1
|
Sun Y, Gao Y, Zhang J, Zhang L, Sun H, Ma Z, Bai J, Jiang P. Role of Glycoprotein 3 in neutralizing antibody recognition of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2025; 311:143714. [PMID: 40319969 DOI: 10.1016/j.ijbiomac.2025.143714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been causing significant economic losses in the global swine industry since its emergence. Insufficient knowledge of the structural glycoprotein characteristics of NADC30-like strains has hindered the development of effective control strategies. In this study, we found that the neutralizing antibodies (NAbs) in pig sera against NADC30-like PRRSV strain FJ1402 (lineage 1) and highly pathogenic PRRSV (HP-PRRSV) strain BB0907 (lineage 8) exhibited low cross-neutralizing activity against each other. Subsequently, six chimeric recombinant viruses were generated based on the infectious cDNA clone of HP-PRRSV strain BB0907, in which specific structural protein genes were replaced by those from the NADC30-like strain. Cross-neutralization assays revealed that the NAbs against NADC30-like strain primarily target glycoprotein 3 (GP3), glycoprotein 4 (GP4), and glycoprotein 5 (GP5). Furthermore, we constructed six additional infectious cDNA clones with point mutations in GP3, and found that the residues 66I and 85S in GP3 play critical roles during NAbs recognition. These findings provide molecular insights into the host neutralizing antibody recognition against PRRSV, highlighting the role of GP3 in the recognition process. This study offers a foundation for rational antigen selection strategies in developing PRRSV NADC30-like strain vaccines.
Collapse
Affiliation(s)
- Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zicheng Ma
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Qiu Y, Qiu M, Li S, Li S, Zhu J, Tian K, Chen N. Emergence, prevalence and evolution of porcine reproductive and respiratory syndrome virus 1 in China from 1994 to 2024. Virology 2025; 605:110457. [PMID: 39999587 DOI: 10.1016/j.virol.2025.110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) was first detected in Chinese swine herds during an epidemiological investigation since 1994. Even though PRRSV-1 has been existed in China for 30 years, much less attention was paid on PRRSV-1 than PRRSV-2. This review systematically evaluated the emergence, prevalence and evolution of Chinese PRRSV-1 from 1994 to 2024. Here we showed that PRRSV-1 has been detected in at least 28 regions of China, which can be divided into eight subgroups within subtype 1. During the evolution in Chinese swine herds, a large number of substitutions, insertions and deletions were identified. Recombination events were also commonly detected accompanying with nsp1-nsp3, nsp9-nsp10 and ORF2-ORF6 regions as the cross-over hotspots. Remarkably, Chinese PRRSV-1 isolates showed a trend of increasing in pathogenicity in recent years. At last, we discussed the differential detection methods and cross-protection strategies against PRRSV-1 isolates. Overall, PRRSV-1 has become one of the widely-spread viruses in China posing a significant threat to China's swine industry.
Collapse
Affiliation(s)
- Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, 110164, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
4
|
Zhang G, Peng Q, Liu S, Fan B, Wang C, Song X, Cao Q, Li C, Xu H, Lu H, Bao M, Yang S, Li Y, Wang J, Li B. The glycosylation sites in RBD of spike protein attenuate the immunogenicity of PEDV AH2012/12. Virus Res 2024; 345:199381. [PMID: 38679392 PMCID: PMC11070342 DOI: 10.1016/j.virusres.2024.199381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious swine intestinal disease caused by PED virus (PEDV). Vaccination is a promising strategy to prevent and control PED. Previous studies have confirmed that glycosylation could regulate the immunogenicity of viral antigens. In this study, we constructed three recombinant PEDVs which removed the glycosylation sites in RBD. Viral infection assays revealed that similar replication characteristics between the recombinant viruses and parental PEDV. Although animal challenging study demonstrated that the glycosylation sites in RBD do not affect the pathogenicity of PEDV, we found that removing the glycosylation sites on the RBD regions could promote the IgG and neutralization titer in vivo, suggesting deglycosylation in RBD could enhance the immunogenicity of PEDV. These findings demonstrated that removal of the glycosylation sites in RBD is a promising method to develop PEDV vaccines.
Collapse
Affiliation(s)
- Gege Zhang
- College of Animal Science, Yangtze University, Jingzhou 434025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Shiyu Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Qiuxia Cao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Chengcheng Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Hong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Hongting Lu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Meiying Bao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Shanshan Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| | - Jiaxiang Wang
- College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
5
|
Pamornchainavakul N, Kikuti M, Paploski IAD, Corzo CA, VanderWaal K. Predicting Potential PRRSV-2 Variant Emergence through Phylogenetic Inference. Transbound Emerg Dis 2024; 2024:7945955. [PMID: 40303160 PMCID: PMC12017126 DOI: 10.1155/2024/7945955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a significant pig disease causing substantial annual losses exceeding half a billion dollars to the United States pork industry. The cocirculation and emergence of genetically distinct PRRSV-2 viruses hinder PRRS control, especially vaccine development. Similar to other viral infections like seasonal flu and SARS-CoV-2, predictive tools for identifying potential emerging viral variants may prospectively aid in preemptive disease mitigation. However, such predictions have not been made for PRRSV-2, despite the abundance of relevant data. In this study, we analyzed a decade's worth of virus ORF5 sequences (n = 20,700) and corresponding metadata to identify phylogenetic-based early indicators for short-term (12 months) and long-term (24 months) variant emergence. Our analysis focuses on PRRSV-2 Lineage 1, which was the predominant lineage within the U.S. during this period. We evaluated population expansion, spatial distribution, and genetic diversity as key success metrics for variant emergence. Our findings indicate that successful variants were best characterized as those that underwent population expansion alongside widespread geographical spread but had limited genetic diversification. Conditional logistic regression revealed the local branching index as the sole informative indicator for predicting population expansion (balanced accuracy (BA) = 0.75), while ancestral branch length was strongly linked to future genetic diversity (BA = 0.79). Predicting spatial dispersion relied on the branch length and putative antigenic difference (BA = 0.67), but their causal relationships remain unclear. Although the predictive models effectively captured most emerging variants (sensitivity = 0.58-0.81), they exhibited relatively low positive predictive value (PPV = 0.09-0.16). This initial step in PRRSV-2 prediction is a crucial step for more precise prevention strategies against PRRS in the future.
Collapse
Affiliation(s)
| | - Mariana Kikuti
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | - Cesar A. Corzo
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
6
|
Rawal G, Almeida MN, Gauger PC, Zimmerman JJ, Ye F, Rademacher CJ, Armenta Leyva B, Munguia-Ramirez B, Tarasiuk G, Schumacher LL, Aljets EK, Thomas JT, Zhu JH, Trexel JB, Zhang J. In Vivo and In Vitro Characterization of the Recently Emergent PRRSV 1-4-4 L1C Variant (L1C.5) in Comparison with Other PRRSV-2 Lineage 1 Isolates. Viruses 2023; 15:2233. [PMID: 38005910 PMCID: PMC10674456 DOI: 10.3390/v15112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The recently emerged PRRSV 1-4-4 L1C variant (L1C.5) was in vivo and in vitro characterized in this study in comparison with three other contemporary 1-4-4 isolates (L1C.1, L1A, and L1H) and one 1-7-4 L1A isolate. Seventy-two 3-week-old PRRSV-naive pigs were divided into six groups with twelve pigs/group. Forty-eight pigs (eight/group) were for inoculation, and 24 pigs (four/group) served as contact pigs. Pigs in pen A of each room were inoculated with the corresponding virus or negative media. At two days post inoculation (DPI), contact pigs were added to pen B adjacent to pen A in each room. Pigs were necropsied at 10 and 28 DPI. Compared to other virus-inoculated groups, the L1C.5-inoculated pigs exhibited more severe anorexia and lethargy, higher mortality, a higher fraction of pigs with fever (>40 °C), higher average temperature at several DPIs, and higher viremia levels at 2 DPI. A higher percentage of the contact pigs in the L1C.5 group became viremic at two days post contact, implying the higher transmissibility of this virus strain. It was also found that some PRRSV isolates caused brain infection in inoculation pigs and/or contact pigs. The complete genome sequences and growth characteristics in ZMAC cells of five PRRSV-2 isolates were further compared. Collectively, this study confirms that the PRRSV 1-4-4 L1C variant (L1C.5) is highly virulent with potential higher transmissibility, but the genetic determinants of virulence remain to be elucidated.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Marcelo N. Almeida
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Fangshu Ye
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
| | - Christopher J. Rademacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Betsy Armenta Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Berenice Munguia-Ramirez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Grzegorz Tarasiuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Loni L. Schumacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Ethan K. Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Joseph T. Thomas
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jin-Hui Zhu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jolie B. Trexel
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| |
Collapse
|
7
|
Paploski IAD, Makau DN, Pamornchainavakul N, Baker JP, Schroeder D, Rovira A, VanderWaal K. Potential Novel N-Glycosylation Patterns Associated with the Emergence of New Genetic Variants of PRRSV-2 in the U.S. Vaccines (Basel) 2022; 10:2021. [PMID: 36560431 PMCID: PMC9787953 DOI: 10.3390/vaccines10122021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Glycosylation of proteins is a post-translational process where oligosaccharides are attached to proteins, potentially altering their folding, epitope availability, and immune recognition. In Porcine reproductive and respiratory syndrome virus-type 2 (PRRSV-2), positive selection pressure acts on amino acid sites potentially associated with immune escape through glycan shielding. Here, we describe the patterns of potential N-glycosylation sites over time and across different phylogenetic lineages of PRRSV-2 to better understand how these may contribute to patterns of coexistence and emergence of different lineages. We screened 19,179 PRRSV GP5 sequences (2004−2021) in silico for potential N-glycosylated sites. The emergence of novel combinations of N-glycosylated sites coincided with past PRRSV epidemics in the U.S. For lineage L1A, glycosylation at residues 32, 33, 44, 51, and 57 first appeared in 2012, but represented >62% of all L1A sequences by 2015, coinciding with the emergence of the L1A 1-7-4 strain that increased in prevalence from 8 to 86% of all L1A sequences from 2012 to 2015. The L1C 1-4-4 strain that emerged in 2020 also had a distinct N-glycosylation pattern (residues 32, 33, 44, and 51). From 2020 to 2021, this pattern was responsible for 44−47% of the L1C sequences, contrasting to <5% in years prior. Our findings support the hypothesis that antigenic evolution contributes to the sequential dominance of different PRRSV strains and that N-glycosylation patterns may partially account for antigenic differences amongst strains. Further studies on glycosylation and its effect on PRRSV GP5 folding are needed to further understand how glycosylation patterns shape PRRSV occurrence.
Collapse
Affiliation(s)
- Igor A. D. Paploski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Dennis N. Makau
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Julia P. Baker
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Declan Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
- School of Biological Sciences, University of Reading, Reading RG6 6AJ, England, UK
| | - Albert Rovira
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN 55018, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
Using Alphafold2 to Predict the Structure of the Gp5/M Dimer of Porcine Respiratory and Reproductive Syndrome Virus. Int J Mol Sci 2022; 23:ijms232113209. [DOI: 10.3390/ijms232113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven β-strands from each protein, which interact via β-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.
Collapse
|
9
|
Terada T, Morozumi T, Wada E, Sukegawa S. Two immune-based methods using immortalized porcine kidney macrophages for quantifying neutralizing activity against porcine reproductive and respiratory syndrome virus-2. J Virol Methods 2022; 303:114494. [PMID: 35181347 DOI: 10.1016/j.jviromet.2022.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes a serious infectious disease in pigs in farms worldwide. Neutralizing antibody titer is an effective index for evaluating immunity to PRRSV; however, PRRSV has different neutralizing cross-reactivity between strains. Therefore, quantitative measurement of neutralizing antibody titers against field PRRSV strains would be required to evaluate whether neutralizing antibodies in pigs could possess neutralizing activity against individual or multiple strains. Immune-based methods, such as image cytometry (ICM) and cell-based enzyme-linked immune sorbent assay (ELISA), are quantitative and can be used to evaluate many samples. Using immortalized porcine kidney macrophages (IPKMs), which are highly susceptible to infection from field PRRSV-2 strains compared with other cell lines, immune-based methods could enable the evaluation of the neutralizing activity of porcine serum against field strains of PRRSV-2 that are difficult to isolate in conventional cells. In summary, we adapted two methods, namely ICM and cell-based ELISA, to IPKMs for quantitative neutralizing antibody titer measurements. Two immune-based methods using IPKMs are adequate for quantifying neutralizing activity of porcine serum against PRRSV-2, including field strains.
Collapse
Affiliation(s)
- Takumi Terada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Takeya Morozumi
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan.
| | - Emi Wada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Shin Sukegawa
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| |
Collapse
|
10
|
Paploski IAD, Pamornchainavakul N, Makau DN, Rovira A, Corzo CA, Schroeder DC, Cheeran MCJ, Doeschl-Wilson A, Kao RR, Lycett S, VanderWaal K. Phylogenetic Structure and Sequential Dominance of Sub-Lineages of PRRSV Type-2 Lineage 1 in the United States. Vaccines (Basel) 2021; 9:608. [PMID: 34198904 PMCID: PMC8229766 DOI: 10.3390/vaccines9060608] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic diversity and frequent emergence of novel genetic variants of porcine reproductive and respiratory syndrome virus type-2 (PRRSV) hinders control efforts, yet drivers of macro-evolutionary patterns of PRRSV remain poorly documented. Utilizing a comprehensive database of >20,000 orf5 sequences, our objective was to classify variants according to the phylogenetic structure of PRRSV co-circulating in the U.S., quantify evolutionary dynamics of sub-lineage emergence, and describe potential antigenic differences among sub-lineages. We subdivided the most prevalent lineage (Lineage 1, accounting for approximately 60% of available sequences) into eight sub-lineages. Bayesian coalescent SkyGrid models were used to estimate each sub-lineage's effective population size over time. We show that a new sub-lineage emerged every 1 to 4 years and that the time between emergence and peak population size was 4.5 years on average (range: 2-8 years). A pattern of sequential dominance of different sub-lineages was identified, with a new dominant sub-lineage replacing its predecessor approximately every 3 years. Consensus amino acid sequences for each sub-lineage differed in key GP5 sites related to host immunity, suggesting that sub-lineage turnover may be linked to immune-mediated competition. This has important implications for understanding drivers of genetic diversity and emergence of new PRRSV variants in the U.S.
Collapse
Affiliation(s)
- Igor A. D. Paploski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
| | - Nakarin Pamornchainavakul
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
| | - Dennis N. Makau
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
| | - Albert Rovira
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Maxim C-J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
| | - Andrea Doeschl-Wilson
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (A.D.-W.); (R.R.K.); (S.L.)
| | - Rowland R. Kao
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (A.D.-W.); (R.R.K.); (S.L.)
| | - Samantha Lycett
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (A.D.-W.); (R.R.K.); (S.L.)
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (I.A.D.P.); (N.P.); (D.N.M.); (A.R.); (C.A.C.); (D.C.S.); (M.C.-J.C.)
| |
Collapse
|
11
|
Young JE, Dvorak CMT, Graham SP, Murtaugh MP. Isolation of Porcine Reproductive and Respiratory Syndrome Virus GP5-Specific, Neutralizing Monoclonal Antibodies From Hyperimmune Sows. Front Immunol 2021; 12:638493. [PMID: 33692807 PMCID: PMC7937800 DOI: 10.3389/fimmu.2021.638493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease which impacts the pig industry worldwide. The disease is caused by PRRS viruses (PRRSV-1 and -2) which leads to abortions and other forms of reproductive failure in sows and severe respiratory disease in growing pigs. Current PRRSV vaccines provide limited protection; only providing complete protection against closely related strains. The development of improved PRRSV vaccines would benefit from an increased understanding of epitopes relevant to protection, including those recognized by antibodies which possess the ability to neutralize distantly related strains. In this work, a reverse vaccinology approach was taken; starting first with pigs known to have a broadly neutralizing antibody response and then investigating the responsible B cells/antibodies through the isolation of PRRSV neutralizing monoclonal antibodies (mAbs). PBMCs were harvested from pigs sequentially exposed to a modified-live PRRSV-2 vaccine as well as divergent PRRSV-2 field isolates. Memory B cells were immortalized and a total of 5 PRRSV-specific B-cell populations were isolated. All identified PRRSV-specific antibodies were found to be broadly binding to all PRRSV-2 isolates tested, but not PRRSV-1 isolates. Antibodies against GP5 protein, commonly thought to possess a dominant PRRSV neutralizing epitope, were found to be highly abundant, as four out of five B cells populations were GP5 specific. One of the GP5-specific mAbs was shown to be neutralizing but this was only observed against homologous and not heterologous PRRSV strains. Further investigation of these antibodies, and others, may lead to the elucidation of conserved neutralizing epitopes that can be exploited for improved vaccine design and lays the groundwork for the study of broadly neutralizing antibodies against other porcine pathogens.
Collapse
Affiliation(s)
- Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Cheryl M T Dvorak
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | | | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
12
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
13
|
Characterization of porcine reproductive and respiratory syndrome virus (ORF5 RFLP 1-7-4 viruses) in northern China. Microb Pathog 2019; 140:103941. [PMID: 31862391 DOI: 10.1016/j.micpath.2019.103941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS). Disease outbreaks caused by NADC30-like PRRSV strains were a bit prevalent in China in recent years. In the present study, two newly emerged PRRSV strains, which were designated as PRRSV-ZDXYL-China-2018-1 and PRRSV-ZDXYL-China-2018-2 strains were found from piglets' lung tissues in Northern China. The virus belongs to lineage 1 of the PRRSV genotype 2 and is closely related to US strains that possess the open reading frame (ORF5) restriction fragment length polymorphism (RFLP) 1-7-4. The two strains were identified from infected weaning piglet herds in Zhaodong City, Heilongjiang province of China. The complete genome of the PRRSV-ZDXYL-China-2018-1 and PRRSV-ZDXYL-China-2018-2 strains were 15093 nt and 15110 nt, and shared 96.7%-97.0% and 97.1%-97.4% similarities with the US identified, ISU10 and NADC34 strains respectively. Then the PRRSV-ZDXYL-China-2018-1 strain was successfully isolated from the clinical sample. Our results demonstrate, that the emergence of ORF5 RFLP 1-7-4-like PRRSVs in China, could pose a significant challenge to PRRSV epidemic prevention.
Collapse
|
14
|
Liu J, Wei C, Lin Z, Xia W, Ma Y, Dai A, Yang X. Full genome sequence analysis of a 1-7-4-like PRRSV strain in Fujian Province, China. PeerJ 2019; 7:e7859. [PMID: 31637126 PMCID: PMC6800524 DOI: 10.7717/peerj.7859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
PRRS virus (PRRSV) has undergone rapid evolution and resulted in immense economic losses worldwide. In the present study, a PRRSV strain named FJ0908 causing high abortion rate (25%) and mortality (40%) was detected in a swine herd in China. To determine if a new PRRSV genotype had emerged, we characterized the genetic characteristics of FJ0908. Phylogenetic analysis indicated that FJ0908 was related to 1-7-4-like strains circulating in the United States since 2014. Furthermore, the ORF5 sequence restriction fragment length polymorphism (RFLP) pattern of FJ0908 was 1-7-4. Additionally, FJ0908 had a 100 aa deletion (aa329-428) within nsp2, as compared to VR-2332, and the deletion pattern was consistent with most of 1-7-4 PRRSVs. Collectively, the data of this study contribute to the understanding of 1-7-4-like PRRSV molecular epidemiology in China.
Collapse
Affiliation(s)
- Jiankui Liu
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Chunhua Wei
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Zhifeng Lin
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xia
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Ying Ma
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Ailing Dai
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| | - Xiaoyan Yang
- College of Life Sciences, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, China
| |
Collapse
|
15
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|
16
|
Stoian AMM, Rowland RRR. Challenges for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions with CD163 and Targets of Virus Neutralization. Vet Sci 2019; 6:vetsci6010009. [PMID: 30658381 PMCID: PMC6466263 DOI: 10.3390/vetsci6010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
One of the main participants associated with the onset and maintenance of the porcine respiratory disease complex (PRDC) syndrome is porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus that has plagued the swine industry for 30 years. The development of effective PRRS vaccines, which deviate from live virus designs, would be an important step towards the control of PRRS. Potential vaccine antigens are found in the five surface proteins of the virus, which form covalent and multiple noncovalent interactions and possess hypervariable epitopes. Consequences of this complex surface structure include antigenic variability and escape from immunity, thus presenting challenges in the development of new vaccines capable of generating broadly sterilizing immunity. One potential vaccine target is the induction of antibody that disrupts the interaction between the macrophage CD163 receptor and the GP2, GP3, and GP4 heterotrimer that protrudes from the surface of the virion. Studies to understand this interaction by mapping mutations that appear following the escape of virus from neutralizing antibody identify the ectodomain regions of GP5 and M as important immune sites. As a target for antibody, GP5 possesses a conserved epitope flanked by N-glycosylation sites and hypervariable regions, a pattern of conserved epitopes shared by other viruses. Resolving this apparent conundrum is needed to advance PRRS vaccine development.
Collapse
Affiliation(s)
- Ana M M Stoian
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
17
|
Smith N, Power UF, McKillen J. Phylogenetic analysis of porcine reproductive and respiratory syndrome virus isolates from Northern Ireland. Arch Virol 2018; 163:2799-2804. [DOI: 10.1007/s00705-018-3886-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
|
18
|
Kang H, Yu JE, Shin JE, Kang A, Kim WI, Lee C, Lee J, Cho IS, Choe SE, Cha SH. Geographic distribution and molecular analysis of porcine reproductive and respiratory syndrome viruses circulating in swine farms in the Republic of Korea between 2013 and 2016. BMC Vet Res 2018; 14:160. [PMID: 29769138 PMCID: PMC5956928 DOI: 10.1186/s12917-018-1480-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes devastating disease characterized by reproductive failure and respiratory problems in the swine industry. To understand the recent prevalence and genetic diversity of field PRRSVs in the Republic of Korea, open reading frames (ORFs) 5 and 7 of PRRSV field isolates from 631 PRRS-affected swine farms nationwide in 2013-2016 were analyzed along with 200 Korean field viruses isolated in 2003-2010, and 113 foreign field and vaccine strains. RESULTS Korean swine farms were widely infected with PRRSVs of a single type (38.4 and 37.4% for Type 1 and Type 2 PRRSV, respectively) or both types (24.2%) with up to approximately 83% nucleotide sequence similarity to prototype PRRSVs (Lelystad or VR2332). Phylogenetic analysis based on the ORF5 nucleotide sequence revealed that Korean Type 1 field isolates were classified as subgroups A, B, and C under subtype 1, while Korean Type 2 field isolates were classified as lineages 1 and 5 as well as three Korean lineages (kor A, B, and C) with the highest infection prevalence in subgroup A (50.5%) and lineage 5 (15.3%) for Type 1 and Type 2 PRRSV, respectively, among ORF5-positive farms. In particular, the lineages kor B and C were identified as novel lineages in this study, and lineage kor B comprised only the field viruses isolated from Gyeongnam Province in 2014-2015, establishing regionally unique genetic characteristics. It has also recently been confirmed that commercialized vaccine-like viruses (subgroup C) of Type 1 PRRSV and NADC30-like viruses of Type 2 PRRSV (lineage 1) are spreading rapidly in Korean swine farms. The Korean field viruses were also expected to be antigenically variable as shown in the high diversity of neutralizing epitopes and N-glycosylation sites. CONCLUSIONS This up-to-date information regarding recent field PRRSVs should be taken into consideration when creating strategies for the application of PRRS control measures, including vaccination in the field.
Collapse
Affiliation(s)
- Hyeonjeong Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Animal Virology Laboratory, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Eun Yu
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Ji-Eun Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Areum Kang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jienny Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Se-Eun Choe
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Sang-Ho Cha
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea. .,Present address: PRRS research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
19
|
van Geelen AGM, Anderson TK, Lager KM, Das PB, Otis NJ, Montiel NA, Miller LC, Kulshreshtha V, Buckley AC, Brockmeier SL, Zhang J, Gauger PC, Harmon KM, Faaberg KS. Porcine reproductive and respiratory disease virus: Evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity. Virology 2017; 513:168-179. [PMID: 29096159 DOI: 10.1016/j.virol.2017.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/14/2023]
Abstract
Recent cases of porcine reproductive and respiratory syndrome virus (PRRSV) infection in United States swine-herds have been associated with high mortality in piglets and severe morbidity in sows. Analysis of the ORF5 gene from such clinical cases revealed a unique restriction fragment polymorphism (RFLP) of 1-7-4. The genome diversity of seventeen of these viruses (81.4% to 99.8% identical; collected 2013-2015) and the pathogenicity of 4 representative viruses were compared to that of SDSU73, a known moderately virulent strain. Recombination analyses revealed genomic breakpoints in structural and nonstructural regions of the genomes with evidence for recombination events between lineages. Pathogenicity varied between the isolates and the patterns were not consistent. IA/2014/NADC34, IA/2013/ISU-1 and IN/2014/ISU-5 caused more severe disease, and IA/2014/ISU-2 did not cause pyrexia and had little effect on pig growth. ORF5 RFLP genotyping was ineffectual in providing insight into isolate pathogenicity and that other parameters of virulence remain to be identified.
Collapse
Affiliation(s)
- Albert G M van Geelen
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Phani B Das
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Nicholas J Otis
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Nestor A Montiel
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Vikas Kulshreshtha
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Alexandra C Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Susan L Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA.
| |
Collapse
|
20
|
Chen XW, Li L, Yin M, Wang Q, Luo WT, Ma Y, Pu ZH, Zhou JL. Cloning and molecular characterization of the ORF5 gene from a PRRSV-SN strain from Southwest China. Microb Pathog 2017; 112:295-302. [PMID: 28970171 DOI: 10.1016/j.micpath.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
To monitor the genetic variation of PRRSV, the ORF5 gene of the PRRSV-SN strain found in Suining City, Sichuan Province, was cloned and sequenced. The results showed that the PRRSV-SN strain was a highly pathogenic PRRSV (HP-PRRSV) variant strain with the North American (NA) genotype. Homology analysis showed that the ORF5 gene of the PRRSV-SN isolate shared 89.4% (86.5%) nucleotide (amino acid) sequence similarity with the North American strain VR-2332, 98.8% (96%) similarity with JXA1, and 63.8% (57.7%) similarity with the European type representative strain Lelystad virus. Phylogenetic analysis showed that PRRSV-SN belongs to the NA genotype and has the same subtype as other highly pathogenic PRRSV strains. Amino acid sequence analysis showed that compared with the VR2332 strain, PRRSV-SN has different degrees of variation in the signal peptide, transmembrane region (TM), primary neutralizing epitope (PNE), non-neutral epitopes and N-glycosylation sites. Antigenicity analysis showed that the PRRSV-SN ORF5 gene products and JXA1 have similar antigenic characteristics, and the antigenic epitopes are mainly located in aa30-39, aa50-60, aa128-141, aa146-155 and aa161-183 regions. In contrast, the antigenic characteristics of PRRSV-SN are quite different from those of the VR2332 strain. The main differences were that the PRRSV-SN strain was significantly narrower than the VR2332 strain in the aa30-39 and the aa50-60 regions but was significantly wider in the aa136-141 region. The results of this study showed that the epidemic strains that cause PRRSV outbreaks in the farm are still mainly JXA1 variants, but due to the more frequent use of live vaccine immunizations, the genes of the PRRSV epidemic strain still show constant variation. Vaccination with live PRRSV should be reduced, and surveillance of PRRSV strains should be enhanced.
Collapse
Affiliation(s)
- Xi-Wen Chen
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China; Research Center of Ecological Agriculture and Animal Husbandry in Northwest Sichuan, Mianyang, Sichuan, 621000, China.
| | - Lian Li
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China; College of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Miao Yin
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China
| | - Qian Wang
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China; College of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Wen-Tao Luo
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China; College of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Ying Ma
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China; Research Center of Ecological Agriculture and Animal Husbandry in Northwest Sichuan, Mianyang, Sichuan, 621000, China
| | - Zhong-Hui Pu
- Institute of Applied Animal Technology, Mianyang Normal University, Mianyang, Sichuan, 621000, China; Research Center of Ecological Agriculture and Animal Husbandry in Northwest Sichuan, Mianyang, Sichuan, 621000, China
| | - Jie-Long Zhou
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
| |
Collapse
|
21
|
The complex co-translational processing of glycoprotein GP5 of type 1 porcine reproductive and respiratory syndrome virus. Virus Res 2017; 240:112-120. [PMID: 28807563 DOI: 10.1016/j.virusres.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
GP5 and M, the major membrane proteins of porcine reproductive and respiratory syndrome virus (PRRSV), are the driving force for virus budding and a target for antibodies. We studied co-translational processing of GP5 from an European PRRSV-1 strain. Using mass spectrometry, we show that in virus particles of a Lelystad variant, the signal peptide of GP5 was absent due to cleavage between glycine-34 and asparagine-35. This cleavage site removes an epitope for a neutralizing monoclonal antibody, but leaves intact another epitope recognized by neutralizing pig sera. Upon ectopic expression of this GP5 in cells, signal peptide cleavage was however inefficient. Complete cleavage occurred when cysteine-24 was changed to proline or an unused glycosylation site involving asparagine-35 was mutated. Insertion of proline at position 24 also caused carbohydrate attachment to asparagine-35. Glycosylation sites introduced downstream of residue 35 were used, but did not inhibit signal peptide processing. Co-expression of the M protein rescued this processing defect in GP5, suggesting a novel function of M towards GP5. We speculate that a complex interplay of the co-translational modifications of GP5 affect the N-terminal structure of the mature proteins and hence its antigenicity.
Collapse
|
22
|
Antigenic and Biological Characterization of ORF2-6 Variants at Early Times Following PRRSV Infection. Viruses 2017; 9:v9050113. [PMID: 28509878 PMCID: PMC5454425 DOI: 10.3390/v9050113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) challenges efforts to develop effective and broadly acting vaccines. Although genetic variation in PRRSV has been extensively documented, the effects of this variation on virus phenotype are less well understood. In the present study, PRRSV open reading frame (ORF)2-6 variants predominant during the first six weeks following experimental infection were characterized for antigenic and replication phenotype. There was limited genetic variation during these early times after infection; however, distinct ORF2-6 haplotypes that differed from the NVSL97-7895 inoculum were identified in each of the five pigs examined. Chimeric viruses containing all or part of predominant ORF2-6 haplotypes were constructed and tested in virus neutralization and in vitro replication assays. In two pigs, genetic variation in ORF2-6 resulted in increased resistance to neutralization by autologous sera. Mapping studies indicated that variation in either ORF2-4 or ORF5-6 could confer increased neutralization resistance, but there was no single amino acid substitution that was predictive of neutralization phenotype. Detailed analyses of the early steps in PRRSV replication in the presence and absence of neutralizing antibody revealed both significant inhibition of virion attachment and, independently, a significant delay in the appearance of newly synthesized viral RNA. In all pigs, genetic variation in ORF2-6 also resulted in significant reduction in infectivity on MARC-145 cells, suggesting variation in ORF2-6 may also be important for virus replication in vivo. Together, these data reveal that variation appearing early after infection, though limited, alters important virus phenotypes and contributes to antigenic and biologic diversity of PRRSV.
Collapse
|
23
|
Fontanella E, Ma Z, Zhang Y, de Castro AMMG, Shen H, Halbur PG, Opriessnig T. An interferon inducing porcine reproductive and respiratory syndrome virus vaccine candidate elicits protection against challenge with the heterologous virulent type 2 strain VR-2385 in pigs. Vaccine 2016; 35:125-131. [PMID: 27876202 DOI: 10.1016/j.vaccine.2016.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3weeks of age followed by challenge at 8weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and macroscopic lung lesions. Further work is needed to investigate different vaccination and challenge protocols, including routes, doses, timing and strains.
Collapse
Affiliation(s)
- Eve Fontanella
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Zexu Ma
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Yanjin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Alessandra M M G de Castro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Huigang Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
24
|
Lee SC, Choi HW, Nam E, Noh YH, Lee S, Lee YJ, Park GS, Shin JH, Yoon IJ, Kang SY, Lee C. Pathogenicity and genetic characteristics associated with cell adaptation of a virulent porcine reproductive and respiratory syndrome virus nsp2 DEL strain CA-2. Vet Microbiol 2016; 186:174-88. [PMID: 27016772 DOI: 10.1016/j.vetmic.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most common and world-widespread viral pathogen of swine. We previously reported genomic sequences and pathogenicity of type 2 Korean PRRSV strains belonging to the virulent lineage 1 family, which contain remarkable amino acid deletions in nonstructural protein 2 (nsp2 DEL) compared to VR-2332. Here, a virulent type 2 Korean PRRSV nsp2 DEL strain, CA-2, was serially propagated in MARC-145 cells for up to 100 passages (CA-2-P100). As the passage number increased, the phenotypic characteristics of cell-adapted CA-2 strains were altered, in terms of higher viral titers and larger plaque sizes compared to the parental virus. Pro-inflammatory cytokine genes, including TNF-α, IL-8, MCP-1, and MCP-2, were found to be significantly down-regulated in PAM cells with the CA-2-P100 strain compared to its parental nsp2 DEL virus. Animal inoculation studies demonstrated that the virulence of CA-2-P100 was reduced significantly, with showing normal weight gain, body temperatures, and lung lesions comparable to the control group. Furthermore, high-passage CA-2-P100 showed declined and transient viremia kinetics, as well as delayed and low PRRSV-specific antibody responses in infected pigs. In addition, we determined whole genome sequences of low to high-passage derivatives of CA-2. The nsp2 DEL pattern was conserved for 100 passages, whereas no other deletions or insertions arose during the cell adaptation process. However, CA-2-P100 possessed 54 random nucleotide substitutions that resulted in 27 amino acid changes distributed throughout the genome, suggesting that these genetic drifts provide a possible molecular basis correlated with the cell-adapted features in vitro and the attenuated phenotype in vivo. Taken together, our data indicate that the cell-attenuated CA-2-P100 strain is a promising candidate for developing a safe and effective live PRRSV vaccine.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hwan-Won Choi
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Eeuri Nam
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Yun-Hee Noh
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Sunhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoo Jin Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gun-Seok Park
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Joong Yoon
- Choongang Vaccine Laboratory, Daejeon 34055, Republic of Korea
| | - Shien-Young Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
25
|
Eck M, Durán MG, Ricklin ME, Locher S, Sarraseca J, Rodríguez MJ, McCullough KC, Summerfield A, Zimmer G, Ruggli N. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs. Vet Res 2016; 47:33. [PMID: 26895704 PMCID: PMC4761149 DOI: 10.1186/s13567-016-0318-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Collapse
Affiliation(s)
- Melanie Eck
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland. .,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland.
| | - Margarita García Durán
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - Meret E Ricklin
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Samira Locher
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Javier Sarraseca
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - María José Rodríguez
- Inmunología y Genética aplicada, S.A. (INGENASA), Calle de Los Hermanos García Noblejas 39, 28037, Madrid, Spain.
| | - Kenneth C McCullough
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland. .,Department of Infectious Disease and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001, Bern, Switzerland.
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| |
Collapse
|
26
|
Sattler T, Pikalo J, Wodak E, Schmoll F. Performance of ELISAs for detection of antibodies against porcine respiratory and reproductive syndrome virus in serum of pigs after PRRSV type 2 live vaccination and challenge. Porcine Health Manag 2015; 1:19. [PMID: 28405425 PMCID: PMC5382508 DOI: 10.1186/s40813-015-0015-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study was to evaluate the performance of different newly developed and/or commercially available ELISAs for detection of PRRSV specific antibodies. Consequently, ten PRRSV negative piglets (group V) were vaccinated with a PRRSV type 2 vaccine. Blood samples were taken before as well as seven, 21 and 42 days after vaccination. At day 42 after vaccination (day 0 of the study) all of the piglets from group V and 10 non-prevaccinated PRRSV negative piglets (group N) were challenged with an HP PRRSV type 2 field strain. Blood samples were taken before and at days 3, 7, 10, 14, 21 and 28 after challenge. The success of vaccination and challenge was measured with RT qPCR. All serum samples were tested with six ELISAs for detection of PRRSV antibodies. Three of them are nucleocapsid-based, two use a glycoprotein extract and one uses inactivated whole virus as antigen. The specificity of the ELISAs was evaluated using 301 serum samples of piglets from PRRSV negative herds. Results The piglets from group V tested positive by RT qPCR at day 7 after vaccination and all piglets tested positive at day 3 after challenge. PRRSV specific antibodies were seen with all nucleocapsid-based ELISAs from day 21 after vaccination onwards in group V and from day 10 after challenge in group N. The glycoprotein-based ELISAs detected antibodies from day 42 after vaccination (group V) and day 21 after challenge (group N). The agreement according to kappa-coefficient was almost perfect. The glycoprotein-based ELISAs were able to distinguish PRRSV type 2, although with some cross reactions. Regarding specificity, the ELISAs performed differently (specificity between 97.4 % and 100 %), whereas most of the ELISAs with higher sensitivity had a slightly lower specificity. Conclusions All tested ELISA were able to detect PRRSV antibodies in the serum of pigs vaccinated with a PRRSV type 2 vaccine and after challenge with an HP PRRSV type 2 field strain. The onset on antibody detection differed, depending on the type of antigen used in the ELISAs. Most of the ELISAs with a higher sensitivity had a lower specificity.
Collapse
Affiliation(s)
- Tatjana Sattler
- Large Animal Clinic for Internal Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.,Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340 Mödling, Austria
| | - Jutta Pikalo
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340 Mödling, Austria
| | - Eveline Wodak
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340 Mödling, Austria
| | - Friedrich Schmoll
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340 Mödling, Austria
| |
Collapse
|
27
|
Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. J Virol 2015; 90:682-93. [PMID: 26491168 DOI: 10.1128/jvi.02307-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Porcine reproductive and respiratory syndrome virus (PRRSV) is a critical pathogen of swine, and infections by this virus often result in delayed, low-level induction of cytotoxic T lymphocyte (CTL) responses in pigs. Here, we report that a Chinese highly pathogenic PRRSV strain possessed the ability to downregulate swine leukocyte antigen class I (SLA-I) molecules on the cell surface of porcine alveolar macrophages and target them for degradation in a manner that was dependent on the ubiquitin-proteasome system. Moreover, we found that the nsp1α replicase protein contributed to this property of PRRSV. Further mutagenesis analyses revealed that this function of nsp1α required the intact molecule, including the zinc finger domain, but not the cysteine protease activity. More importantly, we found that nsp1α was able to interact with both chains of SLA-I, a requirement that is commonly needed for many viral proteins to target their cellular substrates for proteasomal degradation. Together, our findings provide critical insights into the mechanisms of how PRRSV might evade cellular immunity and also add a new role for nsp1α in PRRSV infection. IMPORTANCE PRRSV infections often result in delayed, low-level induction of CTL responses in pigs. Deregulation of this immunity is thought to prevent the virus from clearance in an efficient and timely manner, contributing to persistent infections in swineherds. Our studies in this report provide critical insight into the mechanism of how PRRSV might evade CTL responses. In addition, our findings add a new role for nsp1α, a critical viral factor involved in antagonizing host innate immunity.
Collapse
|
28
|
Zuo Y, Yuan W, Sun J. Complete Genomic Characterization of Porcine Reproductive and Respiratory Syndrome Virus Strain HB-XL. Genes (Basel) 2015. [PMID: 26213972 PMCID: PMC4584324 DOI: 10.3390/genes6030672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causal agent of a serious disease of swine. Here, we report the genome sequence of PRRSV strain HB-XL isolated from a pig farm with a clinical outbreak of porcine reproductive and respiratory syndrome. The genome is 15,323 bp long and has nine open reading frames (GenBank: KP162169). Comparative and phylogenetic analysis showed that HB-XL belongs to the highly pathogenic PRRSV (HP-PRRSV) subfamily in the family PRRSV. The viral nonstructural protein 2 (Nsp2) of the HB-XL strain contained 30 discontinuous amino acid (AA) deletions relative to that of the Nsp2 of the VR2332 strain. The AA substitutions R13 and R151 suggested high virulence of the HB-XL strain. The unique mutations in glycoprotein 5 (GP5) and Nsp2 revealed that HB-XL might be a novel variant PRRSV strain recombined with vaccine strains. However, the low morbidity and mortality in the pig herd from which HB-XL was isolated indicate that the virulence of the virus was weak, so it has potential as a future vaccine strain.
Collapse
Affiliation(s)
- Yi Zuo
- College of Animal Medicine, Agriculture University of Hebei, Baoding 071001, China.
- Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| | - Wanzhe Yuan
- College of Animal Medicine, Agriculture University of Hebei, Baoding 071001, China.
- Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| | - Jiguo Sun
- College of Animal Medicine, Agriculture University of Hebei, Baoding 071001, China.
- Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| |
Collapse
|
29
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
30
|
Zhu S, Guo X, Keyes LR, Yang H, Ge X. Recombinant Encephalomyocarditis Viruses Elicit Neutralizing Antibodies against PRRSV and CSFV in Mice. PLoS One 2015; 10:e0129729. [PMID: 26076449 PMCID: PMC4468123 DOI: 10.1371/journal.pone.0129729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
Encephalomyocarditis virus (EMCV) is capable of infecting a wide range of species and the infection can cause myocarditis and reproductive failure in pigs as well as febrile illness in human beings. In this study, we introduced the entire ORF5 of the porcine reproductive and respiratory syndrome virus (PRRSV) or the neutralization epitope regions in the E2 gene of the classical swine fever virus (CSFV), into the genome of a stably attenuated EMCV strain, T1100I. The resultant viable recombinant viruses, CvBJC3m/I-ΔGP5 and CvBJC3m/I-E2, respectively expressed partial PRRSV envelope protein GP5 or CSFV neutralization epitope A1A2 along with EMCV proteins. These heterologous proteins fused to the N-terminal of the nonstructural leader protein could be recognized by anti-GP5 or anti-E2 antibody. We also tested the immunogenicity of these fusion proteins by immunizing BALB/c mice with the recombinant viruses. The immunized animals elicited neutralizing antibodies against PRRSV and CSFV. Our results suggest that EMCV can be engineered as an expression vector and serve as a tool in the development of novel live vaccines in various animal species.
Collapse
Affiliation(s)
- Shu Zhu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lisa R. Keyes
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
- * E-mail: (XG), (HY)
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
- * E-mail: (XG), (HY)
| |
Collapse
|
31
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
32
|
Franzo G, Dotto G, Cecchinato M, Pasotto D, Martini M, Drigo M. Phylodynamic analysis of porcine reproductive and respiratory syndrome virus (PRRSV) in Italy: action of selective pressures and interactions between different clades. INFECTION GENETICS AND EVOLUTION 2015; 31:149-57. [PMID: 25660037 DOI: 10.1016/j.meegid.2015.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most relevant and challenging infectious disease to affect swine breeding. Despite this, several aspects of the virus' evolution and virus-host interaction are still poorly understood and largely based on knowledge obtained through in vitro or in vivo experimental infections. Due to peculiar experimental conditions, our understanding is often contradictory and difficult to infer with respect to actual field conditions. Our phylodynamic study, based on ORF5 sequences of 141 samples collected in Italy from 1993 to 2012, explores different aspects of PRRSV epidemiology, evolution, and virus-host interaction. Two major clades, belonging to Type 1 subtype 1, were demonstrated to co-circulate while harboring a relevant intra- and inter-clade genetic diversity. Most Recent Common Ancestor (MRCA), evolution rates, and population dynamics were estimated using a serial coalescent-based approach, and different demographic histories were reconstructed for the two clades. Analysis of selective pressure revealed that sites subjected to diversifying selection were mainly located in the region of glycoprotein 5 (GP5) exposed to the host environment. Similarly, the vast majority of strains were highly glycosylated, confirming the proposed protective role of the glycan shield against the humoral immune response. Overall, our study reports both interactions among the viral populations as well as between virus and host, and their relevance in shaping viral evolution: different population dynamics over time seem to reflect a competition between clades. Some evidence argues in favor of the role of immune pressure in affecting GP5 evolution, including frequent changes in the region exposed to the host immune response, and preserving glycosylation profiles that can hamper humoral immunity.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Giorgia Dotto
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Marco Martini
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
33
|
Wang X, Qui L, Dang Y, Xiao S, Zhang S, Yang Z. Linear epitope recognition antibodies strongly respond to the C-terminal domain of HP-PRRSV GP5. Vet Microbiol 2014; 174:565-569. [PMID: 25448446 DOI: 10.1016/j.vetmic.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/17/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
A total of 155 peptides derived from the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) glycoprotein 5 (GP5) were printed on a chip to reveal the antigen reaction characteristics of the protein. The reactions of these peptides to HP-PRRSV-specific pig serum were scanned and quantified using fluorescence intensity via the PepSlide(®) Analyzer software. The intensity plots showed different reactions in the different sectors of GP5. The highest reaction intensity value reached 3894.5, with a peptide sequence of IVEKGGKVEVEGHLI. Seventeen peptides that showed relatively high reaction levels with HP-PRRSV-specific pig serum were selected as epitope candidates. Furthermore, the antigenic character was predicted using a software and was compared with the peptide scan results. In contrast to the software prediction, the HP-PRRSV-specific antibodies strongly responded to the C-terminal domain of GP5. The acquired data may be useful for understanding the antigenic characteristics of HP-PRRSV GP5.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China.
| | - Li Qui
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China
| | - Yu Dang
- Shaanxi University of Technology, Hanzhong 723001, China
| | - Sha Xiao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong road, Yangling 712100, China.
| |
Collapse
|
34
|
Veit M, Matczuk AK, Sinhadri BC, Krause E, Thaa B. Membrane proteins of arterivirus particles: structure, topology, processing and function. Virus Res 2014; 194:16-36. [PMID: 25278143 PMCID: PMC7172906 DOI: 10.1016/j.virusres.2014.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Arteriviruses are important pathogens in veterinary medicine. We review the structure and processing of their membrane proteins. Some features are unique from a cell biological point of view. New data on this topic are also presented. We speculate on the role of the membrane proteins during virus entry and budding.
Arteriviruses, such as equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV), are important pathogens in veterinary medicine. Despite their limited genome size, arterivirus particles contain a multitude of membrane proteins, the Gp5/M and the Gp2/3/4 complex, the small and hydrophobic E protein and the ORF5a protein. Their function during virus entry and budding is understood only incompletely. We summarize current knowledge of their primary structure, membrane topology, (co-translational) processing and intracellular targeting to membranes of the exocytic pathway, which are the budding site. We profoundly describe experimental data that led to widely believed conceptions about the function of these proteins and also report new results about processing steps for each glycoprotein. Further, we depict the location and characteristics of epitopes in the membrane proteins since the late appearance of neutralizing antibodies may lead to persistence, a characteristic hallmark of arterivirus infection. Some molecular features of the arteriviral proteins are rare or even unique from a cell biological point of view, particularly the prevention of signal peptide cleavage by co-translational glycosylation, discovered in EAV-Gp3, and the efficient use of overlapping sequons for glycosylation. This article reviews the molecular mechanisms of these cellular processes. Based on this, we present hypotheses on the structure and variability of arteriviral membrane proteins and their role during virus entry and budding.
Collapse
Affiliation(s)
- Michael Veit
- Institut für Virologie, Veterinärmedizin, Freie Universität Berlin, Germany.
| | | | | | - Eberhard Krause
- Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Bastian Thaa
- Institut für Virologie, Veterinärmedizin, Freie Universität Berlin, Germany
| |
Collapse
|
35
|
Wu F, Peng K, Tian J, Xu X, Zhou E, Chen H. Immune Response to Fc Tagged GP5 Glycoproteins of Porcine Reproductive and Respiratory Syndrome Virus. Viral Immunol 2014; 27:343-9. [DOI: 10.1089/vim.2014.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fang Wu
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Kefeng Peng
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Jiao Tian
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
36
|
Genetic diversity and phylogenetic analysis of porcine reproductive and respiratory syndrome virus isolates in East China. INFECTION GENETICS AND EVOLUTION 2014; 24:193-201. [DOI: 10.1016/j.meegid.2014.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 11/24/2022]
|
37
|
Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5. Vaccine 2014; 32:3617-22. [PMID: 24814552 DOI: 10.1016/j.vaccine.2014.04.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry worldwide. Although inactivated and live vaccines are commercially available for the control of PRRS, both types of vaccine have not always proven successful in terms of generating a protective immune response, particularly in the case of inactivated vaccines. In this study, we tested whether an inactivated vaccine could induce a humoral immune response to PRRS during a homologous challenge. Amino acid substitutions were introduced into glycoprotein (GP) 5 of the FL12 strain of the PRRS virus (PRRSV) using site-directed mutagenesis with a pFL12 infectious clone. The substitutions led to double deglycosylation in the putative glycosylation moieties on GP5. The mutant virus was subsequently inactivated with binary ethylenimine. The efficacy of the inactivated mutant virus was compared with that of the inactivated wild-type PRRSV. Only the inactivated mutant PRRSV induced serum neutralizing antibodies at six weeks post-vaccination. The group that was administered the inactivated mutant virus twice exhibited a significantly increased neutralizing antibody titer after a challenge with the virulent homologous strain and exhibited more rapid clearing of viremia compared to other groups, including the groups that were administered either the inactivated mutant or wild-type virus only once and the group that was administered the inactivated wild-type virus twice. Histopathological examination of lung tissue sections revealed that the group that was administered the inactivated mutant virus twice exhibited significantly thinner alveolar septa, whereas the thickness of the alveolar septa of the other groups were markedly increased due to lymphocyte infiltration. These results indicated that the deglycosylation of GP5 enhanced the immunogenicity of the inactivated mutant PRRSV and that twice administrations of the inactivated mutant virus conferred better protection against the homologous challenge. These findings suggest that the inactivated PRRSV that expresses a hypo-glycosylated GP5 is a potential inactivated vaccine candidate and a valuable tool for controlling PRRS for the swine industry.
Collapse
|
38
|
Robinson SR, Abrahante JE, Johnson CR, Murtaugh MP. Purifying selection in porcine reproductive and respiratory syndrome virus ORF5a protein influences variation in envelope glycoprotein 5 glycosylation. INFECTION GENETICS AND EVOLUTION 2013; 20:362-8. [PMID: 24084290 DOI: 10.1016/j.meegid.2013.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/05/2013] [Accepted: 09/21/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus ORF5a protein is encoded in an alternate open reading frame upstream of the major envelope glycoprotein (GP5) in subgenomic mRNA5. Bioinformatic analysis of 3466 type 2 PRRSV sequences showed that the two proteins have co-evolved through a fine balance of purifying codon usage to maintain a conserved RQ-rich motif in ORF5a protein, while eliciting a variable N-linked glycosylation motif in the alternative GP5 reading frame. Conservation of the ORF5a protein RQ-motif also explains an anomalous uracil desert in GP5 hypervariable glycosylation region. The N-terminus of the mature GP5 protein was confirmed to start with amino acid 32, the hypervariable region of the ectodomain. Since GP5 glycosylation variability is assumed to result from immunological selection against neutralizing antibodies, these findings show that an alternative possibility unrelated to immunological selection not only exists, but provides a foundation for investigating previously unsuspected aspects of PRRSV biology. Understanding functional consequences of subtle nucleotide sequence modifications in the region responsible for critical function in ORF5a protein and GP5 glycosylation is essential for rational design of new vaccines against PRRS.
Collapse
Affiliation(s)
- Sally R Robinson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
39
|
Molecular evolution of porcine reproductive and respiratory syndrome virus isolates from central China. Res Vet Sci 2013; 95:908-12. [PMID: 23998927 DOI: 10.1016/j.rvsc.2013.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 11/23/2022]
Abstract
To investigate the genetic diversity of prevailing porcine reproductive and respiratory syndrome virus (PRRSV) in Henan Province of China, 61 ORF5 gene sequences, originating from Henan Province during 2003-2010, were subjected to amino acid variation and phylogenetic analysis. The analyzed PRRSV ORF5 sequences carried evidence of one unique recombination event. Phylogenetic analysis revealed that all Henan isolates belonged to type 2 genotype and were divided into two subgroups. The dominant isolates had shifted from subgroup 1 to subgroup 2 during 2003-2010. Amino acid variation analysis of the glycoprotein 5 revealed that Henan PRRSV strains tended to accumulate more substitutions within the N-terminus and hypervariable region. Selective pressure analysis revealed evidence that some ORF5 sites have likely evolved in response to immune pressure.
Collapse
|
40
|
Molecular epidemiology of PRRSV in South China from 2007 to 2011 based on the genetic analysis of ORF5. Microb Pathog 2013; 63:30-6. [PMID: 23770054 DOI: 10.1016/j.micpath.2013.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/17/2013] [Accepted: 05/27/2013] [Indexed: 11/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has proven to be highly genetically variable; however, comprehensive information regarding the virus's genetic diversity in South China is limited. In this study, a total of 3199 clinical samples were collected from 267 pig farms suspected of PRRSV infection between 2007 and 2011. The ORF5 genes of 51 PRRSV-positive samples were sequenced and analyzed. The 51 study strains were divided into three primary subgenotypes. Fourty-five of the strains belonged to subgenotype I and were closely related to the highly pathogenic PRRSV (HP-PRRSV) strains. The subgenotype I strains were generally clustered into genetically similar groups by year. Only one of the strains belonged to subgenotype II, clustering with the classical North American type, VR2332. Five of the strains were grouped into subgenotype III, which occupied a separate branch and was closely related to the recently isolated novel field strains, QYYZ and GM2. The 5 subgenotype III strains shared an amino acid identity with the remaining 46 study strains ranging from 79.6%-83.6%. Amino acid analysis showed extensive mutations in subgenotype III; the diverse genetic mutations of these novel strains are of great concern.
Collapse
|
41
|
Thaa B, Sinhadri BC, Tielesch C, Krause E, Veit M. Signal peptide cleavage from GP5 of PRRSV: a minor fraction of molecules retains the decoy epitope, a presumed molecular cause for viral persistence. PLoS One 2013; 8:e65548. [PMID: 23755249 PMCID: PMC3675037 DOI: 10.1371/journal.pone.0065548] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the major pathogen in the pig industry. Variability of the antigens and persistence are the biggest challenges for successful control and elimination of the disease. GP5, the major glycoprotein of PRRSV, is considered an important target of neutralizing antibodies, which however appear only late in infection. This was attributed to the presence of a “decoy epitope” located near a hypervariable region of GP5. This region also harbors the predicted signal peptide cleavage sites and (dependent on the virus strain) a variable number of potential N-glycosylation sites. Molecular processing of GP5 has not been addressed experimentally so far: whether and where the signal peptide is cleaved and (as a consequence) whether the “decoy epitope” is present in virus particles. We show that the signal peptide of GP5 from the American type 2 reference strain VR-2332 is cleaved, both during in vitro translation in the presence of microsomes and in transfected cells. This was found to be independent of neighboring glycosylation sites and occurred in a variety of porcine cells for GP5 sequences derived from various type 2 strains. The exact signal peptide cleavage site was elucidated by mass spectrometry of virus-derived and recombinant GP5. The results revealed that the signal peptide of GP5 is cleaved at two sites. As a result, a mixture of GP5 proteins exists in virus particles, some of which still contain the “decoy epitope” sequence. Heterogeneity was also observed for the use of glycosylation sites in the hypervariable region. Lastly, GP5 mutants were engineered where one of the signal peptide cleavage sites was blocked. Wildtype GP5 exhibited exactly the same SDS-PAGE mobility as the mutant that is cleavable at site 2 only. This indicates that the overwhelming majority of all GP5 molecules does not contain the “decoy epitope”.
Collapse
Affiliation(s)
- Bastian Thaa
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | | | - Claudia Tielesch
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Michael Veit
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
42
|
Choi EJ, Lee CH, Song JY, Song HJ, Park CK, Kim B, Shin YK. Genetic diversity of porcine reproductive and respiratory syndrome virus in Korea. J Vet Sci 2013; 14:115-24. [PMID: 23628658 PMCID: PMC3694182 DOI: 10.4142/jvs.2013.14.2.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 04/04/2012] [Indexed: 11/20/2022] Open
Abstract
The high genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) has been an obstacle to developing an effective vaccine for porcine reproductive and respiratory syndrome (PRRS). This study was performed to assess the degree of genetic diversity among PRRSVs from Korean pig farms where wasting and respiratory syndrome was observed from 2005 to 2009. Samples from 786 farms were tested for the presence of PRRSV using reverse transcription PCR protocol. A total of 117 farms were positive for type 1 PRRSV while 198 farms were positive for type 2. Nucleotide sequences encoding the open reading frame (ORF) 5 were analyzed and compared to those of various published PRRSV isolates obtained worldwide. Sequence identity of the ORF 5 in the isolates was 81.6~100% for type 1 viruses and 81.4~100% for type 2 viruses. Phylogenetic analysis of the ORF 5 sequences showed that types 1 and 2 PRRSVs from Korea were mainly classified into three and four clusters, respectively. The analyzed isolates were distributed throughout the clusters independent of the isolation year or geographical origin. In conclusion, our results indicated that the genetic diversity of PRRSVs from Korean pig farms is high and has been increasing over time.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Anyang 430-757, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Badaoui B, Grande R, Calza S, Cecere M, Luini M, Stella A, Botti S. Impact of genetic variation and geographic distribution of porcine reproductive and respiratory syndrome virus on infectivity and pig growth. BMC Vet Res 2013; 9:58. [PMID: 23537091 PMCID: PMC3762063 DOI: 10.1186/1746-6148-9-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background The porcine reproductive and respiratory syndrome (PRRS) is a devastating disease for the pig industry. In this study, we analysed the genetic variability of PRRS virus (PRRSV) as well as the relationship between the genetic variability, the geographical and temporal distribution of the PRRSV strains. Moreover, we investigated the association between the glycosylation patterns in PRRSV sequences and pigs growth. Results The data highlight that PRRSV strains evolve rapidly on individual farms, and temporal evolution of PRRSV is an important factor of genetic variability. Analysis of glycosylation sites in the glycoprotein 5 (GP5) ectodomain revealed that PRRSV isolates had seven combinations of putative N-linked glycosylation sites of which the N37/46/53 sites was found in 79% of the sequences. No significant relationship was found between the genetic variation of the PRRSV strains and the geographic distance. A significant relationship was found between the genetic variation and time of sampling when farm was considered as a factor in the analysis. Furthermore, the commercial semen from artificial insemination centres was not a source of PRRS transmission. The PRRSV having the glycosylation site at position N46 (N46+) were observed to have higher burden on pigs and accordingly the corresponding infected pigs had lower average daily gain (ADG) compared with those infected with PRRSV lacking the glycosylation at N46 (N46-) position site. This study showed that the number of piglets by litter infected by PRRSV was lower for the Landrace breed than for the other studied breeds (Large White, Duroc and Pietrain). Conclusions The PRRSV genetic variability which is determined by a local and temporal evolution at the farm level could be considered in a perspective of prevention. Moreover, the association between the PRRSV glycosylation patterns and its virulence could be of interest for vaccine development. The differences of resistance to PRRSV infections among pig breeds might open new horizons for the genetic selection of robustness against PRRSV infection.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano - CERSA, Via Einstein, Lodi 26900, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Roques E, Girard A, St-Louis MC, Massie B, Gagnon CA, Lessard M, Archambault D. Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Vet Res 2013; 44:17. [PMID: 23497101 PMCID: PMC3608016 DOI: 10.1186/1297-9716-44-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses in the porcine industry. Currently available commercial vaccines do not allow optimal and safe protection. In this study, replicating but nondisseminating adenovectors (rAdV) were used for the first time in pigs for vaccinal purposes. They were expressing the PRRSV matrix M protein in fusion with either the envelope GP5 wild-type protein (M-GP5) which carries the major neutralizing antibody (NAb)-inducing epitope or a mutant form of GP5 (M-GP5m) developed to theoretically increase the NAb immune response. Three groups of fourteen piglets were immunized both intramuscularly and intranasally at 3-week intervals with rAdV expressing the green fluorescent protein (GFP, used as a negative control), M-GP5 or M-GP5m. Two additional groups of pigs were primed with M-GP5m-expressing rAdV followed by a boost with bacterially-expressed recombinant wild-type GP5 or were immunized twice with a PRRSV inactivated commercial vaccine. The results show that the rAdV expressing the fusion proteins of interest induced systemic and mucosal PRRSV GP5-specific antibody response as determined in an ELISA. Moreover the prime with M-GP5m-expressing rAdV and boost with recombinant GP5 showed the highest antibody response against GP5. Following PRRSV experimental challenge, pigs immunized twice with rAdV expressing either M-GP5 or M-GP5m developed partial protection as shown by a decrease in viremia overtime. The lowest viremia levels and/or percentages of macroscopic lung lesions were obtained in pigs immunized twice with either the rAdV expressing M-GP5m or the PRRSV inactivated commercial vaccine.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P,O, Box 8888, Montréal, Québec, H3C 3P8, Canada.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ni YY, Opriessnig T, Zhou L, Cao D, Huang YW, Halbur PG, Meng XJ. Attenuation of porcine reproductive and respiratory syndrome virus by molecular breeding of virus envelope genes from genetically divergent strains. J Virol 2013; 87:304-13. [PMID: 23077307 PMCID: PMC3536372 DOI: 10.1128/jvi.01789-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022] Open
Abstract
Molecular breeding via DNA shuffling can direct the evolution of viruses with desired traits. By using a positive-strand RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model, rapid attenuation of the virus was achieved in this study by DNA shuffling of the viral envelope genes from multiple strains. The GP5 envelope genes of 7 genetically divergent PRRSV strains and the GP5-M genes of 6 different PRRSV strains were molecularly bred by DNA shuffling and iteration of the process, and the shuffled genes were cloned into the backbone of a DNA-launched PRRSV infectious clone. Two representative chimeric viruses, DS722 with shuffled GP5 genes and DS5M3 with shuffled GP5-M genes, were rescued and shown to replicate at a lower level and to form smaller plaques in vitro than their parental virus. An in vivo pathogenicity study revealed that pigs infected with the two chimeric viruses had significant reductions in viral-RNA loads in sera and lungs and in gross and microscopic lung lesions, indicating attenuation of the chimeric viruses. Furthermore, pigs vaccinated with the chimeric virus DS722, but not pigs vaccinated with DS5M3, still acquired protection against PRRSV challenge at a level similar to that of the parental virus. Therefore, this study reveals a unique approach through DNA shuffling of viral envelope genes to attenuate a positive-strand RNA virus. The results have important implications for future vaccine development and will generate broad general interest in the scientific community in rapidly attenuating other important human and veterinary viruses.
Collapse
Affiliation(s)
- Yan-Yan Ni
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Lei Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Yao-Wei Huang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
46
|
Zhang HY, Liang JJ, Meng XM, Li H, Yang J, Su LJ, Zhang HP, Xie LJ, He XX, Li YS, Yin S, Li XQ, Li XN, Luo TR. Molecular epidemiology of PRRSV from China’s Guangxi Province between 2007 and 2009. Virus Genes 2012; 46:71-80. [DOI: 10.1007/s11262-012-0824-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/12/2012] [Indexed: 11/27/2022]
|
47
|
Brockmeier SL, Loving CL, Vorwald AC, Kehrli ME, Baker RB, Nicholson TL, Lager KM, Miller LC, Faaberg KS. Genomic sequence and virulence comparison of four Type 2 porcine reproductive and respiratory syndrome virus strains. Virus Res 2012; 169:212-21. [PMID: 23073232 DOI: 10.1016/j.virusres.2012.07.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 02/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a ubiquitous and costly virus that exhibits substantial sequence and virulence disparity among diverse isolates. In this study, we compared the whole genomic sequence and virulence of 4 Type 2 PRRSV isolates. Among the 4 isolates, SDSU73, MN184, and NADC30 were all clearly more virulent than NADC31, and among the 3 more virulent isolates, there were subtle differences based on viral replication, lung lesions, lymphadenopathy, febrile response, decreased weight gains, and cytokine responses in the lung. Lesions consistent with bacterial bronchopneumonia were present to varying degrees in pigs infected with PRRSV, and bacteria typically associated with the porcine respiratory disease complex were isolated from the lung of these pigs. Genomic sequence evaluation indicates that SDSU73 is most similar to the nucleotide sequence of JA142, the parental strain of Ingelvac(®) PRRS ATP, while the nucleotide sequences of NADC30 and NADC31 are more similar to strain MN184. Both the NADC30 and NADC31 isolates of PRRSV, isolated in 2008, maintain the nonstructural protein 2 (nsp2) deletion seen in MN184 that was isolated in 2001, but NADC31 has two additional 15 and 36 nucleotide deletions, and these strains are 8-14% different on a nucleotide basis from the MN184 strain. These results indicate that newer U.S. Type 2 strains still exhibit variability in sequence and pathogenicity and although PRRSV strains appear to be reducing the size of the nsp2 over time, this does not necessarily mean that the strain is more virulent.
Collapse
Affiliation(s)
- Susan L Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
N-linked glycosylation of GP5 of porcine reproductive and respiratory syndrome virus is critically important for virus replication in vivo. J Virol 2012; 86:9941-51. [PMID: 22761373 DOI: 10.1128/jvi.07067-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It has been proposed that the N-linked glycan addition at certain sites in GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) is important for production of infectious viruses and viral infectivity. However, such specific N-linked glycosylation sites do not exist in some field PRRSV isolates. This implies that the existence of GP5-associated glycan per se is not vital to the virus life cycle. In this study, we found that mutation of individual glycosylation sites at N30, N35, N44, and N51 in GP5 did not affect virus infectivity in cultured cells. However, the mutants carrying multiple mutations at N-linked glycosylation sites in GP5 had significantly reduced virus yields compared with the wild-type (wt) virus. As a result, no viremia and antibody response were detected in piglets that were injected with a mutant without all N-linked glycans in GP5. These results suggest that the N-linked glycosylation of GP5 is critically important for virus replication in vivo. The study also showed that removal of N44-linked glycan from GP5 increased the sensitivity of mutant virus to convalescent-phase serum samples but did not elicit a high-level neutralizing antibody response to wt PRRSV. The results obtained from the present study have made significant contributions to better understanding the importance of glycosylation of GP5 in the biology of PRRSV.
Collapse
|
49
|
Wei Z, Tian D, Sun L, Lin T, Gao F, Liu R, Tong G, Yuan S. Influence of N-linked glycosylation of minor proteins of porcine reproductive and respiratory syndrome virus on infectious virus recovery and receptor interaction. Virology 2012; 429:1-11. [DOI: 10.1016/j.virol.2012.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 12/31/2011] [Accepted: 03/07/2012] [Indexed: 01/27/2023]
|
50
|
Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective. Anim Health Res Rev 2012; 13:21-37. [PMID: 22717576 DOI: 10.1017/s1466252312000023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.
Collapse
|