1
|
Ribeiro L, Fischer BV, Vitali FC, Santos PS, Teixeira CDS, Queiroz ÍODA, Sivieri-Araujo G, Dos Santos PH, Garcia LDFR. Advances in laser-assisted regenerative endodontic procedures: a scoping review. J Dent 2025; 158:105783. [PMID: 40287048 DOI: 10.1016/j.jdent.2025.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVES This scoping review explores advancements in integrating laser technologies into regenerative endodontic procedures (REPs) and evaluates their potential benefits compared to conventional approaches. DATA AND SOURCES The review encompassed searches in electronic databases - Embase, Cochrane Library, PubMed, Scopus, and Web of Science (September 27th, 2024) - and grey literature from Google Scholar and ProQuest. STUDY SELECTION Out of 480 identified references, 14 studies met the inclusion criteria. Laser applications were categorized into photobiomodulation (PBM), photodynamic therapy (PDT), and other laser-assisted techniques, such as Er:YAG laser-assisted irrigation and diode laser dentin etching. PBM showed enhanced tissue regeneration through improved angiogenesis, cell proliferation, and the release of growth factors such as TGF-β1. PDT provided antimicrobial effects without compromising cell viability. Er:YAG laser-assisted irrigation demonstrated increased growth factor release but posed risks of irrigant extrusion. Additionally, diode laser dentin etching enhanced stem cell attachment, offering improvements to REPs. CONCLUSIONS With an expanding evidence base, laser technologies hold promise for becoming integral to REPs, enabling minimally invasive and effective treatments for necrotic and traumatized immature teeth. Nonetheless, the limited number of studies highlights the need for further research. Standardized clinical trials are crucial to establish long-term outcomes and address safety concerns. CLINICAL SIGNIFICANCE REPs offer a promising approach for treating immature necrotic teeth, and the use of lasers in endodontics has demonstrated advantages over traditional methods. This scoping review aimed to explore significant findings regarding the use of laser-assisted therapies in REPs.
Collapse
Affiliation(s)
- Lívia Ribeiro
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Bruna Venzke Fischer
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe Colombo Vitali
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Pablo Silveira Santos
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cleonice da Silveira Teixeira
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Índia Olinta de Azevedo Queiroz
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Gustavo Sivieri-Araujo
- Department of Preventive and Restorative Dentistry - Endodontics Division, Araçatuba School of Dentistry, São Paulo State University, Araçatuba, SP, Brazil.
| | | | - Lucas da Fonseca Roberti Garcia
- Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
García-Guerrero C, Rodas Serrano AP, Leal Fernández MC, Quijano-Guauque S. In vitro bioactive dentin protein release by diode laser conditioning. AUST ENDOD J 2025; 51:115-123. [PMID: 39673201 DOI: 10.1111/aej.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
This in-vitro study aimed to explore the potential of Diode Laser by quantifying the release of transforming growth factor-beta 1 (TGF-β1), platelet-derived growth factor (PDGF)-BB, and vascular endothelial growth factor (VEGF) from root dentin after ethylenediaminetetraacetic acid (EDTA) and diode laser. In 30 hemi-roots distributed into five groups: G1: Tris-buffered solution (TBS); G2: 17%EDTA; G3: 17% EDTA +650 nm Diode Laser; G4:17% EDTA +810 nm Diode Laser; and G5: 810 nm Diode Laser. The concentration of the three factors was quantified using a cytokine bead array. Statistical tests were performed to estimate intergroup differences (p ≤ 0.05). TGF-β1 and VEGF were solubilised in all test protocols. The ability of low-level power diode lasers to release proteins from the matrix is limited. Its effect on the release of VEGF and PDGF-BB does not make a difference. A synergy between EDTA and Diode Laser led to a greater proportion of TGF-β1 release.
Collapse
Affiliation(s)
- Claudia García-Guerrero
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Grupo de Investigación INVENDO, Bogotá, Colombia
| | - Ana Priscila Rodas Serrano
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Grupo de Investigación INVENDO, Bogotá, Colombia
| | | | - Sara Quijano-Guauque
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Grupo de Investigación INVENDO, Bogotá, Colombia
| |
Collapse
|
3
|
Di Carvalho Melo L, Bastos Silveira B, Monteiro MM, Amorim Dos Santos J, Ferreira EB, Reis PED, Gallo CDB, Guerra ENS. Current trends and available evidence on low-level laser therapy for osteoradionecrosis: A scoping review. Photodiagnosis Photodyn Ther 2024; 50:104381. [PMID: 39426651 DOI: 10.1016/j.pdpdt.2024.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND This scoping review explored current trends and available evidence in Low-Level Laser Therapy (LLLT) in the treatment and prevention of osteoradionecrosis. METHODS The search strategy was conducted in MEDLINE/PubMed, EMBASE, Web of Science, and grey literature on January 15, 2024, without language or time restrictions. RESULTS 19 studies were included. The application of LLLT protocols was 58 % for therapeutic use, 21 % for preventive use, and 21 % for a combination of both. Regarding the use of antimicrobial photodynamic therapy (aPDT), 41 % of the studies employed this technique, which utilized methylene blue as the photosensitizer. For treatments associated with photobiomodulation, 57 % reported pharmacological treatment, 29 % surgical treatment, 11 % prescribed chlorhexidine mouthwashes, and 4 % other therapies. In vivo studies used diode lasers emitting low incident power densities in the near-infrared wavelength (67 %) at 780 to 904 nm. In comparison, case reports also used diode lasers emitting low incident power densities in the red and near-infrared wavelength (64 %) at 660 to 904 nm. The continuous emission mode was utilized in 83 % of in vivo studies and 17 % of the case reports. None of the studies included in this review reported all laser parameters. CONCLUSIONS In general, studies suggested that LLLT can be used for therapeutic and preventive applications in the management of osteoradionecrosis. However, clinical studies are case reports and the variability in laser parameters across the included studies poses challenges for establishing standardized treatment protocols. The lack of comprehensive data on laser parameters underscores the need for future research to focus on standardizing LLLT protocols and conducting well-designed, large-scale clinical trials. This approach will help to better evaluate the effectiveness of LLLT and potentially integrate it more reliably into clinical practice.
Collapse
Affiliation(s)
- Larissa Di Carvalho Melo
- University of Brasilia, Laboratory of Oral Histopathology, School of Health Sciences Faculty, Brasília Brazil
| | - Bruna Bastos Silveira
- University of Brasilia, Laboratory of Oral Histopathology, School of Health Sciences Faculty, Brasília Brazil
| | - Mylene Martins Monteiro
- University of Brasilia, Laboratory of Oral Histopathology, School of Health Sciences Faculty, Brasília Brazil
| | - Juliana Amorim Dos Santos
- University of Brasilia, Laboratory of Oral Histopathology, School of Health Sciences Faculty, Brasília Brazil
| | - Elaine Barros Ferreira
- University of Brasilia, Brasília, Interdisciplinary Laboratory of Research applied to Clinical Practice in Oncology, Nursing Department, School of Health Sciences, Brasília, Brazil
| | - Paula Elaine Diniz Reis
- University of Brasilia, Brasília, Interdisciplinary Laboratory of Research applied to Clinical Practice in Oncology, Nursing Department, School of Health Sciences, Brasília, Brazil
| | | | - Eliete Neves Silva Guerra
- University of Brasilia, Laboratory of Oral Histopathology, School of Health Sciences Faculty, Brasília Brazil.
| |
Collapse
|
4
|
Braga LTF, Ribeiro IM, Barroso MEDS, Kampke EH, Neves LNS, Andrade SC, Barbosa GH, Porto ML, Meyrelles SS. Modulatory Effects of Photobiomodulation on Oxidative and Inflammatory Responses in a Murine Model of Periodontitis. Antioxidants (Basel) 2024; 13:1450. [PMID: 39765779 PMCID: PMC11672657 DOI: 10.3390/antiox13121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Periodontitis, an oral disease initiated by a dysbiotic dental biofilm, has an unclear response to photobiomodulation (PBM) as an adjunctive treatment. This study investigates the effects of PBM on reactive oxygen species (ROS), apoptosis, oxidative stress, and inflammatory markers in a periodontitis model using C57BL/6 mice, divided into four groups: control (C), control + PBM (C + PBM), periodontitis (P), and periodontitis + PBM (P + PBM). An infrared diode laser (808 nm, 133.3 J/cm2, 4 J/session) was applied for three days. PBM reduced superoxide anions, hydrogen peroxide, and apoptosis in gingival cells, while decreasing systemic inflammation and protein oxidation. In the P + PBM group, pro-inflammatory cytokines IL-6 and IL-12p70 decreased, whereas IL-10 increased, suggesting improvements in oxidative stress and inflammation profiles.
Collapse
Affiliation(s)
- Larissa Trarbach Figueiredo Braga
- Graduate Program of Dental Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil
| | - Isadora Martins Ribeiro
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| | - Maria Eduarda de Souza Barroso
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| | - Edgar Hell Kampke
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| | - Lorena Nascimento Santos Neves
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| | - Sara Cecília Andrade
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| | - Guilherme Heleodoro Barbosa
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| | - Marcella Leite Porto
- Laboratory of Cell Culture, Federal Institute of Espirito Santo (IFES), Av. Ministro Salgado Filho, 1000, Vila Velha 29106-010, ES, Brazil;
| | - Silvana Santos Meyrelles
- Graduate Program of Dental Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil
- Graduate Program of Physiological Sciences, Federal University of Espirito Santo (UFES), Av. Marechal Campos, 1468, Maruípe, Vitória 29043-900, ES, Brazil; (I.M.R.); (M.E.d.S.B.); (E.H.K.); (L.N.S.N.); (S.C.A.); (G.H.B.)
| |
Collapse
|
5
|
Fouad EM, Fawzy MI, Saafan AM, Elhousiny MA. Regenerative endodontic therapy in immature teeth using photobiomodulation and photodynamic therapy; a histomorphological study in canine model. BMC Oral Health 2024; 24:1430. [PMID: 39580417 PMCID: PMC11585143 DOI: 10.1186/s12903-024-05189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Regenerative endodontic therapy (RET) is still coming up short to demonstrate histological evidence for true regeneration with clinically feasible protocol of cell homing in single visit approach. AIM The aim of the present study is to evaluate the regenerative potential of photobiomodulation (PBM) on RET in immature roots when photodynamic therapy (PDT) protocol is implemented for root canal disinfection in canine model. MATERIALS AND METHODS Seventy-two root canals were recruited, with sixty assigned to experimental groups and twelve to positive and negative controls. Following the induction of pulp necrosis and apical periodontitis, the roots were divided into two experimental groups: Group I received RET followed by PBM (seven sessions with an 808 nm diode laser at 300 mW for 90 s), and Group II received RET without PBM. Follow-ups were conducted at 1, 2, and 3 months (subgroups A, B, and C respectively). Qualitative and quantitative assessment was carried out histologically. All data were statistically analyzed with the Mann-Whitney U test and Bonferroni's adjustment, as well as Chi square test. RESULTS The newly formed hard tissue highly resembled true dentine where the dentinal tubules looked well organized lined by poly layers palisading pattern of rounded odontoblast-like cells with cytoplasmic processes extending through the predentine layer. GI exhibited statistically significantly higher scores of vital tissue infiltration and hard tissue deposition in subgroups A and B (P ≤ 0.05). The inflammatory cells scores were significantly lower in GI than in GII at all time intervals. However, no significance could be detected regarding apical closure. CONCLUSION The disinfection protocol of PDT and subsequent irradiation with low power laser in PBM protocol pose a promising potential for regenerative endodontics in immature teeth.
Collapse
Affiliation(s)
- Eman M Fouad
- Division of Endodontics, Faculty of Oral and Dental Surgery, Misr University for Science and Technology, Giza, Egypt.
| | - Mervat I Fawzy
- Professor of Endodontics Department, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ali M Saafan
- Professor of Dental Laser Applications, NILES, Cairo University, Giza, Egypt
| | - Maha A Elhousiny
- Associate professor of Endodontics, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Lira JAS, Sabino VG, da Costa EHP, de Paula JVF, Rocha HADO, de Moura CEB, Barboza CAG. The proliferation and viability of human periodontal ligament stem cells cultured on polymeric scaffolds can be improved by low-level laser irradiation. Lasers Med Sci 2024; 39:261. [PMID: 39428431 DOI: 10.1007/s10103-024-04210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
This study assessed the impact of low-level laser irradiation on the viability and proliferation of human periodontal ligament stem cells (hPDLSCs) cultivated on polylactic acid (PLA) scaffolds. hPDLSCs were obtained, characterized, and grown on the surface of PLA films produced via the solvent casting technique. The study involved two groups: the control group, which was not exposed to radiation, and the laser group, which was irradiated with a diode laser (InGaAIP) with a power of 30 mW, a wavelength of 660 nm, and a single dose of 1 J/cm² emitted continuously. Cell viability was assessed 24 and 48 hours after irradiation using the Alamar blue and Live/Dead assays. Flow cytometry was used to assess cell cycle events, and scanning electron microscopy (SEM) was used to evaluate the interaction between cells and the biomaterial. The results revealed a statistically significant increase in cell metabolic activity in the laser group compared with the control group at 24 hours (p <0.05) and 48 hours (p <0.001), as indicated by the Alamar blue assay. The Live/Dead assay also revealed a greater density of viable cells in the laser group. The cell cycle analysis revealed a significant increase in the number of cells in the proliferative phase (G2/M) in the laser group compared with the control group (p <0.001). The SEM images demonstrated that the irradiated group had a greater concentration of cells while still maintaining their cell shape and projections. This study demonstrated that photobiomodulation can increase the viability and proliferation of periodontal stem cells cultured on PLA scaffolds, suggesting the potential of this protocol for future studies on periodontal tissue engineering.
Collapse
|
7
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Zanin F, Silva G, Mayer-Santos E, Brugnera AP, Sardop A, Brugnera A. Er:YAG Laser and Hemolasertherapy: Bone and Gingiva Gain-Case Report. Photobiomodul Photomed Laser Surg 2024; 42:493-497. [PMID: 38757706 DOI: 10.1089/pho.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Background: Modern dentistry has increasingly valued conservative and biologically less invasive clinical practices, seeking to preserve the patients' tissues and natural dental elements. Most extractions in the dental clinic are preceded by periodontal disease that presents bone and gingival tissue loss, compromising the aesthetics as well as the support of dental elements. Objectives: The clinical approach in these cases often involves bone exertion followed by the successful installation of osseointegrated implants. Material and Methods: In this study, a case of extensive periodontal involvement and mobility of dental elements was carried out in a minimally invasive way, using the Er:YAG laser for periodontal decontamination and the hemolasertherapy technique to regenerate adjacent tissues, totaling nine weeks of treatment. Results: Clinical and radiographical improvement of tissue health and complete preservation of dental elements were observed. Conclusion: The patient underwent a follow-up appointment 2 years after the start of treatment when it was still possible to verify the stability of the clinical condition and the tissue gains obtained.
Collapse
Affiliation(s)
- Fatima Zanin
- Biophotonics Center, Brugnera and Zanin Institute, Sao Paulo, Brazil
| | | | - Eric Mayer-Santos
- Department of Restorative Dentistry, University of São Paulo (USP), Sao Paulo, Brazil
| | - Ana Paula Brugnera
- Dental Clinic, Instituto Brugnera e Zanin, Biophotonics Laser Center, Sao Paulo, Brazil
| | | | - Aldo Brugnera
- National Institute of Science and Technology INCT, Basic Optics and Applied Life Sciences FSC-USP, Instituto Brugnera e Zanin, Biophotonics Laser Center, Sao Paulo, Brazil
| |
Collapse
|
9
|
Sayar F, Garebigloo A, Saberi S, Etemadi A. In Vitro Photobiomodulation Effects of Blue and Red Diode Lasers on Proliferation and Differentiation of Periodontal Ligament Mesenchymal Stem Cells. J Lasers Med Sci 2024; 15:e5. [PMID: 38655041 PMCID: PMC11033857 DOI: 10.34172/jlms.2024.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/29/2024] [Indexed: 04/26/2024]
Abstract
Introduction: This study aimed to assess the photobiomodulation effects of blue and red lasers on the proliferation and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLMSCs). Methods: PDLMSCs were cultured and tested in 4 groups. The first two groups were exposed to 445 nm diode laser irradiation (200 mW, 6 and 12 J/cm2 ), and the third group was exposed to 660 nm diode laser irradiation (50 mW, 4 J/cm2 ). The fourth group was also considered as the control group without irradiation. Cell viability/proliferation was assessed by MTT assay. RUNX2, alkaline phosphatase (ALP), collagen type 1 (col1), and osteocalcin (OCN) were evaluated by RT-PCR, and Alizarin red was used to evaluate the colonization. The data were analyzed by means of one-way analysis of variance. Results: The results of our study showed that cell survival/proliferation in the second group was significantly lower than that in the control group on days 1 and 7 (P<0.05). RT-PCR showed a significant increase in osteogenic genes in all three laser groups compared to the control group (P<0.05). All groups showed a significant increase in calcium content compared to the control group (P<0.05). ALP activity also confirmed the osteoblastic differentiation of cells in laser groups. Conclusion: 445 nm and 660 nm lasers with the studied parameters showed positive effects on the proliferation and osteoblastic differentiation of PDLMSCs.
Collapse
Affiliation(s)
- Ferena Sayar
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sogol Saberi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Parker S, Cronshaw M, Anagnostaki E, Mylona V, Lynch E, Grootveld M. Effect of Photobiomodulation Therapy Dosage on Orthodontic Movement, Temporomandibular Dysfunction and Third Molar Surgery Outcomes: A Five-Year Systematic Review. APPLIED SCIENCES 2024; 14:3049. [DOI: 10.3390/app14073049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
(1) Background: This five-year systematic review seeks to assess the impact of oral and peri-oral photobiomodulation therapies (PBMTs) on the adjunctive management of deeper tissue biofunction, pathologies related to pain and inflammatory disorders and post-surgical events. (2) Methods: The search engines PubMed, Cochrane, Scopus, ScienceDirect, Google Scholar, EMBASE and EBSCO were used with appropriate Boolean operatives. The initial number of 14,932 articles was reduced to 261. Further exclusions performed to identify PBM therapy in third molar surgery, orthodontic and TMJ articles resulted in 19, 15 and 20 of these, respectively. Each paper was scrutinised to identify visible red–NIR laser wavelength PBM applications, concerning dosimetry and outcomes. (3) Results: A dataset analysis was employed using post hoc ANOVA and linear regression strategies, both with a Bonferroni correction (p < 0.05). The outcomes of articles related to oral surgery pain revealed a statistically significant relation between PBMT and a positive adjunct (p = 0.00625), whereas biofunction stimulation across all other groupings failed to establish a positive association for PBMT. (4) Conclusions: The lack of significance is suggested to be attributable to a lack of operational detail relating to laser operating parameters, together with variation in a consistent clinical technique. The adoption of a consistent parameter recording and the possible inclusion of laser data within ethical approval applications may help to address the shortcomings in the objective benefits of laser PBM.
Collapse
Affiliation(s)
- Steven Parker
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK
| | - Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK
| | - Eugenia Anagnostaki
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK
| | - Valina Mylona
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK
| |
Collapse
|
11
|
Karkehabadi H, Rahmati A, Abbaspourrokni H, Farmany A, Najafi R, Behroozi R, Rezaei-Soufi L, Abbasi R. Effect of magnesium oxide nanoparticles and LED irradiation on the viability and differentiation of human stem cells of the apical papilla. Biotechnol Lett 2024; 46:263-278. [PMID: 38326543 DOI: 10.1007/s10529-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Currently, regenerative endodontic treatments are gaining more and more attention, and stem cells play a significant role in these treatments. In order to enhance stem cell proliferation and differentiation, a variety of methods and materials have been used. The purpose of this study was to determine the effects of magnesium oxide nanoparticles and LED irradiation on the survival and differentiation of human stem cells from apical papilla. METHODS The MTT test was used to measure the cell survival of SCAPs that had been exposed to different concentrations of magnesium oxide nanoparticles after 24 and 48 h, and the concentration with the highest cell survival rate was picked for further studies. The cells were classified into four distinct groups based on their treatment: (1) control, which received no exposure, (2) exposure to magnesium oxide nanoparticles, (3) exposure to light emitting diode (LED) irradiation (635 nm, 200 mW/cm2) for 30 s, (4) exposure simultaneously with magnesium oxide nanoparticles and LED irradiation. A green approach was employed to synthesize magnesium oxide nanoparticles. Quantitative real time PCR was used to measure the gene expression of osteo/odontogenic markers such as BSP, DSPP, ALP and DMP1 in all four groups after treatment, and Alizarin red S staining (ARS) was used to determine the osteogenic differentiation of SCAPs by demonstrating the Matrix mineralization. RESULTS The highest viability of SCAPs was observed after 24 h in concentration 1 and 10 µg/mL and after 48 h in concentration 1 µg/mL, which were not significantly different from the control group. In both times, the survival of SCAPs decreased with increasing concentration of magnesium oxide nanoparticles (MgONPs). According to the results of Real-time PCR, after 24 and 48 h, the highest differentiation of BSP, DMP1, ALP and DSPP genes was observed in the LED + MgONPs group, followed by MgONPs and then LED, and in all 3 experimental groups, it was significantly higher than control group (P < 0.05). Also, after 24 and 48 h, the density of ARS increased in all groups compared to the control group, and the highest density was observed in the MgONPs + LED and MgONPs groups. CONCLUSION This research concluded that exposure to SCAPs, MgONPs, and LED irradiation has a significant effect on enhancing gene expression of odontogenic/osteogenic markers and increasing matrix mineralization.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Rahmati
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadiseh Abbaspourrokni
- Department of Endodontics, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Loghman Rezaei-Soufi
- Department of Operative Dentistry, Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
12
|
Rahmati A, Abbasi R, Najafi R, Asnaashari M, Behroozi R, Rezaei-Soufi L, Karkehabadi H. Effect of Low-Level Diode Laser and Red Light-Emitting Diode on Survival and Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells. Photobiomodul Photomed Laser Surg 2024; 42:306-313. [PMID: 38546858 DOI: 10.1089/photob.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.
Collapse
Affiliation(s)
- Afsaneh Rahmati
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Asnaashari
- Laser Application in Medical Sciences Research Center, Department of Endodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Loghman Rezaei-Soufi
- Department of Operative Dentistry, Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Kong Q, Wang Y, Jiang N, Wang Y, Wang R, Hu X, Mao J, Shi X. Exosomes as Promising Therapeutic Tools for Regenerative Endodontic Therapy. Biomolecules 2024; 14:330. [PMID: 38540750 PMCID: PMC10967740 DOI: 10.3390/biom14030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 11/06/2024] Open
Abstract
Pulpitis is a common and frequent disease in dental clinics. Although vital pulp therapy and root canal treatment can stop the progression of inflammation, they do not allow for genuine structural regeneration and functional reconstruction of the pulp-dentin complex. In recent years, with the development of tissue engineering and regenerative medicine, research on stem cell-based regenerative endodontic therapy (RET) has achieved satisfactory preliminary results, significantly enhancing its clinical translational prospects. As one of the crucial paracrine effectors, the roles and functions of exosomes in pulp-dentin complex regeneration have gained considerable attention. Due to their advantages of cost-effectiveness, extensive sources, favorable biocompatibility, and high safety, exosomes are considered promising therapeutic tools to promote dental pulp regeneration. Accordingly, in this article, we first focus on the biological properties of exosomes, including their biogenesis, uptake, isolation, and characterization. Then, from the perspectives of cell proliferation, migration, odontogenesis, angiogenesis, and neurogenesis, we aim to reveal the roles and mechanisms of exosomes involved in regenerative endodontics. Lastly, immense efforts are made to illustrate the clinical strategies and influencing factors of exosomes applied in dental pulp regeneration, such as types of parental cells, culture conditions of parent cells, exosome concentrations, and scaffold materials, in an attempt to lay a solid foundation for exploring and facilitating the therapeutic strategy of exosome-based regenerative endodontic procedures.
Collapse
Affiliation(s)
- Qingyue Kong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Rui Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.K.); (Y.W.); (Y.W.); (R.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
14
|
Escobar LM, Grajales M, Bendahan Z, Jaimes S, Baldión P. Osteoblastic differentiation and changes in the redox state in pulp stem cells by laser treatment. Lasers Med Sci 2024; 39:87. [PMID: 38443654 PMCID: PMC10914891 DOI: 10.1007/s10103-024-04016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to determine the effect of low-level laser therapy (LLLT) on cell proliferation, mitochondrial membrane potential changes (∆Ψm), reactive oxygen species (ROS), and osteoblast differentiation of human dental pulp stem cells (hDPSCs). These cells were irradiated with 660- and 940-nm lasers for 5 s, 50 s, and 180 s. Cell proliferation was assessed using the resazurin assay, cell differentiation by RUNX2 and BMP2 expression, and the presence of calcification nodules using alizarin-red S staining. ROS was determined by the dichlorofluorescein-diacetate technique and changes in ∆Ψm by the tetramethylrhodamine-ester assay. Data were analyzed by a Student's t-test and Mann-Whitney U test. The 940-nm wavelength for 5 and 50 s increased proliferation at 4 days postirradiation. After 8 days, a significant decrease in proliferation was observed in all groups. Calcification nodules were evident in all groups, with a greater staining intensity in cells treated with a 940-nm laser for 50 s, an effect that correlated with increased RUNX2 and BMP2 expression. ROS production and Δψm increased independently of irradiation time. In conclusion, photobiomodulation (PBM) with LLLT induced morphological changes and reduced cell proliferation rate, which was associated with osteoblastic differentiation and increased ROS and Δψm, independent of wavelength and time.
Collapse
Affiliation(s)
- Lina M Escobar
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia.
| | - Marggie Grajales
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Zita Bendahan
- Unidad de Manejo Integral de Malformaciones Craneofaciales UMIMC, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Sully Jaimes
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia
| | - Paula Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
15
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
16
|
de Melo E, Cavalcanti P, Pires C, Tostes B, Miranda J, Barbosa A, da Rocha S, Deama N, Alves S, Gerbi M. Influence of the addition of nanohydroxyapatite to scaffolds on proliferation and differentiation of human mesenchymal stem cells: a systematic review of in vitro studies. Braz J Med Biol Res 2024; 57:e13105. [PMID: 38265343 PMCID: PMC10802233 DOI: 10.1590/1414-431x2023e13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
One of the main challenges of tissue engineering in dentistry is to replace bone and dental tissues with strategies or techniques that simulate physiological tissue repair conditions. This systematic review of in vitro studies aimed to evaluate the influence of the addition of nanohydroxyapatite (NHap) to scaffolds on cell proliferation and osteogenic and odontogenic differentiation of human mesenchymal stem cells. In vitro studies on human stem cells that proliferated and differentiated into odontogenic and osteogenic cells in scaffolds containing NHap were included in this study. Searches in PubMed/MEDLINE, Scopus, Web of Science, OpenGrey, ProQuest, and Cochrane Library electronic databases were performed. The total of 333 articles was found across all databases. After reading and analyzing titles and abstracts, 8 articles were selected for full reading and extraction of qualitative data. Results showed that despite the large variability in scaffold composition, NHap-containing scaffolds promoted high rates of cell proliferation, increased alkaline phosphatase (ALP) activity during short culture periods, and induced differentiation, as evidenced by the high expression of genes involved in osteogenesis and odontogenesis. However, further studies with greater standardization regarding NHap concentration, type of scaffolds, and evaluation period are needed to observe possible interference of these criteria in the action of NHap on the proliferation and differentiation of human stem cells.
Collapse
Affiliation(s)
- E.L. de Melo
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | | | - C.L. Pires
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - B.V.A. Tostes
- Programa de Pós-graduação em Química, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - J.M. Miranda
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - A.A. Barbosa
- Universidade Federal do Vale do São Francisco, Senhor do Bonfim, BA, Brasil
| | - S.I.S. da Rocha
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - N.S. Deama
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| | - S. Alves
- Programa de Pós-graduação em Química, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - M.E.M.M. Gerbi
- Programa de Pós-graduação em Odontologia, Universidade de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
17
|
Malekpour F, Bahrami R, Hodjat M, Hakimiha N, Bolhari B, Sooratgar A, Niavarzi S. Effect of photobiomodulation therapy on TGF-β release from dentin, migration and viability of dental pulp stem cells in regenerative endodontics treatment: An ex vivo study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112817. [PMID: 38029663 DOI: 10.1016/j.jphotobiol.2023.112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIM Regenerative endodontic procedures (REPs) are oriented by the principles of tissue engineering, incorporating dental pulp stem cells (DPSC), crucial growth factors like Transforming growth factor-β (TGF-β1), and scaffolds to facilitate the regeneration of dental pulp tissues. The present study aimed to investigate the effect of photobiomodulation (PBM) therapy, using an 808 nm diode laser on cellular modulation mechanisms in REPs. METHOD AND MATERIAL A total of 108 human dentin discs obtained from intact single root teeth were randomly assigned into six groups (n = 8): 1. Positive control (EDTA), 2. PBM-1 (3 J/cm2), 3. PBM-2 (5 J/cm2), 4. EDTA+PBM-1, 5. EDTA+PBM-2, and 6. Negative control (NaOCl). Then, an extract solution was prepared from each disc and the concentration of released TGF-β1 from the discs was measured using enzyme-linked immunosorbent assay (ELISA). Moreover, the extract solution was added to DPSC culture medium to evaluate cell viability and migration through MTT assay and scratch test, respectively. RESULT The group exposed to PBM-1 showed the highest cell viability, while treatment with EDTA and EDTA+PBM-2 decreased cellular viability. Also, the PBM-treated groups showed significantly higher release of TGF-β1 compared to the negative control. EDTA and EDTA+PBM-1 showed the highest release among all the groups. No significant difference was found between EDTA and EDTA+PBM-1, as well as between PBM-1 and PBM-2. Moreover, the PBM-1 group exhibited the highest migration after 24 h, which was significantly greater than other groups, except for the PBM-2 group. CONCLUSION According to the obtained data, 808 nm mediated-PBM (3 J/cm2), both independently and in conjunction with EDTA, enhanced the release of TGF-β1 from dentin and improved cell viability and migration of DPSCs. It seems that, PBM under the specific parameters employed in this study, could be an effective adjunctive therapy in REPs.
Collapse
Affiliation(s)
- Fatemeh Malekpour
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Hodjat
- Dental Research Centre, Dentistry Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behnam Bolhari
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aidin Sooratgar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Niavarzi
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Firoozi P, Amiri MA, Soghli N, Farshidfar N, Hakimiha N, Fekrazad R. The Role of Photobiomodulation on Dental-Derived Stem Cells in Regenerative Dentistry: A Comprehensive Systematic Review. Curr Stem Cell Res Ther 2024; 19:559-586. [PMID: 35950251 DOI: 10.2174/1574888x17666220810141411] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photobiomodulation therapy involves exposing tissues to light sources, including light-emitting diodes or low-level lasers, which results in cellular function modulation. The molecular mechanism of this treatment is revealed, demonstrating that depending on the light settings utilized, it has the potential to elicit both stimulatory and inhibitory reactions. OBJECTIVE The current systematic review aimed to evaluate the impact of photobiomodulation therapy on dental stem cells and provide an evidence-based conclusion in this regard. METHODS This systematic review was performed and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) revised guidelines. PICO(S) components were employed to define the inclusion criteria. Web of Science, Scopus, Medline as well as grey literature, and google scholar were searched up to September 2021 to retrieve relevant papers. RESULTS Photobiomodulation therapy showed promising effects on the proliferation, viability, and differentiation of dental stem cells. This finding was based on reviewing related articles with a low risk of bias. CONCLUSION Despite the positive benefits of photobiomodulation therapy on dental stem cells, the current data do not provide a definitive conclusion on the best physical parameters for enhancing cell viability, proliferation, and differentiation.
Collapse
Affiliation(s)
- Parsa Firoozi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Soghli
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Fekrazad
- Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
19
|
Paiva Barbosa V, Bastos Silveira B, Amorim Dos Santos J, Monteiro MM, Coletta RD, De Luca Canto G, Stefani CM, Guerra ENS. Critical appraisal tools used in systematic reviews of in vitro cell culture studies: A methodological study. Res Synth Methods 2023; 14:776-793. [PMID: 37464457 DOI: 10.1002/jrsm.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Systematic reviews (SRs) of preclinical studies are marked with poor methodological quality. In vitro studies lack assessment tools to improve the quality of preclinical research. This methodological study aimed to identify, collect, and analyze SRs based on cell culture studies to highlight the current appraisal tools utilized to support the development of a validated critical appraisal tool for cell culture in vitro research. SRs, scoping reviews, and meta-analyses that included cell culture studies and used any type of critical appraisal tool were included. Electronic search, study selection, data collection and methodological quality (MQ) assessment tool were realized. Further, statistical analyses regarding possible associations and correlations between MQ and collected data were performed. After the screening process, 82 studies remained for subsequent analysis. A total of 32 different appraisal tools were identified. Approximately 60% of studies adopted pre-structured tools not designed for cell culture studies. The most frequent instruments were SYRCLE (n = 14), OHAT (n = 9), Cochrane Collaboration's tool (n = 7), GRADE (n = 6), CONSORT (n = 5), and ToxRTool (n = 5). The studies were divided into subgroups to perform statistical analyses. A significant association (OR = 5.00, 95% CI = 1.54-16.20, p = 0.008) was found between low MQ and chronic degenerative disorders as topic of SR. Several challenges in collecting information from the included studies led to some modifications related to the previously registered protocol. These results may serve as a basis for further development of a critical appraisal tool for cell culture studies capable of capturing all the essential factors related to preclinical research, therefore enhancing the practice of evidence-based.
Collapse
Affiliation(s)
- Victor Paiva Barbosa
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Bruna Bastos Silveira
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Juliana Amorim Dos Santos
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Mylene Martins Monteiro
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Ricardo D Coletta
- University of Campinas, Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Graziela De Luca Canto
- Federal University of Santa Catarina, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristine Miron Stefani
- University of Brasilia, Department of Dentistry, School of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Eliete Neves Silva Guerra
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
20
|
Yong J, Gröger S, Wu Z, Ruf S, Ye Y, Chen X. Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review. Bioengineering (Basel) 2023; 10:bioengineering10030371. [PMID: 36978762 PMCID: PMC10045842 DOI: 10.3390/bioengineering10030371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Regenerative endodontic procedures (REPs) were used to recover the dental pulp’s vitality in order to avoid the undesirable outcomes of conventional endodontic treatment and to promote dentinal formation, especially for immature permanent teeth. Photobiomodulation therapy (PBMT) exhibits photobiological and photochemical effects for improving the root canal’s environmental conditions by compensating for oxidative stress and increasing the blood supply to implanted stem cells and improving their survival. Basic research has revealed that PBMT can modulate human dental pulp stem cells’ (hDPSCs) differentiation, proliferation, and activity, and subsequent tissue activation. However, many unclear points still remain regarding the mechanisms of action induced by PBMT in REPs. Therefore, in this review, we present the applications of laser and PBMT irradiation to the procedures of REPs and in endodontics. In addition, the effects of PBMT on the regenerative processes of hDPSCs are reviewed from biochemical and cytological perspectives on the basis of the available literature. Furthermore, we consider the feasibility of treatment in which PBMT irradiation is applied to stem cells, including dental pulp stem cells, and we discuss research that has reported on its effect.
Collapse
Affiliation(s)
- Jiawen Yong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence:
| |
Collapse
|
21
|
Rahmati A, Abbasi R, Najafi R, Rezaei-soufi L, Karkehabadi H. Effect of diode low level laser and red light emitting diode irradiation on cell proliferation and osteogenic/odontogenic differentiation of stem cells from the apical papilla. BMC Oral Health 2022; 22:543. [PMID: 36434589 PMCID: PMC9701043 DOI: 10.1186/s12903-022-02574-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This experimental study aimed to assess the effect of irradiation of red light-emitting diode (LED) and Diode low-level laser (LLL) on osteogenic/odontogenic differentiation of stem cells from the apical papilla (SCAPs). MATERIALS AND METHODS SCAPs were isolated from the human tooth root. The experimental groups were subjected to 4 J/cm2 diode low level laser and red LED irradiation in osteogenic medium. The control group did not receive any irradiation. Cell viability/proliferation of SCAPs was assessed by the methyl thiazolyl tetrazolium (MTT) assay on days 1 and 2 (n = 9). Osteogenic differentiation was evaluated by alizarin red staining (ARS) (n = 3), and expression of osteogenic genes by real-time polymerase chain reaction (RT-PCR) (n = 12) on days 1 and 2. SPSS version 18 was used for data evaluation. The Kruskal-Wallis and Mann-Whitney tests were used to compare the groups at each time point. RESULTS The MTT assay showed no significant difference in cell viability/proliferation of SCAPs in the low level laser, red LED, and control groups at 24 or 48 h (P < 0.001). The ARS assessment showed that low level laser and red LED irradiation enhanced osteogenic differentiation of SCAPs. low level laser and red LED irradiation both induced over-expression of osteogenic/dentinogenic genes including alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1), and bone sialoprotein (BSP) in SCAPs. Up-regulation of genes was significantly greater in low level laser irradiation group than red LED group (P < 0.001). CONCLUSION Diode low level laser irradiation with 4 J/cm2 energy density and red LED irradiation enhanced osteogenic differentiation of SCAPs without adversely affecting cell viability.
Collapse
Affiliation(s)
- Afsaneh Rahmati
- grid.411950.80000 0004 0611 9280Endodontic Department, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Roshanak Abbasi
- grid.411950.80000 0004 0611 9280Endodontic Department, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran ,grid.411950.80000 0004 0611 9280Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- grid.411950.80000 0004 0611 9280Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran ,grid.411950.80000 0004 0611 9280Dental Research Center, Department of Operative Dentistry, School of dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Loghman Rezaei-soufi
- grid.411950.80000 0004 0611 9280Dental Research Center, Department of Operative Dentistry, School of dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Hamed Karkehabadi
- grid.411950.80000 0004 0611 9280Endodontic Department, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
22
|
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810238. [PMID: 36142145 PMCID: PMC9498988 DOI: 10.3390/ijms231810238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients’ death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.
Collapse
Affiliation(s)
- Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
23
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
24
|
Hendi SS, Gholami L, Saidijam M, Mahmoudi R, Arkian AA, Bakhtiyar H, Hasani NH, Afshar S. Photobiomodulation of inflamed dental pulp stem cells under different nutritional conditions. Regen Med 2021; 17:69-80. [PMID: 34931540 DOI: 10.2217/rme-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study aimed to investigate photobiomodulation's (PBM) effect on inflamed dental pulp stem cells (IDPSCs) under different nutritional conditions. Methods: Cell proliferation and odontogenic differentiation were evaluated using the MTT assay and real-time quantitative reverse transcription PCR, respectively after laser PBM of cells in 5 or 10% fetal bovine serum (FBS) culture conditions. Results: A significant positive effect of laser irradiation on cell proliferation under both nutritional conditions after 24 and 48 h was observed. DMP-1 gene expression increased in the groups with laser irradiation and 5% FBS. Comparison of gene expression levels in the four groups revealed no statistically significant stimulatory effect. The highest gene expression was observed in the non-laser group with 5% FBS. Conclusion: Further studies are required to obtain an irradiation setup to ideally improve inflamed dental pulp stem cells' proliferation and differentiation.
Collapse
Affiliation(s)
- Seyedeh Sareh Hendi
- Department of Endodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, School of dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Ali Asghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hengameh Bakhtiyar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Haji Hasani
- East-Azarbaijan Agricultural & Natural Resources Research & Education Center, AREEO, Tabriz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Dawoud LE, Hegazy EM, Galhom RA, Youssef MM. Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells-an in vitro Study. Lasers Med Sci 2021; 37:1993-2003. [PMID: 34787763 DOI: 10.1007/s10103-021-03461-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.
Collapse
Affiliation(s)
- Lama E Dawoud
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt.
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41523, Egypt
| | - Mervat M Youssef
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, 41523, Egypt
| |
Collapse
|
26
|
Pinto H, Goñi Oliver P, Sánchez-Vizcaíno Mengual E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesthetic Plast Surg 2021; 45:1826-1842. [PMID: 33616715 DOI: 10.1007/s00266-021-02173-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cell-based therapy is known to have the potential to induce angiogenesis. However, there are still some limitations regarding their clinical application. Photomodulation/photobiomodulation is non-invasive and non-toxic phototherapy able to stimulate cell viability, proliferation, differentiation, and migration, when the right irradiation parameters are applied. A review of the published articles on human conditioned-by-photobiomodulation mesenchymal cells in an in vitro set up was carried out. Our aim was to describe the studies' results and identify any possible tendency that might highlight the most suitable procedures. METHODS A search in English of the PubMed database was carried out with the search criteria: photobiomodulation or photoactivation or photomodulation, and mesenchymal cells. All irradiations applied in vitro, on human mesenchymal cells, with wavelengths ranged from 600 to 1000 nm. RESULTS The search yielded 42 original articles and five reviews. Finally, 37 articles were selected with a total of 43 procedures. Three procedures (7.0%) from 620 to 625 nm; 26 procedures (60.5%) from 625 to 740 nm; 13 procedures (30.2%) from 740 to 1000 nm; and one procedure (2.3%) with combinations of wavelengths. Of the 43 procedures, 14 assessed cell viability (n = 14/43, 32.6%); 34 cell proliferation (n = 34/43, 79.1%); 19 cell differentiation (n = 19/43, 44.2%); and three cell migration (n = 3/43, 7.0%). CONCLUSIONS Photobiomodulation is a promising technology that can impact on cell viability, differentiation, proliferation, or migration, leading to enhance its regenerative capacity. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Hernán Pinto
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | - Paloma Goñi Oliver
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | | |
Collapse
|
27
|
Gholami L, Hendi SS, Saidijam M, Mahmoudi R, Tarzemany R, Arkian A, Afshar S, Fekrazad R. Near-infrared 940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells. Lasers Med Sci 2021; 37:449-459. [PMID: 33740139 DOI: 10.1007/s10103-021-03282-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Photobiomodulation (PBM) is an acceptable method of stimulating stem cells through its non-invasive absorption by the cell photoreceptors and the induction of cellular response. The current research was aimed at evaluating the effect of near-infrared PBM on proliferation and osteogenic differentiation in inflamed periodontal ligament stem cells (I-PDLSCs). I-PDLSCs were isolated and characterized. Third passage cells were irradiated with 940-nm laser at an output power of 100 mW in a continuous wave. A fluence of 4 J/cm2 in three sessions at 48-h intervals was applied and compared with non-irradiated controls. Cell viability and proliferation were evaluated by MTT assay. Alkaline phosphatase activity, quantitative Alizarin red staining test, and q-RT-PCR were used to evaluate the osteogenic properties of the I-PDLSCs in four groups of (a) osteogenic differentiation medium + laser (ODM + L), (b) osteogenic differentiation medium without laser (ODM), (c) non-osteogenic differentiation medium + laser (L), and (d) non-osteogenic differentiation medium (control). There was a non-significant increase in the viability of cells at 48- and 72-h post last laser irradiation. Alizarin red staining revealed no significant stimulatory effect of PBM at 14 and 21 days. However, alkaline phosphatase activity was significantly higher in the L + ODM group. Expression of osteogenic-related genes had a statistically significant increase at 21-day post irradiation. The irradiation used in the present study showed no significant increase in the proliferation of I-PDLSCs by PBM. However, expression levels of osteogenic-related genes and alkaline phosphatase activity were significantly increased in irradiated groups.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Periodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyedeh Sareh Hendi
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Aliasghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photomedicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
28
|
Malthiery E, Chouaib B, Hernandez-Lopez AM, Martin M, Gergely C, Torres JH, Cuisinier FJ, Collart-Dutilleul PY. Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci 2021; 36:437-445. [PMID: 32621128 DOI: 10.1007/s10103-020-03092-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Photobiomodulation (PBM) has been shown to improve cell proliferation and cell migration. Many cell types have been investigated, with most studies using deep penetrating red light irradiation. Considering the interest of surface biostimulation of oral mesenchymal cells after surgical wound, the present study aimed to assess green light irradiation effects on Dental Pulp Stem Cells' (DPSC) proliferation and migration. To understand the mechanisms underlying these effects, we investigated cytoskeleton organization and subsequent cell shape and stiffness. A 532-nm wavelength Nd:YAG laser (30 mW) was applied between 30 and 600 s on DPSC in vitro. Cell proliferation was analyzed at 24, 48, and 72 h after irradiation, by cell counting and enzymatic activity quantification (paranitrophenylphosphate phosphatase (pNPP) test). A wound healing assay was used to study cell migration after irradiation. Effects of PBM on cytoskeleton organization and cell shape were assessed by actin filaments staining. Elasticity changes after irradiation were quantified in terms of Young's modulus measured using Atomic Force Microscopy (AFM) force spectroscopy. Green light significantly improved DPSC proliferation with a maximal effect obtained after 300-s irradiation (energy fluence 5 J/cm2). This irradiation had a significant impact on cell migration, improving wound healing after 24 h. These results were concomitant with a decrease of cells' Young's modulus after irradiation. This cell softening was explained by actin cytoskeleton reorganization, with diminution of cell circularity and more abundant pseudopodia. This study highlights the interest of green laser PMB for the proliferation and migration of mesenchymal stem cells, with encouraging results for clinical application, especially for surgical wound healing procedures.
Collapse
Affiliation(s)
- Eve Malthiery
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Batoul Chouaib
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Ana María Hernandez-Lopez
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
- Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marta Martin
- L2C, CNRS, University Montpellier, Montpellier, France
| | | | - Jacques-Henri Torres
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | - Frédéric J Cuisinier
- LBN, University Montpellier, 545 Av Pr JL Viala, 34193 CEDEX 4, Montpellier, France
| | | |
Collapse
|
29
|
Bueno NP, Copete IN, Lopes HB, Arany PR, Marques MM, Ferraz EP. Recovering the osteoblastic differentiation potential of mesenchymal stem cells derived from diabetic rats by photobiomodulation therapy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000393. [PMID: 33184942 DOI: 10.1002/jbio.202000393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Autologous cell-based therapy for bone regeneration might be impaired by diabetes mellitus (DM) due to the negative effects on mesenchymal stem cells (MSCs) differentiation. Strategies to recover their osteogenic potential could optimize the results. We aimed to evaluate the effect of photobiomodulation (PBM) therapy on osteoblast differentiation of rats with induced DM. Bone marrow MSCs of healthy and diabetic rats were isolated and differentiated into osteoblasts (OB and dOB, respectively). dOB were treated with PBM therapy every 72 hour (660 nm; 0.14 J; 20 mW; 0.714 W/cm2 , and 5 J/cm2 ). Cell morphology, viability, gene and protein expression of osteoblastic markers, alkaline phosphatase (ALP) activity, and the mineralized matrix production of dOB-PBM were compared to dOB. PBM therapy improved viability of dOB, increased the gene and protein expression of bone markers, the ALP activity and the mineralized matrix production. PBM therapy represents an innovative therapeutic approach to optimize the treatment of bone defects in diabetic patients.
Collapse
Affiliation(s)
| | | | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Praveen R Arany
- School of Dental Medicine, University at Buffalo, New York, New York, USA
| | - Márcia Martins Marques
- School of Dentistry, University of São Paulo, São Paulo, Brazil
- School of Dentistry, Ibirapuera University, São Paulo, Brazil
| | | |
Collapse
|
30
|
Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with Light-Emitting Diode: Implications and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6663539. [PMID: 33623634 PMCID: PMC7875639 DOI: 10.1155/2021/6663539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
This study evaluated the effects of light-emitting diode (LED) on mesenchymal stem cells (MSCs). An electronic search was conducted in PubMed/MEDLINE, Scopus, and Web of Science database for articles published from 1980 to February 2020. Ten articles met the search criteria and were included in this review. The risk of bias was evaluated to report quality, safety, and environmental standards. MSCs were derived from adipose tissue, bone marrow, dental pulp, gingiva, and umbilical cord. Protocols for cellular irradiation used red and blue light spectrum with variations of the parameters. The LED has been shown to induce greater cellular viability, proliferation, differentiation, and secretion of growth factors. The set of information available leads to proposing a complex signaling cascade for the action of photobiomodulation, including angiogenic factors, singlet oxygen, mitogen-activated protein kinase/extracellular signal-regulated protein kinase, Janus kinase/signal transducer, and reactive oxygen species. In conclusion, although our results suggest that LED can boost MSCs, a nonuniformity in the experimental protocol, bias, and the limited number of studies reduces the power of systematic review. Further research is essential to find the optimal LED irradiation parameters to boost MSCs function and evaluate its impact in the clinical setting.
Collapse
|
31
|
Physical and Biological Properties of a Chitosan Hydrogel Scaffold Associated to Photobiomodulation Therapy for Dental Pulp Regeneration: An In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6684667. [PMID: 33575339 PMCID: PMC7857869 DOI: 10.1155/2021/6684667] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023]
Abstract
Background The regeneration of dental pulp, especially in cases of pulp death of immature teeth, is the goal of the regenerative endodontic procedures (REPs) that are based on tissue engineering principles, consisting of stem cells, growth factors, and scaffolds. Photobiomodulation therapy (PBMT) showed to improve dental pulp regeneration through cell homing approaches in preclinical studies and has been proposed as the fourth element of tissue engineering. However, when a blood clot was used as a scaffold in one of these previous studies, only 30% of success was achieved. The authors pointed out the instability of the blood clot as the regeneration shortcoming. Then, to circumvent this problem, a new scaffold was developed to be applied with the blood clot. The hypothesis of the present study was that an experimental injectable chitosan hydrogel would facilitate the three-dimensional spatial organization of endogenous stem cells in dental pulp regeneration with no interference on the positive influence of PBMT. Methods For the in vitro analysis, stem cells from the apical papilla (SCAPs) were characterized by flow cytometry and applied in the chitosan scaffold for evaluating adhesion, migration, and proliferation. For the in vivo analysis, the chitosan scaffold was applied in a rodent orthotopic dental pulp regeneration model under the influence of PBMT (660 nm; power output of 20 mW, beam area of 0.028 cm2, and energy density of 5 J/cm2). Results The scaffold tested in this study allowed significantly higher viability, proliferation, and migration of SCAPs in vitro when PBMT was applied, especially with the energy density of 5 J/cm2. These results were in consonance to those of the in vivo data, where pulp-like tissue formation was observed inside the root canal. Conclusion Chitosan hydrogel when applied with a blood clot and PBMT could in the future improve previous results of dental pulp regeneration through cell homing approaches.
Collapse
|
32
|
Gholami L, Parsamanesh G, Shahabi S, Jazaeri M, Baghaei K, Fekrazad R. The Effect of Laser Photobiomodulation on Periodontal Ligament Stem Cells. Photochem Photobiol 2020; 97:851-859. [PMID: 33305457 DOI: 10.1111/php.13367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) is considered as a noninvasive procedure with the potential of inducing favorable changes in cellular behavior. In this study, we aimed to evaluate the effects of near-infrared low-intensity laser PBM on proliferation, viability and osteogenic differentiation of stem cells isolated from human periodontal ligament. A 940-nm diode laser with an energy density of 4 J cm-2 in a 100-mW continuous wave was used for irradiation in 3 sessions every 48h. Cell viability was measured 24, 48 and 72 h after irradiation. The effects of laser on mineralized tissue deposition were evaluated by using Alizarin red staining after dividing cells into three groups of nonosteogenic medium (C-), an osteogenic medium without laser (C+), and an osteogenic medium with laser irradiation (L+). Gene expression levels were also evaluated by real-time PCR. Our results showed no significant difference between MTT levels of the study and control groups. After 14 and 21 days, both L+ and C+ groups showed an increase in mineralized tissue formation compared to the C- group. There was an increase in VEGF and BMP expressions compared to C-. In conclusion, the irradiation setting used in this study may be able to improve mineralized tissue deposition.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gilda Parsamanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Shiva Shahabi
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Kulkarni S, Meer M, George R. The effect of photobiomodulation on human dental pulp-derived stem cells: systematic review. Lasers Med Sci 2020; 35:1889-1897. [PMID: 32572661 DOI: 10.1007/s10103-020-03071-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022]
Abstract
This systematic review assessed if photobiomodulation of human dental pulp tissue improved cell viability, proliferation, and/or differentiation compared with a placebo. This systematic review was conducted in line with PRISMA. PICO question was established; inclusion and exclusion criteria were established before a search had begun. A literature search was conducted through PubMed, Scopus, and Cochrane. Studies were included if published within the last 20 years in English language, or where translation was available; laser parameters were mentioned; human dental pulp tissue was studied in vitro. Studies were excluded if non-human dental pulp tissue was studied and where the study was an in vivo study. Out of the total 121 studies found, 109 were excluded. Of the twelve included studies, three full-text articles were not available despite attempts made to contact the respective authors, leaving nine studies. Four of the included studies reported the use of stem cells derived from human deciduous teeth (SHEDs), and five used those from human permanent teeth (DPSCs). Most included studies utilized InGaAlP laser with wavelengths 660 nm, and one study with 610 nm. Other types of lasers included LED InGaN, and GaAlAs. Out of all included studies, two had a moderate risk of bias, and the rest had a low risk of bias. All studies confirmed positive effects on proliferation. One study also found improved osteogenic differentiation of the stem cells derived from stem cells of deciduous teeth. After assessing SHEDs and DPSCs separately, it is found that photobiomodulation improved cell proliferation in both subgroups. Due to heterogeneity in design protocols and laser parameters, it was not possible to compare the studies together. However, this study indicated that cell viability and proliferation did improve with photobiomodulation.
Collapse
Affiliation(s)
- Sachin Kulkarni
- School of Dentistry and Oral Health, Griffith University, Corner Olsen Ave and Parklands Dr, Gold Coast, QLD, Australia
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Mohammed Meer
- School of Dentistry and Oral Health, Griffith University, Corner Olsen Ave and Parklands Dr, Gold Coast, QLD, Australia
| | - Roy George
- School of Dentistry and Oral Health, Griffith University, Corner Olsen Ave and Parklands Dr, Gold Coast, QLD, Australia.
| |
Collapse
|
34
|
Alves FAM, Marques MM, Cavalcanti SCSXB, Pedroni ACF, Ferraz EP, Miniello TG, Moreira MS, Jerônimo T, Deboni MCZ, Lascala CA. Photobiomodulation as adjunctive therapy for guided bone regeneration. A microCT study in osteoporotic rat model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112053. [PMID: 33142216 DOI: 10.1016/j.jphotobiol.2020.112053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/02/2023]
Abstract
Regeneration of diseased bone is challenging. Guided bone regeneration (GBR) has been applied to favor the bone repair. Photobiomodulation (PBM) is also a recognized therapy able to improve bone repair in healthy and diseased individuals. Thus, with the hypothesis that PBM therapy could improve the GBR of diseased bone, this study evaluated the effect of PBM as adjunctive therapy to GBR in osteoporotic rats. Osteoporosis was induced in rats using the oophorectomy model. Then, 5-mm calvaria bone defects were created and treated according to the experimental groups, as follows: with no further treatment (Control); conventional GBR (Membrane), GBR and PBM applied with 3 s, 4 J/cm2 and 0.12 J per point (PBM-1) and GBR and PBM applied with 10s, 14 J/cm2, 0.4 J per point (PBM-2). PBM therapy (808 nm, 40 mW, 1.42 W/cm2) was applied immediately, 48 and 96 h postoperatively. Four and eight weeks later, the samples were harvested and processed for micro-computerized tomography (Micro CT). Data were statistically compared (p < 0.05). From 4 to 8 weeks mostly significant changes were observed in the PBM groups. The bone volume fraction and number of trabeculae of the PBM groups, especially the PBM-1, were significantly higher than those of Control (p < 0.0001). The values of thickness and separation of the trabeculae and structural model index of the PBM groups were significantly smaller than Control (p < 0.0001). The connectivity density was significantly higher on Membrane and PBM groups than Control (p < 0.0004). The application of PBM as adjunctive therapy to GBR results in enhanced bone formation and maturation in comparison to the conventional GBR in the regeneration of lesions of osteoporotic bone in rats. Overviewing the challenges that face bone regeneration in patients with osteoporosis, our findings open new perspectives on the treatment of bone defects under osteoporotic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tomaís Jerônimo
- Department of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Cesar Angelo Lascala
- Department of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
35
|
Sabino VG, Ginani F, da Silva TN, Cabral AA, Mota-Filho HG, Freire MCLC, de Souza Furtado P, Assumpção PWMC, Cabral LM, Moura CE, Rocha HAO, de Souza Picciani PH, Barboza CAG. Laser therapy increases the proliferation of preosteoblastic MC3T3-E1 cells cultured on poly(lactic acid) films. J Tissue Eng Regen Med 2020; 14:1792-1803. [PMID: 33010118 DOI: 10.1002/term.3134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 11/06/2022]
Abstract
This study aimed to verify the efficacy of low-level laser irradiation (LLLI) on the proliferation of MC3T3-E1 preosteoblasts cultured on poly(lactic acid) (PLA) films. The produced films were characterized by contact angle tests, scanning electron microscopy (SEM), atomic force microscopy, differential scanning calorimetry, and X-ray diffraction. The MC3T3-E1 cells were cultured as three different groups: Control-cultured on polystyrene plastic surfaces; PLA-cultured on PLA films; and PLA + Laser-cultured on PLA films and submitted to laser irradiation (660 nm; 30 mW; 4 J/cm2 ). Cell proliferation was analyzed by Trypan blue and Alamar blue assays at 24, 48, and 72 h after irradiation. Cell viability was assessed by Live/Dead assay, apoptosis-related events were evaluated by Annexin V/propidium iodide (PI) expression, and cell cycle events were analyzed by flow cytometry. Cell morphology on the surface of films was assessed by SEM. Cell counting and biochemical assay results indicate that the PLA + Laser group exhibited higher proliferation (p < 0.01) when compared with the Control and PLA groups. The Live/Dead and Annexin/PI assays indicate increased cell viability in the PLA + Laser group that also presented a higher percentage of cells in the proliferative cell cycle phases (S and G2/M). These findings were also confirmed by the higher cell density observed in the irradiated group through SEM images. The evidence from this study supports the idea that LLLI increases the proliferation of MC3T3-E1 cells on PLA surfaces, suggesting that it can be potentially applied in bone tissue engineering.
Collapse
Affiliation(s)
| | - Fernanda Ginani
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | - Lucio Mendes Cabral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Eduardo Moura
- Department of Animal Sciences, Federal Rural University of Semiarid Region, Mossoró, Brazil
| | | | | | | |
Collapse
|
36
|
Wound Healing and Cell Dynamics Including Mesenchymal and Dental Pulp Stem Cells Induced by Photobiomodulation Therapy: An Example of Socket-Preserving Effects after Tooth Extraction in Rats and a Literature Review. Int J Mol Sci 2020; 21:ijms21186850. [PMID: 32961958 PMCID: PMC7555322 DOI: 10.3390/ijms21186850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
High-intensity laser therapy (HILT) and photobiomodulation therapy (PBMT) are two types of laser treatment. According to recent clinical reports, PBMT promotes wound healing after trauma or surgery. In addition, basic research has revealed that cell differentiation, proliferation, and activity and subsequent tissue activation and wound healing can be promoted. However, many points remain unclear regarding the mechanisms for wound healing induced by PBMT. Therefore, in this review, we present an example from our study of HILT and PBMT irradiation of tooth extraction wounds using two types of lasers with different characteristics (diode laser and carbon dioxide laser). Then, the effects of PBMT on the wound healing of bone tissues are reviewed from histological, biochemical, and cytological perspectives on the basis of our own study of the extraction socket as well as studies by other researchers. Furthermore, we consider the feasibility of treatment in which PBMT irradiation is applied to stem cells including dental pulp stem cells, the theme of this Special Issue, and we discuss research that has been reported on its effect.
Collapse
|
37
|
Zanin F, Brugnera A. " In Loco" Gingival Papilla Regeneration with Photobiomodulation: Is Blood a Natural Biomaterial? PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:653-655. [PMID: 32758076 DOI: 10.1089/photob.2020.4848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatima Zanin
- Collaborating Professor of the Collective Health Specialization, Faculty of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Biophotonics, Center of Brugnera and Zanin Institute, Sao Paulo, Brazil
| | - Aldo Brugnera
- Lecturer & Member of the Education College of the European Master in Oral Laser Application (EMDOLA), University of Liege, Liege, Belgium.,Visiting Professor and research collaborator at the IFSC-University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
38
|
Zhang Y, Hong G, Zhang Y, Sasaki K, Wu H. Minimally invasive procedures for deficient interdental papillae: A review. J ESTHET RESTOR DENT 2020; 32:463-471. [PMID: 32519508 DOI: 10.1111/jerd.12608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Deficient interdental papillae cause a series of problems, including food impaction, phonetic difficulties, and esthetic concerns. The purpose of this article is to provide valid clinical recommendations for clinicians to address these problems in a predictable and less invasive way. OVERVIEW Numerous treatments are available for interdental papillae reconstruction, but most of them involve surgery and yield unpredictable outcomes. Minimally invasive treatments have the advantages of being effective, predictable, and involving only slight injury as compared to surgical treatments. We included 66 studies obtained after searching for relevant papers in PubMed and Web of Science. The etiology and classification of deficient interdental papillae are explained and minimally invasive procedures for deficient interdental papillae reconstruction are summarized. CONCLUSIONS Minimally invasive procedures are promising ways to reconstruct deficient interdental papillae, and have the advantages of slight pain and rapid recovery. It should be noticed that some of the minimally invasive treatments still require further long-term observation to confirm their efficacy. CLINICAL SIGNIFICANCE Familiarity with etiology and classification of deficient interdental papillae can help clinicians to choose the appropriate minimally invasive approach as well as help with case collection to enhance esthetics status in patients with deficient interdental papillae.
Collapse
Affiliation(s)
- Yiding Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hosepital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.,Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yifan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hosepital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.,Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hosepital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
39
|
Incerti Parenti S, Tschon M, Sartori M, Visani A, Aroni E, Fini M, Alessandri-Bonetti G. Evidence from systematic reviews on photobiomodulation of human bone and stromal cells: Where do we stand? Arch Biochem Biophys 2020; 685:108333. [PMID: 32194044 DOI: 10.1016/j.abb.2020.108333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
Abstract
This study summarizes the available evidence from systematic reviews on the in vitro effects of photobiomodulation on the proliferation and differentiation of human bone and stromal cells by appraising their methodological quality. Improvements for future studies are also highlighted, with particular emphasis on in vitro protocols and cell-related characteristics. Six reviews using explicit eligibility criteria and methods selected in order to minimize bias were included. There was no compelling evidence on the cellular mechanisms of action or treatment parameters of photobiomodulation; compliance with quality assessment was poor. A rigorous description of laser parameters (wavelength, power, beam spot size, power density, energy density, repetition rate, pulse duration or duty cycle, exposure duration, frequency of treatments, and total radiant energy), exposure conditions (methods to ensure a uniform irradiation and to avoid cross-irradiation, laser-cell culture surface distance, lid presence during irradiation) and cell-related characteristics (cell type or line, isolation and culture conditions, donor-related factors where applicable, tissue source, cell phenotype, cell density, number of cell passages in culture) should be included among eligibility criteria for study inclusion. These methodological improvements will maximize the contribution of in vitro studies on the effects of photobiomodulation on human bone and stromal cells to evidence-based translational research.
Collapse
Affiliation(s)
- Serena Incerti Parenti
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| | - Matilde Tschon
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Maria Sartori
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Andrea Visani
- Laboratory of Biomechanics and Technology Innovation, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Elena Aroni
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| | - Milena Fini
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Giulio Alessandri-Bonetti
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| |
Collapse
|
40
|
Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 2020; 35:1981-1988. [PMID: 32173788 DOI: 10.1007/s10103-020-02995-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effects of low-energy blue LED irradiation on the osteogenic differentiation of stem cells from the apical papilla (SCAPs). SCAPs were derived from human tooth root tips and were irradiated with 0 (control group), 1 J/cm2, 2 J/cm2, 3 J/cm2, or 4 J/cm2 blue light in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP), alizarin red staining, and real-time polymerase chain reaction (RT-PCR). The results of the MTT assay indicated that SCAPs in the LED groups exhibited a lower proliferation rate than those in the control group, and there were statistically differences between the 2 J/cm2, 3 J/cm2, and 4 J/cm2 groups and the control group (P < 0.05). The results of the ALP and alizarin red analyses showed that blue LED promoted osteogenic differentiation of the SCAPs. And 4 J/cm2 blue light upregulates the expression levels of the osteogenic/dentinogenic genes ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), and osteocalcin (OCN) in SCAPs. Our results confirmed that low-energy blue LED at 1 J/cm2, 2 J/cm2, 3 J/cm2, and 4 J/cm2 could inhibit the proliferation of SCAPs and promotes osteogenic differentiation of SCAPs. Further in vitro studies are required to explore the mechanisms of the effects by low-energy blue LED.
Collapse
|
41
|
Zaccara IM, Mestieri LB, Pilar EFS, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 2020; 35:741-749. [PMID: 32095920 DOI: 10.1007/s10103-019-02931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
This in vitro study evaluated the role of photobiomodulation therapy (PBMT) on viability and migration of human dental pulp stem cells (hDPSCs) and its association to epigenetic mechanisms such as histone acetylation. The hDPSCs were characterized and assigned into control and PBMT groups. For the PBMT, five laser irradiations at 6-h intervals were performed using a continuous-wave InGaAlP diode laser. Viability (MTT), migration (scratch), and histone acetylation H3 (H3K9ac immunofluorescence) were evaluated immediately after the last irradiation. PBMT significantly increased the viability (P = 0.004). Also, PBMT group showed significantly increased migration of cells in the wound compared to the control in 6 h (P = 0.002), 12 h (P = 0.014) and 18 h (P = 0.083) being faster than the control, which only finished the process at 24 h. PBMT induced epigenetic modifications in hDPSC due to increased histone acetylation (P = 0.001). PBMT increased viability and migration of hDPSCs, which are related with the upregulation of histone acetylation and could be considered a promising adjuvant therapy for regenerative endodontic treatment.
Collapse
Affiliation(s)
- Ivana M Zaccara
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Letícia B Mestieri
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Emily F S Pilar
- Department of Experimental Pathology, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria S Moreira
- Department of Dentistry, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil.,Ibirapuera University, Sao Paulo, Brazil
| | - Fabiana S Grecca
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Manoela D Martins
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Patrícia Maria Poli Kopper
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
42
|
Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study. Lasers Med Sci 2020; 35:1909-1918. [PMID: 32056077 DOI: 10.1007/s10103-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
This study evaluated the viability, proliferation, and protein expression after photobiomodulation (PBM) of stem cell from human exfoliated deciduous teeth (SHED). The groups were the following: G1 (2.5 J/cm2), G2 (3.7 J/cm2), and control (not irradiated). According to the groups, cells were irradiated with InGaAlP diode laser at 660 nm wavelength, continuous mode, and single time application. After 6 h, 12 h, and 24 h from irradiation, the cell viability and proliferation, and the protein expression were analyzed by MTT, crystal violet, and ELISA multiplex assay, respectively. Twenty-four hours after PBM, SHED showed better proliferation. Over time in the supernatant, all groups had an increase at the levels of VEGF-C, VEGF-A, and PLGF. In the lysate, the control and G2 exhibited a decrease of the VEGF-A, PECAM-1, and PLGF expression, while control and G3 decreased VEGF-C, VEGF-A, and PDGF expression. The dosimetries of 2.5 J/cm2 and 3.7 J/cm2 maintained viability, improved proliferation, and synthesis of the angiogenic proteins in the supernatant in the studied periods on SHED.
Collapse
|
43
|
Vitor LLR, Prado MTO, Lourenço Neto N, Oliveira RC, Sakai VT, Santos CF, Dionísio TJ, Rios D, Cruvinel T, Machado MAAM, Oliveira TM. Does photobiomodulation change the synthesis and secretion of angiogenic proteins by different pulp cell lineages? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111738. [PMID: 31954290 DOI: 10.1016/j.jphotobiol.2019.111738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/02/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
This study aimed to compare the synthesis and secretion of VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, and FGF-2 between pulp fibroblasts from human primary teeth (HPF) and stem cell from human deciduous teeth (SHED) before and after photobiomodulation. HPF were obtained from explant technique and characterized by immunohistochemistry, while SHED were obtained from digestion technique and characterized by flow cytometry. HPF (control group) and SHED were plated, let to adhere, and put on serum starvation to synchronize the cell cycles prior to photobiomodulation. Then, both cell lineages were irradiated with 660-nm laser according to the following groups: 2.5 and 3.7 J/cm2. MTT and crystal violet assays respectively verified viability and proliferation. ELISA Multiplex Assay assessed the following proteins: VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, FGF-2, at 6, 12, and 24 h after photobiomodulation, in supernatant and lysate. Two-way ANOVA/Tukey test evaluated cell viability and proliferation, while angiogenic production and secretion values were analyzed by one-way ANOVA (P < .05). Statistically similar HPF and SHED viability and proliferation patterns occurred before and after photobiomodulation (P > .05). HPF exhibited statistically greater values of all angiogenic proteins than did SHED, at all study periods, except for FGF-2 (supernatant; 12 h); VEGFR1 (lysate; non-irradiated; 12 h); and VEGFR1 (lysate; non-irradiated; 24 h). Photobiomodulation changed the synthesis and secretion of angiogenic proteins by HPF. HPF produced and secreted greater values of all tested angiogenic proteins than did SHED before and after irradiation with both energy densities of 2.5 and 3.7 J/cm2.
Collapse
Affiliation(s)
| | - Mariel Tavares Oliveira Prado
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Vivien Thiemy Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Daniela Rios
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
44
|
Zaccara IM, Jardine AP, Mestieri LB, Quintana RM, Jesus L, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Influence of photobiomodulation therapy on root development of rat molars with open apex and pulp necrosis. Braz Oral Res 2019; 33:e084. [PMID: 31460610 DOI: 10.1590/1807-3107bor-2019.vol33.0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 02/21/2023] Open
Abstract
This study aimed to evaluate the role of photobiomodulation (PBM) in apexification and apexogenesis of necrotic rat molars with an open apex. Rat molars were exposed to the oral environment for 3 weeks. Canals were rinsed with 2.5% NaOCl and 17% EDTA, filled with antibiotic paste and sealed. After 7 days, canals were rinsed and divided into six groups (n=6): mineral trioxide aggregate (MTA); blood clot (BC); human dental pulp stem cells (hDPSC); MTA+PBM; BC+PBM; and hDPSC+PBM. In hDPSC groups, a 1% agarose gel scaffold was used. Two groups were not exposed: healthy tooth+PBM (n = 6), healthy tooth (n = 3); and one was exposed throughout the experiment: necrotic tooth (n = 3). In PBM groups, irradiation was performed with aluminum gallium indium phosphide (InGaAlP) diode laser for 30 days within 24-h intervals. After that, the specimens were processed for histological and immunohistochemical analyses. Necrotic tooth showed greater neutrophil infiltrate (p < 0.05). Necrotic tooth, healthy tooth, and healthy tooth+PBM groups showed absence of a thin layer of fibrous condensation in the periapical area. All the other groups stimulated the formation of a thicker layer of fibers (p < 0.05). All groups formed more mineralized tissue than necrotic tooth (p < 0.05). PBM associated with MTA, BC, or hDPSC formed more mineralized tissue (p < 0.05). MTA+PBM induced apexification (p < 0.05). Rabbit polyclonal anti-bone sialoprotein (BSP) antibody confirmed the histological findings of mineralized tissue formation, and hDPSC groups exhibited higher percentage of BSP-positive cells. It can be concluded that PBM improved apexification and favored apexogenesis in necrotic rat molars with an open apex.
Collapse
Affiliation(s)
- Ivana Maria Zaccara
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | | | - Letícia Boldrin Mestieri
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Ramiro Martins Quintana
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Luciano Jesus
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | | | - Fabiana Soares Grecca
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Manoela Domingues Martins
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| | - Patrícia Maria Poli Kopper
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Graduate program, Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 2019; 34:1917-1924. [PMID: 31267320 DOI: 10.1007/s10103-019-02836-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/25/2019] [Indexed: 01/09/2023]
Abstract
The present study aimed to evaluate in vitro whether the low-level laser (LLL) delivering fractionated total energy (multiple irradiation) or single irradiation stimulates regeneration-associated events (viability and proliferation) in stem cells from human exfoliated deciduous teeth (SHED). Cells received LLL irradiation (InGaAlP-660 nm), according to the following experimental groups: G1 (single irradiation 2.5 J/cm2, 10 mW, 10 s, 0.10 J), G2 (single irradiation 5.0 J/cm2, 10 mW, 20 s, 0.20 J), G3 (single irradiation 7.5 J/cm2, 10 mW, 30 s, 0.30 J), G4 (two irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.20 J), G5 (three irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.30 J), and G6 (non-irradiated). Cell viability was assessed by MTT and trypan blue exclusion (TBE) methods, while cell proliferation was evaluated by crystal violet (CV) and sulforhodamine B (SRB) assays after 24, 48, and 72 h after the first irradiation. By MTT, there was no difference between groups at 24 and 72 h. At 48 h, the groups subjected to multiple irradiation (G4 and G5) presented higher cell viability rates. The average percentages of viable cells for all groups by TBE method were 91.04%, 96.63%, and 97.48% at 24, 48, and 72 h, respectively. By CV, there was no significant difference between groups at 24 and 48 h; at 72 h, G2, G3, and G4 presented higher cell proliferation. By SRB, G1 and G4 presented lower proliferation rates in all the periods. When the groups presenting the same total energy were compared, G2 (0.20 J) presented lower cell viability rates and higher cell proliferation rates in comparison with G4; G3 (0.30 J) presented similar results to those of G5, with higher cell viability and proliferation. The application of laser delivering fractionated total energy (two or three applications of 2.5 J/cm2) induced higher cell viability at 48 h, while the single irradiation with 2.5 J/cm2 did not stimulate metabolic activity in such period and the proliferation over time. The 5.0 and 7.5 J/cm2 single doses and the three applications of 2.5 J/cm2 maintained cell viability and stimulated proliferation of SHED at 72 h.
Collapse
|
46
|
El Nawam H, El Backly R, Zaky A, Abdallah A. Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci 2019; 34:1689-1698. [DOI: 10.1007/s10103-019-02804-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
|
47
|
Garrido P, Pedroni A, Cury D, Moreira M, Rosin F, Sarra G, Marques M. Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:149-157. [DOI: 10.1016/j.jphotobiol.2019.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
|
48
|
Silveira FM, Paglioni MDP, Marques MM, Santos-Silva AR, Migliorati CA, Arany P, Martins MD. Examining tumor modulating effects of photobiomodulation therapy on head and neck squamous cell carcinomas. Photochem Photobiol Sci 2019; 18:1621-1637. [DOI: 10.1039/c9pp00120d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present systematic review was to analyze studies that investigated the effects of photobiomodulation therapy on head and neck squamous cell carcinoma cells.
Collapse
Affiliation(s)
| | | | - Márcia Martins Marques
- Department of Restorative Dentistry
- School of Dentistry
- University of Sao Paulo
- Sao Paulo-SP
- Brazil
| | | | | | - Praveen Arany
- Departments of Oral Biology and Biomedical Engineering
- Schools of Dental Medicine
- Engineering and Applied Sciences
- State University of New York at Buffalo
- Buffalo
| | | |
Collapse
|
49
|
Ferreira LS, Diniz IMA, Maranduba CMS, Miyagi SPH, Rodrigues MFSD, Moura-Netto C, Marques MM. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci 2018; 34:659-666. [DOI: 10.1007/s10103-018-2637-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
|
50
|
Pedroni AC, Diniz IM, Abe GL, Moreira MS, Sipert CR, Marques MM. Photobiomodulation therapy and vitamin C on longevity of cell sheets of human dental pulp stem cells. J Cell Physiol 2018; 233:7026-7035. [DOI: 10.1002/jcp.26626] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ana C.F. Pedroni
- Department of Restorative Dentistry, School of Dentistry University of Sao Paulo Sao Paulo Brazil
| | - Ivana M.A. Diniz
- Department of Restorative Dentistry, School of Dentistry University of Sao Paulo Sao Paulo Brazil
- Department of Restorative Dentistry, School of Dentistry Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Gabriela L. Abe
- Department of Restorative Dentistry, School of Dentistry University of Sao Paulo Sao Paulo Brazil
| | - Maria S. Moreira
- Post Graduation Program of the School of Dentistry Ibirapuera University Sao Paulo Brazil
| | - Carla R. Sipert
- Department of Restorative Dentistry, School of Dentistry University of Sao Paulo Sao Paulo Brazil
| | - Márcia M. Marques
- Department of Restorative Dentistry, School of Dentistry University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|