1
|
Davinelli S, Medoro A, Hu FB, Scapagnini G. Dietary polyphenols as geroprotective compounds: From Blue Zones to hallmarks of ageing. Ageing Res Rev 2025; 108:102733. [PMID: 40120947 DOI: 10.1016/j.arr.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/30/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Following the demographic shift towards an ageing population over the past century, particularly in developed countries, the concept of healthspan has gained increasing acceptance as a key framework for understanding the drivers of healthy ageing. Accordingly, long-lived individuals, such as nonagenarians and centenarians, who remain free from chronic diseases, provide a valuable model to investigate the complex interplay of biological, genetic, and environmental factors that contribute to exceptional longevity. Although there are other longevity hotspots worldwide, five regions, known as Blue Zones, are widely recognized for their exceptionally long-lived populations. Among the various determinants of healthy ageing, the eating patterns of long-lived individuals in Blue Zones include a variety of polyphenol-rich foods, which may contribute to their healthy phenotype. A significant body of evidence suggests that polyphenols, a large family of compounds ubiquitously found in plant-based foods, may exhibit geroprotective activity by influencing underlying biological mechanisms of ageing and promoting optimal longevity. While identifying several knowledge gaps that future investigations should address, the goal of this review is to provide an overview of how specific polyphenols found in foods commonly consumed by long-lived individuals residing in the Blue Zones may mitigate the risk of age-related diseases. Additionally, we discuss how these compounds, by acting on evolutionarily conserved mechanisms associated with ageing, have the potential to modulate the intricate network of the hallmarks of ageing.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| |
Collapse
|
2
|
Bissoli I, Alabiso F, Cosentino C, Seragnoli Chystyakova A, Ferré F, Alviano F, Marrazzo P, Pignatti C, Agnetti G, Regazzi R, Flamigni F, D'Adamo S, Cetrullo S. Modeling heart failure by induced pluripotent stem cell-derived organoids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167861. [PMID: 40254266 DOI: 10.1016/j.bbadis.2025.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cardiac organoids offer significant advantages for in vitro studies, as their 3D structure and cellular composition more closely replicate tissue complexity compared to 2D models. This is particularly relevant for studying complex diseases like heart failure (HF), which involve multiple cell types and cardiac structures. Thus, the primary aim of this study was to produce self-assembled, scaffold-free cardiac organoids from induced pluripotent stem cells (iPSCs), capable of simulating key aspects of HF in vitro. Gene expression analysis confirmed a transition from stemness markers (OCT4, NANOG) to cardiac markers (TNNT2, DES), validating their cardiac phenotype. To induce hallmark HF features, endothelin-1 (ET-1) treatment was applied. Key findings indicate that this experimental model successfully reproduced HF pathological markers, including the upregulation of genes encoding atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and the cytoskeletal protein α-skeletal actin (ACTA1), along with changes in microRNA (miR) expression profiles. Functionally, ET-1 treatment reduced organoid contractility, indicating a decline in contractile function-a hallmark of HF. Furthermore, histological analyses by Thioflavin T (ThT) staining, ThT fluorescence assay and filter trap assay on protein extracts demonstrated protein aggregation following ET-1 treatment. Co-administration of various nutraceuticals was shown to mitigate these effects. These findings underscore the value of this ET-1-stimulated cardiac organoid model as a powerful platform for studying HF mechanisms and evaluating novel therapeutic approaches.
Collapse
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| | - Francesco Alabiso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Fabrizio Ferré
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania D'Adamo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
4
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
5
|
Huang ZN, Lee SY, Chen JM, Huang ZT, Her LS. Oleuropein enhances proteasomal activity and reduces mutant huntingtin-induced cytotoxicity. Front Pharmacol 2024; 15:1459909. [PMID: 39351099 PMCID: PMC11440197 DOI: 10.3389/fphar.2024.1459909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Huntington's disease (HD) is a hereditary neurodegenerative disorder that primarily affects the striatum, a brain region responsible for movement control. The disease is characterized by the mutant huntingtin (mHtt) proteins with an extended polyQ stretch, which are prone to aggregation. These mHtt aggregates accumulate in neurons and are the primary cause of the neuropathology associated with HD. To date, no effective cure for HD has been developed. Methods The immortalized STHdh Q111/Q111 striatal cell line, the mHtt-transfected wild-type STHdh Q7/Q7 striatal cell line, and N2a cells were used as Huntington's disease cell models. Flow cytometry was used to assess cellular reactive oxygen species and transfection efficiency. The CCK-8 assay was used to measure cell viability, while fluorescence microscopy was used to quantify aggregates. Immunoblotting analyses were used to evaluate the effects on protein expression. Results Polyphenols are natural antioxidants that offer neuroprotection in neurological disorders. In this study, we provide evidence that oleuropein, the primary polyphenol in olive leaves and olive oil, enhances cell viability in HD cell models, including. STHdh Q7/Q7 STHdh Q7/Q7 striatal cells, N2a cells ectopically expressing the truncated mHtt, and STHdh Q111/Q111 striatal cells expressing the full-length mHtt. Oleuropein effectively reduced both soluble and aggregated forms of mHtt protein in these HD model cells. Notably, the reduction of mHtt aggregates associated with oleuropein was linked to increased proteasome activity rather than changes in autophagic flux. Oleuropein seems to modulate proteasome activity through an unidentified pathway, as it did not affect the 20S proteasome catalytic β subunits, the proteasome regulator PA28γ, or multiple MAPK pathways. Discussion We demonstrated that oleuropein enhances the degradation of mHtt by increasing proteasomal protease activities and alleviates mHtt-induced cytotoxicity. Hence, we propose that oleuropein and potentially other polyphenols hold promise as a candidate for alleviating Huntington's disease.
Collapse
Affiliation(s)
- Zih-Ning Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Yi Lee
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jie-Mao Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Lu-Shiun Her
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
7
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
8
|
Wang Z, Yuan J, Xu Y, Shi N, Lin L, Wang R, Dai R, Xu L, Hao N, Li Q. Olea europaea leaf exosome-like nanovesicles encapsulated in a hyaluronic acid / tannic acid hydrogel dressing with dual "defense-repair" effects for treating skin photoaging. Mater Today Bio 2024; 26:101103. [PMID: 38933415 PMCID: PMC11201150 DOI: 10.1016/j.mtbio.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Photoaging, primarily caused by ultraviolet (UV) light, is the major factor in extrinsic skin aging. Existing anti-photoaging strategies mainly focus on early sun protection or repairing damaged skin, lacking a comprehensive treatment strategy. Therefore, this study developed a dressing that actively shields against UV radiation and repairs photoaged skin, offering double protection. This study utilized exosome-like nanovesicles derived from Olea europaea leaves (OLELNVs), enhancing them into a potent core biomaterial with high-dose effects and skin-friendly, non-cytotoxic inhibition of cell aging. These nanovesicles were incorporated into a cross-linked hyaluronic acid (HA) and tannic acid (TA) hydrogel with strong UV-absorbing properties, creating the OLELNVs@HA/TA hydrogel system. In vitro and in vivo experiments demonstrated that OLELNVs@HA/TA hydrogel can effectively reduce UV-induced skin damage and promote skin repair and regeneration. Additionally, RNA-seq and clustering analysis of miR168a-5p predicted targets revealed significant down-regulation of the NF-κB signaling pathway, mediating inflammatory aging responses. Overall, the OLELNVs@HA/TA hydrogel represents a novel dual-strategy approach for clinical application in combating photoaging.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Peterson's Lab, Shanghai, PR China
- Baudry Biotech. Co., Ltd, Nanjing, Jiangsu, PR China
| | | | - Yan Xu
- Institute of Symbolcell Biotechology, Nanjing, Jiangsu, PR China
| | - Nuo Shi
- Peterson's Lab, Shanghai, PR China
| | - Lin Lin
- Peterson's Lab, Shanghai, PR China
| | | | - Rong Dai
- Baudry Biotech. Co., Ltd, Nanjing, Jiangsu, PR China
| | - Lin Xu
- Peterson's Lab, Shanghai, PR China
- Institute of Symbolcell Biotechology, Nanjing, Jiangsu, PR China
| | - Ning Hao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, PR China
| | - Qianyi Li
- International Laboratory in Cancer, Aging and Hematology, Shanghai Jiao Tong University, School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, PR China
- Pôle Sino-Français de Recherches en Sciences du Vivant et G'enomique, Shanghai, PR China
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| |
Collapse
|
9
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
10
|
Xiao R, Xu D, Zhang M, Chen Z, Cheng L, Du S, Lu M, Zhou T, Li R, Bai F, Huang Y. Aneuploid embryonic stem cells drive teratoma metastasis. Nat Commun 2024; 15:1087. [PMID: 38316790 PMCID: PMC10844504 DOI: 10.1038/s41467-024-45265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Aneuploidy, a deviation of the chromosome number from euploidy, is one of the hallmarks of cancer. High levels of aneuploidy are generally correlated with metastasis and poor prognosis in cancer patients. However, the causality of aneuploidy in cancer metastasis remains to be explored. Here we demonstrate that teratomas derived from aneuploid murine embryonic stem cells (ESCs), but not from isogenic diploid ESCs, disseminated to multiple organs, for which no additional copy number variations were required. Notably, no cancer driver gene mutations were identified in any metastases. Aneuploid circulating teratoma cells were successfully isolated from peripheral blood and showed high capacities for migration and organ colonization. Single-cell RNA sequencing of aneuploid primary teratomas and metastases identified a unique cell population with high stemness that was absent in diploid ESCs-derived teratomas. Further investigation revealed that aneuploid cells displayed decreased proteasome activity and overactivated endoplasmic reticulum (ER) stress during differentiation, thereby restricting the degradation of proteins produced from extra chromosomes in the ESC state and causing differentiation deficiencies. Noticeably, both proteasome activator Oleuropein and ER stress inhibitor 4-PBA can effectively inhibit aneuploid teratoma metastasis.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Deshu Xu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Li Cheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Songjie Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingfei Lu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tonghai Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
11
|
Upadhyay A, Joshi V. Proteasome Activators and Ageing: Restoring Proteostasis Using Small Molecules. Subcell Biochem 2024; 107:21-41. [PMID: 39693018 DOI: 10.1007/978-3-031-66768-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is an inevitable phenomenon that remains under control of a plethora of signalling pathways and regulatory mechanisms. Slowing of cellular homeostasis and repair pathways, declining genomic and proteomic integrity, and deficient stress regulatory machinery may cause accumulating damage triggering initiation of pathways leading to ageing-associated changes. Multiple genetic studies in small laboratory organisms focused on the manipulation of proteasomal activities have shown promising results in delaying the age-related decline and improving the lifespan. In addition, a number of studies indicate a prominent role of small molecule-based proteasome activators showing positive results in ameliorating the stress conditions, protecting degenerating neurons, restoring cognitive functions, and extending life span of organisms. In this chapter, we provide a brief overview of the multi-enzyme proteasome complex, its structure, subunit composition and variety of cellular functions. We also highlight the strategies applied in the past to modulate the protein degradation efficiency of proteasome and their impact on rebalancing the proteostasis defects. Finally, we provide a descriptive account of proteasome activation mechanisms and small molecule-based strategies to improve the overall organismal health and delay the development of age-associated pathologies.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, India.
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
12
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Bicev RN, de Souza Degenhardt MF, de Oliveira CLP, da Silva ER, Degrouard J, Tresset G, Ronsein GE, Demasi M, da Cunha FM. Glucose restriction in Saccharomyces cerevisiae modulates the phosphorylation pattern of the 20S proteasome and increases its activity. Sci Rep 2023; 13:19383. [PMID: 37938622 PMCID: PMC10632367 DOI: 10.1038/s41598-023-46614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Caloric restriction is known to extend the lifespan and/or improve diverse physiological parameters in a vast array of organisms. In the yeast Saccharomyces cerevisiae, caloric restriction is performed by reducing the glucose concentration in the culture medium, a condition previously associated with increased chronological lifespan and 20S proteasome activity in cell extracts, which was not due to increased proteasome amounts in restricted cells. Herein, we sought to investigate the mechanisms through which glucose restriction improved proteasome activity and whether these activity changes were associated with modifications in the particle conformation. We show that glucose restriction increases the ability of 20S proteasomes, isolated from Saccharomyces cerevisiae cells, to degrade model substrates and whole proteins. In addition, threonine 55 and/or serine 56 of the α5-subunit, were/was consistently found to be phosphorylated in proteasomes isolated from glucose restricted cells, which may be involved in the increased proteolysis capacity of proteasomes from restricted cells. We were not able to observe changes in the gate opening nor in the spatial conformation in 20S proteasome particles isolated from glucose restricted cells, suggesting that the changes in activity were not accompanied by large conformational alterations in the 20S proteasome but involved allosteric activation of proteasome catalytic site.
Collapse
Affiliation(s)
- Renata Naporano Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | - Emerson Rodrigo da Silva
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilene Demasi
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brasil.
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
14
|
Sakamoto K, Fujimoto R, Nakagawa S, Kamiyama E, Kanai K, Kawai Y, Kojima H, Hirasawa A, Wakamatsu K, Masutani T. Juniper berry extract containing Anthricin and Yatein suppresses lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases spots in human skin. Int J Cosmet Sci 2023; 45:655-671. [PMID: 37317028 DOI: 10.1111/ics.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Skin brightness and spot have a significant impact on youthful and beautiful appearance. One important factor influencing skin brightness is the amount of internal reflected light from the skin. Observers recognize the total surface-reflected light and internal reflected light as skin brightness. The more internal reflected light from the skin, the more attractive and brighter the skin appears. This study aims to identify a new natural cosmetic ingredient that increases the skin's internal reflected light, decreases spot and provides a youthful and beautiful skin appearance. METHODS Lipofuscin in epidermal keratinocytes, the aggregating complex of denatured proteins and peroxidized lipids, is one factor that decreases skin brightness and causes of spot. Aggregates block light transmission, and peroxidized lipids lead to skin yellowness, dullness and age spot. Lipofuscin is known to accumulate intracellularly with ageing. Rapid removal of intracellular denatured proteins prevents lipofuscin formation and accumulation in cells. We focused a proteasome system that efficiently removes intracellular denatured proteins. To identify natural ingredients that increase proteasome activity, we screened 380 extracts derived from natural products. The extract with the desired activity was fractionated and purified to identify active compounds that lead to proteasome activation. Finally, the efficacy of the proteasome-activating extract was evaluated in a human clinical study. RESULTS We discovered that Juniperus communis fruits (Juniper berry) extract (JBE) increases proteasome activity and suppresses lipofuscin accumulation in human epidermal keratinocytes. We found Anthricin and Yatein, which belong to the lignan family, to be major active compounds responsible for the proteasome-activating effect of JBE. In a human clinical study, an emulsion containing 1% JBE was applied to half of the face twice daily for 4 weeks, resulting in increased internal reflected light, brightness improvement (L-value) and reduction in yellowness (b-value) and spot in the cheek area. CONCLUSION This is the first report demonstrating that JBE containing Anthricin and Yatein decreases lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases surface spots in human skin. JBE would be an ideal natural cosmetic ingredient for creating a more youthful and beautiful skin appearance with greater brightness and less spot.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Runa Fujimoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Satoshi Nakagawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Erina Kamiyama
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kyoko Kanai
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Yuka Kawai
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Hiroyuki Kojima
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Asuka Hirasawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kanae Wakamatsu
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Teruaki Masutani
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| |
Collapse
|
15
|
Torrecillas-Baena B, Camacho-Cardenosa M, Carmona-Luque MD, Dorado G, Berenguer-Pérez M, Quesada-Gómez JM, Gálvez-Moreno MÁ, Casado-Díaz A. Comparative Study of the Efficacy of EHO-85, a Hydrogel Containing Olive Tree ( Olea europaea) Leaf Extract, in Skin Wound Healing. Int J Mol Sci 2023; 24:13328. [PMID: 37686133 PMCID: PMC10487427 DOI: 10.3390/ijms241713328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Olive tree (Olea europaea) leaf extract (OELE) has important antioxidant and anti-inflammatory properties, supporting its use in human clinical practice. We recently designed an amorphous hydrogel called EHO-85 (EHO indicates olive leaf extract in Spanish) containing OELE for skin ulcer treatments. Yet, its effectiveness has not been previously compared with other products used in routine clinical practice. This is necessary to evaluate its potential translation to the human clinic. Thus, in this study, the effect of EHO-85 on healing was evaluated in comparison with treatments containing Indian/Asiatic pennywort (Centella asiatica), hyaluronic acid, or dexpanthenol in a rat model. The speed of wound closure and histological parameters after seven and 14 days were analyzed. All treatments accelerated wound closure, but there were differences between them. Dexpanthenol after seven days produced the highest epithelialization and the lowest inflammation and vascularization. EHO-85 also promoted epithelialization and reduced vascularization. After 14 days, wounds treated with EHO-85 showed less inflammation and higher levels of collagen in the extracellular matrix. This indicates a higher degree of maturity in the regenerated tissue. In conclusion, the effect of EHO-85 on healing was equal to or superior to that of other treatments routinely used in human clinical practice. Therefore, these results, together with previous data on the effects of this hydrogel on ulcer healing in humans, indicate that EHO-85 is a suitable, low-cost, and efficient therapeutic option for wound healing.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Marta Camacho-Cardenosa
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - María Dolores Carmona-Luque
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Gabriel Dorado
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miriam Berenguer-Pérez
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain;
| | - José Manuel Quesada-Gómez
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
| | - María Ángeles Gálvez-Moreno
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Antonio Casado-Díaz
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
16
|
Mohammed OA, Abdel-Reheim MA, Saleh LA, Alamri MMS, Alfaifi J, Adam MIE, Farrag AA, AlQahtani AAJ, BinAfif WF, Hashish AA, Abdel-Ghany S, Elmorsy EA, El-wakeel HS, Doghish AS, Hamad RS, Saber S. Alvespimycin Exhibits Potential Anti-TGF-β Signaling in the Setting of a Proteasome Activator in Rats with Bleomycin-Induced Pulmonary Fibrosis: A Promising Novel Approach. Pharmaceuticals (Basel) 2023; 16:1123. [PMID: 37631038 PMCID: PMC10458542 DOI: 10.3390/ph16081123] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and life-threatening lung disease of unknown etiology presenting only a few treatment options. TGF-β signaling orchestrates a cascade of events driving pulmonary fibrosis (PF). Notably, recent research has affirmed the augmentation of TGF-β receptor (TβR) signaling via HSP90 activation. HSP90, a molecular chaperone, adeptly stabilizes and folds TβRs, thus intricately regulating TGF-β1 signaling. Our investigation illuminated the impact of alvespimycin, an HSP90 inhibitor, on TGF-β-mediated transcriptional responses by inducing destabilization of TβRs. This outcome stems from the explicit interaction of TβR subtypes I and II with HSP90, where they are clients of this cellular chaperone. It is worth noting that regulation of proteasome-dependent degradation of TβRs is a critical standpoint in the termination of TGF-β signal transduction. Oleuropein, the principal bioactive compound found in Olea europaea, is acknowledged for its role as a proteasome activator. In this study, our aim was to explore the efficacy of a combined therapy involving oleuropein and alvespimycin for the treatment of PF. We employed a PF rat model that was induced by intratracheal bleomycin infusion. The application of this dual therapy yielded a noteworthy impediment to the undesired activation of TGF-β/mothers against decapentaplegic homologs 2 and 3 (SMAD2/3) signaling. Consequently, this novel combination showcased improvements in both lung tissue structure and function while also effectively restraining key fibrosis markers such as PDGF-BB, TIMP-1, ACTA2, col1a1, and hydroxyproline. On a mechanistic level, our findings unveiled that the antifibrotic impact of this combination therapy likely stemmed from the enhanced degradation of both TβRI and TβRII. In conclusion, the utilization of proteasomal activators in conjunction with HSP90 inhibitors ushers in a promising frontier for the management of PF.
Collapse
Affiliation(s)
- Osama A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Alshaimaa A. Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Unit of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Abdullah A. Hashish
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.A.-G.); (E.A.E.)
| | - Elsayed A. Elmorsy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (S.A.-G.); (E.A.E.)
- Pharmacology and Therapeutics Department, Qassim College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hend S. El-wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Benha 13518, Egypt;
- Physiology Department, Albaha Faculty of Medicine, Albaha University, Al Baha 65799, Saudi Arabia
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt;
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
17
|
Simon PYR, Bus J, David R. [Alzheimer's disease, amyloid-b peptides and ubiquitin-proteasome system: Therapeutic perspectives]. Med Sci (Paris) 2023; 39:643-649. [PMID: 37695154 DOI: 10.1051/medsci/2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The Alzheimer's disease - an age-related neurodegenerative disorder leading to a progressive cognitive impairment - is characterized by an intracerebral accumulation of soluble β-amyloid (Aβ) oligomers, followed by the appearance of abnormally ubiquitinylated neurofibrillary tangles - a process associated with a chronic inflammation. The systematic presence of ubiquitinylated inclusions reflects a decrease in the proteasome activity due to (and contributing to) the presence of Aβ oligomers - a central dysfunction in the etiology of the disease. The involvement of the ubiquitin-proteasome system opens new therapeutic perspectives for both prevention and treatment.
Collapse
Affiliation(s)
| | - Johanna Bus
- Communication, hôpital d'instruction des armées Sainte-Anne, 83800 Toulon, France
| | - Renaud David
- Centre hospitalier universitaire de Nice, hôpital Cimiez, 06000 Nice, France
| |
Collapse
|
18
|
Gerosa L, Malvandi AM, Malavolta M, Provinciali M, Lombardi G. Exploring cellular senescence in the musculoskeletal system: Any insights for biomarkers discovery? Ageing Res Rev 2023; 88:101943. [PMID: 37142059 DOI: 10.1016/j.arr.2023.101943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The locomotor system comprises skeletal muscles and bones with active metabolism and cellular turnover. Chronic locomotor system disorders gradually arising with aging are inversely associated with the correct function of bone and muscles. Senescent cells appear more frequently in advanced ages or pathological conditions, and the accumulation of senescent cells in muscle tissue negatively correlates with muscle regeneration, which is crucial for maintaining strength and preventing frailty. Senescence in the bone microenvironment, osteoblasts, and osteocytes affects bone turnover favoring osteoporosis. It is likely that in response to injury and age-related damage over the lifetime, a subset of niche cells accumulates oxidative stress and DNA damage beyond the threshold that primes the onset of cellular senescence. These senescent cells may acquire resistance to apoptosis that, combined with the weakened immune system, results in impaired clearance of senescent cells and their accumulation. The secretory profile of senescent cells causes local inflammation, further spreading senescence in neighboring niche cells and impairing tissue homeostasis. The resulting impairment of turnover/tissue repair in the musculoskeletal system reduces the efficiency of the organ in response to environmental needs that finally lead to functional decline. Management of the musculoskeletal system at the cellular level can benefit the quality of life and reduce early aging. This work discusses current knowledge of cellular senescence of musculoskeletal tissues to conclude with biologically active biomarkers effective enough to reveal the underlying mechanisms of tissue flaws at the earliest possible.
Collapse
Affiliation(s)
- Laura Gerosa
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
19
|
Busto F, Licini C, Luccarini A, Damiani E, Mattioli-Belmonte M, Cometa S, De Giglio E. Oleuropein-Rich Gellan Gum/Alginate Films as Innovative Treatments against Photo-Induced Skin Aging. Molecules 2023; 28:molecules28114352. [PMID: 37298828 DOI: 10.3390/molecules28114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Olea europaea L. leaf extracts (OLEs) represent highly value-added agro-industrial byproducts, being promising sources of significant antioxidant compounds, such as their main component, oleuropein. In this work, hydrogel films based on low-acyl gellan gum (GG) blended with sodium alginate (NaALG) were loaded with OLE and crosslinked with tartaric acid (TA). The films' ability to act as an antioxidant and photoprotectant against UVA-induced photoaging, thanks to their capability to convey oleuropein to the skin, were examined with the aim of a potential application as facial masks. Biological in vitro performances of the proposed materials were tested on normal human dermal fibroblasts (NhDFs), both under normal conditions and after aging-induced UVA treatment. Overall, our results clearly show the intriguing properties of the proposed hydrogels as effective and fully naturally formulated anti-photoaging smart materials for potential use as facial masks.
Collapse
Affiliation(s)
- Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Caterina Licini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - Alessia Luccarini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Monica Mattioli-Belmonte
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | | | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| |
Collapse
|
20
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
21
|
Pereira QC, dos Santos TW, Fortunato IM, Ribeiro ML. The Molecular Mechanism of Polyphenols in the Regulation of Ageing Hallmarks. Int J Mol Sci 2023; 24:ijms24065508. [PMID: 36982583 PMCID: PMC10049696 DOI: 10.3390/ijms24065508] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 03/16/2023] Open
Abstract
Ageing is a complex process characterized mainly by a decline in the function of cells, tissues, and organs, resulting in an increased risk of mortality. This process involves several changes, described as hallmarks of ageing, which include genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell depletion, and altered intracellular communication. The determining role that environmental factors such as diet and lifestyle play on health, life expectancy, and susceptibility to diseases, including cancer and neurodegenerative diseases, is wellestablished. In view of the growing interest in the beneficial effects of phytochemicals in the prevention of chronic diseases, several studies have been conducted, and they strongly suggest that the intake of dietary polyphenols may bring numerous benefits due to their antioxidant and anti-inflammatory properties, and their intake has been associated with impaired ageing in humans. Polyphenol intake has been shown to be effective in ameliorating several age-related phenotypes, including oxidative stress, inflammatory processes, impaired proteostasis, and cellular senescence, among other features, which contribute to an increased risk of ageing-associated diseases. This review aims to address, in a general way, the main findings described in the literature about the benefits of polyphenols in each of the hallmarks of ageing, as well as the main regulatory mechanisms responsible for the observed antiageing effects.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, SP, Brazil
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute, 08916 Badalona, Spain
- Correspondence:
| |
Collapse
|
22
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
23
|
El-Rahmana SNA, Abubshaitb SA, Abubshaitc HA, Elsharifb AM, Kamound M. The anti-aging, anti-tuberculosis and antioxidant potential benefits of Saudi Arabia Olea-Europaea Leaves extracts. BRAZ J BIOL 2023; 84:e270885. [PMID: 37132677 DOI: 10.1590/1519-6984.270885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/18/2023] [Indexed: 05/04/2023] Open
Abstract
The olive leaf extract and olive leaf indicated a high potential for application in food additives and foodstuffs. It could be these bio-products useful and important in condition therapy related with oxidative stress and can use it to develop functional foods and to improve the food's shelf life. The olive leaf chemical composition of Oleaeuropaea L. grown from eljouf in Saudi Arabia, using solvents of increasing polarity cyclohexane, dichloromethane, chloroform, ethyl acetate, methanol and ethanol was determined using by GC/MS. Furthermore, the antioxidant activity (diphenylpicrylhydrazyl (DPPH), anti-aging, and anti-tuberculosis of olive leaf extracts were evaluated. The results indicated that extract of Oleaeuropaea L. has a considerable contains in polyphenols (hydroxytyrosol, oleuropein and their derivatives) regarding its antioxidant effects, the major components were detected by GC/MS in Olea dichloromethane extract are Hexadecanoic acid (15.82%), 7(4Dimethylaminophenyl)3,3,12trimethyl3,12dihydro6 Hpyrano[2,3c]acridin 6 one (11.21%), and in Olea chloroform extract are Hexatriacontane (12.68%), nTetratr iacontane (10.95%). The results concluded that the plant extract of chloroform showed no anti-aging activities and the lower anti-aging activities for cyclohexane extract, while, the Olea dichloromethane extract was the most active extract. The obtained data confirmed that the most active extract of anti-tubercolisis was for chloroform and ethyl acetate extract, while, anti-tubercolisis activity of ethanolic extract was the lower. The extract amount as well as the solvent polarity influence the inhibitory activity. A favorable connection was demonstrated inter alia the leaf extracts antioxidant activity and the content of total phenol.
Collapse
Affiliation(s)
- S N Abd El-Rahmana
- Food Technology Research Institute, Agricultural Research Center, Department of Crops Technology Research, Giza, Egypt
| | - S A Abubshaitb
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Chemistry, Dammam, Saudi Arabia
| | - H A Abubshaitc
- Imam Abdulrahman Bin Faisal University, Department of Basic Sciences, Dammam, Saudi Arabia
| | - A M Elsharifb
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Chemistry, Dammam, Saudi Arabia
| | - M Kamound
- Technopark of Borj-Cedria, Centre of Research and Water Technologies, Laboratory Water, Membrane and Environmental Biotechnology, Soliman, Tunisia
| |
Collapse
|
24
|
Mitochondrial Aging and Senolytic Natural Products with Protective Potential. Int J Mol Sci 2022; 23:ijms232416219. [PMID: 36555859 PMCID: PMC9784569 DOI: 10.3390/ijms232416219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Living organisms do not disregard the laws of thermodynamics and must therefore consume energy for their survival. In this way, cellular energy exchanges, which aim above all at the production of ATP, a fundamental molecule used by the cell for its metabolisms, favor the formation of waste products that, if not properly disposed of, can contribute to cellular aging and damage. Numerous genes have been linked to aging, with some favoring it (gerontogenes) and others blocking it (longevity pathways). Animal model studies have shown that calorie restriction (CR) may promote longevity pathways, but given the difficult application of CR in humans, research is investigating the use of CR-mimetic substances capable of producing the same effect. These include some phytonutrients such as oleuropein, hydroxytyrosol, epigallo-catechin-gallate, fisetin, quercetin, and curcumin and minerals such as magnesium and selenium. Some of them also have senolytic effects, which promote the apoptosis of defective cells that accumulate over the years (senescent cells) and disrupt normal metabolism. In this article, we review the properties of these natural elements that can promote a longer and healthier life.
Collapse
|
25
|
Riolo R, De Rosa R, Simonetta I, Tuttolomondo A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int J Mol Sci 2022; 23:16002. [PMID: 36555645 PMCID: PMC9782563 DOI: 10.3390/ijms232416002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human nutrition is a relatively new science based on biochemistry and the effects of food constituents. Ancient medicine considered many foods as remedies for physical performance or the treatment of diseases and, since ancient times, especially Greek, Asian and pre-Christian cultures similarly thought that they had beneficial effects on health, while others believed some foods were capable of causing illness. Hippocrates described the food as a form of medicine and stated that a balanced diet could help individuals stay healthy. Understanding molecular nutrition, the interaction between nutrients and DNA, and obtaining specific biomarkers could help formulate a diet in which food is not only a food but also a drug. Therefore, this study aims to analyze the role of the Mediterranean diet and olive oil on cardiovascular risk and to identify their influence from the genetic and epigenetic point of view to understand their possible protective effects.
Collapse
Affiliation(s)
| | | | | | - Antonino Tuttolomondo
- U.O.C. di Medicina Interna Con Stroke Care, Promozione della Salute, Materno-Infantile, Di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (ProMISE), Università degli Studi di Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
26
|
Khan TK, You Y, Nelson TJ, Kundu S, Pramanik S, Das J. Modulation of proteasome activity by curcumin and didemethylcurcumin. J Biomol Struct Dyn 2022; 40:8332-8339. [PMID: 33876718 PMCID: PMC8827141 DOI: 10.1080/07391102.2021.1911853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Modulation of proteasome function by pharmacological interventions and molecular biology tools is an active area of research in cancer biology and neurodegenerative diseases. Curcumin (diferuloylmethane) is a naturally occurring polyphenol that affects multiple signaling pathways. Curcumin shows anti-inflammatory, antioxidant, anti-angiogenic, or anti-apoptotic properties. Recent research suggests that the therapeutic efficacy of curcumin may be due to its activity as a potent inhibitor of the proteasome. Using in vitro cell culture and molecular docking methods, here we show that both curcumin and its synthetic polyphenolic derivative (didemethylcurcumin, CUIII) modulated proteasome activity in a biphasic manner. Curcumin and CUIII increased proteasome activity at nanomolar concentrations, but inhibited proteasome activity at micromolar concentrations. Curcumin was more effective than CUIII in increasing relative proteasome activity at nanomolar concentrations. Also, curcumin was more effective than CUIII in inhibiting relative proteasome activity at micromolar concentrations. Docking simulations of curcumin and didemethylcurcumin binding to the 20S proteasome catalytic subunit estimated Kd values of 0.0054 µM and 1.3167 µM, respectively. These values correlate well with the results of the effectiveness of modulation by curcumin compared to CUIII. The small size of CUIII allows it to dock to the narrow cavity of the active site, but the binding interaction is not strong compared to curcumin. These results indicate that curcumin and its didemethyl derivative can be used to modulate proteasome activity and suggest that curcumin and its didemethyl derivative may be useful in treating two different disease classes: neurodegeneration and cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tapan K. Khan
- Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Veterans Affairs, Rocky Mountain Mental Illness, Research, Education and Clinical Care, Denver, Aurora, CO 80045
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Thomas J. Nelson
- Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neurology, Marshall University School of Medicine, Huntington WV 25704
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| | - Saroj Pramanik
- Department of Biology, Morgan State University, Baltimore, MD 21251
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| |
Collapse
|
27
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
28
|
Chlorogenic Acid, the Main Antioxidant in Coffee, Reduces Radiation-Induced Apoptosis and DNA Damage via NF-E2-Related Factor 2 (Nrf2) Activation in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4566949. [PMID: 35958020 PMCID: PMC9363170 DOI: 10.1155/2022/4566949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/11/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023]
Abstract
Radiotherapy produces excessive reactive oxygen species (ROS), which can lead to DNA damage and apoptosis in tumor cells, thereby killing malignant cells. Chlorogenic acid (CGA) is a well-known antioxidant in coffee due to its strong ability to remove ROS. However, the effect of CGA on radiotherapeutic efficacy remains unclear. In this study, we showed that CGA could hinder the therapeutic effect of radiotherapy by inhibiting radiation-induced apoptosis and DNA damage via scavenging excessive ROS and activating the NF-E2-related factor 2 (Nrf2) antioxidant system in hepatocellular carcinoma (HCC) cells and a murine model. The knockdown of Nrf2 reversed CGA-mediated radiation resistance in HCC cells. In conclusion, CGA might be a potential tumor-protective compound upon irradiation and reduce the efficacy of radiotherapy via ROS scavenging and Nrf2 activation.
Collapse
|
29
|
Sisodiya S, Sinha A, Debnath M, Shekhawat R, Shekhawat SS. Protecting Superfood Olive Crop from Pests and Pathogens Using Image
Processing Techniques: A Review. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666211227103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Olive (Oleo europaea L.) cultivars are widely cultivated all over the
world. However, they are often attacked by pests and pathogens. This deteriorates the quality of
the crop, leading to less yield of olive oil. The different infections that cause comparable disease
symptoms on olive leaves can be classified using image processing techniques.
Objective:
The olive has established itself as a superfood and a possible source of medicine, owing
to the rapid increase in the availability of data in the field of nutrigenomics. The goal of this
review is to underline the importance of applying image processing techniques to detect and
classify diseases early.
Method:
PubMed, ScienceDirect, and Google Scholar were used to conduct a systematic literature
search using the keywords olive oil, pest and pathogen of olives, and metabolic profiling.
Results:
Infections caused by infectious diseases frequently result in significant losses and lowquality
olive oil yields. Early detection of disease infestations can safeguard the olive plant and
its yield.
Results:
This strategy can help protect the crop from disease spread, and early detection and
classification of the disease can aid in prompt prophylaxis of diseased olive plants before the
disease worsens. Protecting olive plants from pests and pathogens can help keep the yield and
quality of olive oil consistent.
Collapse
Affiliation(s)
- Smita Sisodiya
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Aditya Sinha
- Department of Computer Science &
Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Rajveer Shekhawat
- Department of Computer Science &
Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | | |
Collapse
|
30
|
Frediani E, Scavone F, Laurenzana A, Chillà A, Tortora K, Cimmino I, Leri M, Bucciantini M, Mangoni M, Fibbi G, Del Rosso M, Mocali A, Giovannelli L, Margheri F. Olive phenols preserve lamin B1 expression reducing cGAS/STING/NFκB-mediated SASP in ionizing radiation-induced senescence. J Cell Mol Med 2022; 26:2337-2350. [PMID: 35278036 PMCID: PMC8995441 DOI: 10.1111/jcmm.17255] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Senescence occurs upon critical telomere shortening, or following DNA damage, oncogenic activation, hypoxia and oxidative stress, overall referred to stress-induced premature senescence (SIPS). In response to DNA damage, senescent cells release cytoplasmic chromatin fragments (CCFs), and express an altered secretome, the senescence-associated secretory phenotype (SASP), which contributes to generate a pro-inflammatory and pro-tumoral extracellular milieu. Polyphenols have gained significant attention owing to their anti-inflammatory and anti-tumour activities. Here, we studied the effect of oleuropein aglycone (OLE) and hydroxytyrosol (HT) on DNA damage, CCF appearance and SASP in a model of irradiation-induced senescence. Neonatal human dermal fibroblasts (NHDFs) were γ-irradiated and incubated with OLE, 5 µM and HT, 1 µM. Cell growth and senescence-associated (SA)-β-Gal-staining were used as senescence markers. DNA damage was evaluated by Comet assay, lamin B1 expression, release of CCFs, cyclic GMP-AMP Synthase (cGAS) activation. IL-6, IL-8, MCP-1 and RANTES were measured by ELISA assay. Our results showed that OLE and HT exerted a protective effect on 8 Gy irradiation-induced senescence, preserving lamin B1 expression and reducing cGAS/STING/NFκB-mediated SASP. The ability of OLE and HT to mitigate DNA damage, senescence status and the related SASP in normal cells can be exploited to improve the efficacy and safety of cancer radiotherapy.
Collapse
Affiliation(s)
- Elena Frediani
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | | | - Ilaria Cimmino
- Department of Translational MedicineResearch Unit (URT) Genomic of DiabetesInstitute of Experimental Endocrinology and OncologyNational Council of Research (CNR)University of Naples Federico IINaplesItaly
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Monica Mangoni
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
- Radiation Oncology Unit ‐ Oncology DepartmentAzienda Ospedaliero Universitaria CareggiFlorenceItaly
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Lisa Giovannelli
- Department of Neurofarba (Department of Neurosciences, Psychology, Drug Research and Child Health)University of FlorenceFlorenceItaly
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
31
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
32
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
33
|
Oleuropein Enhances Stress Resistance and Extends Lifespan via Insulin/IGF-1 and SKN-1/Nrf2 Signaling Pathway in Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:antiox10111697. [PMID: 34829568 PMCID: PMC8614835 DOI: 10.3390/antiox10111697] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Oleuropein (OLE) is a secoiridoid glycoside that mainly exists in olives with multifaceted health benefits. The present study aimed to investigate the stress resistance and lifespan extension effects of OLE in Caenorhabditis elegans. The results showed that OLE could significantly prolong the lifespan of C. elegans by 22.29%. Treatment with OLE also significantly increased the survival rates of worms against lethal heat shock and oxidative stress. Meanwhile, OLE supplementation increased the expression and activity of antioxidant enzymes and suppressed the generation of malondialdehyde in nematodes. In addition, the results from mutants implied that OLE might mediate longevity and stress resistance via DAF-16/FoxO, which played a vital role in the insulin/IGF-1 signaling (IIS) pathway. To further identify the molecular targets of OLE, mRNA level and loss-of-function mutants of IIS-associated genes were investigated. The data revealed that OLE activated IIS by down-regulating the upstream components, daf-2 and age-1. Furthermore, another stress response and longevity pathway in parallel to DAF-16, SKN-1/Nrf2, was also shown to involve in OLE-induced beneficial effects. Collectively, these results provide the theoretical basis that OLE could enhance the stress resistance and increase the lifespan of C. elegans through the IIS and SKN-1/Nrf2 signaling pathways.
Collapse
|
34
|
Upadhyay A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharm Sin B 2021; 11:2995-3014. [PMID: 34729300 PMCID: PMC8546668 DOI: 10.1016/j.apsb.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cells have different sets of molecules for performing an array of physiological functions. Nucleic acids have stored and carried the information throughout evolution, whereas proteins have been attributed to performing most of the cellular functions. To perform these functions, proteins need to have a unique conformation and a definite lifespan. These attributes are achieved by a highly coordinated protein quality control (PQC) system comprising chaperones to fold the proteins in a proper three-dimensional structure, ubiquitin-proteasome system for selective degradation of proteins, and autophagy for bulk clearance of cell debris. Many kinds of stresses and perturbations may lead to the weakening of these protective cellular machinery, leading to the unfolding and aggregation of cellular proteins and the occurrence of numerous pathological conditions. However, modulating the expression and functional efficiency of molecular chaperones, E3 ubiquitin ligases, and autophagic proteins may diminish cellular proteotoxic load and mitigate various pathological effects. Natural medicine and small molecule-based therapies have been well-documented for their effectiveness in modulating these pathways and reestablishing the lost proteostasis inside the cells to combat disease conditions. The present article summarizes various similar reports and highlights the importance of the molecules obtained from natural sources in disease therapeutics.
Collapse
Key Words
- 17-AAG, 17-allylamino-geldanamycin
- APC, anaphase-promoting complex
- Ageing
- Autophagy
- BAG, BCL2-associated athanogene
- CAP, chaperone-assisted proteasomal degradation
- CASA, chaperone-assisted selective autophagy
- CHIP, carboxy-terminus of HSC70 interacting protein
- CMA, chaperone-mediated autophagy
- Cancer
- Chaperones
- DUBs, deubiquitinases
- Drug discovery
- EGCG, epigallocatechin-3-gallate
- ESCRT, endosomal sorting complexes required for transport
- HECT, homologous to the E6-AP carboxyl terminus
- HSC70, heat shock cognate 70
- HSF1, heat shock factor 1
- HSP, heat shock protein
- KFERQ, lysine-phenylalanine-glutamate-arginine-glutamine
- LAMP2a, lysosome-associated membrane protein 2a
- LC3, light chain 3
- NBR1, next to BRCA1 gene 1
- Natural molecules
- Neurodegeneration
- PQC, protein quality control
- Proteinopathies
- Proteostasis
- RING, really interesting new gene
- UPS, ubiquitin–proteasome system
- Ub, ubiquitin
- Ubiquitin proteasome system
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Bandar Sindari, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
35
|
Carrara M, Kelly MT, Roso F, Larroque M, Margout D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7268-7284. [PMID: 34180235 DOI: 10.1021/acs.jafc.1c00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current trends toward naturally occurring compounds of therapeutic interest have contributed to an increasing number of studies on olive oil phenolics in the treatment of diseases with oxidative and inflammatory origins. Recent focus has been on olive oil wastewater, which is richer in phenolic compounds than olive oil itself. In this review, we present findings demonstrating the potential use of olive mill wastewater in dermatology. Particular attention is given to compounds with proven benefits in topical pharmacology: caffeic and ferulic acids, tyrosol and hydroxytyrosol, verbascoside, and oleuropein. The review is divided into different sections: inflammatory skin diseases, microbial effects, wound healing in addition to the antimelanoma properties of olive mill waste phenolics, and their potential in sun protection agents. There is strong evidence to support further studies into the valorization of this abundant and sustainable source of phenolic compounds for use in dermatology and dermo-cosmetic preparations.
Collapse
Affiliation(s)
- Morgane Carrara
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Mary T Kelly
- Faculté de Pharmacie, Université Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Florence Roso
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Michel Larroque
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Delphine Margout
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| |
Collapse
|
36
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
37
|
Dietary Anti-Aging Polyphenols and Potential Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020283. [PMID: 33668479 PMCID: PMC7918214 DOI: 10.3390/antiox10020283] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
For years, the consumption of a diet rich in fruits and vegetables has been considered healthy, increasing longevity, and decreasing morbidities. With the assistance of basic research investigating the potential mechanisms, it has become clear that the beneficial effects of plant-based foods are mainly due to the large amount of bioactive phenolic compounds contained. Indeed, substantial dietary intervention studies in humans have supported that the supplementation of polyphenols have various health-promoting effects, especially in the elderly population. In vitro examinations on the anti-aging mechanisms of polyphenols have been widely performed, using different types of natural and synthetic phenolic compounds. The aim of this review is to critically evaluate the experimental evidence demonstrating the beneficial effects of polyphenols on aging-related diseases. We highlight the potential anti-aging mechanisms of polyphenols, including antioxidant signaling, preventing cellular senescence, targeting microRNA, influencing NO bioavailability, and promoting mitochondrial function. While the trends on utilizing polyphenols in preventing aging-related disorders are getting growing attention, we suggest the exploration of the beneficial effects of the combination of multiple polyphenols or polyphenol-rich foods, as this would be more physiologically relevant to daily life.
Collapse
|
38
|
Recent advances in formulating electrospun nanofiber membranes: Delivering active phytoconstituents. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Xie K, Kapetanou M, Sidiropoulou K, Bano D, Gonos ES, Djordjevic AM, Ehninger D. Signaling pathways of dietary energy restriction and metabolism on brain physiology and in age-related neurodegenerative diseases. Mech Ageing Dev 2020; 192:111364. [PMID: 32991920 DOI: 10.1016/j.mad.2020.111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Several laboratory animal models have shown that dietary energy restriction (ER) can promote longevity and improve various health aspects in old age. However, whether the entire spectrum of ER-induced short- and long-term physiological and metabolic adaptions is translatable to humans remains to be determined. In this review article, we present recent evidence towards the elucidation of the impact of ER on brain physiology and in age-related neurodegenerative diseases. We also discuss modulatory influences of ER on metabolism and overall on human health, limitations of current experimental designs as well as future perspectives for ER trials in humans. Finally, we summarize signaling pathways and processes known to be affected by both aging and ER with a special emphasis on the link between ER and cellular proteostasis.
Collapse
Affiliation(s)
- Kan Xie
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | | | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Aleksandra Mladenovic Djordjevic
- Department of Neurobiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, National Institute of Republic of Serbia, Boulevard Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dan Ehninger
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
40
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
41
|
Zou K, Rouskin S, Dervishi K, McCormick MA, Sasikumar A, Deng C, Chen Z, Kaeberlein M, Brem RB, Polymenis M, Kennedy BK, Weissman JS, Zheng J, Ouyang Q, Li H. Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. SCIENCE ADVANCES 2020; 6:eaba1306. [PMID: 32821821 PMCID: PMC7406366 DOI: 10.1126/sciadv.aba1306] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.
Collapse
Affiliation(s)
- Ke Zou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences at Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Silvia Rouskin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | | | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM 87131, USA
| | | | - Changhui Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhibing Chen
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences at Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
42
|
Wanitphakdeedecha R, Ng JNC, Junsuwan N, Phaitoonwattanakij S, Phothong W, Eimpunth S, Manuskiatti W. Efficacy of olive leaf extract-containing cream for facial rejuvenation: A pilot study. J Cosmet Dermatol 2020; 19:1662-1666. [PMID: 32333467 DOI: 10.1111/jocd.13457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Olive leaf extract (OLE), a naturally extracted product from olive leaves, contains oleuropein and other bioactive phenolic compounds. Oleuropein was identified to have various medical properties. It was also found to inhibit the effects of both acute and chronic UVB-induced skin damage as well as accelerate wound healing activity. AIMS To evaluate the efficacy of olive leaf extract-containing cream on facial rejuvenation. METHODS This is a prospective pilot study with a total of 36 participants, who presented with photoaging skin. All participants applied the olive leaf extract-containing cream (SUPERHEAL™ O-Live Cream, PhytoCeuticals, Inc, USA) to their whole face twice daily for 2 months. Primary outcomes measured in the study were the changes in the biophysical properties of the skin assessed with the following parameters: melanin and erythema index, transepidermal water loss (TEWL), skin hydration, skin pH, sebum level, texture, and wrinkles. RESULTS After 2 months, TEWL decreased significantly (P = .007) and maintained the results 1 month after discontinuation of the treatment (P = .007). Skin hydration also increased significantly after 2 months (P = .004). Wrinkles improved significantly on all follow-ups (P < .001, P = .001, P = .001, respectively). An image of the skin captured using Visioscan® showed improvement of the skin texture 2 months after treatment. Majority of the participants (64%) noted improvement in their skin texture. CONCLUSION Olive leaf extract-containing cream provided benefits on skin rejuvenation in human skin.
Collapse
Affiliation(s)
| | - Janice Natasha C Ng
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natchaya Junsuwan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Weeranut Phothong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasima Eimpunth
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Woraphong Manuskiatti
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Brunetti G, Di Rosa G, Scuto M, Leri M, Stefani M, Schmitz-Linneweber C, Calabrese V, Saul N. Healthspan Maintenance and Prevention of Parkinson's-like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in C. elegans. Int J Mol Sci 2020; 21:ijms21072588. [PMID: 32276415 PMCID: PMC7178172 DOI: 10.3390/ijms21072588] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous studies highlighted the beneficial effects of the Mediterranean diet (MD) in maintaining health, especially during ageing. Even neurodegeneration, which is part of the natural ageing process, as well as the foundation of ageing-related neurodegenerative disorders like Alzheimer’s and Parkinson’s disease (PD), was successfully targeted by MD. In this regard, olive oil and its polyphenolic constituents have received increasing attention in the last years. Thus, this study focuses on two main olive oil polyphenols, hydroxytyrosol (HT) and oleuropein aglycone (OLE), and their effects on ageing symptoms with special attention to PD. In order to avoid long-lasting, expensive, and ethically controversial experiments, the established invertebrate model organism Caenorhabditis elegans was used to test HT and OLE treatments. Interestingly, both polyphenols were able to increase the survival after heat stress, but only HT could prolong the lifespan in unstressed conditions. Furthermore, in aged worms, HT and OLE caused improvements of locomotive behavior and the attenuation of autofluorescence as a marker for ageing. In addition, by using three different C. elegans PD models, HT and OLE were shown i) to enhance locomotion in worms suffering from α-synuclein-expression in muscles or rotenone exposure, ii) to reduce α-synuclein accumulation in muscles cells, and iii) to prevent neurodegeneration in α-synuclein-containing dopaminergic neurons. Hormesis, antioxidative capacities and an activity-boost of the proteasome & phase II detoxifying enzymes are discussed as potential underlying causes for these beneficial effects. Further biological and medical trials are indicated to assess the full potential of HT and OLE and to uncover their mode of action.
Collapse
Affiliation(s)
- Giovanni Brunetti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
| | - Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.S.)
- Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6 - 50139 Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.S.)
| | - Christian Schmitz-Linneweber
- Humboldt University of Berlin, Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Philippstr. 13, House 22, 10115 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (G.B.); (G.D.R.); (M.S.)
- Correspondence: (V.C.); (N.S.)
| | - Nadine Saul
- Humboldt University of Berlin, Faculty of Life Sciences, Institute of Biology, Molecular Genetics Group, Philippstr. 13, House 22, 10115 Berlin, Germany;
- Correspondence: (V.C.); (N.S.)
| |
Collapse
|
44
|
Kaur A, Macip S, Stover CM. An Appraisal on the Value of Using Nutraceutical Based Senolytics and Senostatics in Aging. Front Cell Dev Biol 2020; 8:218. [PMID: 32309282 PMCID: PMC7145958 DOI: 10.3389/fcell.2020.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
The average human life expectancy has increased globally, and continues to rise, owing to the substantive progress made in healthcare, medicine, sanitation, housing and education. This ultimately enriches society with a greater proportion of elderly people. Sustaining a healthy aged population is key to diminish the societal and economic impact of age-related infirmities. This is especially challenging because tissue function, and thus wellbeing, naturally progressively decline as humans age. With age increasing the risk of developing diseases, one of the therapeutic options is to interfere with the molecular and cellular pathways involved in age-related tissue dysfunction, which is in part caused by the accumulation of senescent cells. One strategy to prevent this could be using drugs that selectively kill these cells (senolytics). In parallel, some compounds have been identified that prevent or slow down the progression of senescence or some of its features (senostatics). Senolytic and senostatic therapies have been shown to be efficient in vivo, but they also have unwanted dose-dependent side effects, including toxicity. Important advances might be made using bioactive compounds from plants and foods (nutraceuticals) if, as is proposed, they offer similar effectiveness with fewer side effects. The focus of this review is on the use of nutraceuticals in interfering with cellular senescence.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Cordula M Stover
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
45
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|
46
|
Panagiotidou E, Chondrogianni N. We Are What We Eat: Ubiquitin–Proteasome System (UPS) Modulation Through Dietary Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:329-348. [DOI: 10.1007/978-3-030-38266-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
48
|
Lefaki M, Papaevgeniou N, Tur JA, Vorgias CE, Sykiotis GP, Chondrogianni N. The dietary triterpenoid 18α-Glycyrrhetinic acid protects from MMC-induced genotoxicity through the ERK/Nrf2 pathway. Redox Biol 2019; 28:101317. [PMID: 31505326 PMCID: PMC6737304 DOI: 10.1016/j.redox.2019.101317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023] Open
Abstract
18α-Glycyrrhetinic acid (18α-GA) is a bioactive triterpenoid that has been shown to activate the nuclear factor (erythroid-derived-2)-like 2 (Nrf2), the main transcription factor that orchestrates the cellular antioxidant response, in both cellular and organismal context. Although various beneficial properties of 18α-GA have been revealed, including its anti-oxidation and anti-aging activity, its possible protective effect against DNA damage has never been addressed. In this study, we investigated the potential beneficial properties of 18α-GA against DNA damage induced by mitomycin C (MMC) treatment. Using human primary fibroblasts exposed to MMC following pre-treatment with 18α-GA, we reveal an Nrf2-mediated protective effect against MMC-induced cell death that depends on extracellular signal-regulated kinase (ERK) signaling. In total, our results reveal an additional beneficial effect of the Nrf2 activator 18α-GA, suggesting that this important phytochemical compound is a potential candidate in preventive and/or therapeutic schemes against conditions (such as aging) or diseases that are characterized by both oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Maria Lefaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| | - Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece; Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University of Jena, Dornburger Straße 29, 07743, Jena, Germany.
| | - Josep A Tur
- Research Group on Nutrition and Oxidative Stress, Guillem Colom Bldg, Campus, University of Balearic Islands & CIBEROBN (Physiopahotology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Constantinos E Vorgias
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701, Athens, Greece.
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| |
Collapse
|
49
|
Chanthick C, Thongboonkerd V. Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol 2019; 378:114621. [DOI: 10.1016/j.taap.2019.114621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
|
50
|
Cercospora sp. as a source of anti-aging polyketides targeting 26S proteasome and scale-up production in submerged bioreactor. J Biotechnol 2019; 301:88-96. [PMID: 31152756 DOI: 10.1016/j.jbiotec.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
From a large screening of microbial extracts for the discovery of proteasome modulating natural products, the fungal strain Cercospora sp. (CF-223709) was selected as the most promising for further investigation. Different liquid cultures of the strain were initially screened for their anti-oxidant activity (DPPH, ABTS) and for their cytotoxicity against the A2058, HepG2 and CCD25sk cell lines. A detailed chemical analysis and evaluation of the capacity to activate 26S-proteasome was followed for the most active extract. Three main polyketides were isolated and characterized by extensive analysis of NMR and HRMS spectra data as penialidine F (1), fulvic acid (2), and SB238569 (3). Fulvic acid showed the most significant anti-oxidant activity. Its IC50 value (8.16 μM) against the ABTS radical resulted 3-fold lower than the standard trolox. Fulvic acid also demonstrated a significant effect on proteasome by enhancing the chymotrypsin- and caspase-like activities of the 26S proteasome of human fibroblasts by 71.43% and 37.5% at 1 μM, respectively. Furthermore by scaling up the culture in a 30 L submerged bioreactor, Cercospora sp. produced up to 162.6 ± 1.3 mg of fulvic acid/L. Our findings suggest that CF-223709 can be a promising source of proteasome activating natural compounds.
Collapse
|