1
|
Trenkwalder T, Maj C, Al-Kassou B, Debiec R, Doppler SA, Musameh MD, Nelson CP, Dasmeh P, Grover S, Knoll K, Naamanka J, Mordi IR, Braund PS, Dreßen M, Lahm H, Wirth F, Baldus S, Kelm M, von Scheidt M, Krefting J, Ellinghaus D, Small AM, Peloso GM, Natarajan P, Thanassoulis G, Engert JC, Dufresne L, Franke A, Görg S, Laudes M, Nowak-Göttl U, Vaht M, Metspalu A, Stoll M, Berger K, Pellegrini C, Kastrati A, Hengstenberg C, Lang CC, Kessler T, Hovatta I, Nickenig G, Nöthen MM, Krane M, Schunkert H, Samani NJ, Schumacher J. Distinct Genetic Risk Profile in Aortic Stenosis Compared With Coronary Artery Disease. JAMA Cardiol 2025; 10:145-154. [PMID: 39504041 PMCID: PMC11541746 DOI: 10.1001/jamacardio.2024.3738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/11/2024] [Indexed: 11/09/2024]
Abstract
Importance Aortic stenosis (AS) and coronary artery disease (CAD) frequently coexist. However, it is unknown which genetic and cardiovascular risk factors might be AS-specific and which could be shared between AS and CAD. Objective To identify genetic risk loci and cardiovascular risk factors with AS-specific associations. Design, Setting, and Participants This was a genomewide association study (GWAS) of AS adjusted for CAD with participants from the European Consortium for the Genetics of Aortic Stenosis (EGAS) (recruited 2000-2020), UK Biobank (recruited 2006-2010), Estonian Biobank (recruited 1997-2019), and FinnGen (recruited 1964-2019). EGAS participants were collected from 7 sites across Europe. All participants were of European ancestry, and information on comorbid CAD was available for all participants. Follow-up analyses with GWAS data on cardiovascular traits and tissue transcriptome data were also performed. Data were analyzed from October 2022 to July 2023. Exposures Genetic variants. Main Outcomes and Measures Cardiovascular traits associated with AS adjusted for CAD. Replication was performed in 2 independent AS GWAS cohorts. Results A total of 18 792 participants with AS and 434 249 control participants were included in this GWAS adjusted for CAD. The analysis found 17 AS risk loci, including 5 loci with novel and independently replicated associations (RNF114A, AFAP1, PDGFRA, ADAMTS7, HAO1). Of all 17 associated loci, 11 were associated with risk specifically for AS and were not associated with CAD (ALPL, PALMD, PRRX1, RNF144A, MECOM, AFAP1, PDGFRA, IL6, TPCN2, NLRP6, HAO1). Concordantly, this study revealed only a moderate genetic correlation of 0.15 (SE, 0.05) between AS and CAD (P = 1.60 × 10-3). Mendelian randomization revealed that serum phosphate was an AS-specific risk factor that was absent in CAD (AS: odds ratio [OR], 1.20; 95% CI, 1.11-1.31; P = 1.27 × 10-5; CAD: OR, 0.97; 95% CI 0.94-1.00; P = .04). Mendelian randomization also found that blood pressure, body mass index, and cholesterol metabolism had substantially lesser associations with AS compared with CAD. Pathway and transcriptome enrichment analyses revealed biological processes and tissues relevant for AS development. Conclusions and Relevance This GWAS adjusted for CAD found a distinct genetic risk profile for AS at the single-marker and polygenic level. These findings provide new targets for future AS research.
Collapse
Affiliation(s)
- Teresa Trenkwalder
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Carlo Maj
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Baravan Al-Kassou
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stefanie A. Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Muntaser D. Musameh
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Pouria Dasmeh
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Sandeep Grover
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Katharina Knoll
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Joonas Naamanka
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Peter S. Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Felix Wirth
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Moritz von Scheidt
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johannes Krefting
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Aeron M. Small
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - James C. Engert
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Canada
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute for Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ulrike Nowak-Göttl
- Thrombosis and Hemostasis Unit, Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany
| | - Mariliis Vaht
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Monika Stoll
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Munster, Germany
| | - Costanza Pellegrini
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Adnan Kastrati
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Thorsten Kessler
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Georg Nickenig
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Markus Krane
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Institute Insure, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany
- Yale School of Medicine, Division of Cardiac Surgery, Department of Surgery, New Haven, Connecticut
| | - Heribert Schunkert
- Technical University of Munich, School of Medicine and Health, Department of Cardiovascular Diseases, German Heart Centre Munich, TUM University Hospital, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Johannes Schumacher
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Witman N, Zhou C, Häneke T, Xiao Y, Huang X, Rohner E, Sohlmér J, Grote Beverborg N, Lehtinen ML, Chien KR, Sahara M. Placental growth factor exerts a dual function for cardiomyogenesis and vasculogenesis during heart development. Nat Commun 2023; 14:5435. [PMID: 37669989 PMCID: PMC10480216 DOI: 10.1038/s41467-023-41305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Cardiogenic growth factors play important roles in heart development. Placental growth factor (PLGF) has previously been reported to have angiogenic effects; however, its potential role in cardiogenesis has not yet been determined. We analyze single-cell RNA-sequencing data derived from human and primate embryonic hearts and find PLGF shows a biphasic expression pattern, as it is expressed specifically on ISL1+ second heart field progenitors at an earlier stage and on vascular smooth muscle cells (SMCs) and endothelial cells (ECs) at later stages. Using chemically modified mRNAs (modRNAs), we generate a panel of cardiogenic growth factors and test their effects on enhancing cardiomyocyte (CM) and EC induction during different stages of human embryonic stem cell (hESC) differentiations. We discover that only the application of PLGF modRNA at early time points of hESC-CM differentiation can increase both CM and EC production. Conversely, genetic deletion of PLGF reduces generation of CMs, SMCs and ECs in vitro. We also confirm in vivo beneficial effects of PLGF modRNA for development of human heart progenitor-derived cardiac muscle grafts on murine kidney capsules. Further, we identify the previously unrecognized PLGF-related transcriptional networks driven by EOMES and SOX17. These results shed light on the dual cardiomyogenic and vasculogenic effects of PLGF during heart development.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Timm Häneke
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Xiaoting Huang
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Eduarde Rohner
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miia L Lehtinen
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden.
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden.
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CN, 06510, USA.
| |
Collapse
|
3
|
Bryl R, Nawrocki MJ, Jopek K, Kaczmarek M, Bukowska D, Antosik P, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Transcriptomic Characterization of Genes Regulating the Stemness in Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2023; 14:1223. [PMID: 37372403 PMCID: PMC10297922 DOI: 10.3390/genes14061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614 Poznan, Poland;
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
4
|
Jain M, Singh N, Fatima R, Nachanekar A, Pradhan M, Nityanand S, Chaturvedi CP. Amniotic Fluid Mesenchymal Stromal Cells Derived from Fetuses with Isolated Cardiac Defects Exhibit Decreased Proliferation and Cardiomyogenic Potential. BIOLOGY 2023; 12:biology12040552. [PMID: 37106752 PMCID: PMC10136182 DOI: 10.3390/biology12040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Amniotic fluid mesenchymal stromal cells (AF-MSCs) represent an autologous cell source to ameliorate congenital heart defects (CHDs) in children. The AF-MSCs, having cardiomyogenic potential and being of fetal origin, may reflect the physiological and pathological changes in the fetal heart during embryogenesis. Hence, the study of defects in the functional properties of these stem cells during fetal heart development will help obtain a better understanding of the cause of neonatal CHDs. Therefore, in the present study, we compared the proliferative and cardiomyogenic potential of AF-MSCs derived from ICHD fetuses (ICHD AF-MSCs) with AF-MSCs from structurally normal fetuses (normal AF-MSCs). Compared to normal AF-MSCs, the ICHD AF-MSCs showed comparable immunophenotypic MSC marker expression and adipogenic and chondrogenic differentiation potential, with decreased proliferation, higher senescence, increased expression of DNA-damaged genes, and osteogenic differentiation potential. Furthermore, the expression of cardiac progenitor markers (PDGFR-α, VEGFR-2, and SSEA-1), cardiac transcription factors (GATA-4, NKx 2-5, ISL-1, TBX-5, TBX-18, and MeF-2C), and cardiovascular markers (cTNT, CD31, and α-SMA) were significantly reduced in ICHD AF-MSCs. Overall, these results suggest that the AF-MSCs of ICHD fetuses have proliferation defects with significantly decreased cardiomyogenic differentiation potential. Thus, these defects in ICHD AF-MSCs highlight that the impaired heart development in ICHD fetuses may be due to defects in the stem cells associated with heart development during embryogenesis.
Collapse
Affiliation(s)
- Manali Jain
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Neeta Singh
- Department of Maternal Reproductive Health, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Raunaq Fatima
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aditya Nachanekar
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Mandakini Pradhan
- Department of Maternal Reproductive Health, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Soniya Nityanand
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
5
|
Teixeira C, Martins HS, Saraiva MJ. Cellular environment of TTR deposits in an animal model of ATTR—Cardiomyopathy. Front Mol Biosci 2023; 10:1144049. [PMID: 36968272 PMCID: PMC10030511 DOI: 10.3389/fmolb.2023.1144049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction: Cardiac amyloidoses are the most fatal manifestation of systemic amyloidoses. It is believed the number of cases to be greatly underestimated mostly due to misdiagnosis. Particularly, the involvement of TTR V30M in the heart of ATTRV30M amyloidosis has not been completely understood specifically in terms of implicated cellular pathways, heart function and cardiac physiology. In the present work we proposed to characterize TTR V30M cardiac involvement particularly at the tissue cellular level in a mouse model.Methods: HSF ± hTTR V30M mice, a model that expresses human TTRV30M in a Ttr null background, widely used for the characterization and modulation of neurological features of ATTRV30M amyloidosis was used. SDS-PAGE of cardiac homogenates followed by Western blot was performed. Immunohistochemistry and double immunofluorescence analyses were carried out to determine TTR deposition pattern and sub-localization.Results: Western blots were able to detect TTR in its monomeric state at ∼14 kDa. Immunofluorescent images showed TTR was found mostly in the intercellular spaces. Blood contamination was excluded by CD31 staining. Tissues were Congo Red negative. Upon TTR and macrophages (CD68) staining in the cardiac tissue a clear tendency of macrophage convergence to the tissue regions where TTR was more abundant was observed. Moreover, in some instances it was possible to detect co-localization of both fluorophores. Cardiac fibroblasts were stained with PDGFr-alpha, and here the co-localization was not so evident although there was some degree of co-occurrence. The hearts of transgenic mice revealed higher content of Galectin-3.Conclusion: This animal model and associated features observed as result of cardiac TTR deposition provide a promising and invaluable research tool for a better understanding of the implicated pathways that lead to the lethality associated to TTR cardiac amyloidosis. New therapeutic strategies can be tested and ultimately this will lead to improved treatment alternatives capable of increasing patient’s quality of life and life expectancy and, hopefully to eradicate a condition that is silently spreading worldwide.
Collapse
Affiliation(s)
- Cristina Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helena Sofia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Maria João Saraiva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- *Correspondence: Maria João Saraiva,
| |
Collapse
|
6
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
7
|
Hamid T, Xu Y, Ismahil MA, Rokosh G, Jinno M, Zhou G, Wang Q, Prabhu SD. Cardiac Mesenchymal Stem Cells Promote Fibrosis and Remodeling in Heart Failure: Role of PDGF Signaling. JACC Basic Transl Sci 2022; 7:465-483. [PMID: 35663630 PMCID: PMC9156441 DOI: 10.1016/j.jacbts.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Heart failure (HF) is characterized by progressive fibrosis. Both fibroblasts and mesenchymal stem cells (MSCs) can differentiate into pro-fibrotic myofibroblasts. MSCs secrete and express platelet-derived growth factor (PDGF) and its receptors. We hypothesized that PDGF signaling in cardiac MSCs (cMSCs) promotes their myofibroblast differentiation and aggravates post-myocardial infarction left ventricular remodeling and fibrosis. We show that cMSCs from failing hearts post-myocardial infarction exhibit an altered phenotype. Inhibition of PDGF signaling in vitro inhibited cMSC-myofibroblast differentiation, whereas in vivo inhibition during established ischemic HF alleviated left ventricular remodeling and function, and decreased myocardial fibrosis, hypertrophy, and inflammation. Modulating cMSC PDGF receptor expression may thus represent a novel approach to limit pathologic cardiac fibrosis in HF.
Collapse
Key Words
- CCL, C-C motif chemokine ligand
- CCR2, C-C chemokine receptor 2
- DDR2, discoidin domain receptor 2
- DMEM, Dulbecco’s modified Eagle medium
- EDV, end-diastolic volume
- EF, ejection fraction
- ESV, end-systolic volume
- HF, heart failure
- IL, interleukin
- INF, interferon
- LV, left ventricular
- Lin, lineage
- MI, myocardial infarction
- MSC, mesenchymal stem cell
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- TGFβ, transforming growth factor beta
- WGA, wheat germ agglutinin
- cDNA, complementary DNA
- cMSC, cardiac mesenchymal stem cell
- cardiac remodeling
- fibrosis
- heart failure
- mRNA, messenger RNA
- mesenchymal stem cells
- myocardial inflammation
- myofibroblasts
- platelet-derived growth factor receptor
- siRNA, small interfering RNA
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Tariq Hamid
- Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuanyuan Xu
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohamed Ameen Ismahil
- Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregg Rokosh
- Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Miki Jinno
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guihua Zhou
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiongxin Wang
- Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sumanth D. Prabhu
- Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VAMC, Birmingham, Alabama, USA
| |
Collapse
|
8
|
A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022; 23:ijms23084302. [PMID: 35457114 PMCID: PMC9027193 DOI: 10.3390/ijms23084302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.
Collapse
|
9
|
Chen SN, Lam CK, Wan YW, Gao S, Malak OA, Zhao SR, Lombardi R, Ambardekar AV, Bristow MR, Cleveland J, Gigli M, Sinagra G, Graw S, Taylor MR, Wu JC, Mestroni L. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. SCIENCE ADVANCES 2022; 8:eabk0052. [PMID: 35196083 PMCID: PMC8865769 DOI: 10.1126/sciadv.abk0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
FLNC truncating mutations (FLNCtv) are prevalent causes of inherited dilated cardiomyopathy (DCM), with a high risk of developing arrhythmogenic cardiomyopathy. We investigated the molecular mechanisms of mutant FLNC in the pathogenesis of arrhythmogenic DCM (a-DCM) using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We demonstrated that iPSC-CMs from two patients with different FLNCtv mutations displayed arrhythmias and impaired contraction. FLNC ablation induced a similar phenotype, suggesting that FLNCtv are loss-of-function mutations. Coimmunoprecipitation and proteomic analysis identified β-catenin (CTNNB1) as a downstream target. FLNC deficiency induced nuclear translocation of CTNNB1 and subsequently activated the platelet-derived growth factor receptor alpha (PDGFRA) pathway, which were also observed in human hearts with a-DCM and FLNCtv. Treatment with the PDGFRA inhibitor, crenolanib, improved contractile function of patient iPSC-CMs. Collectively, our findings suggest that PDGFRA signaling is implicated in the pathogenesis, and inhibition of this pathway is a potential therapeutic strategy in FLNC-related cardiomyopathies.
Collapse
Affiliation(s)
- Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Olfat A. Malak
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
- Department of Advanced Biomedical Sciences University of Naples “Federico II”, Naples, Italy
| | - Amrut V. Ambardekar
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Michael R. Bristow
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph Cleveland
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Sharon Graw
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Matthew R.G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Aurora, CO, USA
| |
Collapse
|
10
|
Umbarkar P, Ejantkar S, Tousif S, Lal H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021; 10:cells10092412. [PMID: 34572061 PMCID: PMC8471002 DOI: 10.3390/cells10092412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| | - Suma Ejantkar
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| |
Collapse
|
11
|
Kalra K, Eberhard J, Farbehi N, Chong JJ, Xaymardan M. Role of PDGF-A/B Ligands in Cardiac Repair After Myocardial Infarction. Front Cell Dev Biol 2021; 9:669188. [PMID: 34513823 PMCID: PMC8424099 DOI: 10.3389/fcell.2021.669188] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are powerful inducers of cellular mitosis, migration, angiogenesis, and matrix modulation that play pivotal roles in the development, homeostasis, and healing of cardiac tissues. PDGFs are key signaling molecules and important drug targets in the treatment of cardiovascular disease as multiple researchers have shown that delivery of recombinant PDGF ligands during or after myocardial infarction can reduce mortality and improve cardiac function in both rodents and porcine models. The mechanism involved cannot be easily elucidated due to the complexity of PDGF regulatory activities, crosstalk with other protein tyrosine kinase activators, and diversity of the pathological milieu. This review outlines the possible roles of PDGF ligands A and B in the healing of cardiac tissues including reduced cell death, improved vascularization, and improved extracellular matrix remodeling to improve cardiac architecture and function after acute myocardial injury. This review may highlight the use of recombinant PDGF-A and PDGF-B as a potential therapeutic modality in the treatment of cardiac injury.
Collapse
Affiliation(s)
- Kunal Kalra
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joerg Eberhard
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - James J Chong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Munira Xaymardan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Valizadeh A, Asghari S, Mansouri P, Alemi F, Majidinia M, Mahmoodpoor A, Yousefi B. The roles of signaling pathways in cardiac regeneration. Curr Med Chem 2021; 29:2142-2166. [PMID: 34521319 DOI: 10.2174/0929867328666210914115411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
In recent years, knowledge of cardiac regeneration mechanisms has dramatically expanded. Regeneration can replace lost parts of organs, common among animal species. The heart is commonly considered an organ with terminal development, which has no reparability potential during post-natal life; however, some intrinsic regeneration capacity has been reported for cardiac muscle, which opens novel avenues in cardiovascular disease treatment. Different endogenous mechanisms were studied for cardiac repairing and regeneration in recent decades. Survival, proliferation, inflammation, angiogenesis, cell-cell communication, cardiomyogenesis, and anti-aging pathways are the most important mechanisms that have been studied in this regard. Several in vitro and animal model studies focused on proliferation induction for cardiac regeneration reported promising results. These studies have mainly focused on promoting proliferation signaling pathways and demonstrated various signaling pathways such as Wnt, PI3K/Akt, IGF-1, TGF-β, Hippo, and VEGF signaling cardiac regeneration. Therefore, in this review, we intended to discuss the connection between different critical signaling pathways in cardiac repair and regeneration.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Parinaz Mansouri
- Students Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia. Iran
| | - Ata Mahmoodpoor
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
13
|
Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med 2021; 8:715258. [PMID: 34485413 PMCID: PMC8415273 DOI: 10.3389/fcvm.2021.715258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis, a common pathophysiologic process in most heart diseases, refers to an excess of extracellular matrix (ECM) deposition by cardiac fibroblasts (CFs), which can lead to cardiac dysfunction and heart failure subsequently. Not only CFs but also several other cell types including macrophages and endothelial cells participate in the process of cardiac fibrosis via different molecular pathways. Exosomes, ranging in 30-150 nm of size, have been confirmed to play an essential role in cellular communications by their bioactive contents, which are currently a hot area to explore pathobiology and therapeutic strategy in multiple pathophysiologic processes including cardiac fibrosis. Cardioprotective factors such as RNAs and proteins packaged in exosomes make them an excellent cell-free system to improve cardiac function without significant immune response. Emerging evidence indicates that targeting selective molecules in cell-derived exosomes could be appealing therapeutic treatments in cardiac fibrosis. In this review, we summarize the current understandings of cellular effectors, molecular pathways, and exosomal roles in cardiac fibrosis.
Collapse
Affiliation(s)
- Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Abstract
Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.
Collapse
|
15
|
Rashid FN, Clayton ZE, Ogawa M, Perdomo J, Hume RD, Kizana E, Chong JJH. Platelet derived growth factor-A (Pdgf-a) gene transfer modulates scar composition and improves left ventricular function after myocardial infarction. Int J Cardiol 2021; 341:24-30. [PMID: 34265313 DOI: 10.1016/j.ijcard.2021.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Novel therapies that can limit or reverse damage caused by myocardial infarction (MI) could ease the increasing burden of heart failure. In this regard Platelet Derived Growth Factor (PDGF) has been previously shown to contribute to cardiac repair after MI. Here, we use a rodent model of MI and recombinant adeno-associated virus 9 (rAAV9)-mediated gene transfer to overexpress Pdgf-a in the injured heart and assess its therapeutic potential. METHODS AND RESULTS Sprague Dawley rats underwent temporary occlusion of the left anterior descending coronary artery, followed immediately by systemic delivery of 1 × 10^11 vector genomes of either rAAV9 Pdgf-a or rAAV9 Empty vector (control). At day 28 post-MI echocardiography showed significantly improved left ventricular (LV) function (fractional shortening) after rAAV9 Pdgf-a (0.394 ± 0.019%) treatment vs control (0.304 ± 0.018%). Immunohistochemical analysis demonstrated significantly increased capillary and arteriolar density in the infarct border zone of rAAV9 Pdgf-a treated hearts together with a significant reduction in infarct scar size (rAAV9 Pdgf-a 6.09 ± 0.94% vs Empty 12.45 ± 0.92%). Western blot and qPCR analyses confirmed overexpression of PDGF-A and showed upregulation of smooth muscle alpha actin (Acta2), collagen type III alpha 1 (Col3a1) and lysyl oxidase (Lox) genes in rAAV9 Pdgf-a treated infarcts. CONCLUSION Overexpression of Pdgf-a in the post-MI heart can modulate scar composition and improve LV function. Our study highlights the potential of rAAV gene transfer of Pdgf-a as a cardio-reparative therapy.
Collapse
Affiliation(s)
- Fairooj N Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead 2145, NSW, Australia; The University of Sydney, Australia
| | - Zoë E Clayton
- Centre for Heart Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead 2145, NSW, Australia; The University of Sydney, Australia
| | - Masahito Ogawa
- Centre for Heart Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead 2145, NSW, Australia; The University of Sydney, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, University of New South Wales, NSW, Australia
| | - Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead 2145, NSW, Australia; The University of Sydney, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead 2145, NSW, Australia; The University of Sydney, Australia; Department of Cardiology, Westmead Hospital, Westmead 2145, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead 2145, NSW, Australia; The University of Sydney, Australia; Department of Cardiology, Westmead Hospital, Westmead 2145, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
16
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Santini MP, Malide D, Hoffman G, Pandey G, D'Escamard V, Nomura-Kitabayashi A, Rovira I, Kataoka H, Ochando J, Harvey RP, Finkel T, Kovacic JC. Tissue-Resident PDGFRα + Progenitor Cells Contribute to Fibrosis versus Healing in a Context- and Spatiotemporally Dependent Manner. Cell Rep 2021; 30:555-570.e7. [PMID: 31940496 DOI: 10.1016/j.celrep.2019.12.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/11/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Gabriel Hoffman
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Gaurav Pandey
- Icahn Institute for Data Science and Genomic Technology, ISMMS, New York, NY 10029, USA
| | - Valentina D'Escamard
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Aya Nomura-Kitabayashi
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ilsa Rovira
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Jordi Ochando
- Department of Medicine and Oncological Sciences, ISMMS, New York, NY 10029, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia; Stem Cells Australia, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Jason C Kovacic
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| |
Collapse
|
18
|
Thavapalachandran S, Grieve SM, Hume RD, Le TYL, Raguram K, Hudson JE, Pouliopoulos J, Figtree GA, Dye RP, Barry AM, Brown P, Lu J, Coffey S, Kesteven SH, Mills RJ, Rashid FN, Taran E, Kovoor P, Thomas L, Denniss AR, Kizana E, Asli NS, Xaymardan M, Feneley MP, Graham RM, Harvey RP, Chong JJH. Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Sci Transl Med 2021; 12:12/524/eaay2140. [PMID: 31894101 DOI: 10.1126/scitranslmed.aay2140] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Therapies that target scar formation after myocardial infarction (MI) could prevent ensuing heart failure or death from ventricular arrhythmias. We have previously shown that recombinant human platelet-derived growth factor-AB (rhPDGF-AB) improves cardiac function in a rodent model of MI. To progress clinical translation, we evaluated rhPDGF-AB treatment in a clinically relevant porcine model of myocardial ischemia-reperfusion. Thirty-six pigs were randomized to sham procedure or balloon occlusion of the proximal left anterior descending coronary artery with 7-day intravenous infusion of rhPDGF-AB or vehicle. One month after MI, rhPDGF-AB improved survival by 40% compared with vehicle, and cardiac magnetic resonance imaging showed left ventricular (LV) ejection fraction improved by 11.5%, driven by reduced LV end-systolic volumes. Pressure volume loop analyses revealed improved myocardial contractility and energetics after rhPDGF-AB treatment with minimal effect on ventricular compliance. rhPDGF-AB enhanced angiogenesis and increased scar anisotropy (high fiber alignment) without affecting overall scar size or stiffness. rhPDGF-AB reduced inducible ventricular tachycardia by decreasing heterogeneity of the ventricular scar that provides a substrate for reentrant circuits. In summary, we demonstrated that rhPDGF-AB promotes post-MI cardiac wound repair by altering the mechanics of the infarct scar, resulting in robust cardiac functional improvement, decreased ventricular arrhythmias, and improved survival. Our findings suggest a strong translational potential for rhPDGF-AB as an adjunct to current MI treatment and possibly to modulate scar in other organs.
Collapse
Affiliation(s)
- Sujitha Thavapalachandran
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thi Yen Loan Le
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kalyan Raguram
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Jim Pouliopoulos
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rafael P Dye
- Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Anthony M Barry
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sean Coffey
- Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.,Department of Medicine, Dunedin School of Medicine, Dunedin Hospital, Dunedin 9016, New Zealand
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Fairooj N Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Elena Taran
- Australian National Fabrication Facility-Queensland Node, The University of Queensland, St. Lucia, QLD 4072, Australia.,School of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Pramesh Kovoor
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.,Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Naisana S Asli
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.,Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Munira Xaymardan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia.,School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia. .,Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
19
|
Aujla PK, Kassiri Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell Signal 2020; 78:109869. [PMID: 33278559 DOI: 10.1016/j.cellsig.2020.109869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (cFBs) have emerged as a heterogenous cell population. Fibroblasts are considered the main cell source for synthesis of the extracellular matrix (ECM) and as such a dysregulation in cFB function, activity, or viability can lead to disrupted ECM structure or fibrosis. Fibrosis can be initiated in response to different injuries and stimuli, and can be reparative (beneficial) or reactive (damaging). FBs need to be activated to myofibroblasts (MyoFBs) which have augmented capacity in synthesizing ECM proteins, causing fibrosis. In addition to the resident FBs in the myocardium, a number of other cells (pericytes, fibrocytes, mesenchymal, and hematopoietic cells) can transform into MyoFBs, further driving the fibrotic response. Multiple molecules including hormones, cytokines, and growth factors stimulate this process leading to generation of activated MyoFBs. Contribution of different cell types to cFBs and MyoFBs can result in an exponential increase in the number of MyoFBs and an accelerated pro-fibrotic response. Given the diversity of the cell sources, and the array of interconnected signalling pathways that lead to formation of MyoFBs and subsequently fibrosis, identifying a single target to limit the fibrotic response in the myocardium has been challenging. This review article will delineate the importance and relevance of fibroblast heterogeneity in mediating fibrosis in different models of heart failure and will highlight important signalling pathways implicated in myofibroblast activation.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
O'Hara L, Christian HC, Jeffery N, Le Tissier P, Smith LB. Characterisation of a mural cell network in the murine pituitary gland. J Neuroendocrinol 2020; 32:e12903. [PMID: 32959418 DOI: 10.1111/jne.12903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
The anterior and intermediate lobes of the pituitary are composed of endocrine cells, as well as vasculature and supporting cells, such as folliculostellate cells. Folliculostellate cells form a network with several postulated roles in the pituitary, including production of paracrine signalling molecules and cytokines, coordination of endocrine cell hormone release, phagocytosis, and structural support. Folliculostellate cells in rats are characterised by expression of S100B protein, and in humans by glial fibrillary acid protein. However, there is evidence for another network of supporting cells in the anterior pituitary that has properties of mural cells, such as vascular smooth muscle cells and pericytes. The present study aims to characterise the distribution of cells that express the mural cell marker platelet derived growth factor receptor beta (PDGFRβ) in the mouse pituitary and establish whether these cells are folliculostellate. By immunohistochemical localisation, we determine that approximately 80% of PDGFRβ+ cells in the mouse pituitary have a non-perivascular location and 20% are pericytes. Investigation of gene expression in a magnetic cell sorted population of PDGFRβ+ cells shows that, despite a mostly non-perivascular location, this population is enriched for mural cell markers but not enriched for rat or human folliculostellate cell markers. This is confirmed by immunohistochemistry. The present study concludes that a mural cell network is present throughout the anterior pituitary of the mouse and that this population does not express well-characterised human or rat folliculostellate cell markers.
Collapse
Affiliation(s)
- Laura O'Hara
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
21
|
Selvakumar D, Clayton ZE, Chong JJH. Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clin Ther 2020; 42:1857-1879. [PMID: 32943195 DOI: 10.1016/j.clinthera.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE We review the history of cardiac cell therapy, highlighting lessons learned from initial adult stem cell (ASC) clinical trials. We present pluripotent stem cell-derived cardiomyocytes (PSC-CMs) as a leading candidate for robust regeneration of infarcted myocardium but identify several issues that must be addressed before successful clinical translation. METHODS We conducted an unstructured literature review of PubMed-listed articles, selecting the most comprehensive and relevant research articles, review articles, clinical trials, and basic or translation articles in the field of cardiac cell therapy. Articles were identified using the search terms adult stem cells, pluripotent stem cells, cardiac stem cell, and cardiac regeneration or from references of relevant articles, Articles were prioritized and selected based on their impact, originality, or potential clinical applicability. FINDINGS Since its inception, the ASC therapy field has been troubled by conflicting preclinical data, academic controversies, and inconsistent trial designs. These issues have damaged perceptions of cardiac cell therapy among investors, the academic community, health care professionals, and, importantly, patients. In hindsight, the key issue underpinning these problems was the inability of these cell types to differentiate directly into genuine cardiomyocytes, rendering them unable to replace damaged myocardium. Despite this, beneficial effects through indirect paracrine or immunomodulatory effects remain possible and continue to be investigated. However, in preclinical models, PSC-CMs have robustly remuscularized infarcted myocardium with functional, force-generating cardiomyocytes. Hence, PSC-CMs have now emerged as a leading candidate for cardiac regeneration, and unpublished reports of first-in-human delivery of these cells have recently surfaced. However, the cardiac cell therapy field's history should serve as a cautionary tale, and we identify several translational hurdles that still remain. Preclinical solutions to issues such as arrhythmogenicity, immunogenicity, and poor engraftment rates are needed, and next-generation clinical trials must draw on robust knowledge of mechanistic principles of the therapy. IMPLICATIONS The clinical transplantation of functional stem cell-derived heart tissue with seamless integration into native myocardium is a lofty goal. However, considerable advances have been made during the past 2 decades. Currently, PSC-CMs appear to be the best prospect to reach this goal, but several hurdles remain. The history of adult stem cell trials has taught us that shortcuts cannot be taken without dire consequences, and it is essential that progress not be hurried and that a worldwide, cross-disciplinary approach be used to ensure safe and effective clinical translation.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - James J H Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
22
|
Damal Villivalam S, You D, Kim J, Lim HW, Xiao H, Zushin PJH, Oguri Y, Amin P, Kang S. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nat Commun 2020; 11:4313. [PMID: 32855402 PMCID: PMC7453011 DOI: 10.1038/s41467-020-18054-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
It has been suggested that beige fat thermogenesis is tightly controlled by epigenetic regulators that sense environmental cues such as temperature. Here, we report that subcutaneous adipose expression of the DNA demethylase TET1 is suppressed by cold and other stimulators of beige adipocyte thermogenesis. TET1 acts as an autonomous repressor of key thermogenic genes, including Ucp1 and Ppargc1a, in beige adipocytes. Adipose-selective Tet1 knockout mice generated by using Fabp4-Cre improves cold tolerance and increases energy expenditure and protects against diet-induced obesity and insulin resistance. Moreover, the suppressive role of TET1 in the thermogenic gene regulation of beige adipocytes is largely DNA demethylase-independent. Rather, TET1 coordinates with HDAC1 to mediate the epigenetic changes to suppress thermogenic gene transcription. Taken together, TET1 is a potent beige-selective epigenetic breaker of the thermogenic gene program. Our findings may lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders. Epigenetic regulators contribute to the modulation of adipose thermogenesis by sensing environmental cues and regulating gene expression in response. Here the authors report that a DNA demethylase TET1 mediates epigenetic changes to repress thermogenic genes in mouse adipose tissue.
Collapse
Affiliation(s)
- Sneha Damal Villivalam
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jinse Kim
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Hee Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center Department of Pediatrics & Biomedical Informatics, University of Cincinnati, 3333 Burnet Ave. MLC 7024, Cincinnati, OH, 45229, USA
| | - Han Xiao
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Pete-James H Zushin
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yasuo Oguri
- UCSF Diabetes Center, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California, San Francisco, CA, 94143, USA
| | - Pouya Amin
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Constantinou C, Miranda AMA, Chaves P, Bellahcene M, Massaia A, Cheng K, Samari S, Rothery SM, Chandler AM, Schwarz RP, Harding SE, Punjabi P, Schneider MD, Noseda M. Human pluripotent stem cell-derived cardiomyocytes as a target platform for paracrine protection by cardiac mesenchymal stromal cells. Sci Rep 2020; 10:13016. [PMID: 32747668 PMCID: PMC7400574 DOI: 10.1038/s41598-020-69495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease remains the foremost cause of death globally, with survivors at risk for subsequent heart failure. Paradoxically, cell therapies to offset cardiomyocyte loss after ischemic injury improve long-term cardiac function despite a lack of durable engraftment. An evolving consensus, inferred preponderantly from non-human models, is that transplanted cells benefit the heart via early paracrine signals. Here, we tested the impact of paracrine signals on human cardiomyocytes, using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as the target of mouse and human cardiac mesenchymal stromal cells (cMSC) with progenitor-like features. In co-culture and conditioned medium studies, cMSCs markedly inhibited human cardiomyocyte death. Little or no protection was conferred by mouse tail tip or human skin fibroblasts. Consistent with the results of transcriptomic profiling, functional analyses showed that the cMSC secretome suppressed apoptosis and preserved cardiac mitochondrial transmembrane potential. Protection was independent of exosomes under the conditions tested. In mice, injecting cMSC-conditioned media into the infarct border zone reduced apoptotic cardiomyocytes > 70% locally. Thus, hPSC-CMs provide an auspicious, relevant human platform to investigate extracellular signals for cardiac muscle survival, substantiating human cardioprotection by cMSCs, and suggesting the cMSC secretome or its components as potential cell-free therapeutic products.
Collapse
Affiliation(s)
- Chrystalla Constantinou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Patricia Chaves
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Mohamed Bellahcene
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Andrea Massaia
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Stephen M Rothery
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anita M Chandler
- Kardia Therapeutics, Houston, TX, 77030, USA
- Department of Bioengineering, BioScience Research Collaborative, Rice University, Houston, TX, 77005, USA
| | - Richard P Schwarz
- Kardia Therapeutics, Houston, TX, 77030, USA
- CV Ventures, LLC, Blue Bell, PA, 19422, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Prakash Punjabi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK.
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
24
|
White SJ, Chong JJH. Growth factor therapy for cardiac repair: an overview of recent advances and future directions. Biophys Rev 2020; 12:805-815. [PMID: 32691300 DOI: 10.1007/s12551-020-00734-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Heart disease represents a significant public health burden and is associated with considerable morbidity and mortality at the level of the individual. Current therapies for pathologies such as myocardial infarction, cardiomyopathy and heart failure are unable to repair damaged tissue to an extent that provides restoration of function approaching that of the pre-diseased state. Novel approaches to repair and regenerate the injured heart include cell therapy and the use of exogenous factors. Improved understanding of the role of growth factors in endogenous cardiac repair processes has motivated the investigation of their potential as therapeutic agents for cardiac pathology. Despite the disappointing performance of other growth factors in historical clinical trials, insulin-like growth factor 1 (IGF-1), neuregulin and platelet-derived growth factor (PDGF) have recently emerged as new candidate therapies. These growth factors elicit tissue repair through anti-apoptotic, pro-angiogenic and fibrosis-modulating mechanisms and have produced clinically significant functional improvement in preclinical studies. Early human trials suggest that IGF-1 and neuregulin are well tolerated and yield dose-dependent benefit, warranting progression to later phase studies. However, outstanding challenges such as short growth factor serum half-life and insufficient target-organ specificity currently necessitate the development of novel delivery strategies.
Collapse
Affiliation(s)
- Samuel J White
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
25
|
Ceausu Z, Socea B, Dimitriu MCT, Predescu D, Constantin VD, Bacalbaşa N, Cîrstoveanu C, Costache M, Ceausu M. Dormant cardiac stem cells: A promising tool in cardiac regeneration. Exp Ther Med 2020; 20:3452-3457. [PMID: 32905130 PMCID: PMC7465489 DOI: 10.3892/etm.2020.9015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells represent an old niche with various new potential therapeutics. Besides drug treatment, reperfusion procedures and surgical revascularization, stem cell therapy could be a good option in ischemic cardiac diseases. A study was performed on a small group of cases who died of cardiac arrhythmia secondary to scarring myocardial infarctions. Tissue cardiac samples were taken from these cases (from the anterior and lateral wall of the left ventricle), for microscopy examination, in order to investigate the presence of cardiac stem cells (CSC). Multiple series of histological sections were also performed and examined, along with immunohistochemical analysis (IHC). The cells were identified in close contact with the residual ischemic cardiomyocytes, in the proximity of the myocardial collagenous scar, in old myocardial infarctions. They were activated by hypoxic ischemia and were influenced by the capillary microvascular density and the interstitial micro-environment conditions. In chronic intermittent ischemia they seem to turn themselves from dormant quiescent cells into activated progenitor committed cells.
Collapse
Affiliation(s)
- Zenaida Ceausu
- Pathology Department, 'Sf. Pantelimon' Emergency Clinical Hospital, 021659 Bucharest, Romania
| | - Bogdan Socea
- Department of Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Surgery, 'Sf. Pantelimon' Emergency Clinical Hospital, 021659 Bucharest, Romania
| | - Mihai C T Dimitriu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Sf. Pantelimon' Emergency Clinical Hospital, 021659 Bucharest, Romania
| | - Dragoş Predescu
- Department of Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Surgery, 'Sf. Maria' Hospital, 011172 Bucharest, Romania
| | - Vlad D Constantin
- Department of Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Surgery, 'Sf. Pantelimon' Emergency Clinical Hospital, 021659 Bucharest, Romania
| | - Nicolae Bacalbaşa
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Dr. I. Cantacuzino' Clinical Hospital, 020475 Bucharest, Romania
| | - Cătălin Cîrstoveanu
- Pediatrics Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Pediatrics Department, 'Maria Sklodowska Curie' Emergency Clinical Hospital for Children, 050831 Bucharest, Romania
| | - Mariana Costache
- Pathology Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mihai Ceausu
- Pathology Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Pathology, 'Mina Minovici' National Institute of Legal Medicine, 042122 Bucharest, Romania
| |
Collapse
|
26
|
Stadiotti I, Piacentini L, Vavassori C, Chiesa M, Scopece A, Guarino A, Micheli B, Polvani G, Colombo GI, Pompilio G, Sommariva E. Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Front Physiol 2020; 11:604. [PMID: 32670081 PMCID: PMC7327120 DOI: 10.3389/fphys.2020.00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Left ventricle (LV) and right ventricle (RV) are characterized by well-known physiological differences, mainly related to their different embryological origin, hemodynamic environment, function, structure, and cellular composition. Nevertheless, scarce information is available about cellular peculiarities between left and right ventricular chambers in physiological and pathological contexts. Cardiac mesenchymal stromal cells (C-MSC) are key cells affecting many functions of the heart. Differential features that distinguish LV from RV C-MSC are still underappreciated. AIM To analyze the physiological differential amount, function, and transcriptome of human C-MSC in LV versus (vs.) RV. METHODS Human cardiac specimens of LV and RV from healthy donors were used for tissue analysis of C-MSC number, and for C-MSC isolation. Paired LV and RV C-MSC were compared as for surface marker expression, cell proliferation/death ratio, migration, differentiation capabilities, and transcriptome profile. RESULTS Histological analysis showed a greater percentage of C-MSC in RV vs. LV tissue. Moreover, a higher C-MSC amount was obtained from RV than from LV after isolation procedures. LV and RV C-MSC are characterized by a similar proportion of surface markers. Functional studies revealed comparable cell growth curves in cells from both ventricles. Conversely, LV C-MSC displayed a higher apoptosis rate and RV C-MSC were characterized by a higher migration speed and collagen deposition. Consistently, transcriptome analysis showed that genes related to apoptosis regulation or extracellular matrix organization and integrins were over-expressed in LV and RV, respectively. Besides, we revealed additional pathways specifically associated with LV or RV C-MSC, including energy metabolism, inflammatory response, cardiac conduction, and pluripotency. CONCLUSION Taken together, these results contribute to the functional characterization of RV and LV C-MSC in physiological conditions. This information suggests a possible differential role of the stromal compartment in chamber-specific pathologic scenarios.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Piacentini
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mattia Chiesa
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Barbara Micheli
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Cardiovascular Tissue Bank, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
27
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
28
|
Suffee N, Moore-Morris T, Jagla B, Mougenot N, Dilanian G, Berthet M, Proukhnitzky J, Le Prince P, Tregouet DA, Pucéat M, Hatem SN. Reactivation of the Epicardium at the Origin of Myocardial Fibro-Fatty Infiltration During the Atrial Cardiomyopathy. Circ Res 2020; 126:1330-1342. [PMID: 32175811 DOI: 10.1161/circresaha.119.316251] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Fibro-fatty infiltration of subepicardial layers of the atrial wall has been shown to contribute to the substrate of atrial fibrillation. OBJECTIVE Here, we examined if the epicardium that contains multipotent cells is involved in this remodeling process. METHODS AND RESULTS One hundred nine human surgical right atrial specimens were evaluated. There was a relatively greater extent of epicardial thickening and dense fibro-fatty infiltrates in atrial tissue sections from patients aged over 70 years who had mitral valve disease or atrial fibrillation when compared with patients aged less than 70 years with ischemic cardiomyopathy as indicated using logistic regression adjusted for age and gender. Cells coexpressing markers of epicardial progenitors and fibroblasts were detected in fibro-fatty infiltrates. Such epicardial remodeling was reproduced in an experimental model of atrial cardiomyopathy in rat and in Wilms tumor 1 (WT1)CreERT2/+;ROSA-tdT+/- mice. In the latter, genetic lineage tracing demonstrated the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of human adult epicardial-derived cells expressing PDGFR (platelet-derived growth factor receptor)-α were isolated and differentiated into myofibroblasts in the presence of Ang II (angiotensin II). Furthermore, single-cell RNA-sequencing analysis identified several clusters of adult epicardial-derived cells and revealed their specification from adipogenic to fibrogenic cells in the rat model of atrial cardiomyopathy. CONCLUSIONS Epicardium is reactivated during the formation of the atrial cardiomyopathy. Subsets of adult epicardial-derived cells, preprogrammed towards a specific cell fate, contribute to fibro-fatty infiltration of subepicardium of diseased atria. Our study reveals the biological basis for chronic atrial myocardial remodeling that paves the way of atrial fibrillation.
Collapse
Affiliation(s)
- Nadine Suffee
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Thomas Moore-Morris
- INSERM U 1251, Aix-Marseille University, MMG, France (T.M.-M., M.P.).,IGF, University Montpellier, CNRS, INSERM, Montpellier, France (T.M.-M.)
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris (B.J.)
| | - Nathalie Mougenot
- Sorbonne Universités, INSERM UMR_S28, Faculté de médecine UPMC, Paris, France (N.M.)
| | - Gilles Dilanian
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Myriam Berthet
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Julie Proukhnitzky
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Pascal Le Prince
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France (P.L.P., S.N.H.)
| | - David A Tregouet
- From the INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France (N.S., G.D., M.B., J.P., D.A.T.)
| | - Michel Pucéat
- INSERM U 1251, Aix-Marseille University, MMG, France (T.M.-M., M.P.)
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France (P.L.P., S.N.H.)
| |
Collapse
|
29
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
30
|
Abstract
Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA;
| |
Collapse
|
31
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
32
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
33
|
Martini H, Iacovoni JS, Maggiorani D, Dutaur M, Marsal DJ, Roncalli J, Itier R, Dambrin C, Pizzinat N, Mialet‐Perez J, Cussac D, Parini A, Lefevre L, Douin‐Echinard V. Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90 + subset. Aging Cell 2019; 18:e13015. [PMID: 31353772 PMCID: PMC6718537 DOI: 10.1111/acel.13015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022] Open
Abstract
Aging is a major risk factor in the development of chronic diseases, especially cardiovascular diseases. Age-related organ dysfunction is strongly associated with the accumulation of senescent cells. Cardiac mesenchymal stromal cells (cMSCs), deemed part of the microenvironment, modulate cardiac homeostasis through their vascular differentiation potential and paracrine activity. Transcriptomic analysis of cMSCs identified age-dependent biological pathways regulating immune responses and angiogenesis. Aged cMSCs displayed a senescence program characterized by Cdkn2a expression, decreased proliferation and clonogenicity, and acquisition of a senescence-associated secretory phenotype (SASP). Increased CCR2-dependent monocyte recruitment by aged cMSCs was associated with increased IL-1ß production by inflammatory macrophages in the aging heart. In turn, IL-1ß induced senescence in cMSCs and mimicked age-related phenotypic changes such as decreased CD90 expression. The CD90+ and CD90- cMSC subsets had biased vascular differentiation potentials, and CD90+ cMSCs were more prone to acquire markers of the endothelial lineage with aging. These features were related to the emergence of a new cMSC subset in the aging heart, expressing CD31 and endothelial genes. These results demonstrate that cMSC senescence and SASP production are supported by the installation of an inflammatory amplification loop, which could sustain cMSC senescence and interfere with their vascular differentiation potentials.
Collapse
Affiliation(s)
- Hélène Martini
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Jason S. Iacovoni
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Damien Maggiorani
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Marianne Dutaur
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| | - Dimitri J. Marsal
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Jerome Roncalli
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Romain Itier
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Camille Dambrin
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
| | - Nathalie Pizzinat
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Jeanne Mialet‐Perez
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
| | - Daniel Cussac
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| | - Angelo Parini
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Institute Cardiomet, FHU IMPACT University Hospital of Toulouse Toulouse France
- Paul Sabatier University Toulouse France
| | - Lise Lefevre
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| | - Victorine Douin‐Echinard
- Inserm UMR Institute of Cardiovascular and Metabolic Diseases Toulouse France
- Paul Sabatier University Toulouse France
| |
Collapse
|
34
|
Ivey MJ, Kuwabara JT, Riggsbee KL, Tallquist MD. Platelet-derived growth factor receptor-α is essential for cardiac fibroblast survival. Am J Physiol Heart Circ Physiol 2019; 317:H330-H344. [PMID: 31125253 PMCID: PMC6732481 DOI: 10.1152/ajpheart.00054.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023]
Abstract
Platelet-derived growth factor receptor α (PDGFRα), a receptor tyrosine kinase required for cardiac fibroblast development, is uniquely expressed by fibroblasts in the adult heart. Despite the consensus that PDGFRα is expressed in adult cardiac fibroblasts, we know little about its function when these cells are at rest. Here, we demonstrate that loss of PDGFRα in cardiac fibroblasts resulted in a rapid reduction of resident fibroblasts. Furthermore, we observe that phosphatidylinositol 3-kinase signaling was required for PDGFRα-dependent fibroblast maintenance. Interestingly, this reduced number of fibroblasts was maintained long-term, suggesting that there is no homeostatic mechanism to monitor fibroblast numbers and restore hearts to wild-type levels. Although we did not observe any systolic functional changes in hearts with depleted fibroblasts, the basement membrane and microvasculature of these hearts were perturbed. Through in vitro analyses, we showed that PDGFRα signaling inhibition resulted in an increase in fibroblast cell death, and PDGFRα stimulation led to increased levels of the cell survival factor activating transcription factor 3. Our data reveal a unique role for PDGFRα signaling in fibroblast maintenance and illustrate that a 50% loss in cardiac fibroblasts does not result in lethality.NEW & NOTEWORTHY Platelet-derived growth factor receptor α (PDGFRα) is required in developing cardiac fibroblasts, but a functional role in adult, quiescent fibroblasts has not been identified. Here, we demonstrate that PDGFRα signaling is essential for cardiac fibroblast maintenance and that there are no homeostatic mechanisms to regulate fibroblast numbers in the heart. PDGFR signaling is generally considered mitogenic in fibroblasts, but these data suggest that this receptor may direct different cellular processes depending on the cell's maturation and activation status.
Collapse
Affiliation(s)
- Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Kara L Riggsbee
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
35
|
Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 2019; 114:551-564. [PMID: 29385432 DOI: 10.1093/cvr/cvy004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential to the development of PH. We present evidence that metabolic alterations akin to those observed in cancer cells (cytoplasmic and mitochondrial) directly contribute to the phenotype of the SM and SM-like cells involved in PH. Finally, we raise the possibility that SMCs transition from a proliferative to a senescent, pro-inflammatory and metabolically active phenotype over time.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Brian B Graham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Rubin M Tuder
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Enhanced cardiac repair by telomerase reverse transcriptase over-expression in human cardiac mesenchymal stromal cells. Sci Rep 2019; 9:10579. [PMID: 31332256 PMCID: PMC6646304 DOI: 10.1038/s41598-019-47022-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
We have previously reported a subpopulation of mesenchymal stromal cells (MSCs) within the platelet-derived growth factor receptor-alpha (PDGFRα)/CD90 co-expressing cardiac interstitial and adventitial cell fraction. Here we further characterise PDGFRα/CD90-expressing cardiac MSCs (PDGFRα + cMSCs) and use human telomerase reverse transcriptase (hTERT) over-expression to increase cMSCs ability to repair the heart after induced myocardial infarction. hTERT over-expression in PDGFRα + cardiac MSCs (hTERT + PDGFRα + cMSCs) modulates cell differentiation, proliferation, survival and angiogenesis related genes. In vivo, transplantation of hTERT + PDGFRα + cMSCs in athymic rats significantly increased left ventricular function, reduced scar size, increased angiogenesis and proliferation of both cardiomyocyte and non-myocyte cell fractions four weeks after myocardial infarction. In contrast, transplantation of mutant hTERT + PDGFRα + cMSCs (which generate catalytically-inactive telomerase) failed to replicate this cardiac functional improvement, indicating a telomerase-dependent mechanism. There was no hTERT + PDGFRα + cMSCs engraftment 14 days after transplantation indicating functional improvement occurred by paracrine mechanisms. Mass spectrometry on hTERT + PDGFRα + cMSCs conditioned media showed increased proteins associated with matrix modulation, angiogenesis, cell proliferation/survival/adhesion and innate immunity function. Our study shows that hTERT can activate pro-regenerative signalling within PDGFRα + cMSCs and enhance cardiac repair after myocardial infarction. An increased understanding of hTERT’s role in mesenchymal stromal cells from various organs will favourably impact clinical regenerative and anti-cancer therapies.
Collapse
|
37
|
Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11:347-374. [PMID: 31293717 PMCID: PMC6600850 DOI: 10.4252/wjsc.v11.i6.347] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application.
AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SM-MSCs), and skin (SK-MSCs).
METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc; 27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed.
RESULTS All MSCs showed the basic MSC phenotype; however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties; however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs.
CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Katarzyna Futoma
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Dariusz Patrzalek
- Faculty of Health Science, Department of Physiotherapy, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| |
Collapse
|
38
|
Yousefi M, Mamipour M, Sokullu SE, Ghaderi S, Amini H, Rahbarghazi R. Toll-like receptors in the functional orientation of cardiac progenitor cells. J Cell Physiol 2019; 234:19451-19463. [PMID: 31025370 DOI: 10.1002/jcp.28738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.
Collapse
Affiliation(s)
- Mohammadreza Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sadiye E Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Shahrooz Ghaderi
- Department of System Physiology, Ruhr University, Bochum, Germany
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Abstract
A great interest has developed over the last several years in research on interstitial Cajal-like cells (ICLCs), later renamed to telocytes (TCs). Such studies are restricted by diverse limitations. We aimed to critically review (sub)epicardial ICLCs/TCs and to bring forward supplemental immunohistochemical evidence on (sub)epicardial stromal niche inhabitants. We tested the epicardial expressions of CD117/c-kit, CD34, Cytokeratin 7 (CK7), Ki67, Platelet-Derived Growth Factor Receptor (PDGFR)-α and D2-40 in adult human cardiac samples. The mesothelial epicardial cells expressed D2-40, CK7, CD117/c-kit and PDGFR-α. Subepicardial D2-40-positive lymphatic vessels and isolated D2-40-positive and CK7-positive subepicardial cells were also found. Immediate submesothelial spindle-shaped cells expressed Ki-67. Submesothelial stromal cells and endothelial tubes were PDGFR-α-positive and CD34-positive. The expression of CD34 was pan-stromal, so a particular stromal cell type could not be distinguished. The stromal expression of CD117/c-kit was also noted. It seems that epicardial TCs could not be regarded as belonging to a unique cell type until (pre)lymphatic endothelial cells are inadequately excluded. Markers such as CD117/c-kit or CD34 seem to be improper for identifying TCs as a distinctive cell type. Care should be taken when using the immunohistochemical method and histological interpretations, as they may not produce accurate results.
Collapse
|
40
|
Oldershaw R, Owens WA, Sutherland R, Linney M, Liddle R, Magana L, Lash GE, Gill JH, Richardson G, Meeson A. Human Cardiac-Mesenchymal Stem Cell-Like Cells, a Novel Cell Population with Therapeutic Potential. Stem Cells Dev 2019; 28:593-607. [PMID: 30803370 PMCID: PMC6486668 DOI: 10.1089/scd.2018.0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiac stem/progenitors are being used in the clinic to treat patients with a range of cardiac pathologies. However, improvements in heart function following treatment have been reported to be variable, with some showing no response. This discrepancy in response remains unresolved. Mesenchymal stem cells (MSCs) have been highlighted as a regenerative tool as these cells display both immunomodulatory and proregenerative activities. The purpose of this study was to derive a cardiac MSC population to provide an alternative/support to current therapies. We derived human cardiac-mesenchymal stem cell-like cells (CMSCLC), so named as they share some MSC characteristics. However, CMSCLC lack the MSC trilineage differentiation capacity, being capable of only rare adipogenic differentiation and demonstrating low/no osteogenic or chondrogenic potential, a phenotype that may have advantages following transplantation. Furthermore, CMSCLC expressed low levels of p16, high levels of MHCI, and low levels of MHCII. A lack of senescent cells would also be advantageous for cells to be used therapeutically, as would the ability to modulate the immune response. Crucially, CMSCLC display a transcriptional profile that includes genes associated with cardioprotective/cardiobeneficial effects. CMSCLC are also secretory and multipotent, giving rise to cardiomyocytes and endothelial cells. Our findings support CMSCLC as a novel cell population suitable for use for transplantation.
Collapse
Affiliation(s)
- Rachel Oldershaw
- 1 Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - W Andrew Owens
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,3 Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust, Middlesbrough, United Kingdom
| | - Rachel Sutherland
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Linney
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Liddle
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lissette Magana
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gendie E Lash
- 4 Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jason H Gill
- 5 The Faculty of Medical Sciences, School of Pharmacy, Northern Institute for Cancer Research (NICR), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin Richardson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annette Meeson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
41
|
Schwarz N, Nicholls SJ, Psaltis PJ. Vitamin D and Cardiovascular Disease. Heart Lung Circ 2019; 27:903-906. [PMID: 30047471 DOI: 10.1016/j.hlc.2018.05.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Nisha Schwarz
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stephen J Nicholls
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
42
|
Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell 2019; 48:475-490.e7. [PMID: 30713072 DOI: 10.1016/j.devcel.2019.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.
Collapse
|
43
|
Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, Torella M, Nadal-Ginard B, Torella D. Heterogeneity of Adult Cardiac Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:141-178. [PMID: 31487023 DOI: 10.1007/978-3-030-24108-7_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac biology and heart regeneration have been intensively investigated and debated in the last 15 years. Nowadays, the well-established and old dogma that the adult heart lacks of any myocyte-regenerative capacity has been firmly overturned by the evidence of cardiomyocyte renewal throughout the mammalian life as part of normal organ cell homeostasis, which is increased in response to injury. Concurrently, reproducible evidences from independent laboratories have convincingly shown that the adult heart possesses a pool of multipotent cardiac stem/progenitor cells (CSCs or CPCs) capable of sustaining cardiomyocyte and vascular tissue refreshment after injury. CSC transplantation in animal models displays an effective regenerative potential and may be helpful to treat chronic heart failure (CHF), obviating at the poor/modest results using non-cardiac cells in clinical trials. Nevertheless, the degree/significance of cardiomyocyte turnover in the adult heart, which is insufficient to regenerate extensive damage from ischemic and non-ischemic origin, remains strongly disputed. Concurrently, different methodologies used to detect CSCs in situ have created the paradox of the adult heart harboring more than seven different cardiac progenitor populations. The latter was likely secondary to the intrinsic heterogeneity of any regenerative cell agent in an adult tissue but also to the confusion created by the heterogeneity of the cell population identified by a single cell marker used to detect the CSCs in situ. On the other hand, some recent studies using genetic fate mapping strategies claimed that CSCs are an irrelevant endogenous source of new cardiomyocytes in the adult. On the basis of these contradictory findings, here we critically reviewed the available data on adult CSC biology and their role in myocardial cell homeostasis and repair.
Collapse
Affiliation(s)
- Mariangela Scalise
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Fabiola Marino
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Surgery, University of Campania "L.Vanvitelli", Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
44
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
45
|
Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 2018; 7:36865. [PMID: 30178747 PMCID: PMC6122952 DOI: 10.7554/elife.36865] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Pdgfra-expressing (Pdgfra+) cells have been implicated as progenitors in many mesenchymal tissues. To determine lineage potential, we generated PdgfrartTA knockin mice using CRISPR/Cas9. During lung maturation, counter to a prior study reporting that Pdgfra+ cells give rise equally to myofibroblasts and lipofibroblasts, lineage tracing using PdgfrartTA;tetO-cre mice indicated that ~95% of the lineaged cells are myofibroblasts. Genetic ablation of Pdgfra+cells using PdgfrartTA-driven diphtheria toxin (DTA) led to alveolar simplification, demonstrating that these cells are essential for building the gas exchange surface area. In the adult bleomycin model of lung fibrosis, lineaged cells increased to contribute to pathological myofibroblasts. In contrast, in a neonatal hyperoxia model of bronchopulmonary dysplasia (BPD), lineaged cells decreased and do not substantially contribute to pathological myofibroblasts. Our findings revealed complexity in the behavior of the Pdgfra-lineaged cells as exemplified by their distinct contributions to myofibroblasts in normal maturation, BPD and adult fibrosis.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, University of California, San Diego, La Jolla, United States.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
| | - Ksenija Bernau
- Department of Medicine, University of Wisconsin-Madison, Madison, United States
| | - Nathan Sandbo
- Department of Medicine, University of Wisconsin-Madison, Madison, United States
| | - Jing Gu
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, United States.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
46
|
Le TY, Ogawa M, Kizana E, Gunton JE, Chong JJ. Vitamin D Improves Cardiac Function After Myocardial Infarction Through Modulation of Resident Cardiac Progenitor Cells. Heart Lung Circ 2018; 27:967-975. [DOI: 10.1016/j.hlc.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/04/2017] [Accepted: 01/04/2018] [Indexed: 01/02/2023]
|
47
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
48
|
Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Biosci Rep 2018; 38:BSR20180563. [PMID: 29976773 PMCID: PMC6066657 DOI: 10.1042/bsr20180563] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic wounds are a major complication in patients with cardiovascular diseases. Cell therapies have shown potential to stimulate wound healing, but clinical trials using adult stem cells have been tempered by limited numbers of cells and invasive procurement procedures. Induced pluripotent stem cells (iPSCs) have several advantages of other cell types, for example they can be generated in abundance from patients’ somatic cells (autologous) or those from a matched donor. iPSCs can be efficiently differentiated to functional endothelial cells (iPSC-ECs). Here, we used a murine excisional wound model to test the pro-angiogenic properties of iPSC-ECs in wound healing. Two full-thickness wounds were made on the dorsum of NOD-SCID mice and splinted. iPSC-ECs (5 × 105) were topically applied to one wound, with the other serving as a control. Treatment with iPSC-ECs significantly increased wound perfusion and accelerated wound closure. Expression of endothelial cell (EC) surface marker, platelet endothelial cell adhesion molecule (PECAM-1) (CD31), and pro-angiogenic EC receptor, Tie1, mRNA was up-regulated in iPSC-EC treated wounds at 7 days post-wounding. Histological analysis of wound sections showed increased capillary density in iPSC-EC wounds at days 7 and 14 post-wounding, and increased collagen content at day 14. Anti-GFP fluorescence confirmed presence of iPSC-ECs in the wounds. Bioluminescent imaging (BLI) showed progressive decline of iPSC-ECs over time, suggesting that iPSC-ECs are acting primarily through short-term paracrine effects. These results highlight the pro-regenerative effects of iPSC-ECs and demonstrate that they are a promising potential therapy for intractable wounds.
Collapse
|
49
|
CD90 Identifies Adventitial Mesenchymal Progenitor Cells in Adult Human Medium- and Large-Sized Arteries. Stem Cell Reports 2018; 11:242-257. [PMID: 30008326 PMCID: PMC6067150 DOI: 10.1016/j.stemcr.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) reportedly exist in a vascular niche occupying the outer adventitial layer. However, these cells have not been well characterized in vivo in medium- and large-sized arteries in humans, and their potential pathological role is unknown. To address this, healthy and diseased arterial tissues were obtained as surplus surgical specimens and freshly processed. We identified that CD90 marks a rare adventitial population that co-expresses MSC markers including PDGFRα, CD44, CD73, and CD105. However, unlike CD90, these additional markers were widely expressed by other cells. Human adventitial CD90+ cells fulfilled standard MSC criteria, including plastic adherence, spindle morphology, passage ability, colony formation, and differentiation into adipocytes, osteoblasts, and chondrocytes. Phenotypic and transcriptomic profiling, as well as adoptive transfer experiments, revealed a potential role in vascular disease pathogenesis, with the transcriptomic disease signature of these cells being represented in an aortic regulatory gene network that is operative in atherosclerosis. We identify, in situ and in vivo, adventitial CD90+ MSCs in human arteries Human adventitial CD90+ cells fulfill all criteria for an MSC population Other markers, such as CD44 and PDGFRα, were non-specific for adventitial MSCs The CD90+ MSC transcriptomic signature suggests a major role in vascular disease
Collapse
|
50
|
Leonard A, Bertero A, Powers JD, Beussman KM, Bhandari S, Regnier M, Murry CE, Sniadecki NJ. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol 2018; 118:147-158. [PMID: 29604261 DOI: 10.1016/j.yjmcc.2018.03.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) grown in engineered heart tissue (EHT) can be used for drug screening, disease modeling, and heart repair. However, the immaturity of hiPSC-CMs currently limits their use. Because mechanical loading increases during development and facilitates cardiac maturation, we hypothesized that afterload would promote maturation of EHTs. To test this we developed a system in which EHTs are suspended between a rigid post and a flexible one, whose resistance to contraction can be modulated by applying braces of varying length. These braces allow us to adjust afterload conditions over two orders of magnitude by increasing the flexible post resistance from 0.09 up to 9.2 μN/μm. After three weeks in culture, optical tracking of post deflections revealed that auxotonic twitch forces increased in correlation with the degree of afterload, whereas twitch velocities decreased with afterload. Consequently, the power and work of the EHTs were maximal under intermediate afterloads. When studied isometrically, the inotropy of EHTs increased with afterload up to an intermediate resistance (0.45 μN/μm) and then plateaued. Applied afterload increased sarcomere length, cardiomyocyte area and elongation, which are hallmarks of maturation. Furthermore, progressively increasing the level of afterload led to improved calcium handling, increased expression of several key markers of cardiac maturation, including a shift from fetal to adult ventricular myosin heavy chain isoforms. However, at the highest afterload condition, markers of pathological hypertrophy and fibrosis were also upregulated, although the bulk tissue stiffness remained the same for all levels of applied afterload tested. Together, our results indicate that application of moderate afterloads can substantially improve the maturation of hiPSC-CMs in EHTs, while high afterload conditions may mimic certain aspects of human cardiac pathology resulting from elevated mechanical overload.
Collapse
Affiliation(s)
- Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Alessandro Bertero
- Department of Pathology, University of Washington, Seattle 98109, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Shiv Bhandari
- Department of Medicine, University of Washington, Seattle 98195, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle 98109, WA, USA; Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA; Department of Medicine, University of Washington, Seattle 98195, WA, USA; Division of Cardiology, University of Washington, Seattle 98195, WA, USA.
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA.
| |
Collapse
|