Institute-Assisted Reproduction Unit, Paster 15, 11528 Athens, Greece;
- Athens Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece; (D.M.); (A.M.); (A.K.); (A.-M.P.); (A.V.); (R.M.); (P.K.); (M.D.); (R.S.); (G.D.)
| |
Collapse
|
35
|
Alhashim A, Capehart K, Tang J, Saad KM, Abdelsayed R, Cooley MA, Williams JM, Elmarakby AA. Does Sex Matter in Obesity-Induced Periodontal Inflammation in the SS LepR Mutant Rats? Dent J (Basel) 2024; 13:14. [PMID: 39851590 PMCID: PMC11764266 DOI: 10.3390/dj13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Introduction: The incidence of obesity has dramatically increased worldwide. Obesity has been shown to exacerbate the progression of periodontal disease. Studies suggest a sex difference in periodontitis, whereby males are more sensitive to periodontal inflammation compared to females. Aim: In the current study, it was hypothesized that obesity drives periodontal inflammation and bone loss in both sexes. Methodology: Utilizing leptin receptor mutant (SSLepR mutant) rats as a genetic model of obesity, 11-12-week-old male and female lean Dahl salt-sensitive (SS) rats and obese SSLepR mutant rats were used to investigate sex differences in obesity-induced periodontal inflammation. Results: Body weight, insulin, hemoglobin A1c and cholesterol levels were significantly elevated in the obese SSLepR mutant strain vs. the lean SS strain within the same sex. Sex differences in body weight and plasma hemoglobin A1c were only observed in obese SSLepR mutant rats, with males having significantly greater body weight and hemoglobin A1c vs. females. Plasma thiobarbituric acid reactive substances (TBARs) and monocyte chemoattractant protein-1 (MCP-1), markers of systemic oxidative stress and inflammation, respectively, were significantly elevated in obese SSLepR mutant rats vs. lean SS rats, with no sex differences in these parameters in either rat strains. Although micro-CT analyses of the maxillary first molar alveolar bone from obese SSLepR mutant rats revealed no evidence of bone loss and/or sex differences, immuno-histochemical analysis revealed significant elevations in periodontal IL-6 and decreases in IL-10 in obese SSLepR mutant rats vs. lean SS rats, with no apparent sex differences in these parameters. Conclusions: Obesity increases systemic and periodontal inflammation, without evidence of bone loss or apparent sex differences in SSLepR mutant rats.
Collapse
Affiliation(s)
- Abdulmohsin Alhashim
- Departments of General Dentistry and Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.A.); (K.C.)
| | - Kim Capehart
- Departments of General Dentistry and Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.A.); (K.C.)
| | - Jocelyn Tang
- Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.T.); (K.M.S.); (R.A.); (M.A.C.)
| | - Karim M. Saad
- Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.T.); (K.M.S.); (R.A.); (M.A.C.)
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rafik Abdelsayed
- Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.T.); (K.M.S.); (R.A.); (M.A.C.)
| | - Marion A. Cooley
- Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.T.); (K.M.S.); (R.A.); (M.A.C.)
| | - Jan M. Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Ahmed A. Elmarakby
- Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.T.); (K.M.S.); (R.A.); (M.A.C.)
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
36
|
Davis NE, Prasitlumkum N, Tan NY. Atrial Fibrillation and Cancer-Epidemiology, Mechanisms, and Management. J Clin Med 2024; 13:7753. [PMID: 39768676 PMCID: PMC11677472 DOI: 10.3390/jcm13247753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atrial fibrillation (AF) and cancer are increasingly recognized as interrelated conditions, with cancer patients showing elevated incidences of AF, and there is evidence that AF may sometimes precede cancer diagnoses. This comprehensive review investigates the epidemiology, pathophysiology, and management challenges associated with AF in cancer patients. Epidemiologically, several cancers are more closely related to increased rates of AF, including lung, colorectal, gastrointestinal, and hematologic malignancies. Mechanistically, both AF and cancer share pathophysiological pathways centered on inflammation, oxidative stress, and common cardiovascular risk factors, such as hypertension, obesity, and diabetes. The inflammatory microenvironment in tumors, marked by increased cytokines and growth factors, promotes atrial remodeling and AF susceptibility. Elevated reactive oxygen species (ROS) levels, driven by the metabolic demands of cancer, further contribute to atrial fibrosis and structural changes. Moreover, many anticancer treatments exacerbate AF risk. Management of AF in cancer patients presents many unique challenges and requires a multidisciplinary approach. Rate and rhythm control strategies are complicated by potential drug-drug interactions and limited data surrounding early implementation of rhythm control strategies in cancer patients. Interventional approaches such as catheter ablation, though effective in maintaining sinus rhythm, carry significant perioperative risk in patients with malignancy. Stroke prevention with anticoagulants is essential but requires cautious administration to avoid heightened bleeding risks, particularly in patients undergoing chemotherapy. Further, the limited applicability of standard risk stratification tools like CHA2DS2-VASc in this population complicate decisions regarding anticoagulation. This review highlights the bidirectional relationship between AF and cancer, the difficulties in management, and the critical need for further research in this field.
Collapse
Affiliation(s)
| | - Narut Prasitlumkum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas Y. Tan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Mba JR, Zouheira D, Guetchueng ST, Daïrou H, Djouonzo PT, Ayong L, Kuiate JR, Agbor GA. Cytotoxicity, Antiadipogenic, Low-Density Lipoprotein Oxidation Inhibitory Activities, and Acute Toxicity Study of Psychotria densinervia Hydroethanolic Leaf and Bark Extracts. ScientificWorldJournal 2024; 2024:1732653. [PMID: 39720344 PMCID: PMC11668551 DOI: 10.1155/tswj/1732653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
Background: Obesity is increasingly taking an important stage as a cause of death worldwide, and interventions with a good cost-effectiveness ratio are needed. Psychotria densinervia is one of these natural products with health benefits. Objective. The present study evaluated the cytotoxicity, antiadipogenic, low-density lipoprotein (LDL), oxidation inhibitory activities, and acute toxicity of Psychotria densinervia hydroethanolic leaf and bark extracts. Methods: The cytotoxicity evaluation of the extracts (62.5, 125, 250, and 500 μg/mL) using the MTT assay and the antiadipogenic activity (25, 50, 100, and 200 μg/mL) using oleic acid were carried out in SW-872 cells. Copper sulfate (CuSO4)-induced oxidation was used in the evaluation of the effect of extracts (0.25, 0.5, and 1 mg/mL) against LDL oxidation. The oral acute toxicity evaluation of a single dose of 2000 mg/kg of the extracts was performed in Wistar albino rats weighing 127 ± 2 g. Results: The leaf and bark extracts did not show any sign of cytotoxicity at the tested concentrations. The best antiadipogenic activity was observed by the standard orlistat (38.45 ± 1.70 μg/mL), followed by the leaf extract (IC50: 41.47 ± 0.50 μg/mL) and the least the bark extract (IC50: 107.50 ± 0.90 μg/mL). At a concentration of 1 mg/mL, the leaf extract presented an oxidation lag time of 130 min, which was higher and better than that of the bark extract (120 min). Quercetin (standard) presented an oxidation lag time longer than 3 h. The oral acute toxicity evaluation did not show any signs of toxicity indicating that the LD50 was greater than 2000 mg/kg. Conclusion: Based on the results obtained, the P. densinervia hydroethanolic leaf extract possesses a better antioxidant and antiadipogenic activities than the bark extract.
Collapse
Affiliation(s)
- Jean Romuald Mba
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Djamila Zouheira
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Stephanie Tamdem Guetchueng
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Hadidjatou Daïrou
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Paul Toukam Djouonzo
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur de Yaounde, P.O. Box 1274, Yaoundé, Cameroon
| | - Jules-Roger Kuiate
- Department of Biochemistry, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Gabriel A. Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaoundé, Cameroon
| |
Collapse
|
38
|
Bacchetti T, Morresi C, Simonetti O, Ferretti G. Effect of Diet on HDL in Obesity. Molecules 2024; 29:5955. [PMID: 39770044 PMCID: PMC11677490 DOI: 10.3390/molecules29245955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations of plasma lipoprotein levels and oxidative stress are frequently observed in obese patients, including low high-density lipoprotein (HDL) cholesterol (HDL-C) levels and alterations of HDL composition. Dysfunctional HDL with lower antioxidant and anti-inflammatory properties have also been demonstrated in obesity. There is increasing evidence that white adipose tissue (WAT) participates in several metabolic activities and modulates HDL-C levels and function. In obese subjects, the changes in morphology and function of adipose tissue lead to impaired regulatory function and are associated with a state of low-grade chronic inflammation, with increased release of pro-inflammatory adipokines and cytokines. These alterations may affect HDL metabolism and functions; thus, adipose tissue is considered a potential target for the prevention and treatment of obesity. A cornerstone of obesity prevention and therapy is lifestyle modification through dietary changes, which is reflected in the modulation of plasma lipoprotein metabolism. Some dietary components and metabolites directly affect the composition and structure of HDL and modulate its anti-inflammatory and vasoprotective properties. The aims of the review are to summarize the crosstalk between adipocytes and HDL dysfunction in human obesity and to highlight recent discoveries on beneficial dietary patterns as well as nutritional components on inflammation and HDL function in human obesity.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology, Research Center of Health Education and Health Promotion and Research Center of Obesity, Polytechnic University of Marche, 60126 Ancona, Italy;
| |
Collapse
|
39
|
Bahrami P, Aromolaran KA, Aromolaran AS. Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:13423. [PMID: 39769189 PMCID: PMC11677834 DOI: 10.3390/ijms252413423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias. Obesity and its associated metabolic dysregulation, leading to metabolic syndrome, are an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese, leading to an enhanced risk of incidence and mortality due to cardiovascular disease (CVD). Obesity predisposes patients to atrial fibrillation and ventricular and supraventricular arrhythmias-conditions that are caused by dysfunction in the electrical activity of the heart. To date, current therapeutic options for the cardiomyopathy of obesity are limited, suggesting that there is considerable room for the development of therapeutic interventions with novel mechanisms of action that will help normalize sinus rhythms in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca-handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels and Ca-handling proteins remain incompletely understood. Obesity is marked by the accumulation of adipose tissue, which is associated with a variety of adverse adaptations, including dyslipidemia (or abnormal systemic levels of free fatty acids), increased secretion of proinflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, which cause electrical remodeling and, thus, predispose patients to arrhythmias. Furthermore, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which is marked by distinct signaling mechanisms. Thus, there may also be functional differences in the effects of the regional distribution of fat deposits on ion channel/Ca-handling protein expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge of the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact. Nevertheless, substantial knowledge gaps remain regarding HFpEF treatment, requiring further investigations to identify potential therapeutic targets. The objective of this study is to review cardiac ion channel/Ca-handling protein remodeling in the predisposition to metabolic HFpEF and arrhythmias. This review further highlights interleukin-6 (IL-6) as a potential target, cardiac bridging integrator 1 (cBIN1) as a promising gene therapy agent, and leukotriene B4 (LTB4) as an underappreciated pathway in future HFpEF management.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Foutz MA, Krinos EL, Beretta M, Hargett SR, Shrestha R, Murray JH, Duerre E, Salamoun JM, McCarter K, Shah DP, Hoehn KL, Santos WL. Design, Synthesis, and Biological Evaluation of [1,2,5]Oxadiazolo[3,4- b]pyridin-7-ol as Mitochondrial Uncouplers for the Treatment of Obesity and Metabolic Dysfunction-Associated Steatohepatitis. J Med Chem 2024; 67:21486-21504. [PMID: 39614818 DOI: 10.1021/acs.jmedchem.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Mitochondrial uncouplers are small molecule protonophores that act to dissipate the proton motive force independent of adenosine triphosphate (ATP) synthase. Mitochondrial uncouplers such as BAM15 increase respiration and energy expenditure and have potential in treating a variety of metabolic diseases. In this study, we disclose the structure-activity relationship profile of 6-substituted [1,2,5]oxadiazolo[3,4-b]pyridin-7-ol derivatives of BAM15. Utilizing an oxygen consumption rate assay as a measure of increased cellular respiration, SHO1122147 (7m) displayed an EC50 of 3.6 μM in L6 myoblasts. Pharmacokinetic studies indicated a half-life of 2 h, Cmax of 35 μM, and no observed adverse effects at 1,000 mg kg-1 dose in mice. In a Gubra-Amylin (GAN) mouse model of MASH, SHO1122147 was efficacious in decreasing body weight and liver triglyceride levels at 200 mg kg-1 day-1 without changes in body temperature. These findings indicate the potential of utilizing novel [1,2,5]oxadiazolo[3,4-b]pyridin-7-ol mitochondrial uncouplers for treatment of fatty liver disease and obesity.
Collapse
Affiliation(s)
- Mary A Foutz
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily L Krinos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Riya Shrestha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Jacob H Murray
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ethan Duerre
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Katrina McCarter
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
41
|
Chung JS, An S, Moon HE, Kim Y, Chung TH. Association Between Obesity and Intra-Abdominal Solid Organ Damage in Patients with Blunt Abdominal Trauma: A Cross-Sectional Study. J Clin Med 2024; 13:7467. [PMID: 39685925 DOI: 10.3390/jcm13237467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: The global prevalence of obesity continues to rise. However, whether obesity affects the degree of intra-abdominal solid organ damage following blunt trauma remains unclear. This study aimed to investigate the correlation between obesity and intra-abdominal solid organ damage. Methods: This cross-sectional study was conducted at a regional trauma center in the Republic of Korea from January 2018 to December 2022 and included 582 patients aged 18-98 years with blunt abdominal trauma. Patients were categorized into four groups-underweight, normal weight, overweight, and obesity-based on their body mass index (BMI). Odds ratios (ORs), beta coefficients, and 95% confidence intervals (CIs) for intra-abdominal organ damage were calculated across BMI categories using multiple logistic regression analysis after adjusting for the confounding variables. Results: The obesity group exhibited a significant decrease in the prevalence of liver injury (OR: 0.553, CI: 0.316 to 0.966) and a reduction in liver injury severity (β: -0.214, CI: -0.391 to -0.037) compared with the normal-weight group after adjusting for the confounding factors. However, no significant association was observed between the BMI and injuries to other solid organs, such as the spleen, pancreas, and kidneys. Additionally, the younger obesity group (participants aged < 45 years) exhibited a significant negative association with both liver injury and injury grade. However, the older obesity group (participants aged > 65 years) exhibited a statistically significant association only with the liver injury grade compared with the normal-weight group. Conclusions: Obesity can serve as a predictive factor for the presence and severity of liver damage caused by blunt abdominal trauma.
Collapse
Affiliation(s)
- Jae Sik Chung
- Department of Surgery, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Sanghyun An
- Department of Surgery, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyeun Eui Moon
- Department of Medicine, Graduate School, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
- Research Group of Functional Medicine and Preclinical Disease, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Yonsu Kim
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Tae-Ha Chung
- Research Group of Functional Medicine and Preclinical Disease, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Family Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
42
|
Ghasemzadeh Rahbardar M, Fazeli Kakhki H, Hosseinzadeh H. Ziziphus jujuba (Jujube) in Metabolic Syndrome: From Traditional Medicine to Scientific Validation. Curr Nutr Rep 2024; 13:845-866. [PMID: 39354208 DOI: 10.1007/s13668-024-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.
Collapse
Affiliation(s)
| | - Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Rossetti CL, Andrade IS, Fonte Boa LF, Neves MB, Fassarella LB, Bertasso IM, Souza MDGCD, Bouskela E, Lisboa PC, Takyia CM, Trevenzoli IH, Fortunato RS, Carvalho DPD. Liraglutide prevents body and fat mass gain in ovariectomized Wistar rats. Mol Cell Endocrinol 2024; 594:112374. [PMID: 39306226 DOI: 10.1016/j.mce.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Estrogens exert beneficial metabolic effects by reducing food intake and enhancing energy expenditure through both central and peripheral mechanisms. The decrease of estrogen, as occurs in ovariectomy (OVX), leads to metabolic disturbances, such as increased body weight, adipose tissue mass, basal blood glucose, and impaired glucose tolerance. These effects can be reversed by reintroducing estrogen. GLP-1 and its receptor agonists, known for their antihyperglycemic properties, also exhibit anorexigenic effects. Besides that, research indicates that GLP-1 analogs can induce metabolic changes peripherally, such as increased fatty acid oxidation and inhibited lipogenesis. Given the shared metabolic actions of GLP-1 and estrogens, we explored whether liraglutide, a GLP-1 agonist, could mitigate the metabolic effects of estrogen deficiency. We tested this hypothesis using ovariectomized rats, a model that simulates menopausal estrogen deficiency, and treated them with either liraglutide or 17β-Estradiol benzoate for 21 days. Ovariectomy resulted in elevated DPP-IV activity in both plasma and inguinal white adipose tissue (iWAT). While estrogen replacement effectively countered the DPP-IV increase in both plasma and iWAT, liraglutide only prevented the rise in iWAT DPP-IV activity. Liraglutide prevented body weight and fat mass gain after ovariectomy to the same extent as estradiol treatment. This can be explained by the lower food intake and food efficiency caused by estradiol and liraglutide. However, liraglutide was associated with increased pro-inflammatory cytokines and inflammatory cells in white adipose tissue. Further research is crucial to fully understand the potential benefits and risks of using GLP-1 receptor agonists in the context of menopause.
Collapse
Affiliation(s)
- Camila Lüdke Rossetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, USA
| | - Iris Soares Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Fernando Fonte Boa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Barbosa Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Brito Fassarella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratorio de Fisiologia Endócrina, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Coelho de Souza
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratorio de Fisiologia Endócrina, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takyia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Denise Pires de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Koç IY, Beler M, Ünal İ, Paker S, Emekli-Alturfan E, Alturfan AA, Cansız D. Investigating the effect of radiofrequency electromagnetic field exposure on molecular pathways related to insulin resistance and adipogenesis in zebrafish embryos - A pilot study without quantitative exposure metrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176038. [PMID: 39245375 DOI: 10.1016/j.scitotenv.2024.176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
In recent years, obesity has become a global problem in children and adolescents, in parallel with the rapid increase in the use of information and communication technology. Recognizing the embryonic causes of obesity may help prevent adverse adult health outcomes. In our study, we hypothesized that radiofrequency-electromagnetic field (RF-EMF) exposure during embryogenesis would affect the molecular mechanisms related to adipogenesis and insulin resistance in zebrafish. To achieve this, we set up a system that emits RF-EMF in the 900 MHz band and subjected zebrafish embryos to its RF-EMF. We created two groups in which we exposed 30 min (EMF-30) and 60 min (EMF-60) per day, and a control group that was not exposed to RF-EMF. We ended the exposure at 96 hpf and analyzed the expression of lepa, ins, and pparg that are involved in the regulation of glucose and lipid metabolism. In addition, we analyzed oxidative stress parameters, embryonic development, and locomotor activity. We found decreased mRNA transcript abundance of lepa, ins, pparg, and activities of superoxide dismutase and acetylcholine esterase, along with increased lipid peroxidation (LPO), nitric oxide (NO), and glutathione S-transferase (GST). Locomotor activity increased in the EMF-30 group and decreased in the EMF-60 group. Our results showed that exposure to RF-EMF during the embryonic period disrupted the molecular pathways related to insulin resistance and adipogenesis in zebrafish. However, due to limited available resources, we were not able to appropriately quantify the actual RF exposure strength of the samples. Hence the results reported here should only be seen as preliminary, and further studies employing high quality exposure apparatus and dosimetry should be carried out in future.
Collapse
Affiliation(s)
- Irmak Yaldız Koç
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Selçuk Paker
- Faculty of Electrical and Electronic Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
45
|
Conti MV, Santero S, Luzzi A, Cena H. Exploring potential mechanisms for zinc deficiency to impact in autism spectrum disorder: a narrative review. Nutr Res Rev 2024; 37:287-295. [PMID: 37728060 DOI: 10.1017/s0954422423000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous and complex group of life-long neurodevelopmental disorders. How this clinical condition impacts an individual's intellectual, social and emotional capacities, contributing to alterations in the proprioceptive and sensory systems and increasing their selective attitude towards food, is well described in the literature. This complex condition or status exposes individuals with ASD to an increased risk of developing overweight, obesity and non-communicable diseases compared with the neurotypical population. Moreover, individuals with ASD are characterised by higher levels of inflammation, oxidative stress markers and intestinal dysbiosis. All these clinical features may also appear in zinc deficiency (ZD) condition. In fact, zinc is an essential micronutrient for human health, serving as a structural, catalytic and regulatory component in numerous physiological processes. The aim of this narrative review is to explore role of ZD in ASD. Factors affecting zinc absorption, excretion and dietary intake in this vulnerable population are taken into consideration. Starting from this manuscript, the authors encourage future research to investigate the role of ZD in ASD. The perspective is to potentially find another missing piece in the 'ASD clinical puzzle picture' to improve the health status of these individuals.
Collapse
Affiliation(s)
- M V Conti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - S Santero
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - A Luzzi
- Clinical Nutrition Unit, General Medicine, ICS Maugeri IRCCS, Pavia, Italy
- Post Graduate Course in Food Science and Human Nutrition, Università Statale di Milano, Milan, Italy
| | - H Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition Unit, General Medicine, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
46
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Positive Association Between Serum Concentration of 4-Tertiary-octylphenol and Oxidation of DNA and Lipid in Adolescents and Young Adults. EXPOSURE AND HEALTH 2024; 16:1311-1320. [DOI: 10.1007/s12403-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/04/2025]
|
47
|
Yilmaz A, Toraman MN, Mataraci Karakas S, Ozden Z, Pinarbas E, Mercantepe T. Effect of White Tea on Leptin and Asprosin Levels in Rats Feeding a High-Fat Diet. Life (Basel) 2024; 14:1548. [PMID: 39768256 PMCID: PMC11679257 DOI: 10.3390/life14121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Currently, obesity affects over 600 million individuals and is responsible for numerous severe health conditions, particularly diabetes and metabolic syndrome. The objective of our study was to examine the impact of white tea, known for its potent antioxidant properties, on the reduction in body weight as well as the levels of leptin and asprosin. METHODS A total of 72 male Sprague-Dawley rats were randomly assigned to 9 groups, with each group consisting of 8 rats. The groups were partitioned into two in order to examine the preventative and therapeutic effects of white tea on obesity. During this study, the case groups were administered white tea together with a high-fat diet, whereas the positive control group was administered orlistat along with a high-fat diet through oral gavage. After the experiment concluded, the levels of leptin, asprosin, and insulin hormones were evaluated in serum samples collected from rats using the ELISA method. RESULTS The findings demonstrated that the administration of white tea led to a significant decrease in body weight, serum leptin, and asprosin levels, as well as oxidative stress indicators, in rats that were fed a high-fat diet. CONCLUSIONS Utilizing natural chemicals, such as white tea, which possess minimal side effects and have powerful antioxidant activity, can mitigate the detrimental consequences associated with obesity.
Collapse
Affiliation(s)
- Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Merve Nur Toraman
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Sibel Mataraci Karakas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| |
Collapse
|
48
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
49
|
Abad-Jiménez Z, López-Domènech S, Pelechá M, Perea-Galera L, Rovira-Llopis S, Bañuls C, Blas-García A, Apostolova N, Morillas C, Víctor VM, Rocha M. Calorie restriction modulates mitochondrial dynamics and autophagy in leukocytes of patients with obesity. Free Radic Biol Med 2024; 225:677-686. [PMID: 39447993 DOI: 10.1016/j.freeradbiomed.2024.10.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Although it is established that caloric restriction offers metabolic and clinical benefits, the molecular mechanisms underlying these effects remain unclear. Thus, this study aimed to investigate whether caloric restriction can modulate mitochondrial function and remodeling and stimulate autophagic flux in the PBMCs of patients with obesity. METHODS This was an interventional study of 38 obese subjects (BMI >35 kg/m2) who underwent 6 months of dietary therapy, including a 6-week very-low-calorie diet (VLCD) followed by an 18-week low-calorie diet (LCD). We determined clinical variables, mitochondrial function parameters (by fluorescence imaging of mitochondrial ROS and membrane potential), and protein expression of markers of mitochondrial dynamics (MNF1, MFN2, OPA, DRP1 and FIS1) and autophagy (LC3, Beclin, BCL2 and NBR1) by Western blot. RESULTS Caloric restriction induced an improvement in metabolic outcomes that was accompanied by an increase in AMPK expression, a decrease of mitochondrial ROS and mitochondrial membrane potential, which was associated with increased markers of mitochondrial dynamics (MFN2, DRP1 and FIS1) and activation of autophagy as evidenced by augmented LC3 II/I, Beclin1 and NBR1, and a decrease in BCL2. CONCLUSION These findings shed light on the specific molecular mechanisms by which caloric restriction facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis and cell recovery, including mitochondrial function and dynamics and autophagy.
Collapse
Affiliation(s)
- Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Sandra López-Domènech
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - María Pelechá
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Laura Perea-Galera
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Susana Rovira-Llopis
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Ana Blas-García
- CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Nadezda Apostolova
- CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Víctor Manuel Víctor
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain; CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain.
| | - Milagros Rocha
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain; CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain.
| |
Collapse
|
50
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|