1
|
Ahmed IA, Sun J, Kong MJ, Khosrotehrani K, Shafiee A. Generating Skin-Derived Precursor-Like Cells From Human-Induced Pluripotent Stem Cell-Derived Skin Organoids. Exp Dermatol 2024; 33:e70017. [PMID: 39582396 DOI: 10.1111/exd.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Skin-derived precursor (SKPs) cells are multipotent stem cells found in the dermis that contribute to wound healing and induce hair follicle neogenesis when transplanted. The clinical application of adult human SKPs, however, is hindered by their loss of potency after in vitro expansion. To overcome this challenge, we aimed to isolate SKPs from human-induced pluripotent stem cell-derived skin organoids (SKOs), to enable mass production of these cells for therapeutics. We developed a protocol to isolate skin-derived precursor-like cells (SKP-like cells) from human SKOs. SKP-like cells derived from SKOs exhibited characteristic spheroid morphology and were capable of self-renewal in defined SKP growth medium. Immunofluorescence analysis confirmed the expression of key markers, including SOX2, fibronectin and S100β, within the SKP-like cells. The findings of this pilot study shed light on the potential of SKO-derived SKP-like cells for future hair regenerative applications. Furthermore, this research highlights the application of human SKOs as a valuable source for isolating progenitor cells, aiming to advance hair regeneration and restore skin function.
Collapse
Affiliation(s)
- Imaan A Ahmed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Min Jie Kong
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Kohlhauser M, Tuca A, Kamolz LP. The efficacy of adipose-derived stem cells in burn injuries: a systematic review. Cell Mol Biol Lett 2024; 29:10. [PMID: 38182971 PMCID: PMC10771009 DOI: 10.1186/s11658-023-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Burn injuries can be associated with prolonged healing, infection, a substantial inflammatory response, extensive scarring, and eventually death. In recent decades, both the mortality rates and long-term survival of severe burn victims have improved significantly, and burn care research has increasingly focused on a better quality of life post-trauma. However, delayed healing, infection, pain and extensive scar formation remain a major challenge in the treatment of burns. ADSCs, a distinct type of mesenchymal stem cells, have been shown to improve the healing process. The aim of this review is to evaluate the efficacy of ADSCs in the treatment of burn injuries. METHODS A systematic review of the literature was conducted using the electronic databases PubMed, Web of Science and Embase. The basic research question was formulated with the PICO framework, whereby the usage of ADSCs in the treatment of burns in vivo was determined as the fundamental inclusion criterion. Additionally, pertinent journals focusing on burns and their treatment were screened manually for eligible studies. The review was registered in PROSPERO and reported according to the PRISMA statement. RESULTS Of the 599 publications screened, 21 were considered relevant to the key question and were included in the present review. The included studies were almost all conducted on rodents, with one exception, where pigs were investigated. 13 of the studies examined the treatment of full-thickness and eight of deep partial-thickness burn injuries. 57,1 percent of the relevant studies have demonstrated that ADSCs exhibit immunomodulatory effects during the inflammatory response. 16 studies have shown improved neovascularisation with the use of ADSCs. 14 studies report positive influences of ADSCs on granulation tissue formation, while 11 studies highlight their efficacy in promoting re-epithelialisation. 11 trials demonstrated an improvement in outcomes during the remodelling phase. CONCLUSION In conclusion, it appears that adipose-derived stem cells demonstrate remarkable efficacy in the field of regenerative medicine. However, the usage of ADSCs in the treatment of burns is still at an early experimental stage, and further investigations are required in order to examine the potential usage of ADSCs in future clinical burn care.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
| | - Alexandru Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Department of Surgery, State Hospital Güssing, Güssing, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
3
|
Lee S, Kim N, Kim SH, Um SJ, Park JY. Biological and mechanical influence of three-dimensional microenvironment formed in microwell on multicellular spheroids composed of heterogeneous hair follicle stem cells. Sci Rep 2023; 13:22742. [PMID: 38123607 PMCID: PMC10733424 DOI: 10.1038/s41598-023-49510-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Hair loss caused by malfunction of the hair follicle stem cells (HFSCs) and physical damage to the skin is difficult to recover from naturally. To overcome these obstacles to hair follicle (HF) regeneration, it is essential to understand the three-dimensional (3D) microenvironment and interactions of various cells within the HFs. Therefore, 3D cell culture technology has been used in HF regeneration research; specifically, multicellular spheroids have been generally adapted to mimic the 3D volumetric structure of the HF. In this study, we culture HF-derived cells, which are mainly composed of HFSCs, in the form of 3D spheroids using a microwell array and discuss the effects of the 3D cellular environment on HF morphogenesis by expression measurements of Sonic hedgehog signaling and stem cell markers in the HF spheroids. Additionally, the influences of microwell depth on HF spheroid formation and biological conditions were investigated. The biomolecular diffusion and convective flow in the microwell were predicted using computational fluid dynamics, which allows analysis of the physical stimulations occurring on the spheroid at the micro-scale. Although a simple experimental method using the microwell array was adopted in this study, the results provide fundamental insights into the physiological phenomena of HFs in the 3D microenvironment, and the numerical analysis is expected to shed light on the investigation of the geometric parameters of the microwell system.
Collapse
Affiliation(s)
- Seungjin Lee
- Department of Mechanical Engineering, Graduate School, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Nackhyoung Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Sung-Hwan Kim
- Cellsmith Inc., 38 Pungseong-ro, Gangdong-gu, Seoul, 05393, Republic of Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| | - Joong Yull Park
- Department of Mechanical Engineering, Graduate School, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
- Department of Intelligent Energy and Industry, Graduate School, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Sumathy B, Velayudhan S. Fabrication and evaluation of a bi-layered gelatin based scaffold with arrayed micro-pits for full-thickness skin construct. Int J Biol Macromol 2023; 251:126360. [PMID: 37591428 DOI: 10.1016/j.ijbiomac.2023.126360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
There is an unmet need for a reliable and reproducible method for incorporating hair follicle derived stem cells in tissue engineered skin models to reconstitute hair follicles. This study discloses a novel method for introducing hair follicle derived stem cells in microneedle embossed micro-pits of a bilayer skin equivalent fabricated from a gelatin based scaffold. The microneedles are hard and strong enough to penetrate the upper layer of the bilayer gelatin based scaffold that corresponds to the epidermis and permeates down to lower layer that corresponds to dermal layer. This strategic location will mimic the natural niche of hair follicle stem cells for picking up signals from both the epidermis and dermis. Hair follicle stem cells are trapped in to these micro-pits by vacuum assisted cell seeding. The bilayer system consists of two distinct electrospun layers in a single processing step, representing outer epidermal layer and inner dermal layer with hair follicle stem cells in embedded pits, resulting in the formation of a closed representation of a complete skin.
Collapse
Affiliation(s)
- Babitha Sumathy
- Department of Tissue Engineering and Regeneration Technologies, Department of Applied Biology, Biomedical Technology wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 012, India.
| | - Shiny Velayudhan
- Division of Dental Products, Department of Biomaterials Science and Technology, Biomedical Technology wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 012, India.
| |
Collapse
|
5
|
Sugeno A, Sumi T, Sato-Yazawa H, Yazawa T, Inoue H, Miyata S. Multilayered Gel-Spotting Device for In Vitro Reconstruction of Hair Follicle-like Microstructure. MICROMACHINES 2023; 14:1651. [PMID: 37763814 PMCID: PMC10535646 DOI: 10.3390/mi14091651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Hair follicles play an important role in hair development. This study aimed to develop a microgel-spotting device to fabricate a multilayered gel bead culture model and to mimic the early development of skin appendages to regenerate hair follicles in vitro. The model consists of an alginate gel layer containing cytokines as the core layer, a collagen gel layer containing mouse embryonic stem cells as the middle layer, and a collagen gel layer containing fetus-derived epidermal cells as the outer layer. A concentration gradient of cytokines is formed, which promotes interactions between epidermal and stem cells. Histological and immunnohistological analyses confirmed the reconstruction of hair follicle structures. As a result, the cell number and gel bead size could be precisely controlled by the developed microgel-spotting device. In the multilayered gel bead, the embryonic and epidermal cells cultured with the cytokine gradient formed cell aggregates with keratinized tissue in the center similar to "native" hair follicle structure. Sweat gland-like luminal tissue and erector pilorum-like structures were also observed around aggregates with concentric structures. In conclusion, the multilayered gel bead culture model demonstrated potential for in vitro hair follicle regeneration. The findings of this study provide insight into the early development of skin appendages.
Collapse
Affiliation(s)
- Aki Sugeno
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takahiro Sumi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Hajime Inoue
- Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
6
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
7
|
Biomimetic nanofiber-enabled rapid creation of skin grafts. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
8
|
Figueira TG, Dos Santos FV, Yoshioka SA. Development, characterization and in vivo evaluation of the ointment containing hyaluronic acid for potential wound healing applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1511-1530. [PMID: 35451917 DOI: 10.1080/09205063.2022.2068946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Wound healing is a complex biological process. In this context, hyaluronic acid (HA) plays an important role in all phases of wound healing, from inflammation to the remodelling process. Nevertheless, its presence in adults decreases by 50% compared to newborns, which drastically reduces tissue regeneration. In this sense, this work presented a new method of extracting HA from chicken combs, as well as the development and in vivo evaluation of an ointment composed of vaseline, lanolin and HA 1% (w/w) for wound healing. The rheological analysis showed that the ointment containing HA has a viscoelastic behaviour. The in vivo test showed on the 7th day that the group treated with the ointment containing HA had a wound area of 0.07 cm2 against 0.09 cm2 of the ointment without HA (vaseline, and lanolin). On the other hand, the groups treated with the HA ointment had a higher mean percentage of collagen and better healing on the 14th day. The results of this paper indicate that the new method used to obtain HA is feasible, low-cost, and easy to obtain. Furthermore, the HA containing ointment improved wound healing. Therefore, the obtained ointment has great potential for use as an effective biomaterial in wound healing.
Collapse
Affiliation(s)
- Thiago Gomes Figueira
- Inter-units Postgraduate Program in Bioengineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Francisco Vieira Dos Santos
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Inter-units Postgraduate Program in Bioengineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Abreu CM, Marques AP. Recreation of a hair follicle regenerative microenvironment: Successes and pitfalls. Bioeng Transl Med 2022; 7:e10235. [PMID: 35079623 PMCID: PMC8780054 DOI: 10.1002/btm2.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle (HF) is an exquisite skin appendage endowed with cyclical regenerative capacity; however, de novo follicle formation does not naturally occur. Consequently, patients suffering from extensive skin damage or hair loss are deprived of the HF critical physiological and/or aesthetic functions, severally compromising skin function and the individual's psychosocial well-being. Translation of regenerative strategies has been prevented by the loss of trichogenic capacity that relevant cell populations undergo in culture and by the lack of suitable human-based in vitro testing platforms. Here, we provide a comprehensive overview of the major difficulties associated with HF regeneration and the approaches used to overcome these drawbacks. We describe key cellular requirements and discuss the importance of the HF extracellular matrix and associated signaling for HF regeneration. Finally, we summarize the strategies proposed so far to bioengineer human HF or hair-bearing skin models and disclose future trends for the field.
Collapse
Affiliation(s)
- Carla M. Abreu
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs ‐ Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark–Parque de Ciência e Tecnologia, University of MinhoGuimarãesPortugal
- ICVS/3B's–PT Government Associate LaboratoryGuimarãesPortugal
| |
Collapse
|
10
|
Jassi R, Maheshwari A, Garg T, Chander R. Hair Growth Around the Scar. Potential Therapeutic Modality to Treat Alopecias? Indian J Dermatol 2022; 67:209. [PMID: 36092235 PMCID: PMC9455091 DOI: 10.4103/ijd.ijd_850_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Rubina Jassi
- From the Department of Dermatology, Lady Hardinge Medical College, New Delhi, India E-mail:
| | - Apoorva Maheshwari
- From the Department of Dermatology, Lady Hardinge Medical College, New Delhi, India E-mail:
| | - Taru Garg
- From the Department of Dermatology, Lady Hardinge Medical College, New Delhi, India E-mail:
| | - Ram Chander
- From the Department of Dermatology, Lady Hardinge Medical College, New Delhi, India E-mail:
| |
Collapse
|
11
|
Wang M, Yao S, He D, Qahar M, He J, Yin M, Wu J, Yang G. Type 2 Diabetic Mellitus Inhibits Skin Renewal through Inhibiting WNT-Dependent Lgr5+ Hair Follicle Stem Cell Activation in C57BL/6 Mice. J Diabetes Res 2022; 2022:8938276. [PMID: 35469170 PMCID: PMC9034921 DOI: 10.1155/2022/8938276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Hair follicles are important accessory organs of the skin, and it is important for skin renewal and performs variety of important functions. Diabetes can cause several dermatoses; however, its effect on hair follicles is unclear. The purpose of this study was to investigate the effect of type II diabetes (T2DM) on the hair follicles of mice. METHODS Seven-week-old male C57BL/6 littermate mice were divided into two groups. The treatment group was injected with streptozotocin (STZ) to induce T2DM, and the control group was parallelly injected with the same dose of buffer. Seven days after injection, the back is depilated to observe the hair follicle regeneration. Hair follicle regeneration was observed by naked eyes and HE staining. The proliferation of the skin cells was observed by PCNA and K14 staining. The altered genes were screened by RNA sequencing and verified by qRT-PCR. In addition, Lgr5 + GFP/mTmG transgenic mice were used to observe the effect of T2DM on Lgr5 hair follicle stem cells (HFSC). And the expression of WNT4 and WNT8A were measured by Western Blot. RESULTS T2DM inhibited hair follicle regeneration. Compared to control mice, T2DM mice had smaller hair follicles, reduced skin thickness, and less expression of PCNA and K14. RNA sequencing showed that the two groups had significant differences in cell cycle and proliferation-related pathways. Compared with the control mice, the mRNA expression of Lgr4, Lgr5, Wnt4, and Wnt8a was decreased in the T2DM group. Moreover, T2DM inhibited the activation of Lgr5 HFSC and the expression of WNT4 and WNT8A. CONCLUSIONS T2DM inhibited hair follicle regeneration and skin cells proliferation by inhibiting WNT-dependent Lgr5 HFSC activation. This may be an important reason for the reduction of skin renewal ability and the formation of chronic wounds caused by diabetes. It is important for the treatment of chronic diabetic wounds and the development of tissue engineering.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Shangsheng Yao
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Dehua He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Mulan Qahar
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jinqing He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Meifang Yin
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona 37134, Italy
| | - Guang Yang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| |
Collapse
|
12
|
Chen Y, Fan Z, Wang X, Mo M, Zeng SB, Xu RH, Wang X, Wu Y. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res Ther 2020; 11:144. [PMID: 32245516 PMCID: PMC7118821 DOI: 10.1186/s13287-020-01650-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cultured epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs) were capable of reconstituting functional hair follicles after implantation, while the signaling pathways that regulate neogenic hair follicle formation are poorly investigated. In this study, we aimed to understand the interactions between Epi-SCs and SKPs during skin organoid formation and to uncover key signal pathways crucial for de novo hair follicle regeneration. Methods To track their fate after transplantation, Epi-SCs derived from neonatal C57BL/6 mice were labeled with tdTomato, and SKPs were isolated from neonatal C57BL/6/GFP mice. A mixture of Epi-SCs-tdTomato and SKPs-EGFP in Matrigel was observed under two-photon microscope in culture and after implantation into excisional wounds in nude mice, to observe dynamic migrations of the cells during hair follicle morphogenesis. Signaling communications between the two cell populations were examined by RNA-Seq analysis. Potential signaling pathways revealed by the analysis were validated by targeting the pathways using specific inhibitors to observe a functional loss in de novo hair follicle formation. Results Two-photon microscopy analysis indicated that when Epi-SCs and SKPs were mixed in Matrigel and cultured, they underwent dynamic migrations resulting in the formation of a bilayer skin-like structure (skin organoid), where Epi-SCs positioned themselves in the outer layer; when the mixture of Epi-SCs and SKPs was grafted into excisional wounds in nude mice, a bilayer structure resembling the epidermis and the dermis formed at the 5th day, and de novo hair follicles generated subsequently. RNA-Seq analysis of the two cell types after incubation in mixture revealed dramatic alterations in gene transcriptome, where PI3K-Akt signaling pathway in Epi-SCs was significantly upregulated; meanwhile, elevated expressions of several growth factors and cytokine potentially activating PI3K were found in SKPs, suggesting active reciprocal communications between them. In addition, inhibition of PI3K or Akt by specific inhibitors markedly suppressed the hair follicle regeneration mediated by Epi-SCs and SKPs. Conclusions Our data indicate that the PI3K-Akt signaling pathway plays a crucial role in de novo hair follicle regeneration, and the finding may suggest potential therapeutic applications in enhancing hair regeneration.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhimeng Fan
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Miaohua Mo
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Shu Bin Zeng
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xusheng Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
13
|
Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med 2020; 18:53. [PMID: 32014004 PMCID: PMC6996190 DOI: 10.1186/s12967-020-02248-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered skin (TES), as an analogue of native skin, is promising for wound repair and regeneration. However, a major drawback of TES products is a lack of skin appendages and nerves to enhance skin healing, structural integrity and skin vitality. Skin appendages and nerves are important constituents for fully functional skin. To date, many studies have yielded remarkable results in the field of skin appendages reconstruction and nerve regeneration. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients’ quality of life. Current strategies to create skin appendages and sensory nerve regeneration are mainly based on different types of seeding cells, scaffold materials, bioactive factors and involved signaling pathways. This article provides a comprehensive overview of different strategies for, and advances in, skin appendages and sensory nerve regeneration, which is an important issue in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Yurong Zheng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qiong Li
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
14
|
Strassburg S, Caduc M, Stark GB, Jedrusik N, Tomakidi P, Steinberg T, Simunovic F, Finkenzeller G. In vivo evaluation of an electrospun gelatin nonwoven mat for regeneration of epithelial tissues. J Biomed Mater Res A 2019; 107:1605-1614. [PMID: 30907052 DOI: 10.1002/jbm.a.36676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
One major objective in epithelial tissue engineering is to identify a suitable biomaterial that supports epithelial tissue formation. Therefore, the purpose of this study is to elucidate a novel electrospun gelatin nonwoven mat (NWM) for epithelial tissue engineering purposes in vivo. This NWM was seeded with either human gingival keratinocytes (GK, in coculture with gingival fibroblast) or human skin epithelial keratinocytes (EK, in coculture with skin dermal fibroblasts). These constructs were ex vivo cultured for 4 days before subcutaneous implantation into athymic nude mice. After 7 days, the constructs were explanted and investigated by immunohistology. Our results show that GK form a stratified epithelium on the surface of the NWM, mostly independent of a fibroblastic counterpart. Like native mucosa, the regenerated epithelium showed expression of epidermal growth factor receptor, cytokeratin-14 and -1, and involucrin. Only the expression of the basement membrane constituent laminin 5 was more pronounced in cocultures. Comparing GK and skin EK, we found that skin EK form a less developed epithelial tissue. Furthermore, the NWM allows not only for epithelial tissue formation by GK, but also for infiltration of human fibroblasts and mouse immune cells, thus representing a biomaterial with potential regenerative capacity for oral mucosa tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1605-1614, 2019.
Collapse
Affiliation(s)
- Sandra Strassburg
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Madeline Caduc
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gerhard Bjoern Stark
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nicole Jedrusik
- Division of Oral Biotechnology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Filip Simunovic
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
15
|
Zhang Y, Chang M, Bao F, Xing M, Wang E, Xu Q, Huan Z, Guo F, Chang J. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. NANOSCALE 2019; 11:6315-6333. [PMID: 30882821 DOI: 10.1039/c8nr09818b] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Due to the complexity of the skin tissue structure, the regeneration of the entire skin, including skin appendages such as hair follicles, is a big challenge. In addition, skin trauma is often accompanied by bacterial infections that delay the wound healing. Therefore, developing wound dressings, which promote hair follicle regeneration and inhibit bacterial infection in the wound healing process, is of great clinical significance. In this study, Zn doped hollow mesoporous silica nanospheres (HMZS) were synthesized by a sol-gel method and a novel wound healing dressing was prepared by incorporation of drug ciprofloxacin hydrochloride (CiH)-loaded Zn containing mesoporous silica nanospheres (CiH-HMZS) into polycaprolactone (PCL) electrospun fibers. The CiH-HMZS/P nano-composite electrospun fibers exhibit the ability to promote angiogenesis and skin regeneration by releasing Si ions, and the activity to enhance hair follicle regeneration and inhibit bacterial growth by releasing zinc ions and achieve the synergistic antibacterial effect with both Zn ions and CiH in low concentrations. Thus, the CiH-HMZS/P nano-composite membrane is a promising multi-functional wound healing material for inhibiting bacterial growth in infected wounds and enhancing skin wound healing including hair follicle regeneration.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li B, Xue H, Zhao X, Weng Y, Li G, Wang K, Zhou P, Wu Y, Vankelecom H, Chen J. Skin Epidermis and Adnexa Regrowth Induced by Treatment With Artificial Dermal Template After Full-Thickness Skin Wound. INT J LOW EXTR WOUND 2019; 18:42-55. [PMID: 30616449 DOI: 10.1177/1534734618818909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Full-thickness skin wounds are common accidents. Although healing can be achieved by treatments like autologous skin grafts, donor site morbidity is hardly evitable. In this article, we provide compelling evidence demonstrating that artificial dermal template (ADT)-treated wound healing is achieved by regrowth of skin epidermis as well as adnexa without skin grafts by use of rodent models. First, by fixating a chamber to the wound edge, we confirmed that wound healing was achieved by regeneration instead of contracture. We found highly proliferative cells in adnexa in the newly formed skin. In the distal edge of newly formed skin, we identified immature hair follicles at early developing stages, suggesting they were newly regenerated. Second, we observed that the Lgr5-positive hair follicle stem cells contributed to formation of new hair follicles through a lineage tracing model. Also, Lgr6-positive cells were enriched in distal edge of newly developed skin. Finally, WNT signaling pathway mediators were highly expressed in the new skin epidermis and adnexa, implying a potential role of WNT signaling during ADT treatment-stimulated skin regrowth. Taken together, our findings demonstrated that full skin regrowth can be induced by ADT treatment alone, thus arguing for its wide clinical application in skin wound treatment.
Collapse
Affiliation(s)
- Binghui Li
- 1 Wuhan Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Hang Xue
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaobo Zhao
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yuxiong Weng
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Gongchi Li
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Kun Wang
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Pan Zhou
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Youtong Wu
- 3 University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jianghai Chen
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
17
|
Abstract
BACKGROUND The incidence of hair loss among Chinese male has increased to 21.3 per hundred. Hair restoration has been an effective technique. Detailed hair distribution has a tremendous impact on the surgery design. OBJECTIVE To investigate the pattern of hair distribution in Chinese young adult males. METHODS A total of 1000 males without hair disease were enrolled. We evaluated the locations of the main anatomical marks at different sites on the scalp and analyzed the hair density and follicular unit structure using the standard photographs and trichoscope. RESULTS The hairline shapes were classified as: linear (48.7%), linear with central protrusion (27.9%), round (9.8%), round with central protrusion (13.7%). The average height of the median line was 6.78 ± 0.75 cm, the ratio of the median line and the forehead height was 0.333. The average distance from the parietal whorl to the vertical bimeatal line was 7.05 ± 3.32 cm, and most of the PWs were on the right (51.4%) and had a clockwise pattern (73.3%). The hair density was 171.12 ± 18.32 hairs/cm in the vertex. 1-hair follicular units were (75.90% and 56.39%) in anterior hairline and temporal area. CONCLUSION Our study clearly assisted understanding of scalp anatomy and hair distribution in Chinese young adult males.
Collapse
|
18
|
Vidor SB, Terraciano PB, Valente FS, Rolim VM, Kuhl CP, Ayres LS, Garcez TNA, Lemos NE, Kipper CE, Pizzato SB, Driemeier D, Cirne-Lima EO, Contesini EA. Adipose-derived stem cells improve full-thickness skin grafts in a rat model. Res Vet Sci 2018; 118:336-344. [PMID: 29621642 DOI: 10.1016/j.rvsc.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 03/08/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
To investigate the effects of heterologous adipose-derived stem cells (ADSCs) on autologous full-thickness skin grafts, we designed a first-intention healing model using Wistar rats. We harvested and sutured two full-thickness skin grafts in the dorsal recipient beds of 15 rats, randomized into three groups. In the treatment group, 1 × 106 ADSCs resuspended in saline solution (200 μL) were administered subcutaneously to the skin graft. The control group received only saline solution subcutaneously, whereas the negative control group did not receive any treatment. Compressive dressings were maintained until postoperative day 5. The grafts were assessed by two observers, who checked for the presence of epidermolysis on day 14. Planimetry showed the relative areas of normal skin, redness, ulceration, and contraction. Graft samples were obtained on day 14 and stained with hematoxylin and eosin and Masson's trichrome. Epidermal analysis evaluated thickening, keratosis, acanthosis, hydropic degeneration, and inflammatory infiltrate. Dermal evaluation investigated the absence of hair follicles, granulation tissue formation, presence of inflammatory infiltrate, and collagen deposition. Immunohistochemistry was performed for dermal anti-VEGF and epidermal anti-Ki-67 staining. The ADSC group presented better macroscopic aspects, lower incidence of epidermolysis, and less loss of hair follicles. In addition, the ADSC group presented the lowest frequency of histopathological changes in the dermis and epidermis, as well as the largest subcutaneous and granulation tissue VEGF averages and the weakest Ki-67 staining of the epidermal basal layer. Subcutaneous administration of ADSCs may improve the integration of skin grafts, reducing the deleterious effects of ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Silvana Bellini Vidor
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Soldatelli Valente
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Verônica Machado Rolim
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Laura Silveira Ayres
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Sabrina Beal Pizzato
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - David Driemeier
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson Antonio Contesini
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2018; 33:144-172. [PMID: 29385962 DOI: 10.1080/02648725.2018.1430464] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Payam Zarrintaj
- b School of Chemical Engineering, College of Engineering , University of Tehran , Tehran , Iran
| | - Mohammad Omid Oftadeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran.,c Stem Cell Technology Research Center , Tehran , Iran
| | - Farid Keramati
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Hamideh Fouladiha
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Salma Sohrabi-Jahromi
- d Gottingen Center for Molecular Biosciences , Georg August University , Göttingen , Germany
| | | |
Collapse
|
20
|
Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine. Biomaterials 2017; 154:291-300. [PMID: 29156398 DOI: 10.1016/j.biomaterials.2017.10.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Hair follicle morphogenesis is triggered by reciprocal interactions between hair follicle germ (HFG) epithelial and mesenchymal layers. Here, we developed a method for large-scale preparation of HFGs in vitro via self-organization of cells. We mixed mouse epidermal and mouse/human mesenchymal cells in suspension and seeded them in microwells of a custom-designed array plate. Over a 3-day culture period, cells initially formed a randomly distributed single cell aggregate and then spatially separated from each other, exhibiting typical HFG morphological features. These self-sorted hair follicle germs (ssHFGs) were shown to be capable of efficient hair-follicle and shaft generation upon intracutaneous transplantation into the backs of nude mice. This finding facilitated the large-scale preparation of approximately 5000 ssHFGs in a microwell-array chip made of oxygen-permeable silicone. We demonstrated that the integrity of the oxygen supply through the bottom of the silicone chip was crucial to enabling both ssHFG formation and subsequent hair shaft generation. Finally, spatially aligned ssHFGs on the chip were encapsulated into a hydrogel and simultaneously transplanted into the back skin of nude mice to preserve their intervening spaces, resulting in spatially aligned hair follicle generation. This simple ssHFG preparation approach is a promising strategy for improving current hair-regenerative medicine techniques.
Collapse
|
21
|
Zhang Q, Zu T, Zhou Q, Wen J, Leng X, Wu X. The patch assay reconstitutes mature hair follicles by culture-expanded human cells. Regen Med 2017; 12:503-511. [PMID: 28749726 DOI: 10.2217/rme-2017-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM We tested whether the a simple injection known as the patch assay could reconstitute mature hair follicles by culture-expanded human cells and explored whether the assay could reflect the trichogenicity of cultured cells. MATERIALS & METHODS Dissociated culture-expanded fetal or adult scalp dermal cells combined with foreskin keratinocytes were subcutaneously injected into the back skin of immunosuppressive mice to form the patch skin. The patches were collected and characterized and were analyzed for hair formation efficiency. RESULTS Using culture-expanded human fetal cells, the patch assay can efficiently reconstitute mature hair follicles and the efficiency of hair formation in the patch assay correlates with cell trichogenicity. CONCLUSION The patch assay has the potential for testing the trichogenicity of human cells.
Collapse
Affiliation(s)
- Qun Zhang
- Suzhou Institute of Shandong University, Building H of NUSP, 388 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.,School of Stomatology, Shandong University, Jinan, Shandong China
| | - Tingjian Zu
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Qian Zhou
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Jie Wen
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Xue Leng
- School of Stomatology, Shandong University, Jinan, Shandong China
| | - Xunwei Wu
- Suzhou Institute of Shandong University, Building H of NUSP, 388 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.,School of Stomatology, Shandong University, Jinan, Shandong China
| |
Collapse
|
22
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Culture of Dermal Papilla Cells from Ovine Wool Follicles: An In Vitro Model for Papilla Size Determination. Methods Mol Biol 2016. [PMID: 27431251 DOI: 10.1007/978-1-4939-3786-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Common human balding or hair loss is driven by follicle miniaturization. Miniaturization is thought to be caused by a reduction in dermal papilla size. The molecular mechanisms that regulate papilla size are poorly understood, and their elucidation would benefit from a tractable experimental model. We have found that dermal papilla cells from sheep spontaneously aggregate in culture to form papilla-like structures. Here, we describe methods for microdissecting dermal papillae from wool follicles, for initiating and maintaining cultures of ovine papilla cells, and for using these cells in an in vitro assay to measure the effect of bioactive molecules on aggregate size.
Collapse
|
24
|
Zhu FB, Fang XJ, Liu DW, Shao Y, Zhang HY, Peng Y, Zhong QL, Li YT, Liu DM. Substance P combined with epidermal stem cells promotes wound healing and nerve regeneration in diabetes mellitus. Neural Regen Res 2016; 11:493-501. [PMID: 27127492 PMCID: PMC4829018 DOI: 10.4103/1673-5374.179073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 01/26/2023] Open
Abstract
Exogenous substance P accelerates wound healing in diabetes, but the mechanism remains poorly understood. Here, we established a rat model by intraperitoneally injecting streptozotocin. Four wounds (1.8 cm diameter) were drilled using a self-made punch onto the back, bilateral to the vertebral column, and then treated using amniotic membrane with epidermal stem cells and/or substance P around and in the middle of the wounds. With the combined treatment the wound-healing rate was 100% at 14 days. With prolonged time, type I collagen content gradually increased, yet type III collagen content gradually diminished. Abundant protein gene product 9.5- and substance P-immunoreactive nerve fibers regenerated. Partial nerve fiber endings extended to the epidermis. The therapeutic effects of combined substance P and epidermal stem cells were better than with amniotic membrane and either factor alone. Our results suggest that the combination of substance P and epidermal stem cells effectively contributes to nerve regeneration and wound healing in diabetic rats.
Collapse
Affiliation(s)
- Fei-bin Zhu
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Burns, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - Xiang-jing Fang
- Department of Burns, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - De-wu Liu
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Shao
- Department of Burns, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - Hong-yan Zhang
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Peng
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing-ling Zhong
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yong-tie Li
- Burns Institute, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - De-ming Liu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
25
|
van Zuijlen P, Gardien K, Jaspers M, Bos EJ, Baas DC, van Trier A, Middelkoop E. Tissue engineering in burn scar reconstruction. BURNS & TRAUMA 2015; 3:18. [PMID: 27574664 PMCID: PMC4964040 DOI: 10.1186/s41038-015-0017-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023]
Abstract
Nowadays, most patients with severe burns will survive their injury. This evolution is accompanied by the challenge to cover a large percentage of total body surface area burned. Consequently, more and more patients have to deal with the sequelae of burn scars and require (multiple) reconstructions. This review provides a gross overview of developments in the field of tissue engineering for permanent burn wound coverage and reconstructive burn surgery, focusing on usage and clinical effectiveness. Not only skin substitutes will be discussed but also the replacement of subcutaneous fat tissue and cartilage.
Collapse
Affiliation(s)
- Ppm van Zuijlen
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands ; Association of Dutch Burn Centers, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Klm Gardien
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands ; Association of Dutch Burn Centers, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Meh Jaspers
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands ; Association of Dutch Burn Centers, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - E J Bos
- Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - D C Baas
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands
| | - Ajm van Trier
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands
| | - E Middelkoop
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands ; Association of Dutch Burn Centers, Beverwijk, The Netherlands ; Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Wu X, Scott L, Washenik K, Stenn K. Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells. Tissue Eng Part A 2015; 20:3314-21. [PMID: 25074625 DOI: 10.1089/ten.tea.2013.0759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.
Collapse
Affiliation(s)
- Xunwei Wu
- Aderans Research Institute, Inc. , Marietta, Georgia
| | | | | | | |
Collapse
|
27
|
Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns 2015; 41:1764-1774. [PMID: 26187057 DOI: 10.1016/j.burns.2015.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/15/2022]
Abstract
Creation of functional skin substitutes within a clinically acceptable time window is essential for timely repair and management of large wounds such as extensive burns. The aim of this study was to investigate the possibility of fabricating skin substitutes via a bottom-up nanofiber-enabled cell assembly approach and using such substitutes for full-thickness wound repair in nude mice. Following a layer-by-layer (L-b-L) manner, human primary skin cells (fibroblasts and keratinocytes) were rapidly assembled together with electrospun polycaprolactone (PCL)/collagen (3:1, w/w; 8%, w/v) nanofibers into 3D constructs, in which fibroblasts and keratinocytes were located in the bottom and upper portion respectively. Following culture, the constructs developed into a skin-like structure with expression of basal keratinocyte markers and deposition of new matrix while exhibiting good mechanical strength (as high as 4.0 MPa by 14 days). Treatment of the full-thickness wounds created on the back of nude mice with various grafts (acellular nanofiber meshes, dermal substitutes, skin substitutes and autografts) revealed that 14-day-cultured skin substitutes facilitated a rapid wound closure with complete epithelialization comparable to autografts. Taken together, skin-like substitutes can be formed by L-b-L assembling human skin cells and biomimetic nanofibers and they are effective to heal acute full-thickness wounds in nude mice.
Collapse
|
28
|
Dong L, Hao H, Liu J, Tong C, Ti D, Chen D, Chen L, Li M, Liu H, Fu X, Han W. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system. J Tissue Eng Regen Med 2015; 11:1479-1489. [PMID: 26118627 DOI: 10.1002/term.2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/02/2015] [Accepted: 04/29/2015] [Indexed: 11/09/2022]
Abstract
Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Deyun Chen
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Li Chen
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Meirong Li
- Central Laboratory, Hainan Branch, Chinese PLA General Hospital, Sanya, People's Republic of China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
29
|
Gardien KLM, Middelkoop E, Ulrich MMW. Progress towards cell-based burn wound treatments. Regen Med 2015; 9:201-18. [PMID: 24750061 DOI: 10.2217/rme.13.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapy as part of the concept of regenerative medicine represents an upcoming platform technology. Although cultured epidermal cells have been used in burn treatment for decades, new developments have renewed the interest in this type of treatment. Whereas early results were hampered by long culture times in order to produce confluent sheets of keratinocytes, undifferentiated proliferating cells can nowadays be applied on burns with different application techniques. The application of cells on carriers has improved early as well as long-term results in experimental settings. The results of several commercially available epidermal substitutes for burn wound treatment are reviewed in this article. These data clearly demonstrate a lack of randomized comparative trials and application of measurable outcome parameters. Experimental research in culture systems and animal models has demonstrated new developments and proof of concepts of further improvements in epidermal coverage. These include combinations of epidermal cells and mesenchymal stem cells, and the guidance of both material and cell interactions towards regeneration of skin appendages as well as vascular and nerve structures.
Collapse
Affiliation(s)
- Kim L M Gardien
- Department of Plastic Reconstructive & Hand Surgery, MOVE Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Bi H, Jin Y. Current progress of skin tissue engineering: Seed cells, bioscaffolds, and construction strategies. BURNS & TRAUMA 2013; 1:63-72. [PMID: 27574627 PMCID: PMC4978104 DOI: 10.4103/2321-3868.118928] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of cell biology, molecular biology, and material science, has been propelling biomimic tissue-engineered skins to become more sophisticated in scientificity and more simplified in practicality. In order to improve the safety, durability, elasticity, biocompatibility, and clinical efficacy of tissue-engineered skin, several powerful seed cells have already found their application in wound repair, and a variety of bioactive scaff olds have been discovered to influence cell fate in epidermogenesis. These exuberant interests provide insights into advanced construction strategies for complex skin mimics. Based on these exciting developments, a complete full-thickness tissue-engineered skin is likely to be generated.
Collapse
Affiliation(s)
- Huanjing Bi
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, Shaanxi, China
| | - Yan Jin
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, College of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
31
|
Vrana NE, Lavalle P, Dokmeci MR, Dehghani F, Ghaemmaghami AM, Khademhosseini A. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:529-43. [PMID: 23705900 DOI: 10.1089/ten.teb.2012.0603] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Nihal E Vrana
- 1 Institut National de la Santé et de la Recherche Médicale , INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie," Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
32
|
Lu G, Huang S. Bioengineered skin substitutes: key elements and novel design for biomedical applications. Int Wound J 2012; 10:365-71. [PMID: 23095109 DOI: 10.1111/j.1742-481x.2012.01105.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Significant progress has been made in the development of in vitro-engineered skin substitutes that mimic human skin, either to be used for the replacement of lost skin or for the establishment of in vitro skin research models. However, at the present time, there are no models of bioengineered skin that completely replicate the nature of uninjured skin. Obviously, there is still much room for improvement of the components of bioengineered skin and their interplay. This review summarises the important new discoveries in key elements of engineering of tissue-engineered skin including cell sources, biomaterials and growth factors, etc. Furthermore, basic and clinical applications for engineered skin substitutes in cell therapy, tissue engineering, and biomedical research continue to drive design improvements premised on these structure and function-based engineering paradigms.
Collapse
Affiliation(s)
- Gang Lu
- Department of Burn and Plastic Surgery, General Hospital of Beijing PLA Military Region, Beijing, PR China
| | | |
Collapse
|
33
|
Oh JW, Choi JY, Kim M, Abdi SIH, Lau HC, Kim M, Lim JO. Fabrication and characterization of epithelial scaffolds for hair follicle regeneration. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0147-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
34
|
Abstract
This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The past 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cells include defining molecular markers for stem and progenitor sub-populations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy.
Collapse
Affiliation(s)
- Ruby Ghadially
- Department of Dermatology and Epithelial Section, UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94121, USA.
| |
Collapse
|
35
|
Fu X, Wang H. Rapid fabrication of biomimetic nanofiber-enabled skin grafts. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.3.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|