1
|
Simard JM, Tosun C, Tsymbalyuk O, Moyer M, Keledjian K, Tsymbalyuk N, Olaniran A, Evans M, Langbein J, Khan Z, Kreinbrink M, Ciryam P, Stokum JA, Jha RM, Ksendzovsky A, Gerzanich V. A Mouse Model of Temporal Lobe Contusion. J Neurotrauma 2025; 42:143-160. [PMID: 39302058 DOI: 10.1089/neu.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Trauma to the brain can induce a contusion characterized by a discrete intracerebral or diffuse interstitial hemorrhage. In humans, "computed tomography-positive," that is, hemorrhagic, temporal lobe contusions (tlCont) have unique sequelae. TlCont confers significantly increased odds for moderate or worse disability and the inability to return to baseline work capacity compared to intra-axial injuries in other locations. Patients with tlCont are at elevated risks of memory dysfunction, anxiety, and post-traumatic epilepsy due to involvement of neuroanatomical structures unique to the temporal lobe including the amygdala, hippocampus, and ento-/perirhinal cortex. Because of the relative inaccessibility of the temporal lobe in rodents, no preclinical model of tlCont has been described, impeding progress in elucidating the specific pathophysiology unique to tlCont. Here, we present a minimally invasive mouse model of tlCont with the contusion characterized by a traumatic interstitial hemorrhage. Mortality was low and sensorimotor deficits (beam walk, accelerating rotarod) resolved completely within 3-5 days. However, significant deficits in memory (novel object recognition, Morris water maze) and anxiety (elevated plus maze) persisted at 14-35 days and nonconvulsive electroencephalographic seizures and spiking were significantly increased in the hippocampus at 7-21 days. Immunohistochemistry showed widespread astrogliosis and microgliosis, bilateral hippocampal sclerosis, bilateral loss of hippocampal and cortical inhibitory parvalbumin neurons, and evidence of interhemispheric connectional diaschisis involving the fiber bundle in the ventral corpus callosum that connects temporal lobe structures. This model may be useful to advance our understanding of the unique features of tlCont in humans.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adedayo Olaniran
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madison Evans
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jenna Langbein
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ziam Khan
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Kreinbrink
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Trauma, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Hiskens MI, Schneiders AG, Fenning AS. Selective COX-2 Inhibitors as Neuroprotective Agents in Traumatic Brain Injury. Biomedicines 2024; 12:1930. [PMID: 39200394 PMCID: PMC11352079 DOI: 10.3390/biomedicines12081930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/02/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant contributor to mortality and morbidity in people, both young and old. There are currently no approved therapeutic interventions for TBI. Following TBI, cyclooxygenase (COX) enzymes generate prostaglandins and reactive oxygen species that perpetuate inflammation, with COX-1 and COX-2 isoforms providing differing responses. Selective COX-2 inhibitors have shown potential as neuroprotective agents. Results from animal models of TBI suggest potential treatment through the alleviation of secondary injury mechanisms involving neuroinflammation and neuronal cell death. Additionally, early clinical trials have shown that the use of celecoxib improves patient mortality and outcomes. This review aims to summarize the therapeutic effects of COX-2 inhibitors observed in TBI animal models, highlighting pertinent studies elucidating molecular pathways and expounding upon their mechanistic actions. We then investigated the current state of evidence for the utilization of COX-2 inhibitors for TBI patients.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD 4740, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (A.S.F.)
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (A.S.F.)
| |
Collapse
|
3
|
Bhanja D, Hallan DR, Staub J, Rizk E, Zacko JC. Early Celecoxib use in Patients with Traumatic Brain Injury. Neurocrit Care 2024; 40:886-897. [PMID: 37704936 DOI: 10.1007/s12028-023-01827-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause rapid brain inflammation. There is debate over the safety and efficacy of anti-inflammatory agents in its treatment. With a particular focus on cyclooxygenase 2 (COX2) selective inhibition, we sought to determine the impact of celecoxib versus no celecoxib treatment on outcomes in patients with TBI and compare these with outcomes associated with nonselective COX inhibition (ibuprofen) and corticosteroid (dexamethasone) treatment. METHODS This retrospective cohort study used TriNetX, a large publicly available global health research network, to gather clinical data extracted from the electronic medical records. Using International Classification of Diseases, Tenth Revision and pharmacy codes, we identified patients with TBI who were and were not treated with celecoxib, ibuprofen, and dexamethasone. Analysis was performed on propensity-matched and unmatched cohorts, which were matched on demographics, comorbidities, and neurological injuries. Our primary end point was 1-year survival. Secondary end points were ventilator and tracheostomy dependence, gastrostomy tube placement, seizures, and craniotomy. RESULTS After propensity score matching, a total of 1443 patients were identified in both the celecoxib and no celecoxib cohorts. Ninety-two (6.4%) patients in the celecoxib cohort died within 1 year following TBI versus 145 (10.0%) in the no celecoxib cohort (odds ratio 0.61; 95% confidence interval 0.46-0.80; p = 0.0003). The 1-year survival rate was 96.1% in the celecoxib cohort versus 93.1% in the no celecoxib cohort (p < 0.0001). At the end of the 1-year period, celecoxib was associated with significantly lower gastrostomy tube dependence (p = 0.017), seizure activity (p = 0.027), and myocardial infarction (p = 0.021) compared with the control cohort. Ibuprofen was also associated with higher 1-year survival probability and lower rates of post-TBI complications. Dexamethasone was broadly associated with higher morbidity but was associated with higher 1-year survival probability compared with the no dexamethasone cohort. CONCLUSIONS Early celecoxib and ibuprofen use within 5 days post TBI was associated with higher 1-year survival probabilities and fewer complications. With emerging yet controversial preclinical evidence to suggest that COX inhibition improves TBI outcomes, this population-level study offers suggestive support for these drugs' clinical benefit, which should be pursued in prospective clinical studies.
Collapse
Affiliation(s)
- Debarati Bhanja
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - David R Hallan
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Jacob Staub
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Joseph Christopher Zacko
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| |
Collapse
|
4
|
Varghese N, Morrison B. Inhibition of cyclooxygenase and EP3 receptor improved long term potentiation in a rat organotypic hippocampal model of repeated blast traumatic brain injury. Neurochem Int 2023; 163:105472. [PMID: 36599378 DOI: 10.1016/j.neuint.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a health concern in military service members who are exposed to multiple blasts throughout their training and deployment. Our group has previously reported decreased long term potentiation (LTP) following repeated bTBI in a rat organotypic hippocampal slice culture (OHSC) model. In this study, we investigated changes in inflammatory markers like cyclooxygenase (COX) and tested the efficacy of COX or prostaglandin EP3 receptor (EP3R) inhibitors in attenuating LTP deficits. Expression of COX-2 was increased 48 h following repeated injury, whereas COX-1 expression was unchanged. EP3R expression was upregulated, and cyclic adenosine monophosphate (cAMP) concentration was decreased after repeated blast exposure. Post-traumatic LTP deficits improved after treatment with a COX-1 specific inhibitor, SC-560, a COX-2 specific inhibitor, rofecoxib, a pan-COX inhibitor, ibuprofen, or an EP3R inhibitor, L-798,106. Delayed treatment with ibuprofen and L-798,106 also prevented LTP deficits. These findings suggest that bTBI induced neuroinflammation may be responsible for some functional deficits that we have observed in injured OHSCs. Additionally, COX and EP3R inhibition may be viable therapeutic strategies to reduce neurophysiological deficits after repeated bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Pang Y, Liu X, Zhao C, Shi X, Zhang J, Zhou T, Xiong H, Gao X, Zhao X, Yang X, Ning G, Zhang X, Feng S, Yao X. LC-MS/MS-based arachidonic acid metabolomics in acute spinal cord injury reveals the upregulation of 5-LOX and COX-2 products. Free Radic Biol Med 2022; 193:363-372. [PMID: 36272669 DOI: 10.1016/j.freeradbiomed.2022.10.303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
Arachidonic acid (AA) plays a critical role in inflammatory regulation and secondary injury after spinal cord injury (SCI). However, the overall AA metabolism profile in the acute phase of SCI remains elusive. Here we quantified AA metabolomics by High Performance Liquid Chromatography-Tandem Mass Spectrometry-Based Method (LC-MS/MS) using spinal cord tissue collected at 4 h, 24 h and 48 h after contusive SCI in rats. Remarkably, Prostaglandin E2 (PGE2) and Leukotriene B4 (LTB4) were significantly increased throughout the acute SCI. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), the key enzymes involved in the production of PGE2 and LTB4, were elevated in the lesioned spinal cord tissue, validated by both western blot and immunofluorecnce. The spatial-temporal changes of COX-2 and 5-LOX mainly occurs in neurons both in epicenter and rostral and caudal spinal cord segments after SCI. Our study sheds light on the dynamic microenvironment changes in acute SCI by characterizing the profile of AA metabolism. The COX-2 and 5-LOX may be promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yilin Pang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Xinjie Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Chenxi Zhao
- Orthopedic Research Center of Shandong University & Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiawei Zhang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Tiangang Zhou
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Haoning Xiong
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Xiang Gao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Xiaoqing Zhao
- Orthopedic Research Center of Shandong University & Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingjian Yang
- Department of Biology, Grinnell College, Grinnell, IA, USA
| | - Guangzhi Ning
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China; Orthopedic Research Center of Shandong University & Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin, China; Orthopedic Research Center of Shandong University & Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Hiskens MI. Targets of Neuroprotection and Review of Pharmacological Interventions in Traumatic Brain Injury. J Pharmacol Exp Ther 2022; 382:149-166. [PMID: 35644464 DOI: 10.1124/jpet.121.001023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 03/08/2025] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to disability and death worldwide, and manifests in cognitive, behavioral, and motor impairment. Although there have been numerous pre-clinical studies that have identified promising pharmacologic treatments, to date, all Phase III clinical trials have failed. Thus, this is a priority area for ongoing research and development. Treatment strategies have traditionally focused on neuroprotection of the injured brain to reduce secondary injury, neuronal death, and lesion size. The aim of this minireview is to describe the secondary injury pathophysiology of TBI and give an examination of key targets of neuroprotection, select Phase III trials that have been undertaken, and future possibilities for successful drug development. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the key Phase III clinical trials that have been undertaken in the development of a neuropharmacological treatment for traumatic brain injury. The article discusses the key targets for treatment, the potential reasons for the lack of translation of promising pre-clinical compounds, and the most promising avenues for future development.
Collapse
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD; and School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, QLD
| |
Collapse
|
7
|
Kalra S, Malik R, Singh G, Bhatia S, Al-Harrasi A, Mohan S, Albratty M, Albarrati A, Tambuwala MM. Pathogenesis and management of traumatic brain injury (TBI): role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 2022; 30:1153-1166. [PMID: 35802283 PMCID: PMC9293826 DOI: 10.1007/s10787-022-01017-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is an important global health concern that represents a leading cause of death and disability. It occurs due to direct impact or hit on the head caused by factors such as motor vehicles, crushes, and assaults. During the past decade, an abundance of new evidence highlighted the importance of inflammation in the secondary damage response that contributes to neurodegenerative and neurological deficits after TBI. It results in disruption of the blood-brain barrier (BBB) and initiates the release of macrophages, neutrophils, and lymphocytes at the injury site. A growing number of researchers have discovered various signalling pathways associated with the initiation and progression of inflammation. Targeting different signalling pathways (NF-κB, JAK/STAT, MAPKs, PI3K/Akt/mTOR, GSK-3, Nrf2, RhoGTPase, TGF-β1, and NLRP3) helps in the development of novel anti-inflammatory drugs in the management of TBI. Several synthetic and herbal drugs with both anti-inflammatory and neuroprotective potential showed effective results. This review summarizes different signalling pathways, associated pathologies, inflammatory mediators, pharmacological potential, current status, and challenges with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India. .,Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Northern Ireland, UK.
| |
Collapse
|
8
|
Li Z, Xu C, Wang Y. Poly d,l-(lactic-co-glycolic) Acid PEGylated Isoliquiritigenin Alleviates Traumatic Brain Injury by Reversing Cyclooxygenase 2 Level. J Biomed Nanotechnol 2022; 18:909-916. [PMID: 35715911 DOI: 10.1166/jbn.2022.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a severe neurological disease of trauma, traumatic brain injury (TBI) leads to other disorders, such as depression, dementia and epilepsy. This study investigated whether poly d,l-(lactic-co-glycolic) acid (PLGA) PEGylated isoliquiritigenin could alleviate TBI. One hundred and eighty-three patients with clinical brain trauma were divided into two groups with or without intracranial injury in magnetic resonance imaging. The clinical results showed that serum cyclooxygenase 2 (COX-2) levels were obviously increased in the TBI patients compared to the patients with head trauma only or healthy individuals. Intracranial injection of isoliquiritigenin in TBI rats reversed TBI induced increase of COX-2 level, significantly reduced water content and contusion volume. Our findings suggest that PLGA PEG nanoparticles loaded with isoliquiritigenin can achieve the same effects as intracranial administration of isoliquiritigenin in reducing serum COX-2 level.
Collapse
Affiliation(s)
- Zhengyang Li
- Department of Radiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Chao Xu
- Department of Radiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Yan Wang
- Department of Radiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| |
Collapse
|
9
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
10
|
Anderson LM, Samineni S, Wilder DM, Lara M, Eken O, Urioste R, Long JB, Arun P. The Neurobehavioral Effects of Buprenorphine and Meloxicam on a Blast-Induced Traumatic Brain Injury Model in the Rat. Front Neurol 2021; 12:746370. [PMID: 34712199 PMCID: PMC8545992 DOI: 10.3389/fneur.2021.746370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Previous findings have indicated that pain relieving medications such as opioids and non-steroidal anti-inflammatory drugs (NSAIDs) may be neuroprotective after traumatic brain injury in rodents, but only limited studies have been performed in a blast-induced traumatic brain injury (bTBI) model. In addition, many pre-clinical TBI studies performed in rodents did not use analgesics due to the possibility of neuroprotection or other changes in cognitive, behavioral, and pathology outcomes. To examine this in a pre-clinical setting, we examined the neurobehavioral changes in rats given a single pre-blast dose of meloxicam, buprenorphine, or no pain relieving medication and exposed to tightly-coupled repeated blasts in an advanced blast simulator and evaluated neurobehavioral functions up to 28 days post-blast. A 16.7% mortality rate was recorded in the rats treated with buprenorphine, which might be attributed to the physiologically depressive side effects of buprenorphine in combination with isoflurane anesthesia and acute brain injury. Rats given buprenorphine, but not meloxicam, took more time to recover from the isoflurane anesthesia given just before blast. We found that treatment with meloxicam protected repeated blast-exposed rats from vestibulomotor dysfunctions up to day 14, but by day 28 the protective effects had receded. Both pain relieving medications seemed to promote short-term memory deficits in blast-exposed animals, whereas vehicle-treated blast-exposed animals showed only a non-significant trend toward worsening short-term memory by day 27. Open field exploratory behavior results showed that blast exposed rats treated with meloxicam engaged in significantly more locomotor activities and possibly a lesser degree of responses thought to reflect anxiety and depressive-like behaviors than any of the other groups. Rats treated with analgesics to alleviate possible pain from the blast ate more than their counterparts that were not treated with analgesics, which supports that both analgesics were effective in alleviating some of the discomfort that these rats potentially experienced post-blast injury. These results suggest that meloxicam and, to a lesser extent buprenorphine alter a variety of neurobehavioral functions in a rat bTBI model and, because of their impact on these neurobehavioral changes, may be less than ideal analgesic agents for pre-clinical studies evaluating these neurobehavioral responses after TBI.
Collapse
Affiliation(s)
- Laura M Anderson
- Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sridhar Samineni
- Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Marisela Lara
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ondine Eken
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rodrigo Urioste
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
11
|
Celecoxib in a Preclinical Model of Repetitive Mild Traumatic Brain Injury: Hippocampal Learning Deficits Persist with Inflammatory and Excitotoxic Neuroprotection. TRAUMA CARE 2021. [DOI: 10.3390/traumacare1010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Repetitive mild traumatic brain injuries (mTBIs) contribute to inflammation-induced neurodegeneration. Cycloxygenase (COX) enzymes produce inflammatory cytokines that influence the microglia response to neurotrauma. Celecoxib is a selective COX-2 inhibitor that is prescribed in some conditions of mTBI to alleviate symptoms of concussion, and has shown benefits in neurodegenerative conditions. We investigated molecular pathways of neuroinflammation in response to celecoxib treatment in a mouse model of repetetive mTBI. Fifteen mTBIs were delivered over 23 days in adult male C57BL/6J mice in one of four groups (control, celecoxib without impact, celecoxib with impact, and vehicle with impact). Cognitive function was assessed at 48 h and three months following the final mTBI. Morris Water Maze testing revealed impaired hippocampal spatial learning performance in the celecoxib treatment with the impact group compared to the vehicle with impact control in the acute phase, with celecoxib treatment providing no improvement compared with the control at chronic testing; mRNA analysis of the cerebral cortex and hippocampus revealed expression change, indicating significant improvement in microglial activation, inflammation, excitotoxicity, and neurodegeneration at chronic measurement. These data suggest that, in the acute phase following injury, celecoxib protected against neuroinflammation, but exacerbated clinical cognitive disturbance. Moreover, while there was evidence of neuroprotective alleviation of mTBI pathophysiology at chronic measurement, there remained no change in clinical features.
Collapse
|
12
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Dehlaghi Jadid K, Davidsson J, Lidin E, Hånell A, Angéria M, Mathiesen T, Risling M, Günther M. COX-2 Inhibition by Diclofenac Is Associated With Decreased Apoptosis and Lesion Area After Experimental Focal Penetrating Traumatic Brain Injury in Rats. Front Neurol 2019; 10:811. [PMID: 31417487 PMCID: PMC6682700 DOI: 10.3389/fneur.2019.00811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is followed by a secondary inflammation in the brain. The inflammatory response includes prostanoid synthesis by the inducible enzyme cyclooxygenase-2 (COX-2). Inhibition of COX-2 is associated with improved functional outcome in experimental TBI models, although central nervous system-specific effects are not fully understood. Animal studies report better outcomes in females than males. The exact mechanisms for this gender dichotomy remain unknown. In an initial study we reported increased COX-2 expression in male rats, compared to female, following experimental TBI. It is possible that COX-2 induction is directly associated with increased cell death after TBI. Therefore, we designed a sequential study to investigate the blocking of COX-2 specifically, using the established COX-2 inhibitor diclofenac. Male Sprague-Dawley rats weighing between 250 and 350 g were exposed to focal penetrating TBI and randomly selected for diclofenac treatment (5 μg intralesionally, immediately following TBI) (n = 8), controls (n = 8), sham operation (n = 8), and normal (no manipulation) (n = 4). After 24 h, brains were removed, fresh frozen, cut into 14 μm coronal sections and subjected to COX-2 immunofluorescence, Fluoro Jade, TUNEL, and lesion area analyses. Diclofenac treatment decreased TUNEL staining indicative of apoptosis with a mean change of 54% (p < 0.05) and lesion area with a mean change of 55% (p < 0.005). Neuronal degeneration measured by Fluoro Jade and COX-2 protein expression levels were not affected. In conclusion, COX-2 inhibition by diclofenac was associated with decreased apoptosis and lesion area after focal penetrating TBI and may be of interest for further studies of clinical applications.
Collapse
Affiliation(s)
- Kayvan Dehlaghi Jadid
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Davidsson
- Division of Vehicle Safety, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Lidin
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Anders Hånell
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Maria Angéria
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tiit Mathiesen
- Department of Clinical Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mattias Günther
- Experimental Traumatology Unit, Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
14
|
Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 2019; 16:523-530. [PMID: 30846842 DOI: 10.1038/s41423-019-0213-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is recognized as a global health problem due to its increasing occurrence, challenging treatment, and persistent impacts on brain pathophysiology. Neural cell death in patients with TBI swiftly causes inflammation in the injured brain areas, which is recognized as focal brain inflammation. Focal brain inflammation causes secondary brain injury by exacerbating brain edema and neuronal death, while also exerting divergent beneficial effects, such as sealing the damaged limitans and removing cellular debris. Recent evidence from patients with TBI and studies on animal models suggest that brain inflammation after TBI is not only restricted to the focal lesion but also disseminates to remote areas of the brain. The dissemination of inflammation has been detected within days after the primary injury and persists chronically. This state of inflammation may be related to remote complications of TBI in patients, such as hyperthermia and hypopituitarism, and may lead to progressive neurodegeneration, such as chronic traumatic encephalopathy. Future studies should focus on understanding the mechanisms that govern the initiation and propagation of brain inflammation after TBI and its impacts on post-trauma brain pathology.
Collapse
|
15
|
Saletti PG, Ali I, Casillas-Espinosa PM, Semple BD, Lisgaras CP, Moshé SL, Galanopoulou AS. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis 2019; 123:86-99. [PMID: 29936231 PMCID: PMC6309524 DOI: 10.1016/j.nbd.2018.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.
Collapse
Affiliation(s)
- Patricia G Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Idrish Ali
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Christos Panagiotis Lisgaras
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Neuroinflammation has a critical role in brain disorders. Cyclooxygenase (COX) is one of the principal drug targets for the reduction of neuroinflammation; however, studies have yielded mixed results for COX-inhibitors in the treatment of diverse acute and chronic models of epilepsy. AREAS COVERED The article covers the effects of COX-inhibitors in epilepsy disorders. A considerable emphasis has been placed on the antiepileptic and 'disease-modifying' properties of COX-1 and COX-2 inhibitors in various preclinical epilepsy models. EXPERT OPINION The effect of COX-inhibitors on epilepsy is inconclusive. Studies have indicated beneficial effects in preclinical models; however, proconvulsant or no effects have also been observed. These molecules may have a bidirectional role with early neuroprotective and delayed neurotoxic effects. Further systematic preclinical studies to establish the use of COX-inhibitors in epilepsy are necessary.
Collapse
Affiliation(s)
- Ashish Dhir
- a Department of Neurology, School of Medicine , University of California, Davis , Sacramento , CA , USA
| |
Collapse
|
17
|
Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol Sin 2018; 39:1273-1283. [PMID: 29565041 DOI: 10.1038/aps.2017.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase-2 (COX-2) has an established role in the pathogenesis of hypoxic-ischemic encephalopathy (HIE). In this study we sought to determine whether COX-2 was induced by asphyxia in newborn pigs, and whether neuronal COX-2 levels were affected by H2 treatment. Piglets were subjected to either 8 min of asphyxia or a more severe 20 min of asphyxia followed by H2 treatment (inhaling room air containing 2.1% H2 for 4 h). COX-2 immunohistochemistry was performed on brain samples from surviving piglets 24 h after asphyxia. The percentages of COX-2-immunopositive neurons were determined in cortical and subcortical areas. Only in piglets with more severe HIE, we observed significant, region-specific increases in neuronal COX-2 expression within the parietal and occipital cortices and in the CA3 hippocampal subfield. H2 treatment essentially prevented the increases in COX-2-immunopositive neurons. In the parietal cortex, the attenuation of COX-2 induction was associated with reduced 8'-hydroxy-2'-deoxyguanozine immunoreactivity and retained microglial ramifcation index, which are markers of oxidative stress and neuroinfiammation, respectively. This study demonstrates for the first time that asphyxia elevates neuronal COX-2 expression in a piglet HIE model. Neuronal COX-2 induction may play region-specific roles in brain lesion progression during HIE development, and inhibition of this response may contribute to the antioxidant/anti-infiammatory neuroprotective effects of H2 treatment.
Collapse
|
18
|
Li P, Jiang H, Wu H, Wu D, Li H, Yu J, Lai J. AH6809 decreases production of inflammatory mediators by PGE 2 - EP2 - cAMP signaling pathway in an experimentally induced pure cerebral concussion in rats. Brain Res 2018; 1698:11-28. [PMID: 29792868 DOI: 10.1016/j.brainres.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that PGE2 metabolic pathway is involved in pathological changes of the secondary brain injury after traumatic brain injury. However, the underlying mechanisms, in particular, the correlation between various key enzymes and the brain injury, has remained to be fully explored. More specifically, it remains to be ascertained whether AH6809 (an EP2 receptor antagonist) would interfere with the downstream of the PGE2, regulate the inflammatory mediators and improve neuronal damage in the hippocampus by PGE2 - EP2 - cAMP signaling pathway. The expression and pathological changes of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase-1 (mPGES-1), E-prostanoid receptor 2 (EP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitricoxide synthase (iNOS) in the CA1 area of hippocampus were evaluated by immunohistochemistry, Western blot and RT-PCR after pure cerebral concussion (PCC) induced by a metal pendulum closed brain injury in rats followed by AH6809 treatment. The morphology and number of neurons in CA1 region were analyzed by cresyl violet staining. The concentration of prostaglandin E2 (PGE2) and cyclic adenosine monophosphate (cAMP) was assayed by ELISA. Many neurons in hippocampal CA1 area appeared to undergo necrosis and the number of neurons was concomitantly reduced after PCC injury. With the passage of time, the protein and mRNA expression of various key enzymes including COX-1, COX-2 and mPGES-1, EP2 receptor, and inflammatory mediators including TNF-α, IL-1β and iNOS was increased; meanwhile, the concentration of PGE2 and cAMP was enhanced. After PCC injury given AH6809 intervention, injury of neurons in hippocampal CA1 area was attenuated. The protein and mRNA expression of COX-1, COX-2, mPGES-1, EP2, TNF-α, IL-1β and iNOS was decreased, this was coupled with reduction of PGE2 and cAMP. The results suggest that PGE2 metabolic pathway is involved in secondary pathological changes of PCC. AH6809 improves the recovery of injured neurons in the hippocampal CA1 area and downregulates the inflammatory mediators by PGE2 - EP2 - cAMP signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China; Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, PR China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, 246 West Outer Ring Road, Boshan Economic and Technological Development Zone, Zibo 255213, Shandong, PR China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianyun Yu
- College of Forensic Science and Key Laboratory of Brain Injury, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
19
|
Shojo H, Borlongan CV, Mabuchi T. Genetic and Histological Alterations Reveal Key Role of Prostaglandin Synthase and Cyclooxygenase 1 and 2 in Traumatic Brain Injury-Induced Neuroinflammation in the Cerebral Cortex of Rats Exposed to Moderate Fluid Percussion Injury. Cell Transplant 2018; 26:1301-1313. [PMID: 28933223 PMCID: PMC5657737 DOI: 10.1177/0963689717715169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After the initial insult in traumatic brain injury (TBI), secondary neurodegeneration occurs that is intimately associated with neuroinflammation. Prostaglandin (PG) synthases and cyclooxygenase (COX) 1 and 2 may contribute to inflammation in the brain. Temporal and spatial expression features of PG and COX1 and 2 following trauma may guide the development of antineuroinflammation strategies. Here, we examined PG synthase signaling and COX1 and 2 gene expression levels and COX-1- and 2-positive cell types and their temporal localization in TBI-induced brain in an effort to reveal their participation in the disease’s evolving neuroinflammation. Using brain samples from the cerebral cortex of rats subjected to TBI model of lateral moderate fluid percussion injury (FPI), we sought to characterize the temporal (subacute TBI) and spatial (lateral cortical lesion) brain alterations accompanying the disease progression. Temporal gene expression changes of PG synthase signaling were compared between sham-operated and TBI-treated rats using microarray pathway analysis. Moreover, we examined COX1 and 2 expression patterns and their intracellular distribution in sham-operated and TBI-treated rats by immunohistochemistry. After FPI, COX1 and 2 gene expression levels, and PGE2 synthase increased while PGD2 synthase decreased, suggesting that PGE2 and PGD2 afforded contraindicative effects of inflammation and anti-inflammation, respectively. Immunohistochemical analyses showed that both COX1 and COX2 increased in a time-dependent manner in the brain, specifically in degenerating neurons of the cortex. Interestingly, the expression of COX cell type was cell-specific, in that COX1 was particularly increased in degenerating neurons while COX2 was expressed in macrophages. In view of the dynamic temporal and spatial expression of PG, COX1 and 2 gene expression and localization in the injured brain regulating PG synthase and COX1 and 2 activity will require a careful disease-specific tailoring of treatments to abrogate the neuroinflammation-plagued secondary cell death due to TBI.
Collapse
Affiliation(s)
- Hideki Shojo
- 1 Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Cesario V Borlongan
- 2 Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Tadashi Mabuchi
- 3 Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
20
|
Brady RD, Shultz SR, McDonald SJ, O'Brien TJ. Neurological heterotopic ossification: Current understanding and future directions. Bone 2018; 109:35-42. [PMID: 28526267 DOI: 10.1016/j.bone.2017.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
Abstract
Neurological heterotopic ossification (NHO) involves the formation of bone in soft tissue following a neurological condition, of which the most common are brain and spinal cord injuries. NHO often forms around the hip, knee and shoulder joints, causing severe pain and joint deformation which is associated with significant morbidity and reduced quality of life. The cellular and molecular events that initiate NHO have been the focus of an increasing number of human and animal studies over the past decade, with this work largely driven by the need to unearth potential therapeutic interventions to prevent the formation of NHO. This review provides an overview of the present understanding of NHO pathogenesis and pathobiology, current treatments, novel therapeutic targets, potential biomarkers and future directions.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia.
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| |
Collapse
|
21
|
He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37:106-122. [PMID: 26661245 PMCID: PMC5363732 DOI: 10.1177/0271678x15618977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature.
Collapse
Affiliation(s)
- Tongrong He
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha Vijay R Santhanam
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
22
|
Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res 2016; 1640:57-76. [PMID: 26872597 PMCID: PMC4870119 DOI: 10.1016/j.brainres.2016.02.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group into a lipid. Polyunsaturated fatty acids present in the phospholipids are often the targets for peroxidation. Phospholipids are indispensable for normal structure of membranes. The other important function of phospholipids stems from their role as a source of lipid mediators - oxygenated free fatty acids that are derived from lipid peroxidation. In the CNS, excessive accumulation of either oxidized phospholipids or oxygenated free fatty acids may be associated with damage occurring during acute brain injury and subsequent inflammatory responses. There is a growing body of evidence that lipid peroxidation occurs after severe traumatic brain injury in humans and correlates with the injury severity and mortality. Identification of the products and sources of lipid peroxidation and its enzymatic or non-enzymatic nature is essential for the design of mechanism-based therapies. Recent progress in mass spectrometry-based lipidomics/oxidative lipidomics offers remarkable opportunities for quantitative characterization of lipid peroxidation products, providing guidance for targeted development of specific therapeutic modalities. In this review, we critically evaluate previous attempts to use non-specific antioxidants as neuroprotectors and emphasize new approaches based on recent breakthroughs in understanding of enzymatic mechanisms of lipid peroxidation associated with specific death pathways, particularly apoptosis. We also emphasize the role of different phospholipases (calcium-dependent and -independent) in hydrolysis of peroxidized phospholipids and generation of pro- and anti-inflammatory lipid mediators. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Tamil Selvan Anthonymuthu
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elizabeth Megan Kenny
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA; Childrens׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
23
|
Inhibition of cyclooxygenase-2 by NS398 attenuates noise-induced hearing loss in mice. Sci Rep 2016; 6:22573. [PMID: 26934825 PMCID: PMC4776277 DOI: 10.1038/srep22573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is an important occupational disorder. However, the molecular mechanisms underlying NIHL have not been fully clarified; therefore, the condition lacks effective therapeutic methods. Cyclooxygenase-2 (Cox-2) is an inducible enzyme involved in the synthesis of prostaglandins, and has been implicated in many pathophysiological events, such as oxidative stress and inflammation. In this study, we investigated the possible role of Cox-2 in the mechanisms of NIHL and the therapeutic effect of the Cox-2 inhibitor NS398 on NIHL using a mouse model. We demonstrated that Cox-2 is constitutively expressed in the mouse cochlea, and its expression could be dramatically up-regulated by high levels of noise exposure. Furthermore, we demonstrated that pre-treatment with the Cox-2 inhibitor NS398 could inhibit Cox-2 expression during noise overstimulation; and could attenuate noise-induced hearing loss and hair cell damage. Our results suggest that Cox-2 is involved in the pathogenesis of NIHL; and pharmacological inhibition of Cox-2 has considerable therapeutic potential in NIHL.
Collapse
|
24
|
Abstract
Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties, and discusses their potential application for translational research.
Collapse
|
25
|
Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 2015; 275 Pt 3:367-380. [PMID: 26112314 DOI: 10.1016/j.expneurol.2015.05.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury rapidly induces inflammation. This inflammation is produced both by endogenous brain cells and circulating inflammatory cells that enter from the brain. Together they drive the inflammatory response through a wide variety of bioactive lipids, cytokines and chemokines. A large number of drugs with anti-inflammatory action have been tested in both preclinical studies and in clinical trials. These drugs either have known anti-inflammatory action or inhibit the inflammatory response through unknown mechanisms. The results of these preclinical studies and clinical trials are reviewed. Recommendations are suggested on how to improve preclinical testing of drugs to make them more relevant to evaluate for clinical trials.
Collapse
Affiliation(s)
- Peter J Bergold
- Robert F. Furchgott Center for Neural Science, Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States.
| |
Collapse
|
26
|
Pilipović K, Župan Ž, Dolenec P, Mršić-Pelčić J, Župan G. A single dose of PPARγ agonist pioglitazone reduces cortical oxidative damage and microglial reaction following lateral fluid percussion brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:8-20. [PMID: 25579788 DOI: 10.1016/j.pnpbp.2015.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
Neuroprotective actions of the peroxisome proliferator-activated receptor-γ (PPARγ) agonists have been observed in various animal models of the brain injuries. In this study we examined the effects of a single dose of pioglitazone on oxidative and inflammatory parameters as well as on neurodegeneration and the edema formation in the rat parietal cortex following traumatic brain injury (TBI) induced by the lateral fluid percussion injury (LFPI) method. Pioglitazone was administered in a dose of 1mg/kg at 10min after the brain trauma. The animals of the control group were sham-operated and injected by vehicle. The rats were decapitated 24h after LFPI and their parietal cortices were analyzed by biochemical and histological methods. Cortical edema was evaluated in rats sacrificed 48h following TBI. Brain trauma caused statistically significant oxidative damage of lipids and proteins, an increase of glutathione peroxidase (GSH-Px) activity, the cyclooxygenase-2 (COX-2) overexpression, reactive astrocytosis, the microglia activation, neurodegeneration, and edema, but it did not influence the superoxide dismutase activity and the expressions of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in the rat parietal cortex. Pioglitazone significantly decreased the cortical lipid and protein oxidative damage, increased the GSH-Px activity and reduced microglial reaction. Although a certain degree of the TBI-induced COX-2 overexpression, neurodegeneration and edema decrease was detected in pioglitazone treated rats, it was not significant. In the injured animals, cortical reactive astrocytosis was unchanged by the tested PPARγ agonist. These findings demonstrate that pioglitazone, administered only in a single dose, early following LFPI, reduced cortical oxidative damage, increased antioxidant defense and had limited anti-inflammatory effect, suggesting the need for further studies of this drug in the treatment of TBI.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Željko Župan
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, School of Medicine, University of Rijeka, Rijeka, Croatia; Clinics of Anesthesiology and Intensive Care Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Petra Dolenec
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Župan
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
27
|
Role of the prostaglandin E2 EP1 receptor in traumatic brain injury. PLoS One 2014; 9:e113689. [PMID: 25426930 PMCID: PMC4245217 DOI: 10.1371/journal.pone.0113689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic application of prospective prostaglandin G-protein-coupled receptor drugs in the clinic for treatment of TBI and other acute brain injuries.
Collapse
|
28
|
Li Z, Shu Q, Li L, Ge M, Zhang Y. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury. Neural Regen Res 2014; 9:978-85. [PMID: 25206921 PMCID: PMC4146214 DOI: 10.4103/1673-5374.133151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury.
Collapse
Affiliation(s)
- Zhiqiang Li
- Second Department of Medicine, Inner Mongolia Corps Hospital, Chinese People's Armed Police Forces, Huhhot, Inner Mongolia Autonomous Region, China
| | - Qingming Shu
- Department of Pathology, General Hospital of Chinese People's Armed Police Forces, Beijing, China
| | - Lingzhi Li
- Section of Pharmaceutical Chemistry, Department of Rescue Medicine, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Maolin Ge
- Second Department of Surgery, Inner Mongolia Corps Hospital, Chinese People's Armed Police Forces, Huhhot, Inner Mongolia Autonomous Region, China
| | - Yongliang Zhang
- Training Department, Logistics University of Chinese People's Armed Police Force, Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Tianjin, China
| |
Collapse
|
29
|
Tchantchou F, Tucker LB, Fu AH, Bluett RJ, McCabe JT, Patel S, Zhang Y. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology 2014; 85:427-39. [PMID: 24937045 DOI: 10.1016/j.neuropharm.2014.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/23/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults in the United States, but there is still no effective agent for treatment. N-arachidonoylethanolamine (anandamide, AEA) is a major endocannabinoid in the brain. Its increase after brain injury is believed to be protective. However, the compensatory role of AEA is transient due to its rapid hydrolysis by the fatty acid amide hydrolase (FAAH). Thus, inhibition of FAAH can boost the endogenous levels of AEA and prolong its protective effect. Using a TBI mouse model, we found that post-injury chronic treatment with PF3845, a selective and potent FAAH inhibitor, reversed TBI-induced impairments in fine motor movement, hippocampus dependent working memory and anxiety-like behavior. Treatment with PF3845 inactivated FAAH activity and enhanced the AEA levels in the brain. It reduced neurodegeneration in the dentate gyrus, and up-regulated the expression of Bcl-2 and Hsp70/72 in both cortex and hippocampus. PF3845 also suppressed the increased production of amyloid precursor protein, prevented dendritic loss and restored the levels of synaptophysin in the ipsilateral dentate gyrus. Furthermore, PF3845 suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 post-TBI, suggesting a shift of microglia/macrophages from M1 to M2 phenotype. The effects of PF3845 on TBI-induced behavioral deficits and neurodegeneration were mediated by activation of cannabinoid type 1 and 2 receptors and might be attributable to the phosphorylation of ERK1/2 and AKT. These results suggest that selective inhibition of FAAH is likely to be beneficial for TBI treatment.
Collapse
Affiliation(s)
- Flaubert Tchantchou
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Amanda H Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Rebecca J Bluett
- Departments of Psychiatry and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sachin Patel
- Departments of Psychiatry and Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
30
|
Harrison JL, Rowe RK, O’Hara BF, Adelson PD, Lifshitz J. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Exp Brain Res 2014; 232:2709-19. [DOI: 10.1007/s00221-014-3948-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/03/2014] [Indexed: 01/28/2023]
|
31
|
Glushakov AV, Robbins SW, Bracy CL, Narumiya S, Doré S. Prostaglandin F2α FP receptor antagonist improves outcomes after experimental traumatic brain injury. J Neuroinflammation 2013; 10:132. [PMID: 24172576 DOI: 10.1186/1742-2094-10-132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Injuries to the brain promote upregulation of prostaglandins, notably the proinflammatory PGF2α, and overactivation of their cognate G-protein-coupled FP receptor, which could exacerbate neuronal damage. Our study is focused on investigation of the FP receptor as a target for novel neuroprotective drugs in a preclinical animal traumatic brain injury (TBI) model. METHODS Accordingly, the effects of acute intraperitoneal post-treatment with selective FP antagonist AL-8810 were studied in wildtype (WT) and FP receptor knockout (FP-/-) mice after controlled cortical impact (CCI). Neurological impairments were evaluated using neurological deficit scores (NDS) and the grip strength test. Cortical lesions and overall brain pathology were assessed using immunohistochemistry. RESULTS Morphological analyses of cerebral vasculature and anastomoses revealed no differences between WT and FP-/- mice. CCI produced cortical lesions characterized by cavitation, neuronal loss, and hematoma with a volume of 20.0 ± 1.0 mm(3) and significant hippocampal swelling (146.5 ± 7.4% of contralateral) compared with sham (P < 0.05). Post-treatment with AL-8810 (1 to 10 mg/kg) had no significant effect on cortical lesions, which suggests the irreversible effect of primary CCI injury, but significantly reduced hippocampal swelling to a size not significantly different from the sham group. Post-treatment with AL-8810 at a dose of 10 mg/kg significantly improved NDS at 24 and 48 hours after CCI (P < 0.001 and P < 0.01, respectively). In the AL-8810 group, CCI-induced decrease in grip strength was three-fold (2.93 ± 1.71) less and significantly different than in the saline-treated group. The FP-/- mice had significantly less hippocampal swelling, but not NDS, compared with WT mice. In addition, immunohistochemistry showed that pharmacologic blockade and genetic deletion of FP receptor led to attenuation of CCI-induced gliosis and microglial activation in selected brain regions. CONCLUSION This study provides, for the first time, demonstration of the unique role of the FP receptor as a potential target for disease-modifying CNS drugs for treatment of acute traumatic injury.
Collapse
Affiliation(s)
- Alexander V Glushakov
- Department of Anesthesiology, University of Florida College of Medicine, PO Box 100159, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
32
|
Hakan T, Toklu HZ, Biber N, Ozevren H, Solakoglu S, Demirturk P, Aker FV. Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood–brain barrier permeability. Neurol Res 2013; 32:629-35. [DOI: 10.1179/016164109x12464612122731] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Birnie M, Morrison R, Camara R, Strauss KI. Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 2013; 14:303. [PMID: 23642095 PMCID: PMC3658912 DOI: 10.1186/1471-2164-14-303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter comprise a subset of the cytochrome P450 "Cyp" gene family that metabolize fatty acids, steroids, as well as endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor injury-related temporal expression have been studied in the brain.In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and 7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed. Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as negative controls and 3 highly expressed "housekeeping" genes. RESULTS Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene expression were observed in hippocampus and parietal cortex. CONCLUSIONS The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of these eicosanoid-related genes in the healthy and injured brain.
Collapse
Affiliation(s)
- Matthew Birnie
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ryan Morrison
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ramatoulie Camara
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Kenneth I Strauss
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
- Present Address: Michigan State University College of Human Medicine, 333 Bostwick Ave NE, 49503 Grand Rapids, MI, USA
| |
Collapse
|
34
|
Effects of selective and non-selective cyclooxygenase inhibition against neurological deficit and brain oedema following closed head injury in mice. Brain Res 2013; 1491:78-87. [DOI: 10.1016/j.brainres.2012.10.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 11/23/2022]
|
35
|
Härtig W, Michalski D, Seeger G, Voigt C, Donat CK, Dulin J, Kacza J, Meixensberger J, Arendt T, Schuhmann MU. Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats. Brain Res 2012; 1498:69-84. [PMID: 23268351 DOI: 10.1016/j.brainres.2012.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023]
Abstract
The inflammatory response following traumatic brain injury (TBI) contributes to neuronal death with poor outcome. Although anti-inflammatory strategies were beneficial in the experimental TBI, clinical translations mostly failed, probably caused by the complexity of involved cells and mediators. We recently showed in a rat model of controlled cortical impact (CCI) that leukotriene inhibitors (LIs) attenuate contusion growth and improve neuronal survival. This study focuses on spatiotemporal characteristics of macrophages and granulocytes, typically involved in inflammatory processes, and neuronal COX-2 expression. Effects of treatment with LIs (Boscari/MK-886), started prior trauma, were evaluated by quantifying CD68(+), CD43(+) and COX-2(+) cells 24h and 72 h post-CCI in the parietal cortex (PC), CA3 region, dentate gyrus (DG) and visual/auditory cortex (v/aC). Correlations were applied to identify intercellular relationships. At 24h, untreated animals showed granulocyte invasion in all regions, decreasing towards 72 h. Macrophages increased from 24h to 72 h post-CCI in PC and v/aC. COX-2(+) neurones showed no temporal changes, except of an increase in the CA3 region at 72 h. Treatment reduced granulocytes at 24h in the pericontusional zone and hippocampus, and macrophages at 72 h in the PC and v/aC. COX-2 expression remained unaffected by LIs, except of time-specific changes in the DG (increase/decrease at 24/72 h). Interrelations confirmed concomitant cellular reactions beyond the initial trauma site. In conclusion, LIs attenuated the cellular inflammatory response following CCI. Future studies have to clarify region-specific effects and explore the potential of a clinically more relevant therapeutic approach applying LIs after CCI.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Gudrun Seeger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Cornelia Voigt
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Cornelius K Donat
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig-Site, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Dulin
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Johannes Kacza
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Jürgen Meixensberger
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Armagan G, Kanıt L, Yalcın A. Effects of non-steroidal antiinflammatory drugs on D-serine-induced oxidative stressin vitro. Drug Chem Toxicol 2012; 35:393-8. [DOI: 10.3109/01480545.2011.633086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Huong NQ, Nakamura Y, Kuramoto N, Yoneyama M, Nagashima R, Shiba T, Yamaguchi T, Hasebe S, Ogita K. Indomethacin ameliorates trimethyltin-induced neuronal damage in vivo by attenuating oxidative stress in the dentate gyrus of mice. Biol Pharm Bull 2012; 34:1856-63. [PMID: 22130242 DOI: 10.1248/bpb.34.1856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organotin trimethyltin (TMT) is well known to cause neuronal degeneration in the hippocampal dentate gyrus of mice. The first purpose of the present study was to examine whether the cyclooxygenase (COX) inhibitor indomethacin could ameliorate neuronal degeneration in the dentate gyrus of mice following TMT treatment in vivo. The systemic injection into mice of TMT at 2.8 mg/kg produced activation of endogenous caspase-3 and calpain, enhanced the gene expression of COX-1 and COX-2, activated microglial cells, and caused the formation of the lipid peroxidation product 4-hydroxynonenal in the hippocampus. Given at 12-h post-TMT treatment, the systemic injection of indomethacin (5 or 10 mg/kg, subcutaneously) significantly decreased the TMT-induced damage to neurons having active caspase-3 and single-stranded DNA in the dentate granule cell layer of the hippocampus. The results of the α-Fodrin degradation test revealed that the post-treatment with indomethacin was effective in attenuating TMT-induced activation of endogenous caspases and calpain in the hippocampus. In TMT-treated animals, interestingly, the post-treatment with indomethacin produced not only activation of microglial cells in the dentate gyrus but also the formation of 4-hydroxynonenal in the dentate granule cell layer. Taken together, our data suggest that COX inhibition by indomethacin ameliorated TMT-induced neuronal degeneration in the dentate gyrus by attenuating intensive oxidative stress.
Collapse
Affiliation(s)
- Nguyen Quynh Huong
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573–0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Župan Ž, Pilipović K, Dangubić B, Frković V, Šustić A, Župan G. Effects of enoxaparin in the rat hippocampus following traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1846-56. [PMID: 21871519 DOI: 10.1016/j.pnpbp.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Purpose of this study was to investigate the effects of low molecular weight heparin, enoxaparin, on different parameters of the hippocampal damage following traumatic brain injury (TBI) in the rat. TBI of moderate severity was performed over the left parietal cortex using the lateral fluid percussion brain injury model. Animals were s.c. injected with either enoxaparin (1mg/kg) or vehicle 1, 7, 13, 19, 25, 31, 37, and 43 h after the TBI induction. Sham-operated, vehicle-treated animals were used as the control group. Rats were sacrificed 48h after the induction of TBI. Hippocampi were processed for spectrophotometric measurements of the products of oxidative lipid damage, thiobarbituric acid-reactive substances (TBARS) levels, as well as the activities of antioxidant enzymes, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Moreover, the Western blotting analyses of the oxidized protein levels, expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro- and mature-interleukin-1β (pro-, and mature-IL-1β), and active caspase-3 were performed. COX-2 expressions were also explored by using immunohistochemistry. Glial fibrillary acidic protein immunochistochemistry was performed with the aim to assess the level of astrocytic activity. Fluoro-Jade B staining was used to identify the level and extent of hippocampal neuronal injury. TBI caused statistically significant increases of the hippocampal TBARS and oxidized protein levels as well as COX-2, pro-IL-1β, and active caspase-3 overexpressions, but it did not significantly affect the SOD and GSH-Px activities, the iNOS, and mature-IL-1β expression levels. TBI also induced hippocampal reactive astrocytosis and neurodegeneration. Enoxaparin significantly decreased the hippocampal TBARS and oxidized protein levels, COX-2 overexpression and reactive gliosis, but it did not influence the SOD and GSH-Px activities, pro-IL-1β and active caspase-3 overexpressions as well as neurodegeneration following TBI. These findings demonstrate that enoxaparin may reduce oxidative damage, inflammation and astrocytosis following TBI in the rat and could be a candidate drug for neuroprotective treatment of this injury.
Collapse
Affiliation(s)
- Željko Župan
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
39
|
Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR. The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 2011; 29:375-84. [PMID: 21561314 DOI: 10.1089/neu.2010.1673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) initiates acute and chronic inflammatory processes involving cyclooxygenase-2 (COX-2), which may have detrimental effects on outcome and especially on brain regeneration. Therefore we aimed to study whether carprofen, a COX-2 inhibitor, would improve outcome and increase neurogenesis after TBI. TBI was induced in Sabra mice that were then treated with vehicle or carprofen for 7 days. Functional outcome was evaluated with the Neurological Severity Score (NSS).Cytokine levels were assessed 4 h post-TBI and water content was measured 24 h post TBI. Mice were given BrdU to label newborn cells for 10 days. The animals were killed 90 days post-TBI and the lesion size as well as newborn cell fate were assessed. Carprofen significantly reduced lesion size (p=0.002), decreased water content in the lesioned cortex (p=0.03), reduced the number of microglia in the lesioned cortex (p<0.0001), and lowered the levels of proinflammatory cytokines (IL-1β, p=0.03; IL-6, p=0.02). Carprofen led to significantly larger improvements in functional outcome (p≤0.008) which were durable over 90 days. Carprofen also induced a threefold increase in the proliferation of new cells in the peri-lesion area (p≤0.002), but newborn cells differentiated mainly into glia in both groups. Carprofen is neuroprotective and induces cell proliferation and gliogenesis after TBI. Treatment with carprofen is consistently associated with better functional outcome. Our results imply that anti-inflammatory drugs may represent novel therapeutic options for TBI.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- Department of Neurology and the Peritz and Chantal Scheinberg Cerebrovascular Research Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
40
|
Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:85-131. [PMID: 21199771 DOI: 10.1016/b978-0-12-385506-0.00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health concern. The number of injuries that occur each year, the cost of care, and the disabilities that can lower the victim's quality of life are all driving factors for the development of therapy. However, in spite of a wealth of promising preclinical results, clinicians are still lacking a therapy. The use of preclinical models of the primary mechanical trauma have greatly advanced our knowledge of the complex biochemical sequela that follow. This cascade of molecular, cellular, and systemwide changes involves plasticity in many different neurochemical systems, which represent putative targets for remediation or attenuation of neuronal injury. The purpose of this chapter is to highlight some of the promising molecular and cellular targets that have been identified and to provide an up-to-date summary of the development of therapeutic compounds for those targets.
Collapse
|
41
|
Moore AH, Bigbee MJ, Boynton GE, Wakeham CM, Rosenheim HM, Staral CJ, Morrissey JL, Hund AK. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer's Disease and Parkinson's Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals (Basel) 2010; 3:1812-1841. [PMID: 27713331 PMCID: PMC4033954 DOI: 10.3390/ph3061812] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/10/2010] [Accepted: 06/02/2010] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases with age as the greatest risk factor. As the general population experiences extended life span, preparation for the prevention and treatment of these and other age-associated neurological diseases are warranted. Since epidemiological studies suggested that non-steroidal anti-inflammatory drug (NSAID) use decreased risk for AD and PD, increasing attention has been devoted to understanding the costs and benefits of the innate neuroinflammatory response to functional recovery following pathology onset. This review will provide a general overview on the role of neuroinflammation in these neurodegenerative diseases and an update on NSAID treatment in recent experimental animal models, epidemiological analyses, and clinical trials.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA.
| | - Matthew J Bigbee
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Grace E Boynton
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Colin M Wakeham
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Hilary M Rosenheim
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Christopher J Staral
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - James L Morrissey
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Amanda K Hund
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| |
Collapse
|
42
|
Kelso ML, Scheff SW, Pauly JR, Loftin CD. Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice. BMC Neurosci 2009; 10:108. [PMID: 19719848 PMCID: PMC2751761 DOI: 10.1186/1471-2202-10-108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/31/2009] [Indexed: 12/04/2022] Open
Abstract
Background Neuroinflammation contributes to the pathophysiology of acute CNS injury, including traumatic brain injury (TBI). Although prostaglandin lipid mediators of inflammation contribute to a variety of inflammatory responses, their importance in neuroinflammation is not clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for prostaglandin formation, cyclooxygenase (COX) -1 and COX-2, for improving outcomes following TBI. The purpose of the current study was to determine the role of the COX isoforms in contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or COX-2. Results Following a mild controlled cortical impact injury, the amount of cortical tissue loss, the level of microglial activation, and the capacity for functional recovery was compared between COX-1-deficient mice or COX-2-deficient mice, and their matching wild-type controls. The deficiency of COX-2 resulted in a minor (6%), although statistically significant, increase in the sparing of cortical tissue following TBI. The deficiency of COX-1 resulted in no detectable effect on cortical tissue loss following TBI. As determined by 3[H]-PK11195 autoradiography, TBI produced a similar increase in microglial activation in multiple brain regions of both COX-1 wild-type and COX-1-deficient mice. In COX-2 wild-type and COX-2-deficient mice, TBI increased 3[H]-PK11195 binding in all brain regions that were analyzed. Following injury, 3[H]-PK11195 binding in the dentate gyrus and CA1 region of the hippocampus was greater in COX-2-deficient mice, as compared to COX-2 wild-type mice. Cognitive assessment was performed in the wild-type, COX-1-deficient and COX-2-deficient mice following 4 days of recovery from TBI. There was no significant cognitive effect that resulted from the deficiency of either COX-1 or COX-2, as determined by acquisition and spatial memory retention testing in a Morris water maze. Conclusion These findings suggest that the deficiency of neither COX-1 nor COX-2 is sufficient to alter cognitive outcomes following TBI in mice.
Collapse
Affiliation(s)
- Matthew L Kelso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
43
|
Wei EP, Hamm RJ, Baranova AI, Povlishock JT. The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention. J Neurotrauma 2009; 26:527-37. [PMID: 19245307 DOI: 10.1089/neu.2008.0797] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has been demonstrated to induce cerebral vascular dysfunction that is reflected in altered responses to various vasodilators. While previous reports have focused primarily on the short-term vascular alterations, few have examined these vascular changes for more than 7 days, or have attempted to correlate these alterations with any persisting behavioral changes or potential therapeutic modulation. Accordingly, we evaluated the long-term microvascular and behavioral consequences of experimental TBI and their therapeutic modulation via hypothermia. In this study, one group was injured with no treatment, another group was injured and 1 h later was treated with 120 min of hypothermia followed by slow rewarming, and a third group was non-injured. Animals equipped with cranial windows for visualization of the pial microvasculature were challenged with various vasodilators, including acetylcholine, hypercapnia, adenosine, pinacidil, and sodium nitroprusside, at either 1 or 3 weeks post-TBI. In addition, all animals were tested for vestibulomotor tasks at 1 week post-TBI, and animals surviving for 3 weeks post-TBI were tested in a Morris water maze (MWM). The results of this investigation demonstrated that TBI resulted in long-term vascular dysfunction in terms of altered vascular reactivity to various vasodilators, which was significantly improved with the use of a delayed 120-min hypothermic treatment. In contrast, data from the MWM task indicated that injured animals revealed persistent deficits in the spatial memory test performance, with hypothermia exerting no protective effects. Collectively, these data illustrate that TBI can evoke long-standing brain vascular and spatial memory dysfunction that manifest different responses to hypothermic intervention. These findings further illustrate the complexity of TBI and highlight the fact that the chosen hypothermic intervention may not necessarily exert a global protective response.
Collapse
Affiliation(s)
- Enoch P Wei
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0709, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Hein AM, O'Banion MK. Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 2009; 40:15-32. [PMID: 19365736 DOI: 10.1007/s12035-009-8066-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/26/2009] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators within the brain, and recruitment of peripheral immune cells. Interestingly, memory deficits have been observed following many inflammatory states including infection, traumatic brain injury (TBI), normal aging, and Alzheimer's disease (AD). Prostaglandins (PGs), a class of lipid mediators which can have inflammatory actions, are upregulated by these inflammatory challenges and can impair memory. In this paper, we critically review the success of nonsteroidal anti-inflammatory drugs, which prevent the formation of PGs, in preventing neuroinflammation-induced memory deficits following lipopolysaccharide injection, TBI, aging, and experimental models of AD in rodents and propose a mechanism by which PGs could disrupt memory formation.
Collapse
Affiliation(s)
- Amy M Hein
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
46
|
Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 2009; 30:174-81. [PMID: 19269697 DOI: 10.1016/j.tips.2009.01.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Cyclooxygenases (COX-1 and COX-2) are key enzymes in the conversion of arachidonic acid to prostaglandins and other lipid mediators. Because it can be induced by inflammatory stimuli, COX-2 has been classically considered as the most appropriate target for anti-inflammatory drugs. However, recent data indicate that COX-2 can mediate neuroprotection and that COX-1 is a major player in the neuroinflammatory process. We discuss the specific contributions of COX-1 and COX-2 in various neurodegenerative diseases and in models of neuroinflammation. We suggest that, owing to its predominant localization in microglia, COX-1 might be the major player in neuroinflammation, whereas COX-2, which is localized in neurons, might have a major role in models in which the neurons are directly challenged. Overall, the benefit of using COX-2 inhibitors should be carefully evaluated and COX-1 preferential inhibitors should be further investigated as a potential therapeutic approach in neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
47
|
Ahmad M, Rose ME, Vagni V, Griffith RP, Dixon CE, Kochanek PM, Hickey RW, Graham SH. Genetic disruption of cyclooxygenase-2 does not improve histological or behavioral outcome after traumatic brain injury in mice. J Neurosci Res 2009; 86:3605-12. [PMID: 18711748 DOI: 10.1002/jnr.21809] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increasing evidence suggests a role for cyclooxygenase-2 (COX-2) in traumatic brain injury (TBI). In the present study, the role of COX-2 in TBI was investigated using COX-2 gene-disrupted (COX-2 null) mice and wild-type (WT) controls that were subjected to the controlled cortical impact (CCI) model of TBI. There was increased expression of COX-2 in ipsilateral hippocampus in WT mice subjected to CCI. CCI resulted in a significant increase in prostaglandin E(2) concentrations in WT compared with COX-2 null hippocampi. There was a significant increase in TUNEL staining of CA1 neurons 24 hr after CCI in WT, but not in COX-2 null mice, compared with sham-operated controls, which is consistent with a protective role for COX-2 in the early phase of injury after TBI. However, there was no difference in lesion volume 21 days after CCI in COX-2 null and WT mice. COX-2 gene disruption did not alter Morris water maze performance. Taken together, these results suggest only a minor role for COX-2 activity in determining outcome after TBI in mouse.
Collapse
Affiliation(s)
- Muzamil Ahmad
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Avila MA, Sell SL, Kadoi Y, Prough DS, Hellmich HL, Velasco M, Dewitt DS. L-Arginine decreases fluid-percussion injury-induced neuronal nitrotyrosine immunoreactivity in rats. J Cereb Blood Flow Metab 2008; 28:1733-41. [PMID: 18612319 DOI: 10.1038/jcbfm.2008.66] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxynitrite is a powerful oxidant capable of nitrating phenolic moieties, such as tyrosine or tyrosine residues in proteins and increases after traumatic brain injury (TBI). First, we tested the hypothesis that TBI increases nitrotyrosine (NT) immunoreactivity in the brain by measuring the number of NT-immunoreactive neurons in the cerebral cortex and hippocampus of rats subjected to parasagittal fluid-percussion TBI. Second, we tested the hypothesis that treatment with L-arginine, a substrate for nitric oxide synthase, further increases NT immunoreactivity over TBI alone. Rats were anesthetized with isoflurane and subjected to TBI, sham TBI, or TBI followed by treatment with L-arginine (100 mg/kg). Twelve, 24, or 72 h after TBI, brains were harvested. Coronal sections (10 microm) were incubated overnight with rabbit polyclonal anti-NT antibody, rinsed, and incubated with a biotinylated secondary antibody. The antigen-antibody complex was visualized using a peroxidase-conjugated system with diaminobenzidine as the chromagen. The number of NT-positive cortical and hippocampal neurons increased significantly in both ipsilateral and contralateral hemispheres up to 72 h after TBI compared with the sham-injured group. Remarkably, treatment with L-arginine reduced the number of NT-positive neurons after TBI in both cortex and hippocampus. Our results indicate that L-arginine actually prevents TBI-induced increases in NT immunoreactivity.
Collapse
Affiliation(s)
- Marcela A Avila
- Charles R. Allen Research Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0830, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Toledano A, Alvarez MI, Caballero I, Carmona P, De Miguel E. Immunohistochemical increase in cyclooxygenase-2 without apoptosis in different brain areas of subchronic nicotine- and D-amphetamine-treated rats. J Neural Transm (Vienna) 2008; 115:1093-108. [PMID: 18351285 DOI: 10.1007/s00702-008-0040-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
Abstract
Cyclooxygenase-2 (COX-2) upregulation has been related to both neurodegeneration and physiological processes. To clarify whether nicotine-induced upregulation of COX-2 occurs, and to analyse its significance, a comparative immunohistochemical and Western blot study was performed on the frontoparietal cortex, hippocampus and cerebellar cortex of rats treated (14 days) with nicotine, D(+)amphetamine (0.35 and 1.16 mg free base/kg/day, respectively), or both drugs simultaneously. None of these treatments promoted neuronal apoptosis. Lipid peroxidation increased in the hippocampus of the nicotine-treated rats and in all the brain regions examined in the D(+)amphetamine rats, but not in the double-treated animals. Both molecules increased the COX-2 content (as determined by the number of immunopositive neurons and the intensity of their immunodeposits) in an area-, layer- and neuron type-dependent manner, in all brain regions in which a large number of COX-2 immunopositive neurons were observed in controls (the somatosensory cortical areas, CA-1, CA-3, the gyrus dentatus, the ectorhinal/perirhinal areas, and the gyrus cingularis). No increase was seen in the motor cortical areas, while a reduction was recorded in the cerebellar cortex; these regions had only a few immunopositive neurons in controls. Western blot analysis revealed a 50-80% increase in COX-2 in the brain cortex and hippocampus of nicotine-treated rats, and similar increases (150-200%) in the cortex of the D(+)amphetamine- and nicotine + D(+)amphetamine-treated rats. Nicotine-induced upregulation of COX-2 seems to be related to neuronal plasticity rather than neurodegeneration. Nicotine agonists might be useful in the treatment of cognitive disorders.
Collapse
Affiliation(s)
- A Toledano
- Instituto Cajal, CSIC, Avda. Dr. Arce 37, 28002, Madrid, Spain.
| | | | | | | | | |
Collapse
|
50
|
Strauss KI. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 2008; 22:285-98. [PMID: 17996418 PMCID: PMC2855502 DOI: 10.1016/j.bbi.2007.09.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/20/2007] [Indexed: 12/22/2022] Open
Abstract
Overexpression of COX2 appears to be both a marker and an effector of neural damage after a variety of acquired brain injuries, and in natural or pathological aging of the brain. COX2 inhibitors may be neuroprotective in the brain by reducing prostanoid and free radical synthesis, or by directing arachidonic acid down alternate metabolic pathways. The arachidonic acid shunting hypothesis proposes that COX2 inhibitors' neuroprotective effects may be mediated by increased formation of potentially beneficial eicosanoids. Under conditions where COX2 activity is inhibited, arachidonic acid accumulates or is converted to eicosanoids via lipoxygenases and cytochrome P450 (CYP) epoxygenases. Several P450 eicosanoids have been demonstrated to have beneficial effects in the brain and/or periphery. We suspect that arachidonic acid shunting may be as important to functional recovery after brain injuries as altered prostanoid formation per se. Thus, COX2 inhibition and arachidonic acid shunting have therapeutic implications beyond the suppression of prostaglandin synthesis and free radical formation.
Collapse
Affiliation(s)
- Kenneth I. Strauss
- Mayfield Neurotrauma Research Lab, Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267 ()
| |
Collapse
|