1
|
Wordsworth M, Harrington CJ, Juckett L, Souza JM. A conceptual framework for soft tissue management of transdermal bone-anchored implants in extremity prostheses. OTA Int 2025; 8:e370. [PMID: 40071172 PMCID: PMC11892706 DOI: 10.1097/oi9.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025]
Abstract
Soft tissue complications are among the most common reasons for revision surgery following transdermal, bone-anchored osseointegration. While many orthopaedic surgeons are familiar and experienced with the use of intramedullary implants, the soft tissue management surrounding a percutaneous and permanent implant in continuity with the outside environment remains a challenging problem. With this in mind, we present our rationale and a framework for soft tissue considerations in preparation for bone-anchored osseointegration based on early experiences with most commercially available osseointegration systems.
Collapse
Affiliation(s)
- Matthew Wordsworth
- Department of Surgery, Imperial College Healthcare NHS Trust, London, United Kingdom
- Departments of Plastic and Reconstructive Surgery & Orthopedic Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Colin J. Harrington
- Division of Orthopaedics, Department of Surgery, Uniformed Services University, Walter Reed National Military Medical Center, Bethesda, MD
| | - Luke Juckett
- Departments of Plastic and Reconstructive Surgery & Orthopedic Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jason M. Souza
- Departments of Plastic and Reconstructive Surgery & Orthopedic Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
2
|
Zhang H, Li X, Jia Z, Jiao K, Liu C, Deng Z, Bai Y, Wei X, Zhou X. Bioprinted hydrogels in bone regeneration: a bibliometric analysis. Front Pharmacol 2025; 16:1532629. [PMID: 39963238 PMCID: PMC11830744 DOI: 10.3389/fphar.2025.1532629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background The application of bioprinted hydrogels in the field of bone regeneration is garnering increasing attention. The objective of this study is to provide a comprehensive overview of the current research status, hotspots and research directions in this field through bibliometric methods, and to predict the development trend of this field. Methods A search was conducted on 27 December 2024, for papers published on the Web of Science from 2010 to 2025. We used the bibliometrix package in the software program R to analyze the retrieved data and VOSviewer and CiteSpace to visualize hotspots and research trends in bioprinted hydrogels for bone regeneration. Results We identified and reviewed 684 articles published in this field between 2010 and 2025. A total of 811 institutions and 1,166 researchers from 41 countries/regions contributed to these publications. Among them, China led in terms of the number of articles published, single-country publications (SCP), and multi-country publications (MCP). Our bibliometric-based visualization analysis revealed that the mechanical properties and osteogenic differentiation capacity of biomaterials have been a focal research topic over the past decade, while emerging research has also concentrated on the in vitro fabrication of stem cells for bone regeneration and osteogenic differentiation, particularly the precise application of in situ stem cell-loaded bioprinted organoids. Conclusion This study provides an in-depth analysis of the research trajectory in the application of bioprinted hydrogels for bone regeneration. The number of research papers in this field is increasing annually, and the main research hotspots include bone regeneration, 3D printing, scaffolds, and hydrogels. Future research directions may focus on gelatin, additive manufacturing, and growth factors. Additionally, international collaboration is essential to enhance the effectiveness of bioprinted hydrogels in bone regeneration applications.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyu Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Zhenyu Jia
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
- Department of Outpatient Service, Military District Shenyang No. 1 Retreat Center for Separated Cadres, Liaoning, China
| | - Zixiang Deng
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| |
Collapse
|
3
|
Badami A, Esmaeili J, Mirtalaie H. Employing Polymer and Gel to Fabricate Scaffold-like Cancellous Orthopedic Screw: Polycaprolactone/Chitosan/Hydroxyapatite. Gels 2025; 11:28. [PMID: 39851999 PMCID: PMC11765406 DOI: 10.3390/gels11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Using metallic/polymeric orthopedic screws causes cavities in bone trauma after the attachment of broken bones, which prolongs the healing. Yet, it remains unknown how to overcome such a challenge. The main aim of this research was to use both polymers and gels to fabricate and study a new PCL/chitosan/hydroxyapatite scaffold-like orthopedic screw for cancellous bone trauma. This screw, because of its low stiffness and its scaffold-based matrix (due to the gel part), can facilitate bone healing. Different concentrations of PCL (60-95% w/v) and chitosan (0-5% w/v) were blended according to the Response Surface Methodology using the Central Composite Design. The screws were fabricated using the freeze-drying technique. The screws were assessed mechanically, physically, and biologically (cell viability, cell attachment, DAPI, ALP staining, and Alizarin Red staining), and in vivo (a rat subcutaneous implantation model). Based on the results, screws depending on the PCL and gel content depicted different but notable mechanical behavior (10-60 MPa of compressive strength and 100-600 N force). The gel part could affect the physical properties of screws including water uptake (120%), degradation (18% after 21 days), porosities (23%), and mechanical strength (elastic modulus = 59.47 Mpa). The results also demonstrated no cytotoxicity towards MC3T3 cells (>80% cell viability) with good cell attachment, cell concentration, and mineralization (>90%) that was justified by the gel content. The results also showed good in vivo biocompatibility. To sum up, fabricated scaffold-like screws with gel content can be a good candidate for cancellous-bone-based orthopedic purposes. However, more in vitro and in vivo studies are required to optimize the PCL:gel ratio.
Collapse
Affiliation(s)
- AmirHossein Badami
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8543131, Iran;
| | - Javad Esmaeili
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran;
- Department of Applied Science, UQAC University, Quebec, QC G7H 4V8, Canada
| | - Hasan Mirtalaie
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8543131, Iran;
| |
Collapse
|
4
|
Baroni S, Oliviero S, La Mattina AA, Maglio M, Martini L, Fini M, Viceconti M. Calibration of Aseptic Loosening Simulation for Coatings Osteoinductive Effect. Ann Biomed Eng 2025; 53:34-47. [PMID: 39120770 PMCID: PMC11782331 DOI: 10.1007/s10439-024-03588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
The risk of aseptic loosening in cementless hip stems can be reduced by improving osseointegration with osteoinductive coatings favoring long-term implant stability. Osseointegration is usually evaluated in vivo studies, which, however, do not reproduce the mechanically driven adaptation process. This study aims to develop an in silico model to predict implant osseointegration and the effect of induced micromotion on long-term stability, including a calibration of the material osteoinductivity with conventional in vivo studies. A Finite Element model of the tibia implanted with pins was generated, exploiting bone-to-implant contact measures of cylindrical titanium alloys implanted in rabbits' tibiae. The evolution of the contact status between bone and implant was modeled using a finite state machine, which updated the contact state at each iteration based on relative micromotion, shear and tensile stresses, and bone-to-implant distance. The model was calibrated with in vivo data by identifying the maximum bridgeable gap. Afterward, a push-out test was simulated to predict the axial load that caused the macroscopic mobilization of the pin. The bone-implant bridgeable gap ranged between 50 μm and 80 μm. Predicted push-out strength ranged from 19 N to 21 N (5.4 MPa-3.4 MPa) depending on final bone-to-implant contact. Push-out strength agrees with experimental measurements from a previous animal study (4 ± 1 MPa), carried out using the same implant material, coated, or uncoated. This method can partially replace in vivo studies and predict the long-term stability of cementless hip stems.
Collapse
Affiliation(s)
- Sofia Baroni
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Sara Oliviero
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Melania Maglio
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Martini
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano1/10, 40136, Bologna, Italy
| |
Collapse
|
5
|
Garcia-Perez VI, Hotchkiss KM, Silva-Bermudez P, Hernández MM, Prado-Prone G, Olivares-Navarrete R, Rodil SE, Almaguer-Flores A. Amorphous TiO 2nano-coating on stainless steel to improve its biological response. Biomed Mater 2024; 19:055037. [PMID: 39121890 PMCID: PMC11337115 DOI: 10.1088/1748-605x/ad6dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This study delves into the potential of amorphous titanium oxide (aTiO2) nano-coating to enhance various critical aspects of non-Ti-based metallic orthopedic implants. These implants, such as medical-grade stainless steel (SS), are widely used for orthopedic devices that demand high strength and durability. The aTiO2nano-coating, deposited via magnetron sputtering, is a unique attempt to improve the osteogenesis, the inflammatory response, and to reduce bacterial colonization on SS substrates. The study characterized the nanocoated surfaces (SS-a TiO2) in topography, roughness, wettability, and chemical composition. Comparative samples included uncoated SS and sandblasted/acid-etched Ti substrates (Ti). The biological effects were assessed using human mesenchymal stem cells (MSCs) and primary murine macrophages. Bacterial tests were carried out with two aerobic pathogens (S. aureusandS. epidermidis) and an anaerobic bacterial consortium representing an oral dental biofilm. Results from this study provide strong evidence of the positive effects of the aTiO2nano-coating on SS surfaces. The coating enhanced MSC osteoblastic differentiation and exhibited a response similar to that observed on Ti surfaces. Macrophages cultured on aTiO2nano-coating and Ti surfaces showed comparable anti-inflammatory phenotypes. Most significantly, a reduction in bacterial colonization across tested species was observed compared to uncoated SS substrates, further supporting the potential of aTiO2nano-coating in biomedical applications. The findings underscore the potential of magnetron-sputtering deposition of aTiO2nano-coating on non-Ti metallic surfaces such as medical-grade SS as a viable strategy to enhance osteoinductive factors and decrease pathogenic bacterial adhesion. This could significantly improve the performance of metallic-based biomedical devices beyond titanium.
Collapse
Affiliation(s)
- Victor I Garcia-Perez
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering Commonwealth, College of Engineering, Virginia University, Richmond, VA 23284, United States of America
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos,Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra. Calzada México-Xochimilco, Ciudad de México 14389, Mexico
| | - Miryam Martínez Hernández
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Gina Prado-Prone
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering Commonwealth, College of Engineering, Virginia University, Richmond, VA 23284, United States of America
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, CDMX 04510, Mexico
| |
Collapse
|
6
|
Maglio M, Fini M, Sartori M, Codispoti G, Borsari V, Dallari D, Ambretti S, Rocchi M, Tschon M. An Advanced Human Bone Tissue Culture Model for the Assessment of Implant Osteointegration In Vitro. Int J Mol Sci 2024; 25:5322. [PMID: 38791362 PMCID: PMC11120747 DOI: 10.3390/ijms25105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.
Collapse
Affiliation(s)
- Melania Maglio
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Scientific Direction, 40136 Bologna, Italy;
| | - Maria Sartori
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Giorgia Codispoti
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Veronica Borsari
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Dante Dallari
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Martina Rocchi
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Matilde Tschon
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| |
Collapse
|
7
|
Sole-Gras M, Ren B, Ryder BJ, Ge J, Huang J, Chai W, Yin J, Fuchs GE, Wang G, Jiang X, Huang Y. Vapor-induced phase-separation-enabled versatile direct ink writing. Nat Commun 2024; 15:3058. [PMID: 38594271 PMCID: PMC11003993 DOI: 10.1038/s41467-024-47452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Versatile printing of polymers, metals, and composites always calls for simple, economic approaches. Here we present an approach to three-dimensional (3D) printing of polymeric, metallic, and composite materials at room conditions, based on the polymeric vapor-induced phase separation (VIPS) process. During VIPS 3D printing (VIPS-3DP), a dissolved polymer-based ink is deposited in an environment where nebulized non-solvent is present, inducing the low-volatility solvent to be extracted from the filament in a controllable manner due to its higher chemical affinity with the non-solvent used. The polymeric phase is hardened in situ as a result of the induced phase separation process. The low volatility of the solvent enables its reclamation after the printing process, significantly reducing its environmental footprint. We first demonstrate the use of VIPS-3DP for polymer printing, showcasing its potential in printing intricate structures. We further extend VIPS-3DP to the deposition of polymer-based metallic inks or composite powder-laden polymeric inks, which become metallic parts or composites after a thermal cycle is applied. Furthermore, spatially tunable porous structures and functionally graded parts are printed by using the printing path to set the inter-filament porosity as well as an inorganic space-holder as an intra-filament porogen.
Collapse
Affiliation(s)
- Marc Sole-Gras
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Benjamin J Ryder
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
| | - Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Jun Yin
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gerhard E Fuchs
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA.
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
van Hengel IAJ, van Dijk B, Modaresifar K, Hooning van Duyvenbode JFF, Nurmohamed FRHA, Leeflang MA, Fluit AC, Fratila-Apachitei LE, Apachitei I, Weinans H, Zadpoor AA. In Vivo Prevention of Implant-Associated Infections Caused by Antibiotic-Resistant Bacteria through Biofunctionalization of Additively Manufactured Porous Titanium. J Funct Biomater 2023; 14:520. [PMID: 37888185 PMCID: PMC10607138 DOI: 10.3390/jfb14100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Additively manufactured (AM) porous titanium implants may have an increased risk of implant-associated infection (IAI) due to their huge internal surfaces. However, the same surface, when biofunctionalized, can be used to prevent IAI. Here, we used a rat implant infection model to evaluate the biocompatibility and infection prevention performance of AM porous titanium against bioluminescent methicillin-resistant Staphylococcus aureus (MRSA). The specimens were biofunctionalized with Ag nanoparticles (NPs) using plasma electrolytic oxidation (PEO). Infection was initiated using either intramedullary injection in vivo or with in vitro inoculation of the implant prior to implantation. Nontreated (NT) implants were compared with PEO-treated implants with Ag NPs (PT-Ag), without Ag NPs (PT) and infection without an implant. After 7 days, the bacterial load and bone morphological changes were evaluated. When infection was initiated through in vivo injection, the presence of the implant did not enhance the infection, indicating that this technique may not assess the prevention but rather the treatment of IAIs. Following in vitro inoculation, the bacterial load on the implant and in the peri-implant bony tissue was reduced by over 90% for the PT-Ag implants compared to the PT and NT implants. All infected groups had enhanced osteomyelitis scores compared to the noninfected controls.
Collapse
Affiliation(s)
- Ingmar Aeneas Jan van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | | | | | - Marius Alexander Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Adriaan Camille Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lidy Elena Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Harrie Weinans
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Amir Abbas Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| |
Collapse
|
10
|
Vidane AS, Nunes FC, Ferreira JA, Fukumasu H, Freitas SH, Pallone EMJA, Ambrósio CE. Biocompatibility and interaction of porous alumina-zirconia scaffolds with adipose-derived mesenchymal stem cells for bone tissue regeneration. Heliyon 2023; 9:e20128. [PMID: 37809419 PMCID: PMC10559935 DOI: 10.1016/j.heliyon.2023.e20128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Replacement of bone defects with bone graft or implant is an important therapeutic strategy that has been used in routine practice. However, the identification of biomaterials that can mimic natural bone properties and serve as bone substitutes remains a major challenge. In this context, alumina-zirconia (Al2O3/ZrO2) nanocomposites emerge as potential alternatives for biomedical applications, owing to their high mechanical strength, wear resistance, and biocompatibility. In this sense, in this study, we prepared porous Al2O3/ZrO2 nanocomposites (scaffolds) using the gelcasting method and biomimetically coated them with calcium phosphate (CaP). We evaluated the biocompatibility of the scaffolds using the quantitative MTT cytotoxicity test in L929 cells. Moreover, rabbit adipose-derived mesenchymal stem cells (rADMSCs) were seeded with CaP-containing and CaP-free porous samples to evaluate cell proliferation and cell-scaffold interaction in vitro. Our results showed that the Al2O3/ZrO2 scaffolds were non-cytotoxic, and there were no significant differences between CaP-containing and CaP-free scaffolds in terms of cell growth and adhesion. In contrast, when co-cultured with rADMSCs, the scaffolds enhanced cell proliferation and cell adhesion. The rADMSCs adhered and migrated through the pores of the scaffold and anchored to different poles with differentiated elongated structures. These results suggest osteogenic differentiation of rADMSCs in response to mechanical loading of Al2O3/ZrO2 scaffolds. Therefore, we conclude that Al2O3/ZrO2 scaffolds have demonstrated significant implications in bone tissue engineering and are valuable biomaterials for bone replacement.
Collapse
Affiliation(s)
- Atanasio S. Vidane
- Department of Clinics, Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Fabio C. Nunes
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Julieta A. Ferreira
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Silvio H. Freitas
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Eliria MJA. Pallone
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Carlos E. Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Okulov A, Berger S, Okulov I. Influence of β-Stabilizer Element on Microstructure and Mechanical Behavior of Porous Titanium Alloy Synthesized by Liquid Metal Dealloying. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5699. [PMID: 37629989 PMCID: PMC10456816 DOI: 10.3390/ma16165699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The metallic implant materials for load-bearing applications typically possess a significantly higher stiffness when compared with that of human bone. In some cases, this stiffness mismatch leads to a stress-shielding effect and eventual loosing of the implant. Porous metallic materials are suitable candidates to overcome this problem. In this study, we synthesized low modulus open porous TiFe alloy by liquid metal dealloying of the precursor Ti47.5Fe2.5Cu50 (at.%) material in liquid Mg. Upon liquid metal dealloying, Cu was selectively dissolved from the precursor, and the remaining Ti and Fe elements were reorganized into a bicontinous porous structure. The synthesized TiFe alloy is composed of α-titanium and β-titanium phases. The average measured ligament size is in the micrometer range. It was found that a higher dealloying temperature leads to a pronounced coarsening of the microstructure. The open porous TiFe alloy possesses a low elastic modulus of about 6.4-6.9 GPa. At the same time, its yield strength value reaches about 185 MPa due to the α + β microstructure. Its attractive mechanical properties for biomedical applications, together with its open porous structure, indicate the potential of porous TiFe alloys to be used as implants.
Collapse
Affiliation(s)
- Artem Okulov
- Division of Materials Mechanics, Institute of Materials Research, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany;
| | - Stefan Berger
- Division of Materials Mechanics, Institute of Materials Research, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany;
| | - Ilya Okulov
- Department of Particles and Process Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany;
- Leibniz Institute for Materials Engineering—IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| |
Collapse
|
12
|
Arteaga A, Biguetti CC, Lakkasetter Chandrashekar B, Mora J, Qureshi A, Rodrigues DC. Biological Effects of New Titanium Surface Coatings Based on Ionic Liquids and HMGB1: A Cellular and Molecular Characterization in Lewis Rats. ACS Biomater Sci Eng 2023; 9:4709-4719. [PMID: 37418317 PMCID: PMC11292580 DOI: 10.1021/acsbiomaterials.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
High Mobility Group Box 1 (HMGB1) is a redox-sensitive molecule that plays dual roles in tissue healing and inflammation. We previously demonstrated that HMGB1 is stable when anchored by a well-characterized imidazolium-based ionic liquid (IonL), which serves as a delivery vehicle for exogenous HMGB1 to the site of injury and prevents denaturation from surface adherence. However, HMGB1 exists in different isoforms [fully reduced HMGB1 (FR), a recombinant version of FR resistant to oxidation (3S), disulfide HMGB1 (DS), and inactive sulfonyl HMGB1(SO)] that have distinct biological functions in health and disease. Thus, the goal of this study was to evaluate the effects of different recombinant HMGB1 isoforms on the host response using a rat subcutaneous implantation model. A total of 12 male Lewis rats (12-15 weeks) were implanted with titanium discs containing different treatments (n = 3/time point; Ti, Ti-IonL, Ti-IonL-DS, Ti-IonL-FR, and Ti-IonL-3S) and assessed at 2 and 14 days. Histological (H&E and Goldner trichrome staining), immunohistochemistry, and molecular analyses (qPCR) of surrounding implant tissues were employed for analysis of inflammatory cells, HMGB1 receptors, and healing markers. Ti-IonL-DS samples resulted in the thickest capsule formation, increased pro-inflammatory, and decreased anti-inflammatory cells, while Ti-IonL-3S samples demonstrated suitable tissue healing similar to uncoated Ti discs, as well as an upregulation of anti-inflammatory cells at 14 days compared to all other treatments. Thus, results from this study demonstrated that Ti-IonL-3S are safe alternatives for Ti biomaterials. Future studies are necessary to investigate the healing potential of Ti-IonL-3S in osseointegration scenarios.
Collapse
Affiliation(s)
- Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| | - Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen 78539, Texas, United States
| | | | - Jimena Mora
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| | - Adeena Qureshi
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| |
Collapse
|
13
|
Sheng SR, Wu YH, Dai ZH, Jin C, He GL, Jin SQ, Zhao BY, Zhou X, Xie CL, Zheng G, Tian NF. Safranal inhibits estrogen-deficiency osteoporosis by targeting Sirt1 to interfere with NF-κB acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154739. [PMID: 37004404 DOI: 10.1016/j.phymed.2023.154739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Estrogen deficiency-mediated hyperactivated osteoclasts is the initiating factor for bone loss, which is regulated by nuclear factor-κB (NF-κB) signaling. Safranal (Saf) is a monoterpene aldehyde produced from Saffron (Crocus sativus L.) and possesses multiple biological properties, particularly the anti-inflammatory property. However, Saf's role in osteoporosis remains unknown. PURPOSE This study aims to validate the role of Saf in osteoporosis and explore the potential mechanism. STUDY DESIGN The RANKL-exposed mouse BMM (bone marrow monocytes) and the castration-mediated osteoporosis model were applied to explore the effect and mechanism of Saf in vitro and in vivo. METHOD The effect of Saf on osteoclast formation and function were assessed by TRAcP staining, bone-resorptive experiment, qPCR, immunoblotting and immunofluorescence, etc. Micro-CT, HE, TRAcP and immunohistochemical staining were performed to estimate the effects of Saf administration on OVX-mediated osteoporosis in mice at imaging and histological levels. RESULTS Saf concentration-dependently inhibited RANKL-mediated osteoclast differentiation without affecting cellular viability. Meanwhile, Saf-mediated anti-osteolytic capacity and Sirt1 upregulation were also found in ovariectomized mice. Mechanistically, Saf interfered with NF-κB signaling by activating Sirt1 to increase p65 deacetylation and inactivating IKK to decrease IκBα degradation. CONCLUSION Our results support the potential application of Saf as a therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Sun-Ren Sheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Hao Wu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Shu-Qing Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Bi-Yao Zhao
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Xin Zhou
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Cheng-Long Xie
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| | - Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| | - Nai-Feng Tian
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
14
|
Basir A, Muhamad N, Sulong AB, Jamadon NH, Foudzi FM. Recent Advances in Processing of Titanium and Titanium Alloys through Metal Injection Molding for Biomedical Applications: 2013-2022. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3991. [PMID: 37297124 PMCID: PMC10254049 DOI: 10.3390/ma16113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Metal injection molding (MIM) is one of the most widely used manufacturing processes worldwide as it is a cost-effective way of producing a variety of dental and orthopedic implants, surgical instruments, and other important biomedical products. Titanium (Ti) and Ti alloys are popular modern metallic materials that have revamped the biomedical sector as they have superior biocompatibility, excellent corrosion resistance, and high static and fatigue strength. This paper systematically reviews the MIM process parameters that extant studies have used to produce Ti and Ti alloy components between 2013 and 2022 for the medical industry. Moreover, the effect of sintering temperature on the mechanical properties of the MIM-processed sintered components has been reviewed and discussed. It is concluded that by appropriately selecting and implementing the processing parameters at different stages of the MIM process, defect-free Ti and Ti alloy-based biomedical components can be produced. Therefore, this present study could greatly benefit future studies that examine using MIM to develop products for biomedical applications.
Collapse
Affiliation(s)
| | | | - Abu Bakar Sulong
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.B.); (N.M.); (N.H.J.); (F.M.F.)
| | | | | |
Collapse
|
15
|
Merlo A, González-Martínez E, Saad K, Gomez M, Grewal M, Deering J, DiCecco LA, Hosseinidoust Z, Sask KN, Moran-Mirabal JM, Grandfield K. Functionalization of 3D Printed Scaffolds Using Polydopamine and Silver Nanoparticles for Bone-Interfacing Applications. ACS APPLIED BIO MATERIALS 2023; 6:1161-1172. [PMID: 36881860 DOI: 10.1021/acsabm.2c00988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The prevention of bacterial colonization and the stimulation of osseointegration are two major requirements for bone-interfacing materials to reduce the incidence of complications and promote the restoration of the patient's health. The present investigation developed an effective, two-step functionalization of 3D printed scaffolds intended for bone-interfacing applications using a simple polydopamine (PDA) dip-coating method followed by the formation of silver nanoparticles (AgNPs) after a second coating step in silver nitrate. 3D printed polymeric substrates coated with a ∼20 nm PDA layer and 70 nm diameter AgNPs proved effective in hindering Staphylococcus aureus biofilm formation, with a 3000-8000-fold reduction in the number of bacterial colonies formed. The implementation of porous geometries significantly accelerated osteoblast-like cell growth. Microscopy characterization further elucidated homogeneity, features, and penetration of the coating inside the scaffold. A proof-of-concept coating on titanium substrates attests to the transferability of the method to other materials, broadening the range of applications both in and outside the medical sector. The antibacterial efficiency of the coating is likely to lead to a decrease in the number of bacterial infections developed after surgery in the presence of these coatings on prosthetics, thus translating to a reduction in revision surgeries and improved health outcomes.
Collapse
Affiliation(s)
- Alessandra Merlo
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kamal Saad
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Manjot Grewal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Kyla N Sask
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
16
|
Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving Biocompatibility for Next Generation of Metallic Implants. PROGRESS IN MATERIALS SCIENCE 2023; 133:101053. [PMID: 36686623 PMCID: PMC9851385 DOI: 10.1016/j.pmatsci.2022.101053] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible. Therefore, exploring ways to improve biocompatibility is the most critical step toward designing the next generation of metallic biomaterials. This review discusses methods of improving biocompatibility of metals used in biomedical devices using surface modification, bulk modification, and incorporation of biologics. Our investigation spans multiple length scales, from bulk metals to the effect of microporosities, surface nanoarchitecture, and biomolecules such as DNA incorporation for enhanced biological response in metallic materials. We examine recent technologies such as 3D printing in alloy design and storing surface charge on nanoarchitecture surfaces, metal-on-metal, and ceramic-on-metal coatings to present a coherent and comprehensive understanding of the subject. Finally, we consider the advantages and challenges of metallic biomaterials and identify future directions.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
17
|
Gao Y, Pang Y, Wei S, Han Q, Miao S, Li M, Tian J, Fu C, Wang Z, Zhang X, Yang P, Liu Y. Amyloid-Mediated Nanoarchitectonics with Biomimetic Mineralization of Polyetheretherketone for Enhanced Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10426-10440. [PMID: 36791143 DOI: 10.1021/acsami.2c20711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyetheretherketone (PEEK), a widely used implant material, has attracted the attention of scientific researchers because of its bone-matched elastic modulus, radiolucency, and chemical resistance. However, the bioinert chemical properties of PEEK do not promote bone apposition once implanted. In this study, using a phase-transitioned lysozyme (PTL) nanofilm as a sandwiched layer, a robust hydroxyapatite (HAp) coating on PEEK (HAp@PTL@PEEK) is constructed. The PTL nanofilm shows strong adhesion to the PEEK surface and induces biomimetic mineralization to form a compact HAp coating on PEEK in simulated body fluids. This HAp coating not only shares a higher adhesion strength and better stability but can also be applied to implants with complex 3D structures. HAp@PTL@PEEK showed significantly enhanced osteogenic capacity when cultured with rat bone marrow mesenchymal stem cells by promoting initial cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo evaluations utilizing models of femoral condyle defects and skull defects confirm that the HAp coating substantially augments bone remodeling and osseointegration ability. Compared with the traditional method, our modified method is simpler, more environmentally friendly, and uses less hazardous components. Furthermore, the obtained HAp coating shares a higher adhesion strength to PEEK and a better osteogenic capacity. The study offers a novel method to improve the osseointegration of PEEK-based implants in biointerfaces and tissue engineering.
Collapse
Affiliation(s)
- Yingtao Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yanyun Pang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Shuo Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an 710004, China
| | - Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
- Institute of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
18
|
Liu L, Liu C, Deng C, Wang X, Liu X, Luo M, Wang S, Liu J. Design and performance analysis of 3D-printed stiffness gradient femoral scaffold. J Orthop Surg Res 2023; 18:120. [PMID: 36804017 PMCID: PMC9938570 DOI: 10.1186/s13018-023-03612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Studies on 3D-printed porous bone scaffolds mostly focus on materials or structural parameters, while the repair of large femoral defects needs to select appropriate structural parameters according to the needs of different parts. In this paper, a kind of stiffness gradient scaffold design idea is proposed. Different structures are selected according to the different functions of different parts of the scaffold. At the same time, an integrated fixation device is designed to fix the scaffold. Finite element method was used to analyze the stress and strain of homogeneous scaffolds and the stiffness gradient scaffolds, and the relative displacement and stress between stiffness gradient scaffolds and bone in the case of integrated fixation and steel plate fixation. The results showed that the stress distribution of the stiffness gradient scaffolds was more uniform, and the strain of host bone tissue was changed greatly, which was beneficial to the growth of bone tissue. The integrated fixation method is more stable, less stress and evenly distributed. Therefore, the integrated fixation device combined with the design of stiffness gradient can repair the large femoral bone defect well.
Collapse
Affiliation(s)
- Linlin Liu
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Chang Liu
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Congying Deng
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Xin Wang
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Xiangde Liu
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Maolin Luo
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Shuxian Wang
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Juncai Liu
- grid.488387.8Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000 Sichuan China
| |
Collapse
|
19
|
Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248727. [PMID: 36557865 PMCID: PMC9781125 DOI: 10.3390/molecules27248727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In orthopedic, dental, and maxillofacial fields, joint prostheses, plates, and screws are widely used in the treatment of problems related to bone tissue. However, the use of these prosthetic systems is not free from complications: the fibrotic encapsulation of endosseous implants often prevents optimal integration of the prostheses with the surrounding bone. To overcome these issues, biomimetic titanium implants have been developed where synthetic peptides have been selectively grafted on titanium surfaces via Schiff base formation. We used the retro-inverted sequence (DHVPX) from [351-359] human Vitronectin and its dimer (D2HVP). Both protease-resistant peptides showed increased human osteoblast adhesion and proliferation, an augmented number of focal adhesions, and cellular spreading with respect to the control. D2HVP-grafted samples significantly enhance Secreted Phosphoprotein 1, Integrin Binding Sialoprotein, and Vitronectin gene expression vs. control. An estimation of peptide surface density was determined by Two-photon microscopy analysis on a silanized glass model surface labeled with a fluorescent analog.
Collapse
|
20
|
Hu L, Ge Y, Cao Z, Tian Y, Sun Q, Li Z, Ma J, Wu Y, Wang N, Tang B. Strontium-modified porous polyetheretherketone with the triple function of osteogenesis, angiogenesis, and anti-inflammatory for bone grafting. BIOMATERIALS ADVANCES 2022; 143:213160. [PMID: 36334515 DOI: 10.1016/j.bioadv.2022.213160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polyetheretherketone (PEEK) is a potential bone repair material because of its stable chemical and good mechanical properties. However, the biological inertness of PEEK limits its clinical application. Sr2+ has multi biological functions, including promoting bone formation and blood vessel regeneration and inhibiting inflammation. In this paper, PEEK was modified with Sr2+ with the purpose to construct PEEK bone graft material with triple functions of osteogenesis, angiogenesis, and anti-inflammatory. The results showed that Sr-modified PEEK could stably release Sr2+ for a long time in the PBS solution, and indeed could promote the proliferation and differentiation of osteoblasts, promote angiogenesis, and inhibit inflammation. Therefore, it is believed that this multifunctional PEEK with Sr2+ should show great promise for clinical applications in bone repair.
Collapse
Affiliation(s)
- Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongmei Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhe Cao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - QiLi Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Jing Ma
- Smart Biomaterial Design Lab, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518055, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
21
|
Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Iosif A, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7337. [PMID: 36295401 PMCID: PMC9609740 DOI: 10.3390/ma15207337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, we used the matrix-assisted pulsed laser evaporation (MAPLE) technique to obtain hydroxyapatite (Ca10(PO4)6(OH)2) and magnesium phosphate (Mg3(PO4)2) thin coatings containing bone morphogenetic protein (BMP4) for promoting implants osteointegration and further nebulized with the antibiotic ceftriaxone (CXF) to prevent peri-implant infections. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), infrared microscopy (IRM) and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial properties were evaluated on Staphylococcus aureus biofilms and the cytocompatibility on the MC3T3-E1 cell line. The obtained results proved the potential of the obtained coatings for bone implant applications, providing a significant antimicrobial and antibiofilm effect, especially in the first 48 h, and cytocompatibility in relation to murine osteoblast cells.
Collapse
Affiliation(s)
- Denisa Alexandra Florea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Andrei Iosif
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
22
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Berlinberg EJ, Kavian JA, Roof MA, Shichman I, Frykberg B, Lutes WB, Schnaser EA, Jones SA, McCalden RW, Schwarzkopf R. Minimum 2-Year Outcomes of a Novel 3D-printed Fully Porous Titanium Acetabular Shell in Revision Total Hip Arthroplasty. Arthroplast Today 2022; 18:39-44. [PMID: 36267391 PMCID: PMC9576483 DOI: 10.1016/j.artd.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background Fully porous acetabular shells are an appealing choice for patients with extensive acetabular defects undergoing revision total hip arthroplasty (rTHA). This study reports on the early outcomes of a novel 3-D printed fully porous titanium acetabular shell in revision acetabular reconstruction. Methods A multicenter retrospective study of patients who received a fully porous titanium acetabular shell for rTHA with a minimum of 2 years of follow-up was conducted. The primary outcome was rate of acetabular revision. Results The final study cohort comprised 68 patients with a mean age of 67.6 years (standard deviation 10.4) and body mass index of 29.5 kg/m2 (standard deviation 5.9). Ninety-four percent had a preoperative Paprosky defect grade of 2A or higher. The average follow-up duration was 3.0 years (range 2.0-5.1). Revision-free survivorship at 2 years was 81% for all causes, 88% for acetabular revisions, and 90% for acetabular revision for aseptic acetabular shell failure. Eight shells were explanted within 2 years (12%): 3 for failure of osseointegration/aseptic loosening (4%) after 15, 17, and 20 months; 3 for infection (4%) after 1, 3, and 6 months; and 2 for instability (3%). At the latest postoperative follow-up, all unrevised shells showed radiographic signs of osseointegration, and none had migrated. Conclusions This novel 3-D printed fully porous titanium shell in rTHA demonstrated good survivorship and osseointegration when used in complex acetabular reconstruction at a minimum of 2 years. Level of evidence IV, case series.
Collapse
Affiliation(s)
| | | | | | | | - Brett Frykberg
- Jacksonville Orthopaedic Institute, Baptist Health, Jacksonville, FL, USA
| | - William B. Lutes
- Aurora Orthopedics, Aurora Medical Center-Kenosha, Racine, WI, USA
| | | | | | - Richard W. McCalden
- University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Ran Schwarzkopf
- NYU Langone Health, New York, NY, USA,Corresponding author. NYU Langone Health, 301 East 17th Street, 15th Fl Suite 1518, New York, NY 10003, Tel.: +1 646 501 7300.
| |
Collapse
|
24
|
Crouch DL, Hall PT, Stubbs C, Billings C, Pedersen AP, Burton B, Greenacre CB, Stephenson SM, Anderson DE. Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation. Bioengineering (Basel) 2022; 9:bioengineering9080348. [PMID: 36004873 PMCID: PMC9405244 DOI: 10.3390/bioengineering9080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle–prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacing the lost foot after hindlimb transtibial amputation by implanting a novel rigid foot–ankle endoprosthesis that is fully covered with skin. We first conducted a pilot, non-survival surgery in two rabbits to determine the maximum size of the skin flap that could be made from the biological foot–ankle. The skin flap size was used to determine the dimensions of the endoprosthesis foot segment. Rigid foot–ankle endoprosthesis prototypes were successfully implanted in three rabbits. The skin incisions healed over a period of approximately 1 month after surgery, with extensive fur regrowth by the pre-defined study endpoint of approximately 2 months post surgery. Upon gross inspection, the skin surrounding the endoprosthesis appeared normal, but a substantial subdermal fibrous capsule had formed around the endoprosthesis. Histology indicated that the structure and thickness of the skin layers (epidermis and dermis) were similar between the operated and non-operated limbs. A layer of subdermal connective tissue representing the fibrous capsule surrounded the endoprosthesis. In the operated limb of one rabbit, the subdermal connective tissue layer was approximately twice as thick as the skin on the medial (skin = 0.43 mm, subdermal = 0.84 mm), ventral (skin = 0.80 mm, subdermal = 1.47 mm), and lateral (skin = 0.76 mm, subdermal = 1.42 mm) aspects of the endoprosthesis. Our results successfully demonstrated the feasibility of implanting a fully skin-covered rigid foot–ankle endoprosthesis to replace the lost tibia–foot segment of the lower limb. Concerns include the fibrotic capsule which could limit the range of motion of jointed endoprostheses. Future studies include testing of endoprosthetics, as well as materials and pharmacologic agents that may suppress fibrous encapsulation.
Collapse
Affiliation(s)
- Dustin L. Crouch
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
- Correspondence:
| | - Patrick T. Hall
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
- Exponent, Philadelphia, PA 19104, USA
| | - Caleb Stubbs
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
| | - Caroline Billings
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| | - Alisha P. Pedersen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| | - Bryce Burton
- Office of Laboratory Animal Care, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Cheryl B. Greenacre
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Stacy M. Stephenson
- Graduate School of Medicine, University of Tennessee, Knoxville, TN 37920, USA;
| | - David E. Anderson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| |
Collapse
|
25
|
The First FDA Approved Early Feasibility Study of a Novel Percutaneous Bone Anchored Prosthesis for Transfemoral Amputees: A Prospective One-year Follow-up Cohort Study. Arch Phys Med Rehabil 2022; 103:2092-2104. [DOI: 10.1016/j.apmr.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
|
26
|
Metallic Implants Used in Lumbar Interbody Fusion. MATERIALS 2022; 15:ma15103650. [PMID: 35629676 PMCID: PMC9146470 DOI: 10.3390/ma15103650] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, pedicle fixation systems have evolved and modifications in spinal fusion techniques have been developed to increase fusion rates and improve clinical outcomes after lumbar interbody fusion (LIF). Regarding materials used for screw and rod manufacturing, metals, especially titanium alloys, are the most popular resources. In the case of pedicle screws, that biomaterial can be also doped with hydroxyapatite, CaP, ECM, or tantalum. Other materials used for rod fabrication include cobalt-chromium alloys and nitinol (nickel-titanium alloy). In terms of mechanical properties, the ideal implant used in LIF should have high tensile and fatigue strength, Young's modulus similar to that of the bone, and should be 100% resistant to corrosion to avoid mechanical failures. On the other hand, a comprehensive understanding of cellular and molecular pathways is essential to identify preferable characteristics of implanted biomaterial to obtain fusion and avoid implant loosening. Implanted material elicits a biological response driven by immune cells at the site of insertion. These reactions are subdivided into innate (primary cellular response with no previous exposure) and adaptive (a specific type of reaction induced after earlier exposure to the antigen) and are responsible for wound healing, fusion, and also adverse reactions, i.e., hypersensitivity. The main purposes of this literature review are to summarize the physical and mechanical properties of metal alloys used for spinal instrumentation in LIF which include fatigue strength, Young's modulus, and corrosion resistance. Moreover, we also focused on describing biological response after their implantation into the human body. Our review paper is mainly focused on titanium, cobalt-chromium, nickel-titanium (nitinol), and stainless steel alloys.
Collapse
|
27
|
Cao J, Ma X, Liu L, Zhang G, Wu Y, Fu Y, Gong A, Yang Z, Zhao Y, Zhang L, Li Y. Cortistatin attenuates titanium particle-induced osteolysis through regulation of TNFR1-ROS-caspase-3 signaling in osteoblasts. Ann N Y Acad Sci 2022; 1513:140-152. [PMID: 35419858 DOI: 10.1111/nyas.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aseptic loosening is a major complication of prosthetic joint surgery and is associated with impaired osteoblast homeostasis. Cortistatin (CST) is a neuropeptide that protects against inflammatory conditions. In this study, we found that expression of CST was diminished in patients with prosthetic joint loosening and in titanium (Ti) particle-induced animal models. A Ti particle-induced calvarial osteolysis model was established in wild-type and CST gene knockout mice; CST deficiency enhanced, while exogenously added CST attenuated, the severity of Ti particle-mediated osteolysis. CST protected against inflammation as well as apoptosis and maintained the osteogenic function of MC3T3-E1 osteoblasts upon stimulation with Ti particles. Furthermore, CST antagonized reactive oxygen species production and suppressed caspase-3-associated apoptosis mediated by Ti particles in osteoblasts. Additionally, CST protects against Ti particle-induced osteolysis through tumor necrosis factor receptor 1. Taken together, CST might provide a therapeutic strategy for wear debris-induced inflammatory osteolysis.
Collapse
Affiliation(s)
- Jiankang Cao
- Department of Pain, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Xiaojie Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Long Liu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Yawei Wu
- Caoxian People's Hospital, Heze, P. R. China
| | - Yu Fu
- The First Affiliated Hospital of Shandong First Medical University, Jinan, P. R. China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhongbo Yang
- Shandong Yellow River Hospital, Yellow River Shandong Bureau, Jinan, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, P. R. China.,Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, P. R. China
| | - Yuhua Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
28
|
Zhao Y, Wang Z, Zhao J, Hussain M, Wang M. Additive Manufacturing in Orthopedics: A Review. ACS Biomater Sci Eng 2022; 8:1367-1380. [PMID: 35266709 DOI: 10.1021/acsbiomaterials.1c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Additive manufacturing is an advanced manufacturing manner that seems like the industrial revolution. It has the inborn benefit of producing complex formations, which are distinct from traditional machining technology. Its manufacturing strategy is flexible, including a wide range of materials, and its manufacturing cycle is short. Additive manufacturing techniques are progressively used in bone research and orthopedic operation as more innovative materials are developed. This Review lists the recent research results, analyzes the strengths and weaknesses of diverse three-dimensional printing strategies in orthopedics, and sums up the use of varying 3D printing strategies in surgical guides, surgical implants, surgical predictive models, and bone tissue engineering. Moreover, various postprocessing methods for additive manufacturing for orthopedics are described.
Collapse
Affiliation(s)
- Yingchao Zhao
- Xiangya School of Medicine, Central South University, No.172 Yinpenling Street, Tongzipo Road, Changsha 410013, China
| | - Zhen Wang
- Xiangya School of Medicine, Central South University, No.172 Yinpenling Street, Tongzipo Road, Changsha 410013, China
| | - Jingzhou Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mubashir Hussain
- Postdoctoral Innovation Practice, Shenzhen Polytechnic, No.4089 Shahe West Road, Xinwei Nanshan District, Shenzhen 518055, China
| | - Maonan Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
29
|
Matheus HR, Ervolino E, Gusman DJR, Forin LG, Piovezan BR, de Almeida JM. The influence of antineoplastic agents on the peri-implant bone around osseointegrated titanium implants: an in vivo histomorphometric and immunohistochemical study. Clin Oral Investig 2022; 26:2681-2692. [PMID: 34686918 DOI: 10.1007/s00784-021-04239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE The interaction between antineoplastic drugs used for treating cancer and non-affected tissues remains poorly assessed and may be critical for maintaining the quality of life for patients during and after treatment. This pre-clinical study evaluated the effects of cisplatin (CIS) and 5-fluorouracil (5-FU) on the peri-implant repair process around osseointegrated titanium implants installed in the tibiae of rats. MATERIAL AND METHODS Were used 90 male rats, randomly divided into three groups (n = 30): physiological saline solution (PSS), CIS, and 5-FU. Titanium implants (4.0 × 2.2 mm) were inserted in both tibiae of all animals at day 0. The animals received either PSS, CIS, or 5-FU at 35 and 37 days. Euthanasia was performed at 50, 65, and 95 days after surgery. Histometric (bone/implant contact [BIC]) and bone area fraction occupancy (% BAFO), histological, and immunohistochemical (for bone morphogenetic protein 2/4 [BMP2/4], Runt-related transcription factor 2 [RUNX2], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analyses were performed. Data were statistically analyzed. RESULTS Groups CIS and 5-FU presented lower BIC and lower BAFO as compared with PSS in all time points. The imbalance in bone turnover was observed by the lower number of BMP2/4-, RUNX2-, and OCN-positive cells/mm2 and the higher number of TRAP-positive cells/mm in groups CIS and 5-FU as compared with PSS in all time points. Persistent and exacerbated inflammation was observed in groups CIS and 5-FU. CONCLUSIONS Both antineoplastic agents interfered negatively in the bone turnover around osseointegrated titanium implants. CLINICAL RELEVANCE Closer and more careful follow-up of patients with osseointegrated implants that will undergo chemotherapy with either CIS or 5-FU shall be performed.
Collapse
Affiliation(s)
- Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - David Jonathan Rodrigues Gusman
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Luiz Guilherme Forin
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Bianca Rafaeli Piovezan
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil.
| |
Collapse
|
30
|
Experimental measurements of micromotions of the cementless intervertebral disc prostheses in the cadaver bone. Clin Biomech (Bristol, Avon) 2022; 92:105589. [PMID: 35144057 DOI: 10.1016/j.clinbiomech.2022.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sufficient primary stability is mandatory for successful bony prosthetic incorporation. Therefore, defined micromotion values of 150 μm should not be exceeded as higher values might compromise the ingrowth of bone trabeculae to the implant surface. The aim of this study was to evaluate the primary stability of different cementless disc prosthesis in a cadaver model. METHODS Four different implants with different anchoring and bearing concept were tested with a target level of L4/5. 26 specimens were randomly allocated to 1 of the 4 different implants with 6 speciments in each group. Two groups were formed depending on the anchoring (spikes vs. fin) and bearing concept (non-/semi- vs. constrained). Each implant was tested regarding primary stability in a hydraulic simulator allowing simultaneous polyaxial segment movements and axial loading. The measurements were recorded on the lower plate of the prosthesis. FINDINGS The majority of the implants showed micromotion values below 200 μm in all planes. Only one prosthesis presented borderline longitudinal amplitudes that were significant higher than the other planes. Furthermore, significant differences were observed in the sagittal plane when comparing spike and keel anchoring. Spike anchoring implants showed superior tresults to keel anchoring implants (40 μm vs. 55 μm; p = .039), while the non-/semi-constrained bearing concept was more advantageous compared to constrained group (40 μm vs. 63 μm; p = .001). INTERPRETATION Spike anchoring and non-constrained implants might provide better primary stability.
Collapse
|
31
|
Coatings Functionalization via Laser versus Other Deposition Techniques for Medical Applications: A Comparative Review. COATINGS 2022. [DOI: 10.3390/coatings12010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of new biological devices in response to market demands requires continuous efforts for the improvement of products’ functionalization based upon expansion of the materials used and their fabrication techniques. One viable solution consists of a functionalization substrate covered by layers via an appropriate deposition technique. Laser techniques ensure an enhanced coating’s adherence to the substrate and improved biological characteristics, not compromising the mechanical properties of the functionalized medical device. This is a review of the main laser techniques involved. We mainly refer to pulse laser deposition, matrix-assisted, and laser simple and double writing versus some other well-known deposition methods as magnetron sputtering, 3D bioprinting, inkjet printing, extrusion, solenoid, fuse-deposition modeling, plasma spray (PS), and dip coating. All these techniques can be extended to functionalize surface fabrication to change local morphology, chemistry, and crystal structure, which affect the biomaterial behavior following the chosen application. Surface functionalization laser techniques are strictly controlled within a confined area to deliver a large amount of energy concisely. The laser deposit performances are presented compared to reported data obtained by other techniques.
Collapse
|
32
|
Ovchinnikov EN, Godovykh NV, Dyuryagina OV, Stogov MV, Ovchinnikov DN, Ovchinnikov NV. Antimicrobial Efficacy of Exposure of Medical Metal Implants to Direct Electric Current. BIOMEDICAL ENGINEERING 2022; 55:323-327. [DOI: 10.1007/s10527-022-10128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 09/03/2023]
|
33
|
Lewallen EA, Trousdale WH, Thaler R, Yao JJ, Xu W, Denbeigh JM, Nair A, Kocher JP, Dudakovic A, Berry DJ, Cohen RC, Abdel MP, Lewallen DG, van Wijnen AJ. Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells. Tissue Eng Part A 2021; 27:1503-1516. [PMID: 33975459 PMCID: PMC8742309 DOI: 10.1089/ten.tea.2020.0369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Metal orthopedic implants are largely biocompatible and generally achieve long-term structural fixation. However, some orthopedic implants may loosen over time even in the absence of infection. In vivo fixation failure is multifactorial, but the fundamental biological defect is cellular dysfunction at the host-implant interface. Strategies to reduce the risk of short- and long-term loosening include surface modifications, implant metal alloy type, and adjuvant substances such as polymethylmethacrylate cement. Surface modifications (e.g., increased surface rugosity) can increase osseointegration and biological ingrowth of orthopedic implants. However, the localized responses of cells to implant surface modifications need to be better characterized. As an in vitro model for investigating cellular responses to metallic orthopedic implants, we cultured mesenchymal stromal/stem cells on clinical-grade titanium disks (Ti6Al4V) that differed in surface roughness as high (porous structured), medium (grit blasted), and low (bead blasted). Topological characterization of clinically relevant titanium (Ti) materials combined with differential mRNA expression analyses (RNA-seq and real-time quantitative polymerase chain reaction) revealed alterations to the biological phenotype of cells cultured on titanium structures that favor early extracellular matrix production and observable responses to oxidative stress and heavy metal stress. These results provide a descriptive model for the interpretation of cellular responses at the interface between native host tissues and three-dimensionally printed modular orthopedic implants, and will guide future studies aimed at increasing the long-term retention of such materials after total joint arthroplasty. Impact statement Using an in vitro model of implant-to-cell interactions by culturing mesenchymal stromal cells (MSCs) on clinically relevant titanium materials of varying topological roughness, we identified mRNA expression patterns consistent with early extracellular matrix (ECM) production and responses to oxidative/heavy metal stress. Implants with high surface roughness may delay the differentiation and ECM formation of MSCs and alter the expression of genes sensitive to reactive oxygen species and protein kinases. In combination with ongoing animal studies, these results will guide future studies aimed at increasing the long-term retention of widely used titanium materials after total joint arthroplasty.
Collapse
Affiliation(s)
- Eric A. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biological Sciences, Hampton University, Hampton, Virginia, USA
| | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie J. Yao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Wei Xu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Janet M. Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asha Nair
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean-Pierre Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C. Cohen
- Digital, Robotics, and Enabling Technologies, Stryker Orthopedics, Mahwah, New Jersey, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David G. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
34
|
Ryu DJ, Jung A, Ban HY, Kwak TY, Shin EJ, Gweon B, Lim D, Wang JH. Enhanced osseointegration through direct energy deposition porous coating for cementless orthopedic implant fixation. Sci Rep 2021; 11:22317. [PMID: 34785741 PMCID: PMC8595809 DOI: 10.1038/s41598-021-01739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Direct energy deposition (DED) is a newly developed 3D metal printing technique that can be utilized on a porous surface coating of joint implants, however there is still a lack of studies on what advantages DED has over conventional techniques. We conducted a systematic mechanical and biological comparative study of porous coatings prepared using the DED method and other commercially available technologies including titanium plasma spray (TPS), and powder bed fusion (PBF). DED showed higher porosity surface (48.54%) than TPS (21.4%) and PBF (35.91%) with comparable fatigue cycle. At initial cell adhesion, cells on DED and PBF surface appeared to spread well with distinct actin stress fibers through immunofluorescence study. It means that the osteoblasts bind more strongly to the DED and PBF surface. Also, DED surface showed higher cell proliferation (1.27 times higher than TPS and PBF) and osteoblast cell activity (1.28 times higher than PBF) for 2 weeks culture in vitro test. In addition, DED surface showed better bone to implant contact and new bone formation than TPS in in vivo study. DED surface also showed consistently good osseointegration performance throughout the early and late period of osseointegration. Collectively, these results show that the DED coating method is an innovative technology that can be utilized to make cementless joint implants.
Collapse
Affiliation(s)
- Dong Jin Ryu
- Department of Orthopedic Surgery, Inha University Hospital, 27 Inhang-Ro, Jung-Gu, Incheon, 22332, South Korea.,Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea
| | - Hun Yeong Ban
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea
| | - Tae Yang Kwak
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea
| | - Eun Joo Shin
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea.
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea.
| | - Joon Ho Wang
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
| |
Collapse
|
35
|
Han M, Dong Z, Li J, Luo J, Yin D, Sun L, Tao S, Zhen L, Yang J, Li J. Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration. J Mater Chem B 2021; 9:8501-8511. [PMID: 34553738 DOI: 10.1039/d1tb01607e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
Collapse
Affiliation(s)
- Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.,Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Abar B, Kelly C, Pham A, Allen N, Barber H, Kelly A, Mirando AJ, Hilton MJ, Gall K, Adams SB. Effect of surface topography on in vitro osteoblast function and mechanical performance of 3D printed titanium. J Biomed Mater Res A 2021; 109:1792-1802. [PMID: 33754494 PMCID: PMC8373644 DOI: 10.1002/jbm.a.37172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Critical-sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post-processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre-osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.
Collapse
Affiliation(s)
- Bijan Abar
- Duke University Department of Mechanical Engineering and Material Sciences
| | - Cambre Kelly
- Duke University Department of Mechanical Engineering and Material Sciences
| | - Anh Pham
- Duke University Department of Mechanical Engineering and Material Sciences
| | | | | | - Alexander Kelly
- Duke University Department of Mechanical Engineering and Material Sciences
| | | | | | - Ken Gall
- Duke University Department of Mechanical Engineering and Material Sciences
| | | |
Collapse
|
37
|
Figueiredo L, Makhni EC, Dierks M, Ferreira FC, Finkelstein S. Early cost estimating model for new bioabsorbable orthopedic implant candidates: A theoretical study. J Mech Behav Biomed Mater 2021; 124:104731. [PMID: 34500353 DOI: 10.1016/j.jmbbm.2021.104731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
An early health technology assessment (HTA) study was performed to assess the need for developing a new bioabsorbable implant for the treatment of specific orthopedic injuries. The Anterior Cruciate Ligament Reconstruction (ACLR) procedure was selected based on the need and potential impact of bioabsorbable implants in the treatment of ACL injuries. The economic model considers the possible health events after an ACLR (failures and other complications such as stiffness and pain). A decision tree approach was used, and several sensitivity analyses were performed using a Monte Carlo simulation. A cost estimating model was applied comparatively for currently available metal and bioabsorbable implants against a potential new bioabsorbable implant with improved performance. A reduction in stiffness and pain symptoms were considered as targets for these new implants performance, with reduced inflammation resulting from the use of materials with appropriate biological and mechanical properties. The current study estimates that, under the assumptions made, the introduction of a new bioabsorbable implant in ACLR surgeries may generate yearly cost savings. The model estimates positive cost-benefits of the new implant when it reduces the probability of failure by more than 30%, or reduces at least 14% the probability of complications of an inflammatory nature. The development of a new bioabsorbable orthopedic implant for ACLR is encouraged by this study identifying the need for new bioabsorbable implants with improved biological and mechanical performance. The results of this early HTA have made it possible to anticipate design needs and objectives for the research and development of new orthopedic bioabsorbable implants.
Collapse
Affiliation(s)
- Lígia Figueiredo
- Institute of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Eric C Makhni
- Department of Orthopedic Surgery, Henry Ford Health Systems, 2799 W Grand Blvd, Detroit, MI, 48202, United States
| | - Meghan Dierks
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, 1330 Beacon St., Suite 400, Brookline, MA, 02446, United States
| | - Frederico Castelo Ferreira
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal; Associate Laboratory I4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Stan Finkelstein
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States.
| |
Collapse
|
38
|
Marvi MS, Nourmohammadi J, Ataie M, Negahdari B, Naderi M. Surface modification of titanium implants via electrospinning of sericin and Equisetum arvense enhances the osteogenic differentiation of stem cells. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1933979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mehri Sadat Marvi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Maryam Ataie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical sciences, Tehran, Iran
| | - Mahmood Naderi
- Cell‐Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Borcherding K, Schmidmaier G, Hofmann GO, Wildemann B. The rationale behind implant coatings to promote osteointegration, bone healing or regeneration. Injury 2021; 52 Suppl 2:S106-S111. [PMID: 33257018 DOI: 10.1016/j.injury.2020.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023]
Abstract
Implant loosening, bone healing failure, implant-associated infections, and large bony defects remain challenges in orthopedic surgery. Implant surface modifications and coatings are being developed to promote osteointegration, prevent colonization by bacteria, and release bioactive factors. The following mini-review briefly discusses the clinical problem, explains the four "osteos", presents examples of coatings used for different orthopedic indications, and finally raises awareness of the coating and translational requirements.
Collapse
Affiliation(s)
- Kai Borcherding
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Britt Wildemann
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany; Julius Wolff Institute, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
40
|
Li J, Yuan H, Chandrakar A, Moroni L, Habibovic P. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Acta Biomater 2021; 126:496-510. [PMID: 33727193 DOI: 10.1016/j.actbio.2021.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical analysis showed that limited contamination occurred during sintering. The compressive strength and Young's modulus of the scaffolds exhibited values between those of cancellous and cortical bone. The 3D Ti6Al4V-TCP scaffolds with 10 wt% TCP allowed deposition of a calcium phosphate layer on the surface in a simulated body fluid. Cumulative release of calcium and phosphate ions from the scaffolds was observed in a simulated physiological solution, in contrast to a cell culture medium. A pilot in vivo study, in which the scaffolds were implanted intramuscularly in dogs showed ectopic bone formation in the Ti6Al4V-TCP scaffolds with 10 wt% TCP, showing their osteoinductive potential. The porous 3D Ti6Al4V-TCP scaffolds developed here combine the mechanical properties of the metal with the bioactivity of the ceramic and are therefore likely to yield more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery. STATEMENT OF SIGNIFICANCE: In this work, 3D porous hybrid scaffolds made of a titanium alloy and a beta-tricalcium phosphate ceramic (Ti6Al4V-TCP) were developed using the direct additive manufacturing technique 3D fiber deposition. Upon optimization of the powders and slurry, scaffolds with up to 10 wt.% TCP with good mechanical properties and controllable porous structure at different length scales were successfully manufactured. A preliminary in vivo study in an intramuscular model demonstrated that the addition of TCP to the metal alloy improved its bioactivity. The combination of the two materials and the use of a direct additive manufacturing technique resulted in scaffolds that may lead to more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery.
Collapse
Affiliation(s)
- J Li
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - H Yuan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Kuros Biosciences, Bilthoven, the Netherlands
| | - A Chandrakar
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - L Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - P Habibovic
- Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
41
|
Lui H, Denbeigh J, Vaquette C, Tran HM, Dietz AB, Cool SM, Dudakovic A, Kakar S, van Wijnen AJ. Fibroblastic differentiation of mesenchymal stem/stromal cells (MSCs) is enhanced by hypoxia in 3D cultures treated with bone morphogenetic protein 6 (BMP6) and growth and differentiation factor 5 (GDF5). Gene 2021; 788:145662. [PMID: 33887373 DOI: 10.1016/j.gene.2021.145662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Culture conditions and differentiation cocktails may facilitate cell maturation and extracellular matrix (ECM) secretion and support the production of engineered fibroblastic tissues with applications in ligament regeneration. The objective of this study is to investigate the potential of two connective tissue-related ligands (i.e., BMP6 and GDF5) to mediate collagenous ECM synthesis and tissue maturation in vitro under normoxic and hypoxic conditions based on the hypothesis that BMP6 and GDF5 are components of normal paracrine signalling events that support connective tissue homeostasis. METHODS Human adipose-derived MSCs were seeded on 3D-printed medical-grade polycaprolactone (PCL) scaffolds using a bioreactor and incubated in media containing GDF5 and/or BMP6 for 21 days in either normoxic (5% oxygen) or hypoxic (2% oxygen) conditions. Constructs were harvested on Day 3 and 21 for cell viability analysis by live/dead staining, structural analysis by scanning electron microscopy, mRNA levels by RTqPCR analysis, and in situ deposition of proteins by immunofluorescence microscopy. RESULTS Pro-fibroblastic gene expression is enhanced by hypoxic culture conditions compared to normoxic conditions. Hypoxia renders cells more responsive to treatment with BMP6 as reflected by increased expression of ECM mRNA levels on Day 3 with sustained expression until Day 21. GDF5 was not particularly effective either in the absence or presence of BMP6. CONCLUSIONS Fibroblastic differentiation of MSCs is selectively enhanced by BMP6 and not GDF5. Environmental factors (i.e., hypoxia) also influenced the responsiveness of cells to this morphogen.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Hoai My Tran
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
42
|
Dexamethasone-Loaded Bioactive Coatings on Medical Grade Stainless Steel Promote Osteointegration. Pharmaceutics 2021; 13:pharmaceutics13040568. [PMID: 33923814 PMCID: PMC8073817 DOI: 10.3390/pharmaceutics13040568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, a multilayer bioactive coating based on carboxymethyl cellulose (CMC) and dexamethasone (DEX) was prepared on medical-grade stainless steel (AISI 316LVM). Its aim was the controlled drug delivery of the incorporated anti‑inflammatory drug, which at the same time promotes osteogenic differentiation of mesenchymal stem cells. Due to DEX’s limited solubility in physiological fluids, which limits the loading capacity of coatings, it was further combined with β-cyclodextrin to increase its concentration in the bioactive coating. Controlled release of DEX from the multilayer coating was achieved in four steps: a “burst”, i.e., very fast, release step (in an immersion interval of 0–10 min), a fast release step (10–30 min), a slow-release step (60–360 min), and a plateau step (360–4320 min), following a zero-order release or Higuchi model release mechanism. Successful layer-by-layer coating formation was confirmed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). It was shown that the application of the coating significantly increases the hydrophilic character of AISI 316LVM, and also significantly increases the surface roughness, which is known to promote cell growth. In addition, electrochemical measurements demonstrated that the coating application does not increase the susceptibility of medical-grade stainless steel to corrosion. In vitro cell testing using all cell types with which such coatings come into contact in the body (osteoblasts, chondrocytes, and mesenchymal stem cells (MSCs)) showed very good biocompatibility towards all of the mentioned cells. It further confirmed that the coatings promoted MSCs osteogenic differentiation, which is the desired mode of action for orthopedic implants.
Collapse
|
43
|
Additive Manufacturing of Porous Ti6Al4V Alloy: Geometry Analysis and Mechanical Properties Testing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work is devoted to the research of porous titanium alloy structures suitable for use in biomedical applications. Mechanical properties were examined on six series of samples with different structures and porosity via static compressive test to identify the type of structure suitable for elimination of the “stress shielding” effect. In addition, high porosity is desirable due to the overgrowth of bone tissue into the internal structure of the implant. The samples were made of titanium alloy Ti6Al4V by using selective laser melting (SLM) additive manufacturing. The series of samples differ from each other in pore size (200, 400, and 600 µm) and porous structure topology (cubic or trabecular). The actual weight of all samples, which plays an important role in identifying other characteristics, was determined. Compressive tests were focused on the detection of maximum stress. The highest porosity and thus the lowest weight were achieved in the samples with a trabecular structure and 600 µm pore size. All tested samples reached optimal values of maximum stress and tensile strength. The most appropriate mechanical properties were observed for samples with a 200 µm pore diameter and cubic structure.
Collapse
|
44
|
Rossi MC, Bayerlein DL, Brandão JDS, Pfeifer JPH, Rosa GDS, Silva WDM, Martinez LG, Saeki MJ, Alves ALG. Physical and biological characterizations of TiNbSn/(Mg) system produced by powder metallurgy for use as prostheses material. J Mech Behav Biomed Mater 2020; 115:104260. [PMID: 33484993 DOI: 10.1016/j.jmbbm.2020.104260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Titanium scaffolds with non-toxic β stabilizing elements (Nb and Sn), Ti-34Nb-6Sn (TNS), and with magnesium as spacer (TNS/M), were processed by powder metallurgy, and sintered at 800 °C. The X-ray diffraction (XRD) pattern showed that materials are biphasic alloys, presenting 45 to 42% (wt %) in hcp (α-phase) and the rest is bcc (β-phase), and the presence of a slight peak relating to TiO2 in both materials. Pores of approximately 50 μm for TNS and 300 μm to TNS/M were observed in the micrographic analysis by scanning electron microscopy (SEM). The wettability was higher for TNS/M compared to TNS. The elastic modulus was higher for TNS compared to TNS/M. Stem cells derived from equine bone marrow (BMMSCs) were used for in vitro assays. The morphologic and adhesion evaluation after 72 h, carried out by direct contact assay with the materials showed that the BMMSCs were anchored and adhered to the porous scaffolds, in the way the cytoplasmic extension was observed. The cellular migration, using the "wound healing" method, was significant for the groups treated with conditioned medium with materials in 24 h. Osteogenic differentiation of BMMSCs, assessed by calcium deposition and staining with Alizarin Red, was greater in the conditioned medium with TNS/M in 10 days of culture. Since the biological effects was good and the elastic modulus decreased in the system with magnesium is a promising new content titanium alloy for biomedical application.
Collapse
Affiliation(s)
- Mariana Correa Rossi
- São Paulo State University, Regenerative Medicine Lab, Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, UNESP, Botucatu, SP, Brazil.
| | - Daniel Leal Bayerlein
- Materials Science and Technology Centre, Nuclear and Energy Research Institute (IPEN) and Technological Research Institute (IPT), São Paulo, SP, Brazil.
| | - Jaqueline de Souza Brandão
- São Paulo State University, Regenerative Medicine Lab, Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, UNESP, Botucatu, SP, Brazil.
| | - João Pedro Hübbe Pfeifer
- São Paulo State University, Regenerative Medicine Lab, Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, UNESP, Botucatu, SP, Brazil.
| | - Gustavo Dos Santos Rosa
- São Paulo State University, Regenerative Medicine Lab, Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, UNESP, Botucatu, SP, Brazil.
| | - William de Melo Silva
- São Paulo State University, Institute of Biotechnology, UNESP, Botucatu, SP, Brazil.
| | - Luis Gallego Martinez
- Materials Science and Technology Centre, Nuclear and Energy Research Institute, Av. Prof. Lineu Prestes 2242, Cidade Universitária - USP - Butantã, São Paulo, SP, Brazil.
| | - Margarida Juri Saeki
- São Paulo State University, Institute of Biosciences (IBB), Department of Chemistry and Biochemistry, UNESP, Botucatu, SP, Brazil.
| | - Ana Liz Garcia Alves
- São Paulo State University, Regenerative Medicine Lab, Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
45
|
Lu M, Chen H, Yuan B, Zhou Y, Min L, Xiao Z, Yang X, Zhu X, Tu C, Zhang X. The morphological effect of nanostructured hydroxyapatite coatings on the osteoinduction and osteogenic capacity of porous titanium. NANOSCALE 2020; 12:24085-24099. [PMID: 33241829 DOI: 10.1039/d0nr06306a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Weak osteogenic activity affects the long-term fixation and lifespan of titanium (Ti) implants. Surface modification along with a built-in porous structure is a highly considerable approach to improve the osteoinduction and osseointegration capacity of Ti. Herein, the osteoinduction and osteogenic activities of electrochemically deposited (ED) nanoplate-like, nanorod-like and nanoneedle-like hydroxyapatite (HA) coatings (named EDHA-P, EDHA-R, and EDHA-N, respectively) were evaluated in vitro and in vivo by comparison with those of acid/alkali (AA) treatment. The results revealed that the apatite forming ability of all nanostructured EDHA coatings was excellent, and only 12 h of soaking in SBF was needed to induce a complete layer of apatite. More serum proteins adsorbed on EDHA-P than others. In cellular experiments, different from those on EDHA-R and EDHA-N, the cells on EDHA-P presented a polygonal shape with lamellipodia extension, and thus exhibited a relatively larger spreading area. Furthermore, EDHA-P was more favorable for the enhancement of the proliferation and ALP activity of BMSCs, and the up-regulation of OPN gene expression. Based on the good biological performance in vitro, EDHA-P was selected to further evaluate its osteoinduction and osteogenic activities in vivo by comparison with AA treatment. Interestingly, a greater ability of ectopic osteoinduction was observed in the EDHA-P group compared to that in the AA group. At the osseous site, EDHA-P promoted more bone on/ingrowth, and had a higher area percentage of newly formed bone in the bone-implant interface and inner pores of the implants than in the AA group. Thus, a nanoplate-like HA coating has good potential in improving the osteoinductivity and osteogenic activity of porous Ti implants in clinical applications.
Collapse
Affiliation(s)
- Minxun Lu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Quinn J, McFadden R, Chan CW, Carson L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020; 23:101745. [PMID: 33235984 PMCID: PMC7670191 DOI: 10.1016/j.isci.2020.101745] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Titanium and its alloys have emerged as excellent candidates for use as orthopedic biomaterials. Nevertheless, there are often complications arising after implantation of orthopedic devices, most notably prosthetic joint infection and aseptic loosening. To ensure that implanted devices remain functional in situ, innovation in surface modification has attracted much attention in the effort to develop orthopedic materials with optimal characteristics at the biomaterial-tissue interface. This review will draw together metallurgy, surface engineering, biofilm microbiology, and biomaterial science. It will serve to appreciate why titanium and its alloys are frequently used orthopedic biomaterials and address some of the challenges facing these biomaterials currently, including the significant problem of device-associated infection. Finally, the authors shall consolidate and evaluate surface modification techniques employed to overcome some of these issues by offering a unique perspective as to the direction in which research is headed from a broad, interdisciplinary point of view.
Collapse
Affiliation(s)
- James Quinn
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan McFadden
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Chi-Wai Chan
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
47
|
Sandoval-Robles JA, Rodríguez CA, García-López E. Laser Surface Texturing and Electropolishing of CoCr and Ti6Al4V-ELI Alloys for Biomedical Applications. MATERIALS 2020; 13:ma13225203. [PMID: 33213110 PMCID: PMC7698641 DOI: 10.3390/ma13225203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Abstract
The interplay between a prosthetic and tissue represents an important factor for the fixation of orthopedic implants. Laser texturing tests and electropolishing were performed on two materials used in the fabrication of medical devices, i.e., CoCr and Ti6Al4V-ELI alloys. The material surface was textured with a diode-pumped solid state (DPSS) laser and its effect on the surface quality and material modification, under different combinations of laser power and marking speed, were investigated. Our results indicate that an increment of energy per unit length causes an incremental trend in surface roughness parameters. Additionally, phase transformation on the surface of both alloys was achieved. Chemical analysis by energy dispersive X-ray spectrometer (EDX) shows the formation of (Co(Cr,Mo)) phase and the M23C6 precipitate on the CoCr surface; while quantitative analysis of the X-ray diffractometer (XRD) results demonstrates the oxidation of the Ti alloy with the formation of Ti2O and Ti6O from the reduction of the α-Ti phase. The behaviors were both related with an increase of the energy per unit length. Control of the final surface roughness was achieved by an electropolishing post-treatment, minimizing the as-treated values. After polishing, a reduction of surface roughness parameters was obtained in a range between 3% and 44%, while no changes in chemical composition or present phases were observed.
Collapse
Affiliation(s)
- Jesús A Sandoval-Robles
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT)Apodaca, Nuevo León 66629, Mexico
| | - Ciro A Rodríguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT)Apodaca, Nuevo León 66629, Mexico
| | - Erika García-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León 64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT)Apodaca, Nuevo León 66629, Mexico
| |
Collapse
|
48
|
Dinu C, Berce C, Todea M, Vulpoi A, Leordean D, Bran S, Mitre I, Lazar MA, Crisan B, Crisan L, Rotaru H, Onisor F, Vacaras S, Barbur I, Baciut G, Baciut M, Armencea G. Bone quality around implants: a comparative study of coating with hydroxyapatite and SIO 2-TIO 2 of TI 6AL 7NB implants. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1636916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- C. Dinu
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C. Berce
- Laboratory Animal Facility – Centre for Experimental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Todea
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - A. Vulpoi
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - D. Leordean
- Department of Manufacturing Engineering, Technical University, Cluj-Napoca, Romania
| | - S. Bran
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Mitre
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. A. Lazar
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - B. Crisan
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L. Crisan
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H. Rotaru
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - F. Onisor
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - S. Vacaras
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Barbur
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Baciut
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Baciut
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Armencea
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
49
|
Hall PT, Bratcher SZ, Stubbs C, Rifkin RE, Grzeskowiak RM, Burton BJ, Greenacre CB, Stephenson SM, Anderson DE, Crouch DL. Fully Implanted Prostheses for Musculoskeletal Limb Reconstruction After Amputation: An In Vivo Feasibility Study. Ann Biomed Eng 2020; 49:1012-1021. [PMID: 33034786 DOI: 10.1007/s10439-020-02645-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
Previous prostheses for replacing a missing limb following amputation must be worn externally on the body. This limits the extent to which prostheses could physically interface with biological tissues, such as muscles, to enhance functional recovery. The objectives of our study were to (1) test the feasibility of implanting a limb prosthesis, or endoprosthesis, entirely within living skin at the distal end of a residual limb, and (2) identify effective surgical and post-surgical care approaches for implanting endoprostheses in a rabbit model of hindlimb amputation. We iteratively designed, fabricated, and implanted unjointed endoprosthesis prototypes in six New Zealand White rabbits following amputation. In the first three rabbits, the skin failed to heal due to ishemia and dehiscence along the sutured incision. The skin of the final three subsequent rabbits successfully healed over the endoprotheses. Factors that contributed to successful outcomes included modifying the surgical incision to preserve vasculature; increasing the radii size on the endoprostheses to reduce skin stress; collecting radiographs pre-surgery to match the bone pin size to the medullary canal size; and ensuring post-operative bandage integrity. These results will support future work to test jointed endoprostheses that can be attached to muscles.
Collapse
Affiliation(s)
- Patrick T Hall
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN, 37966, USA.
| | - Samantha Z Bratcher
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN, 37966, USA
| | - Caleb Stubbs
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN, 37966, USA
| | - Rebecca E Rifkin
- Department of Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Remi M Grzeskowiak
- Department of Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Bryce J Burton
- Office of Laboratory Animal Care, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Cheryl B Greenacre
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | | | - David E Anderson
- Department of Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Dustin L Crouch
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN, 37966, USA
| |
Collapse
|
50
|
Evaluation of the bone morphology around four types of porous metal implants placed in distal femur of ovariectomized rats. J Orthop Surg Res 2020; 15:296. [PMID: 32746931 PMCID: PMC7398357 DOI: 10.1186/s13018-020-01822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background To compare structural features of the femoral bone of ovariectomized and non-ovariectomized rats after implantation of porous materials (TANTALUM, CONCELOC, TTM, ATLANT). Methods Experiments were carried out on 56 white laboratory female rats aged 6 months. Rats were randomly assigned into groups: sham-operated control group (SH) or ovariectomy group (OVX). Four different commercial implant materials (TTM, CONCELOC, TANTALUM, ATLANT) were placed into the defects (diameter 2.5 mm, depth 3.0 mm) in the distal metaphysis of femurs. Rats were sacrificed 45 days after surgery. Histological study was performed and the percentage of the bone area (BA%) around the implant at a distance of 500 μm in the cancellous area was measured. Results Formation of mature bone tissue of varying degrees around all of the implants was detected. In OVX rats cancellous bone defect zone was characterized by a high density of osteocytes on the surface. In the SH group, no differences in BA% among implant materials were found. In OVX rats, the BA% around ATLANT implants was 1.5-time less (p = 0.002) than around TANTALUM. The BA% around the rest of the materials was not statistically different. Conclusions Bone formation around the studied porous titanium and tantalum materials in the osteoporosis model was lower than in normal bone. There were differences in bone formation around the different materials in the osteoporosis model, while in the normal bone model, these differences were absent.
Collapse
|