1
|
Rath P, Kramer P, Biggs D, Preece C, Hortin N, Diaz R, Perez-Alcantara M, Li X, Bolard A, Beer N, McCarthy M, Davies B. Optimizing approaches for targeted integration of transgenic cassettes by integrase-mediated cassette exchange in mouse and human stem cells. Stem Cells 2025; 43:sxae092. [PMID: 39777513 PMCID: PMC11740728 DOI: 10.1093/stmcls/sxae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
To enable robust expression of transgenes in stem cells, recombinase-mediated cassette exchange at safe harbor loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta, and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells. All 3 integrases were found to be suitable for efficient engineering and long-term expression of each integrase was compatible with pluripotency, as evidenced by germline transmission. Bxb1 integrase was found to be 2-3 times more efficient than PhiC31 and W-beta. The Bxb1 system was adapted for cassette exchange at the AAVS1 locus in human induced pluripotent stem (iPS) cells, and the 2 commonly used ubiquitous promoters, CAG and Ef1α (EIF1A), were tested for their suitability in driving expression of the integrated transgenic cargo. AAVS1-integrated Ef1α promoter led to a very mosaic pattern of expression in targeted hiPS cells, whereas the AAVS1-integrated CAG promoter drove consistent and stable expression. To validate the system for the integration of functional machinery, the Bxb1 integrase system was used to integrate CAG-driven CRISPR-activation and CRISPR-inhibition machinery in human iPS cells and robust sgRNA-induced up- and downregulation of target genes was demonstrated.
Collapse
Affiliation(s)
- Phalguni Rath
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Philipp Kramer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nicole Hortin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Rebeca Diaz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Marta Perez-Alcantara
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Xiang Li
- Genetic Modification Service, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Arnaud Bolard
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nicola Beer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Mark McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
- Genetic Modification Service, Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
2
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
3
|
Zhu W, Du W, Rameshbabu AP, Armstrong AM, Silver S, Kim Y, Wei W, Shu Y, Liu X, Lewis MA, Steel KP, Chen ZY. Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation. Sci Transl Med 2024; 16:eadn0689. [PMID: 38985856 PMCID: PMC7616320 DOI: 10.1126/scitranslmed.adn0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.
Collapse
Affiliation(s)
- Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Ariel Miura Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Stewart Silver
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yehree Kim
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Morag A. Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Karen P. Steel
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| |
Collapse
|
4
|
Haideri T, Lin J, Bao X, Lian XL. MAGIK: A rapid and efficient method to create lineage-specific reporters in human pluripotent stem cells. Stem Cell Reports 2024; 19:744-757. [PMID: 38579711 PMCID: PMC11103783 DOI: 10.1016/j.stemcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.
Collapse
Affiliation(s)
- Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Jirong Lin
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Dudek AM, Feist WN, Sasu EJ, Luna SE, Ben-Efraim K, Bak RO, Cepika AM, Porteus MH. A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection. Cell Stem Cell 2024; 31:499-518.e6. [PMID: 38579682 PMCID: PMC11212398 DOI: 10.1016/j.stem.2024.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/29/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.
Collapse
Affiliation(s)
- Amanda M Dudek
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William N Feist
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena J Sasu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaya Ben-Efraim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
| | - Alma-Martina Cepika
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Bahnassawy L, Nicolaisen N, Untucht C, Mielich-Süss B, Reinhardt L, Ried JS, Morawe MP, Geist D, Finck A, Käfer E, Korffmann J, Townsend M, Ravikumar B, Lakics V, Cik M, Reinhardt P. Establishment of a high-content imaging assay for tau aggregation in hiPSC-derived neurons differentiated from two protocols to routinely evaluate compounds and genetic perturbations. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100137. [PMID: 38128829 DOI: 10.1016/j.slasd.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Aberrant protein aggregation is a pathological cellular hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), where the tau protein is aggregating, forming neurofibrillary tangles (NFTs), and propagating from neuron to neuron. These processes have been linked to disease progression and a decline in cognitive function. Various therapeutic approaches aim at the prevention or reduction of tau aggregates in neurons. Human induced pluripotent stem cells (hiPSCs) are a very valuable tool in neuroscience discovery, as they offer access to potentially unlimited amounts of cell types that are affected in disease, including cortical neurons, for in vitro studies. We have generated an in vitro model for tau aggregation that uses hiPSC - derived neurons expressing an aggregation prone, fluorescently tagged version of the human tau protein after lentiviral transduction. Upon addition of tau seeds in the form of recombinant sonicated paired helical filaments (sPHFs), the neurons show robust, disease-like aggregation of the tau protein. The model was developed as a plate-based high content screening assay coupled with an image analysis algorithm to evaluate the impact of small molecules or genetic perturbations on tau. We show that the assay can be used to evaluate small molecules or screen targeted compound libraries. Using siRNA-based gene knockdown, genes of interest can be evaluated, and we could show that a targeted gene library can be screened, by screening nearly 100 deubiquitinating enzymes (DUBs) in that assay. The assay uses an imaging-based readout, a relatively short timeline, quantifies the extent of tau aggregation, and also allows the assessment of cell viability. Furthermore, it can be easily adapted to different hiPSC lines or neuronal subtypes. Taken together, this complex and highly relevant approach can be routinely applied on a weekly basis in the screening funnels of several projects and generates data with a turnaround time of approximately five weeks.
Collapse
Affiliation(s)
- Lamiaa Bahnassawy
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Nathalie Nicolaisen
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Christopher Untucht
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Benjamin Mielich-Süss
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Lydia Reinhardt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Janina S Ried
- Genomics Research Center, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Martina P Morawe
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Daniela Geist
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Anja Finck
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Elke Käfer
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Jürgen Korffmann
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Matthew Townsend
- Cambridge Research Center, AbbVie Inc., 200 Sidney Street, Cambridge, MA 02139, USA
| | - Brinda Ravikumar
- Cambridge Research Center, AbbVie Inc., 200 Sidney Street, Cambridge, MA 02139, USA
| | - Viktor Lakics
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Miroslav Cik
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| | - Peter Reinhardt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
7
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nat Biomed Eng 2024; 8:132-148. [PMID: 37430157 PMCID: PMC11320892 DOI: 10.1038/s41551-023-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
Engineering cells for adoptive therapy requires overcoming limitations in cell viability and, in the efficiency of transgene delivery, the duration of transgene expression and the stability of genomic integration. Here we report a gene-delivery system consisting of a Sleeping Beauty (SB) transposase encoded into a messenger RNA delivered by an adeno-associated virus (AAV) encoding an SB transposon that includes the desired transgene, for mediating the permanent integration of the transgene. Compared with lentiviral vectors and with the electroporation of plasmids of transposon DNA or minicircle DNA, the gene-delivery system, which we named MAJESTIC (for 'mRNA AAV-SB joint engineering of stable therapeutic immune cells'), offers prolonged transgene expression, as well as higher transgene expression, therapeutic-cell yield and cell viability. MAJESTIC can deliver chimeric antigen receptors (CARs) into T cells (which we show lead to strong anti-tumour activity in vivo) and also transduce natural killer cells, myeloid cells and induced pluripotent stem cells with bi-specific CARs, kill-switch CARs and synthetic T-cell receptors.
Collapse
Affiliation(s)
- Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
9
|
Wu JY, Yeager K, Tavakol DN, Morsink M, Wang B, Soni RK, Hung CT, Vunjak-Novakovic G. Directed differentiation of human iPSCs into mesenchymal lineages by optogenetic control of TGF-β signaling. Cell Rep 2023; 42:112509. [PMID: 37178118 PMCID: PMC10278972 DOI: 10.1016/j.celrep.2023.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/28/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In tissue development and homeostasis, transforming growth factor (TGF)-β signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-β signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-β signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-β gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-β signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Collapse
Affiliation(s)
- Josephine Y Wu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. Therapeutic immune cell engineering with an mRNA : AAV- Sleeping Beauty composite system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532651. [PMID: 36993594 PMCID: PMC10055155 DOI: 10.1101/2023.03.14.532651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Adoptive cell therapy has shown clinical success in patients with hematological malignancies. Immune cell engineering is critical for production, research, and development of cell therapy; however, current approaches for generation of therapeutic immune cells face various limitations. Here, we establish a composite gene delivery system for the highly efficient engineering of therapeutic immune cells. This system, termed MAJESTIC ( m RNA A AV-Sleeping-Beauty J oint E ngineering of S table T herapeutic I mmune C ells), combines the merits of mRNA, AAV vector, and transposon into one composite system. In MAJESTIC, the transient mRNA component encodes a transposase that mediates permanent genomic integration of the Sleeping Beauty (SB) transposon, which carries the gene-of-interest and is embedded within the AAV vector. This system can transduce diverse immune cell types with low cellular toxicity and achieve highly efficient and stable therapeutic cargo delivery. Compared with conventional gene delivery systems, such as lentiviral vector, DNA transposon plasmid, or minicircle electroporation, MAJESTIC shows higher cell viability, chimeric antigen receptor (CAR) transgene expression, therapeutic cell yield, as well as prolonged transgene expression. CAR-T cells generated by MAJESTIC are functional and have strong anti-tumor activity in vivo . This system also demonstrates versatility for engineering different cell therapy constructs such as canonical CAR, bi-specific CAR, kill switch CAR, and synthetic TCR; and for CAR delivery into various immune cells, including T cells, natural killer cells, myeloid cells, and induced pluripotent stem cells.
Collapse
|
11
|
Kuzmin AA, Tomilin AN. Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases. Int J Mol Sci 2022; 24:ijms24010397. [PMID: 36613839 PMCID: PMC9820447 DOI: 10.3390/ijms24010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Tools developed in the fields of genome engineering, precise gene regulation, and synthetic gene networks have an increasing number of applications. When shared with the scientific community, these tools can be used to further unlock the potential of precision medicine and tissue engineering. A large number of different genetic elements, as well as modifications, have been used to create many different systems and to validate some technical concepts. New studies have tended to optimize or improve existing elements or approaches to create complex synthetic systems, especially those based on the relatively new CRISPR technology. In order to maximize the output of newly developed approaches and to move from proof-of-principle experiments to applications in regenerative medicine, it is important to navigate efficiently through the vast number of genetic elements to choose those most suitable for specific needs. In this review, we have collected information regarding the main genetic elements and their modifications, which can be useful in different synthetic systems with an emphasis of those based on CRISPR technology. We have indicated the most suitable elements and approaches to choose or combine in planning experiments, while providing their deeper understanding, and have also stated some pitfalls that should be avoided.
Collapse
|
12
|
Glykofrydis F, Elfick A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol 2022; 40:1299-1312. [PMID: 35803769 DOI: 10.1016/j.tibtech.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/21/2023]
Abstract
Synthetic biology is moving towards bioengineering multicellular mammalian systems that are poised to advance tissue engineering, biomedicine, and the food industry. Despite progress, the field lacks a framework of standards that could greatly accelerate further development. Here, we explore the landscape of standards for multicellular mammalian synthetic biology. We discuss the limits of current technical standards and categorise unaddressed parameters into an abstraction hierarchy. We then define the concept of a 'synthetic multicellular mammalian system' and apply our standard hierarchy framework to illustrate how it could aid bioengineering endeavours. We conclude with promising areas that could shape the future of the field, flagging the need for a critical and holistic consideration of standards that requires cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK.
| |
Collapse
|
13
|
Rust R, Weber RZ, Generali M, Kehl D, Bodenmann C, Uhr D, Wanner D, Zürcher KJ, Saito H, Hoerstrup SP, Nitsch RM, Tackenberg C. Xeno-free induced pluripotent stem cell-derived neural progenitor cells for in vivo applications. J Transl Med 2022; 20:421. [PMID: 36114512 PMCID: PMC9482172 DOI: 10.1186/s12967-022-03610-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications. METHODS We generated good manufacturing practice (GMP)-compatible neural progenitor cells (NPCs) from transgene- and xeno-free induced pluripotent stem cells (iPSCs) that can be smoothly adapted for clinical applications. NPCs were characterized in vitro for their differentiation potential and in vivo after transplantation into wild type as well as genetically immunosuppressed mice. RESULTS Generated NPCs had a stable gene-expression over at least 15 passages and could be scaled for up to 1018 cells per initially seeded 106 cells. After withdrawal of growth factors in vitro, cells adapted a neural fate and mainly differentiated into active neurons. To ensure a pure NPC population for in vivo applications, we reduced the risk of iPSC contamination by applying micro RNA-switch technology as a safety checkpoint. Using lentiviral transduction with a fluorescent and bioluminescent dual-reporter construct, combined with non-invasive in vivo bioluminescent imaging, we longitudinally tracked the grafted cells in healthy wild-type and genetically immunosuppressed mice as well as in a mouse model of ischemic stroke. Long term in-depth characterization revealed that transplanted NPCs have the capability to survive and spontaneously differentiate into functional and mature neurons throughout a time course of a month, while no residual pluripotent cells were detectable. CONCLUSION We describe the generation of transgene- and xeno-free NPCs. This simple differentiation protocol combined with the ability of in vivo cell tracking presents a valuable tool to develop safe and effective cell therapies for various brain injuries.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Debora Kehl
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Chantal Bodenmann
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Daniela Uhr
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Debora Wanner
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Kathrin J Zürcher
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Battulin N, Korablev A, Ryzhkova A, Smirnov A, Kabirova E, Khabarova A, Lagunov T, Serova I, Serov O. The human EF1a promoter does not provide expression of the transgene in mice. Transgenic Res 2022; 31:525-535. [PMID: 35960480 PMCID: PMC9372930 DOI: 10.1007/s11248-022-00319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.
Collapse
Affiliation(s)
- Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090. .,Institute of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia, 630090.
| | - Alexey Korablev
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anastasia Ryzhkova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anna Khabarova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Timofey Lagunov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Oleg Serov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| |
Collapse
|
15
|
Connolly KA, Fitzgerald B, Damo M, Joshi NS. Novel Mouse Models for Cancer Immunology. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:269-291. [PMID: 36875867 PMCID: PMC9979244 DOI: 10.1146/annurev-cancerbio-070620-105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mouse models for the study of cancer immunology provide excellent systems in which to test biological mechanisms of the immune response against cancer. Historically, these models have been designed to have different strengths based on the current major research questions at the time. As such, many mouse models of immunology used today were not originally developed to study questions currently plaguing the relatively new field of cancer immunology, but instead have been adapted for such purposes. In this review, we discuss various mouse model of cancer immunology in a historical context as a means to provide a fuller perspective of each model's strengths. From this outlook, we discuss the current state of the art and strategies for tackling future modeling challenges.
Collapse
Affiliation(s)
- Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
16
|
Cheng W, Liu F, Ren Z, Chen W, Chen Y, Liu T, Ma Y, Cao N, Wang J. Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens. Nat Commun 2022; 13:478. [PMID: 35078991 PMCID: PMC8789821 DOI: 10.1038/s41467-022-28106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
AbstractN6-methyladenosine (m6A) plays important role in lineage specifications of embryonic stem cells. However, it is still difficult to systematically dissect the specific m6A sites that are essential for early lineage differentiation. Here, we develop an adenine base editor-based strategy to systematically identify functional m6A sites that control lineage decisions of human embryonic stem cells. We design 7999 sgRNAs targeting 6048 m6A sites to screen for m6A sites that act as either boosters or barriers to definitive endoderm specification of human embryonic stem cells. We identify 78 sgRNAs enriched in the non-definitive endoderm cells and 137 sgRNAs enriched in the definitive endoderm cells. We successfully validate two definitive endoderm promoting m6A sites on SOX2 and SDHAF1 as well as a definitive endoderm inhibiting m6A site on ADM. Our study provides a functional screening of m6A sites and paves the way for functional studies of m6A at individual m6A site level.
Collapse
|
17
|
Thamodaran V, Rani S, Velayudhan SR. Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System. Methods Mol Biol 2022; 2454:755-773. [PMID: 33830454 PMCID: PMC7612904 DOI: 10.1007/7651_2021_348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Induced pluripotent stem cells (iPSCs) generated from patients are a valuable tool for disease modelling, drug screening, and studying the functions of cell/tissue-specific genes. However, for this research, isogenic iPSC lines are important for comparison of phenotypes in the wild type and mutant differentiated cells generated from the iPSCs. The advent of gene editing technologies to correct or generate mutations helps in the generation of isogenic iPSC lines with the same genetic background. Due to the ease of programming, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9-based gene editing tools have gained pace in gene manipulation studies, including investigating complex diseases like cancer. An iPSC line with drug inducible Cas9 expression from the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus offers a controllable expression of Cas9 with robust gene editing. Here, we describe a stepwise protocol for the generation and characterization of such an iPSC line (AAVS1-PDi-Cas9 iPSC) with a doxycycline (dox)-inducible Cas9 expression cassette from the AAVS1 safe harbor site and efficient editing of target genes with lentiviral vectors expressing gRNAs. This approach with a tunable Cas9 expression that allows investigating gene functions in iPSCs or in the differentiated cells can serve as a versatile tool in disease modelling studies.
Collapse
Affiliation(s)
- Vasanth Thamodaran
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College, Vellore, India
| | - Sonam Rani
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College, Vellore, India
| | - Shaji R Velayudhan
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College, Vellore, India.
- Department of Haematology, Christian Medical College, Vellore, India.
| |
Collapse
|
18
|
Kremer LP, Cerrizuela S, Dehler S, Stiehl T, Weinmann J, Abendroth H, Kleber S, Laure A, El Andari J, Anders S, Marciniak-Czochra A, Grimm D, Martin-Villalba A. High throughput screening of novel AAV capsids identifies variants for transduction of adult NSCs within the subventricular zone. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:33-50. [PMID: 34553001 PMCID: PMC8427210 DOI: 10.1016/j.omtm.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%–60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.
Collapse
Affiliation(s)
- Lukas P.M. Kremer
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Santiago Cerrizuela
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Dehler
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weinmann
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Heike Abendroth
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Laure
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jihad El Andari
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Corresponding author: Ana Martin-Villalba, Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Menche C, Farin HF. Strategies for genetic manipulation of adult stem cell-derived organoids. Exp Mol Med 2021; 53:1483-1494. [PMID: 34663937 PMCID: PMC8569115 DOI: 10.1038/s12276-021-00609-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Organoid technology allows the expansion of primary epithelial cells from normal and diseased tissues, providing a unique model for human (patho)biology. In a three-dimensional environment, adult stem cells self-organize and differentiate to gain tissue-specific features. Accessibility to genetic manipulation enables the investigation of the molecular mechanisms underlying cell fate regulation, cell differentiation and cell interactions. In recent years, powerful methodologies using lentiviral transgenesis, CRISPR/Cas9 gene editing, and single-cell readouts have been developed to study gene function and carry out genetic screens in organoids. However, the multicellularity and dynamic nature of stem cell-derived organoids also present challenges for genetic experimentation. In this review, we focus on adult gastrointestinal organoids and summarize the state-of-the-art protocols for successful transgenesis. We provide an outlook on emerging genetic techniques that could further increase the applicability of organoids and enhance the potential of organoid-based techniques to deepen our understanding of gene function in tissue biology.
Collapse
Affiliation(s)
- Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
A Single Dose of a Hybrid hAdV5-Based Anti-COVID-19 Vaccine Induces a Long-Lasting Immune Response and Broad Coverage against VOC. Vaccines (Basel) 2021; 9:vaccines9101106. [PMID: 34696219 PMCID: PMC8537385 DOI: 10.3390/vaccines9101106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric human adenovirus 5 (hAdV5) vector. The vaccine (named CoroVaxG.3) is based on three pillars: (i) high expression of Spike to enhance its immunodominance by using a potent promoter and an mRNA stabilizer; (ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; (iii) use of Spike stabilized in a prefusion conformation. The transduction with CoroVaxG.3-expressing Spike (D614G) dramatically enhanced the Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced a potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3-vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha), P.1 (gamma) and B.1.617.2 (delta) Spikes, as well as an authentic P.1 SARS-CoV-2 isolate. Neutralizing antibodies did not wane even after 5 months, making this kind of vaccine a likely candidate to enter clinical trials.
Collapse
|
21
|
Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021; 134:117-131. [PMID: 34340879 DOI: 10.1016/j.ymgme.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.
Collapse
Affiliation(s)
- Jakob M Domm
- Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey A Medin
- Department of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael L West
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
22
|
Sapp V, Aguirre A, Mainkar G, Ding J, Adler E, Liao R, Sharma S, Jain M. Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity. Sci Rep 2021; 11:13866. [PMID: 34230586 PMCID: PMC8260754 DOI: 10.1038/s41598-021-92988-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem (iPS) cell technologies coupled with genetic engineering now facilitate the study of the molecular underpinnings of disease in relevant human cell types. Application of CRISPR/Cas9-based approaches for genome-scale functional screening in iPS-derived cells, however, has been limited by technical constraints, including inefficient transduction in pooled format, loss of library representation, and poor cellular differentiation. Herein, we present optimized approaches for whole-genome CRISPR/Cas9 based screening in human iPS derived cardiomyocytes with near genome-wide representation at both the iPS and differentiated cell stages. As proof-of-concept, we perform a screen to investigate mechanisms underlying doxorubicin mediated cell death in iPS derived cardiomyocytes. We identified two poorly characterized, human-specific transporters (SLCO1A2, SLCO1B3) whose loss of function protects against doxorubicin-cardiotoxicity, but does not affect cell death in cancer cells. This study provides a technical framework for genome-wide functional screening in iPS derived cells and identifies new targets to mitigate doxorubicin-cardiotoxicity in humans.
Collapse
Affiliation(s)
- Valerie Sapp
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Aitor Aguirre
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Gayatri Mainkar
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Jeffrey Ding
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Eric Adler
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Ronglih Liao
- Department of Medicine, Stanford University, Palo Alto, USA
| | - Sonia Sharma
- La Jolla Institute for Immunology, San Diego, CA, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, San Diego, CA, USA.
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
23
|
Uhlmann C, Kuhn LM, Tigges J, Fritsche E, Kahlert UD. Efficient Modulation of TP53 Expression in Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 52:e102. [PMID: 31883435 DOI: 10.1002/cpsc.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TP53 point mutations are found in 50% of all cancers and seem to play an important role in cancer pathogenesis. Thus, human induced pluripotent stem cells (hiPSCs) overexpressing mutant TP53 are a valuable tool for the generation of in vitro models of cancer stem cells or for in vivo xenograft models. Here, we describe a protocol for the alteration of gene expression in hiPSCs via overexpression of a mutant form of the TP53 (R249S) gene using lentiviral transduction. A high amount of TP53 protein is detected 1 week after transduction and antibiotic selection. Differentiation of transduced hiPSCs gives insight into better understanding cancer formation in different tissues and may be a useful tool for genetic or pharmacologic screening assays. © 2019 The Authors. Basic Protocol 1: Production and concentration of third-generation lentivirus Support Protocol 1: Cloning of gene of interest into modulation vector Support Protocol 2: Preparation of DMEM GlutaMAX™ with 10% fetal bovine serum and 1% penicillin-streptomycin Basic Protocol 2: Transduction of human induced pluripotent stem cells and selection of positively transfected cells Support Protocol 3: Preparation of Matrigel® -coated plates Support Protocol 4: Preparation of mTeSR™1 medium.
Collapse
Affiliation(s)
- Constanze Uhlmann
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lisa-Maria Kuhn
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Düsseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ulf Dietrich Kahlert
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| |
Collapse
|
24
|
Yeong MY, Cheow PS, Abdullah S, Song AAL, Lei-Rossmann J, Tan TK, Yusoff K, Chia SL. Development of a T7 RNA polymerase expressing cell line using lentivirus vectors for the recovery of recombinant Newcastle disease virus. J Virol Methods 2021; 291:114099. [PMID: 33592218 DOI: 10.1016/j.jviromet.2021.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
The development of a T7 RNA polymerase (T7 RNAP) expressing cell line i.e. BSR T7/5 cells marks an improvement of reverse genetics for the recovery of recombinant Newcastle disease virus (rNDV). BSR T7/5 is developed by transient transfection of plasmid encoding T7 RNAP gene for rNDV rescue. However, the gene expression decreases gradually over multiple passages and eventually hinders the rescue of rNDV. To address this issue, lentiviral vector was used to develop T7 RNAP-expressing HEK293-TA (HEK293-TA-Lv-T7) and SW620 (SW620-Lv-T7) cell lines, evidenced by the expression of T7 RNAP after subsequent 20 passages. rNDV was rescued successfully using HEK293-TA-Lv-T7 clones (R1D3, R1D8, R5B9) and SW620-Lv-T7 clones (R1C11, R3C5) by reverse transfection, yielding comparable virus rescue efficiency and virus titres to that of BSR T7/5. This study provides new tools for rNDV rescue and insights into cell line development and virology by reverse genetics.
Collapse
Affiliation(s)
- Ming Yue Yeong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Pheik-Sheen Cheow
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Janet Lei-Rossmann
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Tiong-Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, United Kingdom.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| | - Suet-Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
25
|
Proteosomal degradation impairs transcytosis of AAV vectors from suprachoroidal space to retina. Gene Ther 2021; 28:740-747. [PMID: 33542456 PMCID: PMC8333227 DOI: 10.1038/s41434-021-00233-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/18/2023]
Abstract
Suprachoroidal injection provides a new route of delivery for AAV vectors to retinal pigmented epithelial cells and photoreceptors that can be done in an outpatient setting and is less invasive and potentially safer than subretinal injection, the most common route of delivery for ocular gene therapy. After suprachoroidal injection of AAV8 or AAV9 vectors, there is strong transduction of photoreceptors, but it is unclear how vector traverses the retinal pigmented epithelium. In this study, we found that transduction of photoreceptors was significantly increased after suprachoroidal injection of AAV2tYF-CBA-GFP versus AAV2-CBA-GFP vector. Compared with AAV2, AAV2tYF is more resistant to proteosomal degradation. Treatment with protease inhibitors significantly increased photoreceptor transduction after suprachoroidal injection of AAV5-GRK1-GFP. These data suggest that after suprachoroidal injection, AAV vectors access photoreceptors by transcytosis through retinal pigmented epithelial cells during which they are subject to proteosomal degradation, which if suppressed can enhance transduction of photoreceptors.
Collapse
|
26
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
27
|
Searching for Promoters to Drive Stable and Long-Term Transgene Expression in Fibroblasts for Syngeneic Mouse Tumor Models. Int J Mol Sci 2020; 21:ijms21176098. [PMID: 32847094 PMCID: PMC7504129 DOI: 10.3390/ijms21176098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/16/2022] Open
Abstract
Tumor is a complex system of interactions between cancer cells and other cells of the tumor microenvironment. The cancer-associated fibroblasts (CAFs) of the tumor microenvironment remain in close contact with the cancer cells and play an important role in cancer progression. Genetically, CAFs are more stable than cancer cells, making them an attractive target for genetic modification in gene therapy. However, the efficiency of various promoters for transgene expression in fibroblasts is scarcely studied. We performed a comparative analysis of transgene long-term expression under the control of strong cytomegalovirus promoter (pCMV), constitutive cell promoter of the PCNA gene (pPCNA), and the potentially fibroblast-specific promoter of the IGFBP2 gene (pIGFBP2). In vitro expression of the transgene under the control of pCMV in fibroblasts was decreased soon after transduction, whereas the expression was more stable under the control of pIGFBP2 and pPCNA. The efficiency of transgene expression was higher under pPCNA than that under pIGFBP2. Additionally, in a mouse model, pPCNA provided more stable and increased transgene expression in fibroblasts as compared to that under pCMV. We conclude that PCNA promoter is the most efficient for long-term expression of transgenes in fibroblasts both in vitro and in vivo.
Collapse
|
28
|
Seita Y, Tsukiyama T, Azami T, Kobayashi K, Iwatani C, Tsuchiya H, Nakaya M, Tanabe H, Hitoshi S, Miyoshi H, Nakamura S, Kawauchi A, Ema M. Comprehensive evaluation of ubiquitous promoters suitable for the generation of transgenic cynomolgus monkeys†. Biol Reprod 2020; 100:1440-1452. [PMID: 30869744 DOI: 10.1093/biolre/ioz040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Nonhuman primates (NHPs) are considered to be the most valuable models for human transgenic (Tg) research into disease because human pathology is more closely recapitulated in NHPs than rodents. Previous studies have reported the generation of Tg NHPs that ubiquitously overexpress a transgene using various promoters, but it is not yet clear which promoter is most suitable for the generation of NHPs overexpressing a transgene ubiquitously and persistently in various tissues. To clarify this issue, we evaluated four putative ubiquitous promoters, cytomegalovirus (CMV) immediate-early enhancer and chicken beta-actin (CAG), elongation factor 1α (EF1α), ubiquitin C (UbC), and CMV, using an in vitro differentiation system of cynomolgus monkey embryonic stem cells (ESCs). While the EF1α promoter drove Tg expression more strongly than the other promoters in undifferentiated pluripotent ESCs, the CAG promoter was more effective in differentiated cells such as embryoid bodies and ESC-derived neurons. When the CAG and EF1α promoters were used to generate green fluorescent protein (GFP)-expressing Tg monkeys, the CAG promoter drove GFP expression in skin and hematopoietic tissues more strongly than in ΕF1α-GFP Tg monkeys. Notably, the EF1α promoter underwent more silencing in both ESCs and Tg monkeys. Thus, the CAG promoter appears to be the most suitable for ubiquitous and stable expression of transgenes in the differentiated tissues of Tg cynomolgus monkeys and appropriate for the establishment of human disease models.
Collapse
Affiliation(s)
- Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kenichi Kobayashi
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Urology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masataka Nakaya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Seiji Hitoshi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Sakyo-ku, Kyoto, Japan.,PRESTO, Japan Science and Technology Agency, Honcho, Saitama, Japan
| |
Collapse
|
29
|
Alhaji SY, Nordin N, Ngai SC, Al Abbar A, Mei L, Abdullah S. Lack of methylation on transgene leads to high level and persistent transgene expression in induced pluripotent stem cells. Gene 2020; 758:144958. [PMID: 32683073 DOI: 10.1016/j.gene.2020.144958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022]
Abstract
Short-lived therapeutic gene expression in mammalian cells by DNA methylation is one of the major challenges in gene therapy. In this study, we assessed the implication of DNA methylation on the duration of GFP expression in mouse embryonic stem (ES) and mouse induced pluripotent stem (iPS) cells. The cells were transduced with lentivirus (LV) carrying green fluorescent protein (GFP) driven by either human elongation factor (EF1α) or cytomegalovirus (CMV) promoter. Transduced iPS cells exhibited higher percentage of GFP+ cells with persistent mean fluorescent intensity than transduced ES cells. Analysis on the integrated copy of transgene in the population of the transduced cells demonstrated similar copy number. However, significant increase in GFP intensity following 5-azaC treatment was observed in transduced ES cells only, suggesting the influence of DNA methylation in transgene silencing. Subsequent DNA methylation analysis showed that the promoter and the GFP region of the provirus in iPS cells had negligible methylation profile compared to transduced ES cells. Interestingly, sustained transgene expression was observed upon directed differentiation of transduced iPS cells towards CD34+ CD45+ cells. Hence, this study has shown that favourable transgene activity from lentiviral transduced iPS cells was due to the lack of methylation at the proviral regions.
Collapse
Affiliation(s)
- Suleiman Yusuf Alhaji
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia; Department of Human Anatomy, College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, 740272 ATBU, Nigeria; Molecular Genetics and Infectious Diseases Research Laboratory, College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, 740272 ATBU, Nigeria
| | - Norshariza Nordin
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Akram Al Abbar
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia
| | - Lai Mei
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia; Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Selangor, Malaysia.
| |
Collapse
|
30
|
Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics. Proc Natl Acad Sci U S A 2020; 117:15085-15095. [PMID: 32546527 PMCID: PMC7334519 DOI: 10.1073/pnas.2000102117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comparative transcriptomics between differentiating human pluripotent stem cells (hPSCs) and developing mouse neurons offers a powerful approach to compare genetic and epigenetic pathways in human and mouse neurons. To analyze human Purkinje cell (PC) differentiation, we optimized a protocol to generate human pluripotent stem cell-derived Purkinje cells (hPSC-PCs) that formed synapses when cultured with mouse cerebellar glia and granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. To directly compare global gene expression of hPSC-PCs with developing mouse PCs, we used translating ribosomal affinity purification (TRAP). As a first step, we used Tg(Pcp2-L10a-Egfp) TRAP mice to profile actively transcribed genes in developing postnatal mouse PCs and used metagene projection to identify the most salient patterns of PC gene expression over time. We then created a transgenic Pcp2-L10a-Egfp TRAP hPSC line to profile gene expression in differentiating hPSC-PCs, finding that the key gene expression pathways of differentiated hPSC-PCs most closely matched those of late juvenile mouse PCs (P21). Comparative bioinformatics identified classical PC gene signatures as well as novel mitochondrial and autophagy gene pathways during the differentiation of both mouse and human PCs. In addition, we identified genes expressed in hPSC-PCs but not mouse PCs and confirmed protein expression of a novel human PC gene, CD40LG, expressed in both hPSC-PCs and native human cerebellar tissue. This study therefore provides a direct comparison of hPSC-PC and mouse PC gene expression and a robust method for generating differentiated hPSC-PCs with human-specific gene expression for modeling developmental and degenerative cerebellar disorders.
Collapse
|
31
|
Maturana CJ, Verpeut JL, Pisano TJ, Dhanerawala ZM, Esteves A, Enquist LW, Engel EA. Small Alphaherpesvirus Latency-Associated Promoters Drive Efficient and Long-Term Transgene Expression in the CNS. Mol Ther Methods Clin Dev 2020; 17:843-857. [PMID: 32368565 PMCID: PMC7191541 DOI: 10.1016/j.omtm.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are used as gene therapy vectors to treat central nervous system (CNS) diseases. Despite their safety and broad tropism, important issues need to be corrected such as the limited payload capacity and the lack of small gene promoters providing long-term, pan-neuronal transgene expression in the CNS. Commonly used gene promoters are relatively large and can be repressed a few months after CNS transduction, risking the long-term performance of single-dose gene therapy applications. We used a whole-CNS screening approach based on systemic delivery of AAV-PHP.eB, iDisco+ tissue-clearing and light-sheet microscopy to identify three small latency-associated promoters (LAPs) from the herpesvirus pseudorabies virus (PRV). These promoters are LAP1 (404 bp), LAP2 (498 bp), and LAP1_2 (880 bp). They drive chronic transcription of the virus-encoded latency-associated transcript (LAT) during productive and latent phases of PRV infection. We observed stable, pan-neuronal transgene transcription and translation from AAV-LAPs in the CNS for 6 months post AAV transduction. In several CNS areas, the number of cells expressing the transgene was higher for LAP2 than the large conventional EF1α promoter (1,264 bp). Our data suggest that the LAPs are suitable candidates for viral vector-based CNS gene therapies requiring chronic transgene expression after one-time viral-vector administration.
Collapse
Affiliation(s)
- Carola J. Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jessica L. Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J. Pisano
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Zahra M. Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Andrew Esteves
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Eun K, Hong N, Jeong YW, Park MG, Hwang SU, Jeong YIK, Choi EJ, Olsson PO, Hwang WS, Hyun SH, Kim H. Transcriptional activities of human elongation factor-1α and cytomegalovirus promoter in transgenic dogs generated by somatic cell nuclear transfer. PLoS One 2020; 15:e0233784. [PMID: 32492024 PMCID: PMC7269240 DOI: 10.1371/journal.pone.0233784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Recent advances in somatic cell nuclear transfer (SCNT) in canines facilitate the production of canine transgenic models. Owing to the importance of stable and strong promoter activity in transgenic animals, we tested human elongation factor 1α (hEF1α) and cytomegalovirus (CMV) promoter sequences in SCNT transgenic dogs. After transfection, transgenic donor fibroblasts with the hEF1α-enhanced green fluorescence protein (EGFP) transgene were successfully isolated using fluorescence-activated cell sorting (FACS). We obtained four puppies, after SCNT, and identified three puppies as being transgenic using PCR analysis. Unexpectedly, EGFP regulated by hEF1α promoter was not observed at the organismal and cellular levels in these transgenic dogs. EGFP expression was rescued by the inhibition of DNA methyltransferases, implying that the hEF1α promoter is silenced by DNA methylation. Next, donor cells with CMV-EGFP transgene were successfully established and SCNT was performed. Three puppies of six born puppies were confirmed to be transgenic. Unlike hEF1α-regulated EGFP, CMV-regulated EGFP was strongly detectable at both the organismal and cellular levels in all transgenic dogs, even after 19 months. In conclusion, our study suggests that the CMV promoter is more suitable, than the hEF1α promoter, for stable transgene expression in SCNT-derived transgenic canine model.
Collapse
Affiliation(s)
- Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Nayoung Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Min Gi Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
| | - Yeon I. K. Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Eun Ji Choi
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - P. Olof Olsson
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- * E-mail: (SHH); (HK)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- * E-mail: (SHH); (HK)
| |
Collapse
|
33
|
Hu Z, Li H, Jiang H, Ren Y, Yu X, Qiu J, Stablewski AB, Zhang B, Buck MJ, Feng J. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. SCIENCE ADVANCES 2020; 6:eaaz0298. [PMID: 32426495 PMCID: PMC7220352 DOI: 10.1126/sciadv.aaz0298] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
It has not been possible to generate naïve human pluripotent stem cells (hPSCs) that substantially contribute to mouse embryos. We found that a brief inhibition of mTOR with Torin1 converted hPSCs from primed to naïve pluripotency. The naïve hPSCs were maintained in the same condition as mouse embryonic stem cells and exhibited high clonogenicity, rapid proliferation, mitochondrial respiration, X chromosome reactivation, DNA hypomethylation, and transcriptomes sharing similarities to those of human blastocysts. When transferred to mouse blastocysts, naïve hPSCs generated 0.1 to 4% human cells, of all three germ layers, including large amounts of enucleated red blood cells, suggesting a marked acceleration of hPSC development in mouse embryos. Torin1 induced nuclear translocation of TFE3; TFE3 with mutated nuclear localization signal blocked the primed-to-naïve conversion. The generation of chimera-competent naïve hPSCs unifies some common features of naïve pluripotency in mammals and may enable applications such as human organ generation in animals.
Collapse
Affiliation(s)
- Zhixing Hu
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Hanqin Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Houbo Jiang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jingxin Qiu
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Aimee B. Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Boyang Zhang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael J. Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
34
|
Claus C, Jung M, Hübschen JM. Pluripotent Stem Cell-Based Models: A Peephole into Virus Infections during Early Pregnancy. Cells 2020; 9:E542. [PMID: 32110999 PMCID: PMC7140399 DOI: 10.3390/cells9030542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
The rubella virus (RV) was the first virus shown to be teratogenic in humans. The wealth of data on the clinical symptoms associated with congenital rubella syndrome is in stark contrast to an incomplete understanding of the forces leading to the teratogenic alterations in humans. This applies not only to RV, but also to congenital viral infections in general and includes (1) the mode of vertical transmission, even at early gestation, (2) the possible involvement of inflammation as a consequence of an activated innate immune response, and (3) the underlying molecular and cellular alterations. With the progress made in the development of pluripotent stem cell-based models including organoids and embryoids, it is now possible to assess congenital virus infections on a mechanistic level. Moreover, antiviral treatment options can be validated, and newly emerging viruses with a potential impact on human embryonal development, such as that recently reflected by the Zika virus (ZIKV), can be characterized. Here, we discuss human cytomegalovirus (HCMV) and ZIKV in comparison to RV as viruses with well-known congenital pathologies and highlight their analysis on current models for the early phase of human development. This includes the implications of their genetic variability and, as such, virus strain-specific properties for their use as archetype models for congenital virus infections. In this review, we will discuss the use of induced pluripotent stem cells (iPSC) and derived organoid systems for the study of congenital virus infections with a focus on their prominent aetiologies, HCMV, ZIKV, and RV. Their assessment on these models will provide valuable information on how human development is impaired by virus infections; it will also add new insights into the normal progression of human development through the analysis of developmental pathways in the context of virus-induced alterations. These are exciting perspectives for both developmental biology and congenital virology.
Collapse
Affiliation(s)
- Claudia Claus
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Matthias Jung
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy, Psychosomatic Medicine, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Judith M Hübschen
- Infectious Diseases Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
35
|
Nassor F, Jarray R, Biard DSF, Maïza A, Papy-Garcia D, Pavoni S, Deslys JP, Yates F. Long Term Gene Expression in Human Induced Pluripotent Stem Cells and Cerebral Organoids to Model a Neurodegenerative Disease. Front Cell Neurosci 2020; 14:14. [PMID: 32116560 PMCID: PMC7026130 DOI: 10.3389/fncel.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
Human brain organoids (mini-brains) consist of self-organized three-dimensional (3D) neural tissue which can be derived from reprogrammed adult cells and maintained for months in culture. These 3D structures manifest substantial potential for the modeling of neurodegenerative diseases and pave the way for personalized medicine. However, as these 3D brain models can express the whole human genetic complexity, it is critical to have access to isogenic mini-brains that only differ in specific and controlled genetic variables. Genetic engineering based on retroviral vectors is incompatible with the long-term modeling needed here and implies a risk of random integration while methods using CRISPR-Cas9 are still too complex to adapt to stem cells. We demonstrate in this study that our strategy which relies on an episomal plasmid vector derived from the Epstein-Barr virus (EBV) offers a simple and robust approach, avoiding the remaining caveats of mini-brain models. For this proof-of-concept, we used a normal tau protein with a fluorescent tag and a mutant genetic form (P301S) leading to Fronto-Temporal Dementia. Isogenic cell lines were obtained which were stable for more than 30 passages expressing either form. We show that the presence of the plasmid in the cells does not interfere with the mini-brain differentiation protocol and obtain the development of a pathologically relevant phenotype in cerebral organoids, with pathological hyperphosphorylation of the tau protein. Such a simple and versatile genetic strategy opens up the full potential of human organoids to contribute to disease modeling, personalized medicine and testing of therapeutics.
Collapse
Affiliation(s)
- Ferid Nassor
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France.,CellTechs Laboratory, Sup'Biotech, Villejuif, France
| | - Rafika Jarray
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France.,CellTechs Laboratory, Sup'Biotech, Villejuif, France
| | - Denis S F Biard
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Auriane Maïza
- Glycobiology, Cell Growth, Tissue Repair and Regeneration (Gly-CRRET), UPEC 4397, Université Paris Est Créteil, Créteil, France
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth, Tissue Repair and Regeneration (Gly-CRRET), UPEC 4397, Université Paris Est Créteil, Créteil, France
| | - Serena Pavoni
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Frank Yates
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France.,CellTechs Laboratory, Sup'Biotech, Villejuif, France
| |
Collapse
|
36
|
Silencing Trisomy 21 with XIST in Neural Stem Cells Promotes Neuronal Differentiation. Dev Cell 2020; 52:294-308.e3. [PMID: 31978324 DOI: 10.1016/j.devcel.2019.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The ability of XIST to dosage compensate a trisomic autosome presents unique experimental opportunities and potentially transformative therapeutic prospects. However, it is currently thought that XIST requires the natural context surrounding pluripotency to initiate chromosome silencing. Here, we demonstrate that XIST RNA induced in differentiated neural cells can trigger chromosome-wide silencing of chromosome 21 in Down syndrome patient-derived cells. Use of this tightly controlled system revealed a deficiency in differentiation of trisomic neural stem cells to neurons, correctible by inducing XIST at different stages of neurogenesis. Single-cell transcriptomics and other analyses strongly implicate elevated Notch signaling due to trisomy 21, thereby promoting neural stem cell cycling that delays terminal differentiation. These findings have significance for illuminating the epigenetic plasticity of cells during development, the understanding of how human trisomy 21 effects Down syndrome neurobiology, and the translational potential of XIST, a unique non-coding RNA.
Collapse
|
37
|
Soto-Avellaneda A, Morrison BE. Central nervous system and peripheral cell labeling by vascular endothelial cadherin-driven lineage tracing in adult mice. Neural Regen Res 2020; 15:1856-1866. [PMID: 32246634 PMCID: PMC7513977 DOI: 10.4103/1673-5374.280317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the contribution of endothelial cells to the progenitor pools of adult tissues has the potential to inform therapies for human disease. To address whether endothelial cells transdifferentiate into non-vascular cell types, we performed cell lineage tracing analysis using transgenic mice engineered to express a fluorescent marker following activation by tamoxifen in vascular endothelial cadherin promoter-expressing cells (VEcad-CreERT2; B6 Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze). Activation of target-cell labeling following 1.5 months of ad libitum feeding with tamoxifen-laden chow in 4–5 month-old mice resulted in the tracing of central nervous system and peripheral cells that include: cerebellar granule neurons, ependymal cells, skeletal myocytes, pancreatic beta cells, pancreatic acinar cells, tubular cells in the renal cortex, duodenal crypt cells, ileal crypt cells, and hair follicle stem cells. As Nestin expression has been reported in a subset of endothelial cells, Nes-CreERT2 mice were also utilized in these conditions. The tracing of cells in adult Nes-CreERT2 mice revealed the labeling of canonical progeny cell types such as hippocampal and olfactory granule neurons as well as ependymal cells. Interestingly, Nestin tracing also labeled skeletal myocytes, ileal crypt cells, and sparsely marked cerebellar granule neurons. Our findings provide support for endothelial cells as active contributors to adult tissue progenitor pools. This information could be of particular significance for the intravenous delivery of therapeutics to downstream endothelial-derived cellular targets. The animal experiments were approved by the Boise State University Institute Animal Care and Use Committee (approval No. 006-AC15-018) on October 31, 2018.
Collapse
Affiliation(s)
| | - Brad E Morrison
- Biomolecular Ph.D. Program, Boise State University; Department of Biological Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
38
|
Standage-Beier K, Tekel SJ, Brookhouser N, Schwarz G, Nguyen T, Wang X, Brafman DA. A transient reporter for editing enrichment (TREE) in human cells. Nucleic Acids Res 2019; 47:e120. [PMID: 31428784 PMCID: PMC6821290 DOI: 10.1093/nar/gkz713] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Current approaches to identify cell populations that have been modified with deaminase base editing technologies are inefficient and rely on downstream sequencing techniques. In this study, we utilized a blue fluorescent protein (BFP) that converts to green fluorescent protein (GFP) upon a C-to-T substitution as an assay to report directly on base editing activity within a cell. Using this assay, we optimize various base editing transfection parameters and delivery strategies. Moreover, we utilize this assay in conjunction with flow cytometry to develop a transient reporter for editing enrichment (TREE) to efficiently purify base-edited cell populations. Compared to conventional cell enrichment strategies that employ reporters of transfection (RoT), TREE significantly improved the editing efficiency at multiple independent loci, with efficiencies approaching 80%. We also employed the BFP-to-GFP conversion assay to optimize base editor vector design in human pluripotent stem cells (hPSCs), a cell type that is resistant to genome editing and in which modification via base editors has not been previously reported. At last, using these optimized vectors in the context of TREE allowed for the highly efficient editing of hPSCs. We envision TREE as a readily adoptable method to facilitate base editing applications in synthetic biology, disease modeling, and regenerative medicine.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Molecular and Cellular Biology graduate program, Arizona State University, Tempe, AZ 85287, USA
| | - Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Grace Schwarz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
39
|
Santiago-Toledo G, Georgiou M, Dos Reis J, Roberton VH, Valinhas A, Wood RC, Phillips JB, Mason C, Li D, Li Y, Sinden JD, Choi D, Jat PS, Wall IB. Generation of c-MycER TAM-transduced human late-adherent olfactory mucosa cells for potential regenerative applications. Sci Rep 2019; 9:13190. [PMID: 31519924 PMCID: PMC6744411 DOI: 10.1038/s41598-019-49315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.
Collapse
Affiliation(s)
| | - Melanie Georgiou
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Joana Dos Reis
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Victoria H Roberton
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Ana Valinhas
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Rachael C Wood
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- AVROBIO Inc, Cambridge, MA 02139, USA
| | - Daqing Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Ying Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - John D Sinden
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- ReNeuron Limited, Pencoed, Bridgend, CF35 5HY, UK
| | - David Choi
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, W1W 7FF, UK
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK.
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
40
|
Tan HK, Wu CS, Li J, Tan ZH, Hoffman JR, Fry CJ, Yang H, Di Ruscio A, Tenen DG. DNMT3B shapes the mCA landscape and regulates mCG for promoter bivalency in human embryonic stem cells. Nucleic Acids Res 2019; 47:7460-7475. [PMID: 31219573 PMCID: PMC6698669 DOI: 10.1093/nar/gkz520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
DNMT3B is known as a de novo DNA methyltransferase. However, its preferential target sites for DNA methylation are largely unknown. Our analysis on ChIP-seq experiment in human embryonic stem cells (hESC) revealed that DNMT3B, mCA and H3K36me3 share the same genomic distribution profile. Deletion of DNMT3B or its histone-interacting domain (PWWP) demolished mCA in hESCs, suggesting that PWWP domain of DNMT3B directs the formation of mCA landscape. In contrast to the common presumption that PWWP guides DNMT3B-mediated mCG deposition, we found that deleting PWWP does not affect the mCG landscape. Nonetheless, DNMT3B knockout led to the formation of 2985 de novo hypomethylated regions at annotated promoter sites. Upon knockout, most of these promoters gain the bivalent marks, H3K4me3 and H3K27me3. We call them spurious bivalent promoters. Gene ontology analysis associated spurious bivalent promoters with development and cell differentiation. Overall, we found the importance of DNMT3B for shaping the mCA landscape and for maintaining the fidelity of the bivalent promoters in hESCs.
Collapse
Affiliation(s)
- Hong Kee Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599
- National University of Singapore Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge, Singapore 119077
| | - Chan-Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Zi Hui Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599
| | | | | | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599
| | - Annalisa Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, NO 28100, Italy
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
41
|
Simic MS, Moehle EA, Schinzel RT, Lorbeer FK, Halloran JJ, Heydari K, Sanchez M, Jullié D, Hockemeyer D, Dillin A. Transient activation of the UPR ER is an essential step in the acquisition of pluripotency during reprogramming. SCIENCE ADVANCES 2019; 5:eaaw0025. [PMID: 30989118 PMCID: PMC6457941 DOI: 10.1126/sciadv.aaw0025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/25/2019] [Indexed: 05/11/2023]
Abstract
Somatic cells can be reprogrammed into pluripotent stem cells using the Yamanaka transcription factors. Reprogramming requires both epigenetic landscape reshaping and global remodeling of cell identity, structure, basic metabolic processes, and organelle form and function. We hypothesize that variable regulation of the proteostasis network and its influence upon the protein-folding environment within cells and their organelles is responsible for the low efficiency and stochasticity of reprogramming. We find that the unfolded protein response of the endoplasmic reticulum (UPRER), the mitochondrial UPR, and the heat shock response, which ensure proteome quality during stress, are activated during reprogramming. The UPRER is particularly crucial, and its ectopic, transient activation, genetically or pharmacologically, enhances reprogramming. Last, stochastic activation of the UPRER predicts reprogramming efficiency in naïve cells. Thus, the low efficiency and stochasticity of cellular reprogramming are due partly to the inability to properly initiate the UPRER to remodel the ER and its proteome.
Collapse
Affiliation(s)
- Milos S. Simic
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erica A. Moehle
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert T. Schinzel
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jonathan J. Halloran
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Melissa Sanchez
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- University of California, Berkeley, Berkeley, CA 94720, USA
| | - Damien Jullié
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
42
|
Alhaji SY, Ngai SC, Abdullah S. Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective. Biotechnol Genet Eng Rev 2018; 35:1-25. [PMID: 30514178 DOI: 10.1080/02648725.2018.1551594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
Collapse
Affiliation(s)
- Suleiman Yusuf Alhaji
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Human Anatomy , College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, ATBU , Bauchi , Nigeria
| | - Siew Ching Ngai
- c School of Biosciences, Faculty of Science , University of Nottingham Malaysia , Semenyih , Malaysia
| | - Syahril Abdullah
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,d UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience , Universiti Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
43
|
Saunders CA, Majumdar R, Molina Y, Subramanian BC, Parent CA. Genetic manipulation of PLB-985 cells and quantification of chemotaxis using the underagarose assay. Methods Cell Biol 2018; 149:31-56. [PMID: 30616826 DOI: 10.1016/bs.mcb.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neutrophils are the most common leukocyte in human blood and are the first cells to respond to injury and infection. Improper neutrophil chemotaxis can have deleterious effects on human health, including autoimmune diseases, poor innate immune response, and cancer. Therefore, gaining a better understanding of the signaling pathways governing chemotactic responses in these cells is important. One of the main challenges of working with primary human neutrophils is their short lifespan (about 1 day), making genetic manipulations not feasible. PLB-985 cells, which are pluripotent hematopoietic cells that can easily be differentiated to neutrophil-like cells, are amenable to genetic manipulations, including the expression of fluorescently tagged proteins-of-interest (POI) and gene editing using the CRISPR/CAS9 system to delete genes-of-interest (GOI). The use of PLB-985 cells can therefore greatly facilitate our understanding of the molecular mechanisms governing neutrophil biology during chemotaxis and serve as a good system to complement results gained from pharmacological inhibition of primary neutrophils. To better study the role and localization of proteins during chemotaxis, the underagarose assay has become a widely used and quantitative assay for measuring several aspects of chemotaxis. The objective of this chapter is to provide protocols for (1) the generation of genetically altered PLB-985 cell lines, (2) the set-up of an underagarose chemotaxis assay, and (3) the analysis of cell movement in chemotactic gradients from an underagarose experiment.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Yaniris Molina
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States; Cancer Research Summer Internship Program, Cancer Biology, University of Michigan, Ann Arbor, MI, United States
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
44
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Takano M, Nagase S, Morita H, Kusano KF, Ito H. HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia. Int Heart J 2018; 59:601-606. [PMID: 29628472 DOI: 10.1536/ihj.17-241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 103 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kengo F Kusano
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences.,Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
45
|
Hacobian A, Hercher D. Pushing the Right Buttons: Improving Efficacy of Therapeutic DNA Vectors. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:226-239. [PMID: 29264951 DOI: 10.1089/ten.teb.2017.0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene therapy represents a potent therapeutical application for regenerative medicine. So far, viral and nonviral approaches suffer from major drawbacks hindering efficient gene therapeutic applicability: the immunogenicity of viral systems on the one hand, and the low gene transfer efficiency of nonviral systems on the other hand. Therefore, there is a high demand for improvements of therapeutical systems at several levels. This review summarizes different DNA vector modifications to enhance biological efficacy and efficiency of therapeutical vectors, aiming for low toxicity, high specificity, and biological efficacy-the cornerstones for successful translation of gene therapy into the clinic. We aim to provide a step-by-step instruction to optimize their vectors to achieve the desired outcome of gene therapy. Our review provides the means to either construct a potent gene therapeutic vector de novo or to specifically address a bottleneck in the chain of events mandatory for therapeutic success. Although most of the introduced techniques can be translated into different areas, this review primarily addresses improvements for applications in transient gene therapy in the field of tissue engineering.
Collapse
Affiliation(s)
- Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| |
Collapse
|
46
|
Yu X, Geng W, Zhao H, Wang G, Zhao Y, Zhu Z, Geng X. Using a Commonly Down-Regulated Cytomegalovirus (CMV) Promoter for High-Level Expression of Ectopic Gene in a Human B Lymphoma Cell Line. Med Sci Monit 2017; 23:5943-5950. [PMID: 29244783 PMCID: PMC5741043 DOI: 10.12659/msm.906240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Vectors are widely used to drive gene expression using a promoter. However, not all promoters are able to drive ectopic gene expression efficiently, including CMV promoter. Here, we report our data using CMV promoter for high-level gene expression in a B lymphoma cell line DG75. MATERIAL AND METHODS A plasmid (pcDNA3.1(+)) containing the CD21 gene driven under CMV promoter was constructed. The plasmid was stably transfected into a human B lymphoma cell line DG75 for cellular surface CD21 expression, and flow cytometry was used to monitor CD21 expression. CD21+ cells in the stable cell line were purified using anti-CD21 antibody-coupled Dynabeads for CD21-mediated antigen presentation experiment. RESULTS The percentage of CD21+ cells in newly generated stable DG75-pcDNA3.1(+)-CD21 cells was only 6.5% as determined by flow cytometry, which was unexpected and did not fit the requirements for further experiments. However, CD21+ cells could be purified to 100% using anti-CD21 antibody-coupled beads. The percentage of CD21+ cells in purified cells can be kept at 95%, 82%, 42%, 15%, and 42% at 7 d, 14 d, 34 d, and 42 d after purification, respectively. Specific T cell response against CD21-mediated antigen presentation can be activated successfully only when surface CD21 expression remains high. CONCLUSIONS A commonly down-regulated CMV promoter can be used to drive ectopic gene expression at a high-level in stable cell lines. Our results should facilitate future experimental design using other down-regulated promoters containing vectors such as SV40 and PGK1.
Collapse
Affiliation(s)
- Xiaojun Yu
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Wei Geng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Hongchuan Zhao
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Guobin Wang
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yijun Zhao
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Stem Cell Biology and Regenerative Medicine, Lerner Research, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoping Geng
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
47
|
Poutou J, Bunuales M, Gonzalez-Aparicio M, German B, Zugasti I, Hernandez-Alcoceba R. Adaptation of vectors and drug-inducible systems for controlled expression of transgenes in the tumor microenvironment. J Control Release 2017; 268:247-258. [PMID: 29074407 DOI: 10.1016/j.jconrel.2017.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022]
Abstract
Biological therapies based on recombinant proteins such as antibodies or cytokines are continuously improving the repertoire of treatments against cancer. However, safety and efficacy of this approach is often limited by inappropriate biodistribution and pharmacokinetics of the proteins when they are administered systemically. Local administration of gene therapy vectors encoding these proteins would be a feasible alternative if they could mediate long-term and controlled expression of the transgene after a single intratumoral administration. We describe a new vector platform specially designed for this purpose. Different combinations of transactivators and promoters were evaluated to obtain a fully humanized inducible system responsive to the well-characterized drug mifepristone. The optimal transactivator conformation was based on DNA binding domains from the chimeric protein ZFHD1 fused to the progesterone receptor ligand binding domain and the NFkb p65 activation domain. The expression of this hybrid transactivator under the control of the elongation factor 1α (EF1α) or the chimeric CAG promoters ensured functionality of the system in a variety of cancer types. Expression cassettes with luciferase as a reporter gene were incorporated into High-Capacity adenoviral vectors (HC-Ad) for in vivo evaluation. Systemic administration of the vectors into C57BL/6 mice revealed that the vector based on the EF1α promoter (HCA-EF-ZP) allows tight control of transgene expression and remains stable for at least two months, whereas the CAG promoter suffers a progressive inactivation. Using an orthotopic pancreatic cancer model in syngeneic C57BL/6 mice we show that the local administration of HCA-EF-ZP achieves better tumor/liver ratio of luciferase production than the intravenous route. However, regional spread of the vector led to substantial transgene expression in peritoneal organs. We reduced this leakage through genetic modification of the vector capsid to display RGD and poly-lysine motifs in the fiber knob. Safety and antitumor effect of this gene therapy platform was demonstrated using interleukin-12 as a therapeutic gene. In conclusion, we have developed a new tool that allows local, sustained and controlled production of therapeutic proteins in tumors.
Collapse
Affiliation(s)
- Joanna Poutou
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Maria Bunuales
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Manuela Gonzalez-Aparicio
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Beatriz German
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Ines Zugasti
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program, Fundacion para la Investigacion Medica Aplicada, CIMA, Universidad de Navarra, Av. Pio XII 55, Pamplona 31008, Spain.
| |
Collapse
|
48
|
The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function. Sci Rep 2017; 7:7919. [PMID: 28801671 PMCID: PMC5554207 DOI: 10.1038/s41598-017-04212-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Suppression of therapeutic transgene expression from retroviral gene therapy vectors by epigenetic defence mechanisms represents a problem that is particularly encountered in pluripotent stem cells (PSCs) and their differentiated progeny. Transgene expression in these cells, however, can be stabilised by CpG-rich ubiquitous chromatin opening elements (UCOEs). In this context we recently demonstrated profound anti-silencing properties for the small (679 bp) CBX3-UCO element and we now confirmed this observation in the context of the defined murine chromosomal loci ROSA26 and TIGRE. Moreover, since the structural basis for the anti-silencing activity of UCOEs has remained poorly defined, we interrogated various CBX3 subfragments in the context of lentiviral vectors and murine PSCs. We demonstrated marked though distinct anti-silencing activity in the pluripotent state and during PSC-differentiation for several of the CBX3 subfragments. This activity was significantly correlated with CpG content as well as endogenous transcriptional activity. Interestingly, also a scrambled CBX3 version with preserved CpG-sites retained the anti-silencing activity despite the lack of endogenous promoter activity. Our data therefore highlight the importance of CpG-sites and transcriptional activity for UCOE functionality and suggest contributions from different mechanisms to the overall anti-silencing function of the CBX3 element.
Collapse
|
49
|
Armbruster N, Krieg J, Weißenberger M, Scheller C, Steinert AF. Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer. Front Pharmacol 2017; 8:255. [PMID: 28536528 PMCID: PMC5422547 DOI: 10.3389/fphar.2017.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair.
Collapse
Affiliation(s)
- Nicole Armbruster
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Jennifer Krieg
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Carsten Scheller
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| |
Collapse
|
50
|
Randolph LN, Bao X, Zhou C, Lian X. An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives. Sci Rep 2017; 7:1549. [PMID: 28484230 PMCID: PMC5431539 DOI: 10.1038/s41598-017-01684-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/31/2017] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies due to their unique combination of two properties: pluripotency and unlimited proliferative capacity. However, directed differentiation of hPSCs to clinically relevant cell lineages is needed to achieve the goal of hPSC-based therapies. This requires a deep understanding of how cell signaling pathways converge on the nucleus to control differentiation and the ability to dissect gene function in a temporal manner. Here, we report the use of the PiggyBac transposon and a Tet-On 3G drug-inducible gene expression system to achieve versatile inducible gene expression in hPSC lines. Our new system, XLone, offers improvement over previous Tet-On systems with significantly reduced background expression and increased sensitivity to doxycycline. Transgene expression in hPSCs is tightly regulated in response to doxycycline treatment. In addition, the PiggyBac elements in our XLone construct provide a rapid and efficient strategy for generating stable transgenic hPSCs. Our inducible gene expression PiggyBac transposon system should facilitate the study of gene function and directed differentiation in human stem cells.
Collapse
Affiliation(s)
- Lauren N Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Xiaojun Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|