1
|
Wu Y, Mahtal N, Paillares E, Swistak L, Sagadiev S, Acharya M, Demeret C, Werf SVD, Guivel-Benhassine F, Schwartz O, Petracchini S, Mettouchi A, Caramelle L, Couvineau P, Thai R, Barbe P, Keck M, Brodin P, Machelart A, Sencio V, Trottein F, Sachse M, Chicanne G, Payrastre B, Ville F, Kreis V, Popoff MR, Johannes L, Cintrat JC, Barbier J, Gillet D, Lemichez E. C910 chemical compound inhibits the traffiking of several bacterial AB toxins with cross-protection against influenza virus. iScience 2022; 25:104537. [PMID: 35769882 PMCID: PMC9234246 DOI: 10.1016/j.isci.2022.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.
Collapse
Affiliation(s)
- Yu Wu
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Nassim Mahtal
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Eléa Paillares
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Léa Swistak
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Sara Sagadiev
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Mridu Acharya
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Caroline Demeret
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Sylvie Van Der Werf
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Florence Guivel-Benhassine
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Olivier Schwartz
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Serena Petracchini
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Amel Mettouchi
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Lucie Caramelle
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Pierre Couvineau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Priscille Brodin
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Arnaud Machelart
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Gaëtan Chicanne
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Bernard Payrastre
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Florian Ville
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Victor Kreis
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Michel-Robert Popoff
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, Endocytic Trafficking and Intracellular Delivery team, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
2
|
Fabbri A, Bracci L. Immunomodulatory properties of CNF1 toxin from E. coli: implications for colorectal carcinogenesis. Am J Cancer Res 2022; 12:651-660. [PMID: 35261793 PMCID: PMC8899975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. The risk of developing CRC is influenced by both environmental and genetic factors. Recently, chronic inflammation and gut microbiota modifications have been associated with increased CRC risk. Escherichia coli belongs to the commensal intestinal flora and can become highly pathogenic following the acquisition of genes coding for virulence factors, such as the cytotoxic necrotizing factor type 1 (CNF1). Numerous reports highlight that, besides exerting direct effects on epithelial cells, CNF1 can also act on immune cells, modulating their responses and possibly contributing to disease development. In the present review, we summarized the key studies addressing the immunomodulatory functions of CNF1 and discussed the contribution that CNF1 can bring about to CRC through the creation of a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di SanitàViale Regina Elena 299, Rome, Italy
| | - Laura Bracci
- Departement of Oncology and Molecular Medicine, Istituto Superiore di SanitàViale Regina Elena 299, Rome, Italy
| |
Collapse
|
3
|
The Cytotoxic Necrotizing Factors (CNFs)-A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins (Basel) 2021; 13:toxins13120901. [PMID: 34941738 PMCID: PMC8709095 DOI: 10.3390/toxins13120901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.
Collapse
|
4
|
Carlini F, Maroccia Z, Fiorentini C, Travaglione S, Fabbri A. Effects of the Escherichia coli Bacterial Toxin Cytotoxic Necrotizing Factor 1 on Different Human and Animal Cells: A Systematic Review. Int J Mol Sci 2021; 22:ijms222212610. [PMID: 34830494 PMCID: PMC8621085 DOI: 10.3390/ijms222212610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents a widely used tool to unravel the role played by these regulatory proteins in different biological processes. In this review, we summarized the data available in the scientific literature concerning the observed in vitro effects induced by CNF1. An article search was performed on electronic bibliographic resources. Screenings were performed of titles, abstracts, and full-texts according to PRISMA guidelines, whereas eligibility criteria were defined for in vitro studies. We identified a total of 299 records by electronic article search and included 76 original peer-reviewed scientific articles reporting morphological or biochemical modifications induced in vitro by soluble CNF1, either recombinant or from pathogenic Escherichia coli extracts highly purified with chromatographic methods. Most of the described CNF1-induced effects on cultured cells are ascribable to the modulating activity of the toxin on Rho GTPases and the consequent effects on actin cytoskeleton organization. All in all, the present review could be a prospectus about the CNF1-induced effects on cultured cells reported so far.
Collapse
Affiliation(s)
- Francesca Carlini
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
| | - Carla Fiorentini
- Associazione Ricerca Terapie Oncologiche Integrate, ARTOI, 00165 Rome, Italy;
| | - Sara Travaglione
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
- Correspondence: ; Tel.: +39-06-4990-2939
| |
Collapse
|
5
|
Haywood EE, Handy NB, Lopez JW, Ho M, Wilson BA. Insertion-trigger residues differentially modulate endosomal escape by cytotoxic necrotizing factor toxins. J Biol Chem 2021; 297:101347. [PMID: 34715130 PMCID: PMC8592880 DOI: 10.1016/j.jbc.2021.101347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/20/2023] Open
Abstract
The cellular specificity, potency, and modular nature of bacterial protein toxins enable their application for targeted cytosolic delivery of therapeutic cargo. Efficient endosomal escape is a critical step in the design of bacterial toxin-inspired drug delivery (BTIDD) vehicles to avoid lysosomal degradation and promote optimal cargo delivery. The cytotoxic necrotizing factor (CNF) family of modular toxins represents a useful model for investigating cargo-delivery mechanisms due to the availability of many homologs with high sequence identity, their flexibility in swapping domains, and their differential activity profiles. Previously, we found that CNFy is more sensitive to endosomal acidification inhibitors than CNF1 and CNF2. Here, we report that CNF3 is even less sensitive than CNF1/2. We identified two amino acid residues within the putative translocation domain (E374 and E412 in CNFy, Q373 and S411 in CNF3) that differentiate between these two toxins. Swapping these corresponding residues in each toxin changed the sensitivity to endosomal acidification and efficiency of cargo-delivery to be more similar to the other toxin. Results suggested that trafficking to the more acidic late endosome is required for cargo delivery by CNFy but not CNF3. This model was supported by results from toxin treatment of cells in the presence of NH4Cl, which blocks endosomal acidification, and of small-molecule inhibitors EGA, which blocks trafficking to late endosomes, and ABMA, which blocks endosomal escape and trafficking to the lysosomal degradative pathway. These findings suggest that it is possible to fine-tune endosomal escape and cytosolic cargo delivery efficiency in designing BTIDD platforms.
Collapse
Affiliation(s)
- Elizabeth E Haywood
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas B Handy
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James W Lopez
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mengfei Ho
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brenda A Wilson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
6
|
Colarusso A, Maroccia Z, Parrilli E, Germinario EAP, Fortuna A, Loizzo S, Ricceri L, Tutino ML, Fiorentini C, Fabbri A. Cnf1 Variants Endowed with the Ability to Cross the Blood-Brain Barrier: A New Potential Therapeutic Strategy for Glioblastoma. Toxins (Basel) 2020; 12:toxins12050291. [PMID: 32375387 PMCID: PMC7290510 DOI: 10.3390/toxins12050291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective as an anti-neoplastic agent in a mouse model of glioma, reducing the tumor volume, increasing survival, and maintaining the functional properties of peritumoral neurons. However, being unable to cross the blood–brain barrier (BBB), CNF1 requires injection directly into the brain, which is a very invasive administration route. Thus, to overcome this pitfall, we designed a CNF1 variant characterized by the presence of an N-terminal BBB-crossing tag. The variant was produced and we verified whether its activity was comparable to that of wild-type CNF1 in GBM cells. We investigated the signaling pathways engaged in the cell response to CNF1 variants to provide preliminary data to the subsequent studies in experimental animals. CNF1 may represent a novel avenue for GBM therapy, particularly because, besides blocking tumor growth, it also preserves the healthy surrounding tissue, maintaining its architecture and functionality. This renders CNF1 the most interesting candidate for the treatment of brain tumors, among other potentially effective bacterial toxins.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy; (A.C.); (E.P.); (M.L.T.)
| | - Zaira Maroccia
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy; (A.C.); (E.P.); (M.L.T.)
| | - Elena Angela Pia Germinario
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Andrea Fortuna
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Stefano Loizzo
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Laura Ricceri
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy; (A.C.); (E.P.); (M.L.T.)
| | - Carla Fiorentini
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
- Association for Research on Integrative Oncological Therapies (ARTOI), 00165 Rome, Italy
| | - Alessia Fabbri
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
- Correspondence: ; Tel.: +39-06-4990-2939
| |
Collapse
|
7
|
Revisiting Old Ionophore Lasalocid as a Novel Inhibitor of Multiple Toxins. Toxins (Basel) 2020; 12:toxins12010026. [PMID: 31906353 PMCID: PMC7020423 DOI: 10.3390/toxins12010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The ionophore lasalocid is widely used as a veterinary drug against coccidiosis. We found recently that lasalocid protects cells from two unrelated bacterial toxins, the cytotoxic necrotizing factor-1 (CNF1) from Escherichia. coli and diphtheria toxin. We evaluated lasalocid’s capacity to protect cells against other toxins of medical interest comprising toxin B from Clostridium difficile, Shiga-like toxin 1 from enterohemorrhagic E. coli and exotoxin A from Pseudomonas aeruginosa. We further characterized the impact of lasalocid on the endolysosomal and the retrograde pathways and organelle integrity, especially the Golgi apparatus. We found that lasalocid protects cells from all toxins tested and impairs the drop of vesicular pH along the trafficking pathways that are required for toxin sorting and translocation to the cytoplasm. Lasalocid also has an impact on the cellular distribution of GOLPH4 and GOLPH2 Golgi markers. Other intracellular trafficking compartments positive for EEA1 and Rab9A display a modified cellular pattern. In conclusion, lasalocid protects cells from multiple deadly bacterial toxins by corrupting vesicular trafficking and Golgi stack homeostasis.
Collapse
|
8
|
Fabbri A, Travaglione S, Rosadi F, Ballan G, Maroccia Z, Giambenedetti M, Guidotti M, Ødum N, Krejsgaard T, Fiorentini C. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell Microbiol 2019; 22:e13138. [PMID: 31698538 DOI: 10.1111/cmi.13138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/18/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Some toxigenic bacteria produce protein toxins with carcinogenic signatures, which either directly damage DNA or stimulate signalling pathways related to cancer. So far, however, only a few of them have been proved to favour the induction or progression of cancer. In this work, we report that the Rho-activating Escherichia coli protein toxin, cytotoxic necrotising factor 1 (CNF1), induces epithelial to mesenchymal transition (EMT) in intestinal epithelial cells. EMT is a crucial step in malignant tumour conversion and invasiveness. In the case of CNF1, it occurs by up-regulation of the transcription factors ZEB1 and Snail1, delocalisation of E-cadherin and β-catenin, activation of the serine/threonine kinase mTOR, accelerated wound healing, and invasion. However, our results highlight that nontransformed epithelial cells entail the presence of inflammatory factors, in addition to CNF1, to acquire a mesenchymal-like behaviour. All this suggests that the surrounding microenvironment, as well as the cell type, dramatically influences the CNF1 ability to promote carcinogenic traits.
Collapse
Affiliation(s)
- Alessia Fabbri
- Italian Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Travaglione
- Italian Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Rosadi
- Italian Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Ballan
- Italian Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Maroccia
- Italian Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Marco Guidotti
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carla Fiorentini
- Italian Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.,Preclinical Research Section, Associazione Ricerca Terapie Oncologiche Integrate (ARTOI), Rome, Italy
| |
Collapse
|
9
|
Ho M, Mettouchi A, Wilson BA, Lemichez E. CNF1-like deamidase domains: common Lego bricks among cancer-promoting immunomodulatory bacterial virulence factors. Pathog Dis 2018; 76:4992304. [PMID: 29733372 DOI: 10.1093/femspd/fty045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
Alterations of the cellular proteome over time due to spontaneous or toxin-mediated enzymatic deamidation of glutamine (Gln) and asparagine (Asn) residues contribute to bacterial infection and might represent a source of aging-related diseases. Here, we put into perspective what is known about the mode of action of the CNF1 toxin from pathogenic Escherichia coli, a paradigm of bacterial deamidases that activate Rho GTPases, to illustrate the importance of determining whether exposure to these factors are risk factors in the etiology age-related diseases, such as cancer. In particular, through in silico analysis of the distribution of the CNF1-like deamidase active site Gly-Cys-(Xaa)n-His sequence motif in bacterial genomes, we unveil the wide distribution of the super-family of CNF-like toxins and CNF-like deamidase domains among members of the Enterobacteriacae and in association with a large variety of toxin delivery systems. We extent our discussion with recent findings concerning cellular systems that control activated Rac1 GTPase stability and provide protection against cancer. These findings point to the urgency for developing holistic approaches toward personalized medicine that include monitoring for asymptomatic carriage of pathogenic toxin-producing bacteria and that ultimately might lead to improved public health and increased lifespans.
Collapse
Affiliation(s)
- Mengfei Ho
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Amel Mettouchi
- Bacterial Toxins Unit, Department of Microbiology, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris, France
| | - Brenda A Wilson
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emmanuel Lemichez
- Bacterial Toxins Unit, Department of Microbiology, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris, France
| |
Collapse
|
10
|
Tantillo E, Colistra A, Vannini E, Cerri C, Pancrazi L, Baroncelli L, Costa M, Caleo M. Bacterial Toxins and Targeted Brain Therapy: New Insights from Cytotoxic Necrotizing Factor 1 (CNF1). Int J Mol Sci 2018; 19:ijms19061632. [PMID: 29857515 PMCID: PMC6032336 DOI: 10.3390/ijms19061632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Pathogenic bacteria produce toxins to promote host invasion and, therefore, their survival. The extreme potency and specificity of these toxins confer to this category of proteins an exceptionally strong potential for therapeutic exploitation. In this review, we deal with cytotoxic necrotizing factor (CNF1), a cytotoxin produced by Escherichia coli affecting fundamental cellular processes, including cytoskeletal dynamics, cell cycle progression, transcriptional regulation, cell survival and migration. First, we provide an overview of the mechanisms of action of CNF1 in target cells. Next, we focus on the potential use of CNF1 as a pharmacological treatment in central nervous system’s diseases. CNF1 appears to impact neuronal morphology, physiology, and plasticity and displays an antineoplastic activity on brain tumors. The ability to preserve neural functionality and, at the same time, to trigger senescence and death of proliferating glioma cells, makes CNF1 an encouraging new strategy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Elena Tantillo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Fondazione Pisana per la Scienza Onlus (FPS), via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy.
| | - Antonella Colistra
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Departement of Biology, University of Pisa, via Luca Ghini 13, 56126 Pisa, Italy.
| | - Eleonora Vannini
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Chiara Cerri
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy.
| | - Laura Pancrazi
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Laura Baroncelli
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Mario Costa
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
11
|
Mahtal N, Brewee C, Pichard S, Visvikis O, Cintrat JC, Barbier J, Lemichez E, Gillet D. Screening of a Drug Library Identifies Inhibitors of Cell Intoxication by CNF1. ChemMedChem 2018; 13:754-761. [PMID: 29359495 DOI: 10.1002/cmdc.201700631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a toxin produced by pathogenic strains of Escherichia coli responsible for extra-intestinal infections. CNF1 deamidates Rac1, thereby triggering its permanent activation and worsening inflammatory reactions. Activated Rac1 is prone to proteasomal degradation. There is no targeted therapy against CNF1, despite its clinical relevance. In this work we developed a fluorescent cell-based immunoassay to screen for inhibitors of CNF1-induced Rac1 degradation among 1120 mostly approved drugs. Eleven compounds were found to prevent CNF1-induced Rac1 degradation, and five also showed a protective effect against CNF1-induced multinucleation. Finally, lasalocid, monensin, bepridil, and amodiaquine protected cells from both diphtheria toxin and CNF1 challenges. These data highlight the potential for drug repurposing to fight several bacterial infections and Rac1-based diseases.
Collapse
Affiliation(s)
- Nassim Mahtal
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France.,Service de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Clémence Brewee
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Sylvain Pichard
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Orane Visvikis
- INSERM U1065, Equipe Labellisée Ligue Contre le Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice, Sophia-Antipolis, Nice, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Julien Barbier
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Emmanuel Lemichez
- INSERM U1065, Equipe Labellisée Ligue Contre le Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice, Sophia-Antipolis, Nice, France
| | - Daniel Gillet
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| |
Collapse
|
12
|
El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, Taieb F, Lina G, Le Loir Y, Berkova N. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections. Front Cell Infect Microbiol 2017; 7:208. [PMID: 28589102 PMCID: PMC5440457 DOI: 10.3389/fcimb.2017.00208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.
Collapse
Affiliation(s)
- Rachid A El-Aouar Filho
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France.,Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Aurélie Nicolas
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Thiago L De Paula Castro
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Martine Deplanche
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Vasco A De Carvalho Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Pierre L Goossens
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut PasteurParis, France
| | - Frédéric Taieb
- CHU Purpan USC INRA 1360-CPTP, U1043 Institut National de la Santé et de la Recherche Médicale, Pathogénie Moléculaire et Cellulaire des Infections à Escherichia coliToulouse, France
| | - Gerard Lina
- International Center for Infectiology ResearchLyon, France.,Centre National de la Recherche Scientifique, UMR5308, Institut National de la Santé et de la Recherche Médicale U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1Lyon, France.,Département de Biologie, Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | - Yves Le Loir
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Nadia Berkova
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| |
Collapse
|
13
|
Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun 2014; 82:5270-85. [PMID: 25287919 DOI: 10.1128/iai.02623-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.
Collapse
|
14
|
Travaglione S, Loizzo S, Rizza T, Del Brocco A, Ballan G, Guidotti M, Vona R, Di Nottia M, Torraco A, Carrozzo R, Fiorentini C, Fabbri A. Enhancement of mitochondrial ATP production by the Escherichia coli cytotoxic necrotizing factor 1. FEBS J 2014; 281:3473-88. [PMID: 24925215 DOI: 10.1111/febs.12874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles that constantly change shape and structure in response to different stimuli and metabolic demands of the cell. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) has recently been reported to influence mitochondrial activity in a mouse model of Rett syndrome and to increase ATP content in the brain tissue of an Alzheimer's disease mouse model. In the present work, the ability of CNF1 to influence mitochondrial activity was investigated in IEC-6 normal intestinal crypt cells. In these cells, the toxin was able to induce an increase in cellular ATP content, probably due to an increment of the mitochondrial electron transport chain. In addition, the CNF1-induced Rho GTPase activity also caused changes in the mitochondrial architecture that mainly consisted in the formation of a complex network of elongated mitochondria. The involvement of the cAMP-dependent protein kinase A signaling pathway was postulated. Our results demonstrate that CNF1 positively affects mitochondria by bursting their energetic function and modifying their morphology.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
What a difference a Dalton makes: bacterial virulence factors modulate eukaryotic host cell signaling systems via deamidation. Microbiol Mol Biol Rev 2014; 77:527-39. [PMID: 24006474 DOI: 10.1128/mmbr.00013-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria commonly deploy enzymes to promote virulence. These enzymes can modulate the functions of host cell targets. While the actions of some enzymes can be very obvious (e.g., digesting plant cell walls), others have more subtle activities. Depending on the lifestyle of the bacteria, these subtle modifications can be crucially important for pathogenesis. In particular, if bacteria rely on a living host, subtle mechanisms to alter host cellular function are likely to dominate. Several bacterial virulence factors have evolved to use enzymatic deamidation as a subtle posttranslational mechanism to modify the functions of host protein targets. Deamidation is the irreversible conversion of the amino acids glutamine and asparagine to glutamic acid and aspartic acid, respectively. Interestingly, all currently characterized bacterial deamidases affect the function of the target protein by modifying a single glutamine residue in the sequence. Deamidation of target host proteins can disrupt host signaling and downstream processes by either activating or inactivating the target. Despite the subtlety of this modification, it has been shown to cause dramatic, context-dependent effects on host cells. Several crystal structures of bacterial deamidases have been solved. All are members of the papain-like superfamily and display a cysteine-based catalytic triad. However, these proteins form distinct structural subfamilies and feature combinations of modular domains of various functions. Based on the diverse pathogens that use deamidation as a mechanism to promote virulence and the recent identification of multiple deamidases, it is clear that this enzymatic activity is emerging as an important and widespread feature in bacterial pathogenesis.
Collapse
|
16
|
Travaglione S, Loizzo S, Ballan G, Fiorentini C, Fabbri A. The E. coli CNF1 as a pioneering therapy for the central nervous system diseases. Toxins (Basel) 2014; 6:270-82. [PMID: 24402235 PMCID: PMC3920261 DOI: 10.3390/toxins6010270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 01/24/2023] Open
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1), a protein toxin from pathogenic E. coli, modulates the Rho GTPases, thus, directing the organization of the actin cytoskeleton. In the nervous system, the Rho GTPases play a key role in several processes, controlling the morphogenesis of dendritic spines and synaptic plasticity in brain tissues. This review is focused on the peculiar property of CNF1 to enhance brain plasticity in in vivo animal models of central nervous system (CNS) diseases, and on its possible application in therapy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
17
|
Repella TL, Ho M, Wilson BA. Determinants of pH-dependent modulation of translocation in dermonecrotic G-protein-deamidating toxins. Toxins (Basel) 2013; 5:1167-79. [PMID: 23888517 PMCID: PMC3717775 DOI: 10.3390/toxins5061167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytotoxic necrotizing factors from E. coli (CNF1, CNF2) and Yersinia (CNFy) share N-terminal sequence similarity with Pasteurella multocida toxin (PMT). This common N-terminal region harbors the receptor-binding and translocation domains that mediate uptake and delivery of the C-terminal catalytic cargo domains into the host cytosol. Subtle variations in the N-terminal ~500 amino acids of CNFs and PMT could allow for selective recognition of cellular receptors and thus, selective target cell specificity. Through studies with cellular inhibitors, we have identified an additional novel function for this region in modulating responses of these toxin proteins to changes in pH during intoxication and delivery of the catalytic cargo domain into the cytosol.
Collapse
Affiliation(s)
- Tana L Repella
- Department of Microbiology, School of Molecular and Cell Biology, University of Illinois atUrbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
18
|
Schweer J, Kulkarni D, Kochut A, Pezoldt J, Pisano F, Pils MC, Genth H, Huehn J, Dersch P. The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFY) enhances inflammation and Yop delivery during infection by activation of Rho GTPases. PLoS Pathog 2013; 9:e1003746. [PMID: 24244167 PMCID: PMC3820761 DOI: 10.1371/journal.ppat.1003746] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022] Open
Abstract
Some isolates of Yersinia pseudotuberculosis produce the cytotoxic necrotizing factor (CNFY), but the functional consequences of this toxin for host-pathogen interactions during the infection are unknown. In the present study we show that CNFY has a strong influence on virulence. We demonstrate that the CNFY toxin is thermo-regulated and highly expressed in all colonized lymphatic tissues and organs of orally infected mice. Most strikingly, we found that a cnfY knock-out variant of a naturally toxin-expressing Y. pseudotuberculosis isolate is strongly impaired in its ability to disseminate into the mesenteric lymph nodes, liver and spleen, and has fully lost its lethality. The CNFY toxin contributes significantly to the induction of acute inflammatory responses and to the formation of necrotic areas in infected tissues. The analysis of the host immune response demonstrated that presence of CNFY leads to a strong reduction of professional phagocytes and natural killer cells in particular in the spleen, whereas loss of the toxin allows efficient tissue infiltration of these immune cells and rapid killing of the pathogen. Addition of purified CNFY triggers formation of actin-rich membrane ruffles and filopodia, which correlates with the activation of the Rho GTPases, RhoA, Rac1 and Cdc42. The analysis of type III effector delivery into epithelial and immune cells in vitro and during the course of the infection further demonstrated that CNFY enhances the Yop translocation process and supports a role for the toxin in the suppression of the antibacterial host response. In summary, we highlight the importance of CNFY for pathogenicity by showing that this toxin modulates inflammatory responses, protects the bacteria from attacks of innate immune effectors and enhances the severity of a Yersinia infection. Various toxins and effector proteins of bacterial pathogens have been found to manipulate eukaryotic cell machineries to promote persistence and proliferation within their hosts. Many of these virulence factors target small Rho GTPases, but their role in pathogenesis is often unknown. Here, we addressed the expression and functional consequences of the CNFY toxin found in some isolates of Y. pseudotuberculosis. We found that CNFY besides modulating the cell cytoskeleton by activation of the GTPases RhoA, Rac1 and Cdc42, contributes to increased inflammation and tissue damage. Moreover, CNFY increases the ability of Yersinia to prevent the attack of the immune system, by enhancing the delivery of antiphagocytic and cytotoxic effectors into professional phagocytes. Our findings provide the first insights into the multi-functional action and severe consequences of the CNFY toxin on the inflammatory response and disease-associated tissue damage during the natural course of the infection.
Collapse
Affiliation(s)
- Janina Schweer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Devesha Kulkarni
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annika Kochut
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marina C. Pils
- Mouse Pathology, Animal Experimental Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Harald Genth
- Institute for Toxicology, Medical School Hannover, Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
19
|
The cytotoxic necrotizing factor 1 from E. coli: a janus toxin playing with cancer regulators. Toxins (Basel) 2013; 5:1462-74. [PMID: 23949007 PMCID: PMC3760046 DOI: 10.3390/toxins5081462] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 01/23/2023] Open
Abstract
Certain strains of Escherichia coli have been indicated as a risk factor for colon cancer. E. coli is a normal inhabitant of the human intestine that becomes pathogenic, especially in extraintestinal sites, following the acquisition of virulence factors, including the protein toxin CNF1. This Rho GTPases-activating toxin induces dysfunctions in transformed epithelial cells, such as apoptosis counteraction, pro-inflammatory cytokines’ release, COX2 expression, NF-kB activation and boosted cellular motility. As cancer may arise when the same regulatory pathways are affected, it is conceivable to hypothesize that CNF1-producing E. coli infections can contribute to cancer development. This review focuses on those aspects of CNF1 related to transformation, with the aim of contributing to the identification of a new possible carcinogenic agent from the microbial world.
Collapse
|
20
|
Abstract
Mammalian reovirus binds to cell-surface glycans and junctional adhesion molecule A and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within the endocytic compartment, reovirus undergoes stepwise disassembly, allowing release of the transcriptionally active viral core into the cytoplasm. To identify cellular mediators of reovirus infectivity, we screened a library of small-molecule inhibitors for the capacity to block virus-induced cytotoxicity. In this screen, reovirus-induced cell killing was dampened by several compounds known to impair microtubule dynamics. Microtubule inhibitors were assessed for blockade of various stages of the reovirus life cycle. While these drugs did not alter reovirus cell attachment or internalization, microtubule inhibitors diminished viral disassembly kinetics with a concomitant decrease in infectivity. Reovirus virions colocalize with microtubules and microtubule motor dynein 1 during cell entry, and depolymerization of microtubules results in intracellular aggregation of viral particles. These data indicate that functional microtubules are required for proper sorting of reovirus virions following internalization and point to a new drug target for pathogens that use the endocytic pathway to invade host cells. Screening libraries of well-characterized drugs for antiviral activity enables the rapid characterization of host processes required for viral infectivity and provides new therapeutic applications for established pharmaceuticals. Our finding that microtubule-inhibiting drugs impair reovirus infection identifies a new cell-based antiviral target.
Collapse
|
21
|
Ricceri L, De Filippis B, Laviola G. Rett syndrome treatment in mouse models: searching for effective targets and strategies. Neuropharmacology 2012; 68:106-15. [PMID: 22940001 DOI: 10.1016/j.neuropharm.2012.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/24/2022]
Abstract
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Dept. Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | | | | |
Collapse
|
22
|
Popoff MR. Multifaceted interactions of bacterial toxins with the gastrointestinal mucosa. Future Microbiol 2011; 6:763-97. [PMID: 21797691 DOI: 10.2217/fmb.11.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The digestive tract is one of the ecosystems that harbors the largest number and greatest variety of bacteria. Among them, certain bacteria have developed various strategies, including the synthesis of virulence factors such as toxins, to interact with the intestinal mucosa, and are responsible for various pathologies. A large variety of bacterial toxins of different sizes, structures and modes of action are able to interact with the gastrointestinal mucosa. Some toxins, termed enterotoxins, directly stimulate fluid secretion in enterocytes or cause their death, whereas other toxins pass through the intestinal barrier and disseminate by the general circulation to remote organs or tissues, where they are active. After recognition of a membrane receptor on target cells, toxins can act at the cell membrane by transducing a signal across the membrane in a hormone-like manner, by pore formation or by damaging membrane compounds. Other toxins can enter the cells and modify an intracellular target leading to a disregulation of certain physiological processes or disorganization of some structural architectures and cell death. Toxins are fascinating molecules, which mimic or interfere with eukaryotic physiological processes. Thereby, they have permitted the identification and characterization of new natural hormones or regulatory pathways. Besides use as protective antigens in vaccines, toxins offer multiple possibilities in pharmacology, such as immune modulation or specific delivery of a protein of interest into target cells.
Collapse
Affiliation(s)
- M R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 757245 Paris cedex 15, France.
| |
Collapse
|
23
|
Knust Z, Schmidt G. Cytotoxic Necrotizing Factors (CNFs)-A Growing Toxin Family. Toxins (Basel) 2011; 2:116-27. [PMID: 22069550 PMCID: PMC3206620 DOI: 10.3390/toxins2010116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/25/2022] Open
Abstract
The Escherichia coli Cytotoxic Necrotizing Factors, CNF1, CNF2, CNF3 and CNFY from Yersinia pseudotuberculosis belong to a family of deamidating toxins. CNFs deamidate glutamine 63/61 in the switch II region of Rho GTPases that is essential for GTP hydrolysing activity. Deamidation leads to constitutive activation of Rho GTPases. However, cellular mechanisms like proteasomal degradation of the activated Rho proteins restrict the action of the GTPases. This review describes the differences between the toxin family members concerning expression, cellular entry and substrate specificity.
Collapse
Affiliation(s)
- Zeynep Knust
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
24
|
Visvikis O, Boyer L, Torrino S, Doye A, Lemonnier M, Lorès P, Rolando M, Flatau G, Mettouchi A, Bouvard D, Veiga E, Gacon G, Cossart P, Lemichez E. Escherichia coli Producing CNF1 Toxin Hijacks Tollip to Trigger Rac1-Dependent Cell Invasion. Traffic 2011; 12:579-90. [DOI: 10.1111/j.1600-0854.2011.01174.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Krag C, Malmberg EK, Salcini AE. PI3KC2α, a class II PI3K, is required for dynamin-independent internalization pathways. J Cell Sci 2010; 123:4240-50. [DOI: 10.1242/jcs.071712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that cellular uptake of several molecules can occur independently of functional dynamin, but the molecular players that regulate dynamin-independent endocytosis and the subsequent trafficking steps are still largely unknown. A survival-based short-hairpin (sh) RNA screen using a cell line expressing a diphtheria toxin receptor (DTR, officially known as HBEGF) anchored to GPI (DTR–GPI), which internalizes diphtheria toxin (DT, officially known as DTX) in a dynamin-independent manner, identified PI3KC2α, a class II phosphoinositide 3-kinase (PI3K), as a specific regulator of dynamin-independent DT internalization. We found that the internalization of several proteins that enter the cell through dynamin-independent pathways led to a relocalization of PI3KC2α to cargo-positive vesicles. Furthermore, downregulation of PI3KC2α impaired internalization of CD59 as well as fluid-phase endocytosis. Our data suggest a general role for PI3KC2α in regulating physiologically relevant dynamin-independent internalization pathways by recruiting early endosome antigen 1 (EEA1) to vesicular compartments, a step required for the intracellular trafficking of vesicles generated by dynamin-independent endocytic pathways.
Collapse
Affiliation(s)
- Claudia Krag
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen, Denmark
| | - Emily Kim Malmberg
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen, Denmark
| |
Collapse
|
26
|
Gibert M, Monier MN, Ruez R, Hale ML, Stiles BG, Benmerah A, Johannes L, Lamaze C, Popoff MR. Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 2010; 13:154-70. [DOI: 10.1111/j.1462-5822.2010.01527.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1): Toxin Biology, in Vivo Applications and Therapeutic Potential. Toxins (Basel) 2010. [DOI: 10.3390/toxins2020282] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
28
|
Fabbri A, Travaglione S, Fiorentini C. Escherichia coli cytotoxic necrotizing factor 1 (CNF1): toxin biology, in vivo applications and therapeutic potential. Toxins (Basel) 2010; 2:283-96. [PMID: 22069584 PMCID: PMC3202811 DOI: 10.3390/toxins2020283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/20/2010] [Accepted: 02/20/2010] [Indexed: 02/06/2023] Open
Abstract
CNF1 is a protein toxin produced by certain pathogenic strains of Escherichia coli. It permanently activates the regulatory Rho, Rac, and Cdc42 GTPases in eukaryotic cells, by deamidation of a glutamine residue. This modification promotes new activities in cells, such as gene transcription, cell proliferation and survival. Since the Rho GTPases play a pivotal role also in several processes in vivo, the potentiality of CNF1 to act as a new pharmacological tool has been explored in experimental animals and in diverse pathological contexts. In this review, we give an update overview on the potential in vivo applications of CNF1.
Collapse
Affiliation(s)
- Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | |
Collapse
|
29
|
A new member of a growing toxin family – Escherichia coli cytotoxic necrotizing factor 3 (CNF3). Toxicon 2009; 54:745-53. [DOI: 10.1016/j.toxicon.2009.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
|
30
|
Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity. Infect Immun 2009; 77:1835-41. [PMID: 19237521 DOI: 10.1128/iai.01145-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a protein toxin produced by pathogenic Escherichia coli strains. CNF1 constitutively activates small GTPases of the Rho family by deamidation of a glutamine, which is crucial for GTP hydrolysis. The toxin is taken up into mammalian cells by receptor-mediated endocytosis and is delivered from late endosomes into the cytosol. Here, we show that an approximately 55-kDa fragment of CNF1, which contains the catalytic domain and an additional part of the toxin, is present in the cytosol. The processing of this fragment requires an acidic pH and insertion of the toxin into the endosomal membrane. We define the cleavage site region as the region located between amino acids 532 and 544 of CNF1. The data provide insight into the complex mechanism of uptake of bacterial toxins into mammalian cells.
Collapse
|
31
|
Boisvert H, Duncan MJ. Clathrin-dependent entry of a gingipain adhesin peptide and Porphyromonas gingivalis into host cells. Cell Microbiol 2008; 10:2538-52. [PMID: 18717820 PMCID: PMC3016922 DOI: 10.1111/j.1462-5822.2008.01228.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Porphyromonas gingivalis, a Gram-negative oral anaerobe, is associated with periodontitis, a disease that in some form affects up to 80% of the adult population in the USA. The organism interacts with gingival epithelium and surrounding tissue, and in this study we analysed interactions initiated by P. gingivalis and by a peptide derived from the adhesin domain of arg-gingipain A, a member of a family of surface cysteine proteinases. Recombinant peptide A44 blocked adherence of bacteria to host cell monolayers, and bound to components of the cell membrane fraction. In pull-down assays A44 associated with proteins involved in a clathrin-dependent endocytosis pathway. Inhibitor studies confirmed a role for clathrin, and confocal microscopy demonstrated that both A44-coated beads and intact bacteria colocalized with GFP-clathrin in host cells. Finally, we used siRNA to determine whether clathrin or caveolin-1 was involved in association of peptide and intact bacteria with host cells. Again, the results of these assays indicated that association of both A44 and P. gingivalis depended on the presence of clathrin, and support a working model in which A44 initiates a clathrin-dependent pathway that potentially leads to internalization of peptide or bacteria by host epithelial cells.
Collapse
Affiliation(s)
- Heike Boisvert
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Abstract
Central nervous system (CNS) infections continue to be an important cause of morbidity and mortality. Microbial invasion and traversal of the blood-brain barrier is a prerequisite for CNS infections. Pathogens can cross the blood-brain barrier transcellularly, paracellularly and/or in infected phagocytes (the so-called Trojan-horse mechanism). Consequently, pathogens can cause blood-brain barrier dysfunction, including increased permeability, pleocytosis and encephalopathy. A more complete understanding of the microbial-host interactions that are involved in microbial traversal of the blood-brain barrier and the associated barrier dysfunction should help to develop new strategies to prevent CNS infections.
Collapse
|
33
|
Travaglione S, Fabbri A, Fiorentini C. The Rho-activating CNF1 toxin from pathogenic E. coli: a risk factor for human cancer development? Infect Agent Cancer 2008; 3:4. [PMID: 18336718 PMCID: PMC2323363 DOI: 10.1186/1750-9378-3-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/12/2008] [Indexed: 12/12/2022] Open
Abstract
Nowadays, there is increasing evidence that some pathogenic bacteria can contribute to specific stages of cancer development. The concept that bacterial infection could be involved in carcinogenesis acquired a widespread interest with the discovery that H. pylori is able to establish chronic infections in the stomach and that this infection is associated with an increased risk of gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. Chronic infections triggered by bacteria can facilitate tumor initiation or progression since, during the course of infection, normal cell functions can come under the control of pathogen factors that directly manipulate the host regulatory pathways and the inflammatory reactions.Renowned publications have recently corroborated the molecular mechanisms that link bacterial infections, inflammation and cancer, indicating certain strains of Escherichia coli as a risk factor for patients with colon cancer. E. coli is a normal inhabitant of the human intestine that becomes highly pathogenic following the acquisition of virulence factors, including a protein toxin named cytotoxic necrotizing factor 1 (CNF1). This toxin permanently activates the small GTP-binding proteins belonging to the Rho family, thus promoting a prominent polymerization of the actin cytoskeleton as well as a number of cellular responses, including changes in protein expression and functional modification of the cell physiology. CNF1 is receiving an increasing attention as a putative factor involved in transformation because of its ability to: (i) induce COX2 expression, an immediate-early gene over-expressed in some type of cancers; (ii) induce a long-lasting activation of the transcription factor NF-kB, a largely accepted marker of tumor cells; (iii) protect epithelial cells from apoptosis; (iv) ensue the release of pro-inflammatory cytokines in epithelial and endothelial cells; and (v) promote cellular motility. As cancer may arise through dysfunction of the same regulatory systems, it seems likely that CNF1-producing E. coli infections can contribute to tumor development.This review focuses on the aspects of CNF1 activity linked to cell transformation with the aim of contributing to the identification of a possible carcinogenic agent from the microbial world.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, viale Regina Elena 299, 00161-Rome, Italy.
| | | | | |
Collapse
|
34
|
McNichol BA, Rasmussen SB, Carvalho HM, Meysick KC, O'Brien AD. Two domains of cytotoxic necrotizing factor type 1 bind the cellular receptor, laminin receptor precursor protein. Infect Immun 2007; 75:5095-104. [PMID: 17709415 PMCID: PMC2168285 DOI: 10.1128/iai.00075-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1) and CNF2 are highly homologous toxins that are produced by certain pathogenic strains of Escherichia coli. These 1,014-amino-acid toxins catalyze the deamidation of a specific glutamine residue in RhoA, Rac1, and Cdc42 and consist of a putative N-terminal binding domain, a transmembrane region, and a C-terminal catalytic domain. To define the regions of CNF1 that are responsible for binding of the toxin to its cellular receptor, the laminin receptor precursor protein (LRP), a series of CNF1 truncated toxins were characterized and assessed for toxin binding. In particular, three truncated toxins, DeltaN63, DeltaN545, and DeltaC469, retained conformational integrity and in vitro enzymatic activity and were immunologically reactive against a panel of anti-CNF1 monoclonal antibodies (MAbs). Based on a comparison of these truncated toxins with wild-type CNF1 and CNF2 in LRP and HEp-2 cell binding assays and in MAb and LRP competitive binding inhibition assays and based on the results of confocal microscopy, we concluded that CNF1 contains two major binding regions: one located within the N terminus, which contained amino acids 135 to 164, and one which resided in the C terminus and included amino acids 683 to 730. The data further indicate that CNF1 can bind to an additional receptor(s) on HEp-2 cells and that LRP can also serve as a cellular receptor for CNF2.
Collapse
Affiliation(s)
- Beth A McNichol
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin that disrupts Ras- and Rho-signaling pathways in mammalian cells. A hydrophobic region (residues 51-77, termed the membrane localization domain) targets ExoS to the plasma membrane (PM) and late endosomes of host cells. In the current study, metabolic inhibitors and dominant-negative proteins that disrupt known vesicle-trafficking pathways were used to define the intracellular trafficking of ExoS. Release of ExoS from PM was independent of dynamin and ADP ribosylation factor 6 but inhibited by methyl-beta-cyclodextrin, a cholesterol-depleting reagent, and perinuclear localization of ExoS was disrupted by nocodazole. p50 dynamitin, a dynein inhibitor partially disrupted perinuclear localization of ExoS. Methyl-beta-cyclodextrin and nocodazole inhibited the ability of type-III-delivered ExoS to ADP-ribosylated Golgi/endoplasmic reticulum-resident Ras. Methyl-beta-cyclodextrin also relocated ExoS from the perinuclear region to the PM, indicating that ExoS can cycle through anterograde as well as through retrograde trafficking pathways. These findings show that ExoS endocytosis is cholesterol dependent, and it utilizes host microtubules, for intracellular trafficking. Understanding how type III cytotoxins enter and traffic within mammalian cells may identify new targets for therapeutic intervention of gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
36
|
Lemonnier M, Landraud L, Lemichez E. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol Rev 2007; 31:515-34. [PMID: 17680807 DOI: 10.1111/j.1574-6976.2007.00078.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies on the interactions of bacterial pathogens with their host have provided an invaluable source of information on the major functions of eukaryotic and prokaryotic cell biology. In addition, this expanding field of research, known as cellular microbiology, has revealed fascinating examples of trans-kingdom functional interplay. Bacterial factors actually exploit eukaryotic cell machineries using refined molecular strategies to promote invasion and proliferation within their host. Here, we review a family of bacterial toxins that modulate their activity in eukaryotic cells by activating Rho GTPases and exploiting the ubiquitin/proteasome machineries. This family, found in human and animal pathogenic Gram-negative bacteria, encompasses the cytotoxic necrotizing factors (CNFs) from Escherichia coli and Yersinia species as well as dermonecrotic toxins from Bordetella species. We survey the genetics, biochemistry, molecular and cellular biology of these bacterial factors from the standpoint of the CNF1 toxin, the paradigm of Rho GTPase-activating toxins produced by urinary tract infections causing pathogenic Escherichia coli. Because it reveals important connections between bacterial invasion and the host inflammatory response, the mode of action of CNF1 and its related Rho GTPase-targetting toxins addresses major issues of basic and medical research and constitutes a privileged experimental model for host-pathogen interaction.
Collapse
Affiliation(s)
- Marc Lemonnier
- INSERM U627, UNSA, Faculté de Médecine, 28 Avenue de Valombrose, 06107 Nice cedex 2, France.
| | | | | |
Collapse
|
37
|
Blumenthal B, Hoffmann C, Aktories K, Backert S, Schmidt G. The cytotoxic necrotizing factors from Yersinia pseudotuberculosis and from Escherichia coli bind to different cellular receptors but take the same route to the cytosol. Infect Immun 2007; 75:3344-53. [PMID: 17438028 PMCID: PMC1932955 DOI: 10.1128/iai.01937-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/31/2007] [Accepted: 04/05/2007] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic necrotizing factors CNF1 and CNF2 produced by pathogenic Escherichia coli strains and CNF(Y) of Yersinia pseudotuberculosis constitutively activate small GTPases of the Rho family. They deamidate a glutamine (Gln63 in RhoA), which is crucial for GTP hydrolysis. CNF1 and CNF(Y) exhibit 61% identity on the amino acid level, with equal distribution over the whole molecule. Although the two toxins are homologous in the receptor binding domain, we show that they bind to different cellular receptors. CNF(Y) does not enter Caco-2 and CHO-K1 cells, which are responsive to CNF1. In contrast, HeLa, Hep-2, and HEK 293 cells do respond to both toxins. Competition studies with catalytically inactive mutants of the toxins revealed that binding of CNF1 has no influence on the uptake of CNF(Y) into HeLa cells. In contrast, uptake of CNF1 is retarded after preincubation of HeLa cells with the catalytically inactive mutant of CNF(Y), suggesting that the toxin receptors overlap. Moreover, we compared the pathways of the toxins from receptor binding into the cytosol and showed that both toxins are taken up independent of the presence of clathrin or lipid rafts and are released into the cytosol from acidified endosomes.
Collapse
Affiliation(s)
- Britta Blumenthal
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albert-Strasse 25, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Miraglia AG, Travaglione S, Meschini S, Falzano L, Matarrese P, Quaranta MG, Viora M, Fiorentini C, Fabbri A. Cytotoxic necrotizing factor 1 prevents apoptosis via the Akt/IkappaB kinase pathway: role of nuclear factor-kappaB and Bcl-2. Mol Biol Cell 2007; 18:2735-44. [PMID: 17507655 PMCID: PMC1924812 DOI: 10.1091/mbc.e06-10-0910] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 03/28/2007] [Accepted: 05/03/2007] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a protein toxin produced by some pathogenic strains of Escherichia coli that specifically activates Rho, Rac, and Cdc42 GTPases. We previously reported that this toxin prevents the ultraviolet-B-induced apoptosis in epithelial cells, with a mechanism that remained to be defined. In this work, we show that the proteasomal degradation of the Rho GTPase is necessary to achieve cell death protection, because inhibition of Rho degradation abolishes the prosurvival activity of CNF1. We hypothesize that Rho inactivation allows the activity of Rac to become dominant. This in turn leads to stimulation of the phosphoinositide 3-kinase/Akt/IkappaB kinase/nuclear factor-kappaB prosurvival pathway and to a remarkable modification in the architecture of the mitochondrial network, mainly consisting in the appearance of elongated and interconnected mitochondria. Importantly, we found that Bcl-2 silencing reduces the ability of CNF1 to protect cells against apoptosis and that it also prevents the CNF1-induced mitochondrial changes. It is worth noting that the ability of a bacterial toxin to induce such a remodeling of the mitochondrial network is herein reported for the first time. The possible pathophysiological relevance of this finding is discussed.
Collapse
Affiliation(s)
| | | | - Stefania Meschini
- Technology and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | - Marina Viora
- Departments of *Drug Research and Evaluation and
| | | | | |
Collapse
|
39
|
Hoffmann C, Aktories K, Schmidt G. Change in Substrate Specificity of Cytotoxic Necrotizing Factor Unmasks Proteasome-independent Down-regulation of Constitutively Active RhoA. J Biol Chem 2007; 282:10826-32. [PMID: 17296609 DOI: 10.1074/jbc.m610451200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cytotoxic necrotizing factors CNF1 and CNF2 are produced by pathogenic Escherichia coli strains. They constitutively activate small GTPases of the Rho family by deamidation of a glutamine, which is crucial for GTP hydrolysis. Recently, a novel CNF (CNF(Y)) encompassing 65% identity to CNF1 has been identified in Yersinia pseudotuberculosis. In contrast to the E. coli toxins, which activate several isoforms of Rho family GTPases, CNF(Y) is a strong and selective activator of RhoA in vivo. By constructing chimeras between CNF1 and CNF(Y), we show that this substrate specificity is based on differences in the catalytic domains, whereas the receptor binding and translocation domains have no influence. We further define a loop element (L8) on the surface of the catalytic domains as important for substrate recognition. A single amino acid exchange in L8 is sufficient to shift substrate specificity of CNF1. Moreover, it is shown that RhoA activation by CNF1 is transient, which may be the consequence of the broader substrate specificity of the E. coli toxin, leading to cross-talk between the activated GTPases.
Collapse
Affiliation(s)
- Claudia Hoffmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albert-Strasse 25, 79104 Freiburg, Germany
| | | | | |
Collapse
|
40
|
Davis JM, Carvalho HM, Rasmussen SB, O'Brien AD. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 2006; 74:4401-8. [PMID: 16861625 PMCID: PMC1539604 DOI: 10.1128/iai.00637-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1), a toxin produced by many strains of uropathogenic Escherichia coli (UPEC), constitutively activates small GTPases of the Rho family by deamidating a single amino acid within these target proteins. Such activated GTPases not only stimulate actin polymerization within affected cells but also, as we previously reported, decrease membrane fluidity on mouse polymorphonuclear leukocytes (PMNs). In that same investigation we found that this diminished membrane movement impedes the clustering of the complement receptor CD11b/CD18 on PMNs and, in turn, decreases PMN phagocytic capacity and microbicidal activity on PMNs in direct contact with CNF1-expressing UPEC as well as on those in proximity to wild-type UPEC. The latter observation suggested to us that CNF1 is released from neighboring bacteria, although at the time of initiation of the study described here, no specific mechanism for export of CNF1 from UPEC had been described. Here we present evidence that CNF1 is released from the CNF1-expressing UPEC strain CP9 (serotype O4/H5/K54) in a complex with outer membrane vesicles (OMVs) and that these CNF1-bearing vesicles transfer biologically active CNF1 to PMNs and attenuate phagocyte function. Furthermore, we show that CNF1-bearing vesicles act in a dose-dependent fashion on PMNs to inhibit their chemotactic response to formyl-Met-Leu-Phe, while purified CNF1 does not. We conclude that OMVs provide a means for delivery of CNF1 from a UPEC strain to PMNs and thus negatively affect the efficacy of the acute inflammatory response to these organisms.
Collapse
Affiliation(s)
- Jon M Davis
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, B4052, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
41
|
Kim KS. Microbial translocation of the blood–brain barrier. Int J Parasitol 2006; 36:607-14. [PMID: 16542662 DOI: 10.1016/j.ijpara.2006.01.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/19/2006] [Accepted: 01/30/2006] [Indexed: 11/23/2022]
Abstract
A major contributing factor to high mortality and morbidity associated with CNS infection is the incomplete understanding of the pathogenesis of this disease. Relatively small numbers of pathogens account for most cases of CNS infections in humans, but it is unclear how such pathogens cross the blood-brain barrier (BBB) and cause infections. The development of the in vitro BBB model using human brain microvascular endothelial cells has facilitated our understanding of the microbial translocation of the BBB, a key step for the acquisition of CNS infections. Recent studies have revealed that microbial translocation of the BBB involves host cell actin cytoskeletal rearrangements, most likely as the result of specific microbial-host interactions. A better understanding of microbial-host interactions that are involved in microbial translocation of the BBB should help in developing new strategies to prevent CNS infections. This review summarises our current understanding of the pathogenic mechanisms involved in translocation of the BBB by meningitis-causing bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park 256, Baltimore, MD 21287, USA.
| |
Collapse
|
42
|
Abstract
Pathogenic Escherichia coli causes extraintestinal infections such as urinary tract infection and meningitis, which are prevalent and associated with considerable morbidity. Previous investigations have identified common strategies evolved by pathogenic E. coli to exploit host cell function and cause extraintestinal infections, which include the invasion into non-phagocytic eukaryotic cells such as epithelial and endothelial cells and associated host cell actin cytoskeletal rearrangements. However, the mechanisms involved in pathogenic E. coli invasion of eukaryotic cells are shown to differ depending upon types of host tissues and microbial determinants. In this mini-review, invasion processes of pathogenic E. coli are discussed using E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) as a paradigm. E. coli K1 is the most common Gram-negative organism causing neonatal meningitis, and E. coli invasion of HBMEC is shown to be a prerequisite for E. coli traversal of the blood-brain barrier in vivo. Previous studies have demonstrated that E. coli translocation of the blood-brain barrier is the result of specific E. coli host interactions including specific signal transduction pathways and modulation of endocytic pathways. Recent studies using functional genomics have identified additional microbial determinants contributing to E. coli K1 invasion of HBMEC. Complete understanding of microbial-host interactions that are involved in E. coli K1 invasion of HBMEC should help in the development of new strategies to prevent E. coli meningitis.
Collapse
Affiliation(s)
- Brian Y Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Park 256, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
43
|
Abstract
The CNF1 toxin is produced by some uropathogenic (UPECs) andmeningitis-causing Escherichia coli strains. It belongs to a large family of bacterial virulence factors and toxins modifying cellular regulators of the actin cytoskeleton, namely the Rho GTPases. CNF1 autonomously enters the host cell cytosol, where it catalyzes the constitutive activation of Rho GTPases by deamidation. This activation is, however, attenuated because of activated Rho protein ubiquitin-mediated proteasomal degradation. Both Rho protein activation and deactivation confer phagocytic properties on epithelial and endothelial cells, as well as epithelial cell motility and cell-cell junction dynamics. Transcriptome analysis using DNA microarray revealed that endothelial cells respond to high doses of CNF1 by launching a genetic program of host alarm. This host cell reaction to CNF1 intoxication also indicates that degradation of activated Rho proteins by the proteasome may lead to a lowering of the threshold of the intoxicated cell inflammatory response. These results are consistent with growing evidence that Rho proteins control the cell inflammatory responses. It is tempting to assume that Rho deregulation may participate in various immunological disorders also involved in cancer.
Collapse
Affiliation(s)
- P Munro
- Faculté de Médecine, 1/INSERM, U627, 28 Avenue de Valombrose, 06107 Nice, France
| | | |
Collapse
|
44
|
Munro P, Flatau G, Anjuère F, Hofman V, Czerkinsky C, Lemichez E. The Rho GTPase activators CNF1 and DNT bacterial toxins have mucosal adjuvant properties. Vaccine 2005; 23:2551-6. [PMID: 15780436 DOI: 10.1016/j.vaccine.2004.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/12/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
Cytotoxic necrotizing factor 1 (CNF1) from uropathogenic Escherichia coli belongs to a family of factors activating Rho GTPases. We report the in vivo effects of CNF1 in mice co-fed toxin and the soluble protein antigen ovalbumin (OVA). Similar to cholera toxin, CNF1 elicits adjuvanticity anti-OVA responses, both systemic and mucosal. In contrast, the catalytic inactive mutant CNF1-C866S demonstrated no effects. Using dermonecrotic toxin (DNT), a closely related Rho activating toxin from Bordetella, we discovered that the adjuvant property is within the DNT catalytic domain. Manipulation of Rho proteins thus provides a possible new approach for the development of effective mucosal immunoadjuvants.
Collapse
Affiliation(s)
- Patrick Munro
- INSERM, U627, Faculté de Médecine, 28 Avenue de Valombrose, F-06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
45
|
Kim KJ, Chung JW, Kim KS. 67-kDa Laminin Receptor Promotes Internalization of Cytotoxic Necrotizing Factor 1-expressing Escherichia coli K1 into Human Brain Microvascular Endothelial Cells. J Biol Chem 2005; 280:1360-8. [PMID: 15516338 DOI: 10.1074/jbc.m410176200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative organism causing meningitis, and its invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for penetration into the central nervous system. We have reported previously that cytotoxic necrotizing factor 1 (CNF1) contributes to E. coli K1 invasion of HBMEC and interacts with 37-kDa laminin receptor precursor (37LRP) of HBMEC, which is a precursor of 67-kDa laminin receptor (67LR). In the present study, we examined the role of 67LR in the CNF1-expressing E. coli K1 invasion of HBMEC. Immunofluorescence microscopy and ligand overlay assays showed that 67LR is present on the HBMEC membrane and interacts with CNF1 protein as well as the CDPGYIGSR laminin peptide. 67LR was up-regulated and clustered at the sites of E. coli K1 on HBMEC in a CNF1-dependent manner. Pretreatment of CNF1+ E. coli K1 with recombinant 37-kDa laminin receptor precursor reduced the invasion rate to the level of Deltacnf1 mutant, and the invasion rate of CNF1+ E. coli K1 was enhanced in 67LR-overexpressing HBMEC, indicating 67LR is involved in the CNF1+ E. coli K1 invasion of HBMEC. Coimmunoprecipitation analysis showed that, upon incubation with CNF1+ E. coli K1 but not with Deltacnf1 mutant, focal adhesion kinase and paxillin were recruited and associated with 67LR. When immobilized onto polystyrene beads, CNF1 was sufficient to induce internalization of coupled beads into HBMEC through interaction with 67LR. Taken together, this is the first demonstration that E. coli K1 invasion of HBMEC occurs through the ligand-receptor (CNF1-67LR) interaction, and 67LR promotes CNF1-expressing E. coli K1 internalization of HBMEC.
Collapse
Affiliation(s)
- Kee Jun Kim
- Division of Pediatrics Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
46
|
Cytotoxic Necrotizing Factors: Rho-Activating Toxins from Escherichia coli. EcoSal Plus 2004; 1. [PMID: 26443355 DOI: 10.1128/ecosalplus.8.7.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article reviews the Escherichia coli toxins called cytotoxic necrotizing factors (CNFs), which cause activation of Rho GTPases. It describes their modes of action, structure-function relationships, and roles in disease. Rho GTPases, the targets of CNFs, belong to the Ras superfamily of low molecular mass GTPases and act as molecular switches in various signaling pathways. Low molecular mass GTPases of the Rho family are known as master regulators of the actin cytoskeleton. Moreover, they are involved in various signal transduction processes, from transcriptional activation, cell cycle progression, and cell transformation to apoptosis. CNFs are cytotoxic for a wide variety of cells, including 3T3 fibroblasts, Chinese hamster ovary cells, Vero cells, HeLa cells, and cell lines of neuronal origin. This implies that a commonly expressed receptor is responsible for the uptake of CNF1. Cultured mammalian cells treated with CNFs are characterized by dramatic changes in actin-containing structures, including stress fibers, lamellipodia, and filopodia. Most striking is the formation of multinucleation in these cells. Rho GTPases are increasingly recognized as essential factors in the development of cancer and metastasis. This fact has initiated a discussion as to whether activation of Rho proteins by CNFs might be involved in tumorigenesis. Moreover, CNF1 increases the expression of the cyclooxygenase 2 (Cox2) gene in fibroblasts. Increased expression of Cox2 is observed in some types of tumors, e.g., colon carcinoma. Lipid-mediators produced by the enzyme are suggested to be responsible for tumor progression.
Collapse
|
47
|
Boyer L, Lemichez E. Targeting of host-cell ubiquitin and ubiquitin-like pathways by bacterial factors. Nat Rev Microbiol 2004; 2:779-88. [PMID: 15378042 DOI: 10.1038/nrmicro1005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laurent Boyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U627, Faculté de Médecine, 28 Avenue de Valombrose, Nice, 06107 Cedex 2, France
| | | |
Collapse
|
48
|
Landraud L, Pulcini C, Gounon P, Flatau G, Boquet P, Lemichez E. E. coli CNF1 toxin: a two-in-one system for host-cell invasion. Int J Med Microbiol 2004; 293:513-8. [PMID: 15149026 DOI: 10.1078/1438-4221-00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cytotoxic necrotizing factor-1 (CNF1), a bacterial toxin of uropathogenic bacteria (UPEC), hijacks cellular Rho proteins of the Ras GTPase super-family. Recently, we have made three important findings. First, we have established that, following Rho protein activation by deamidation, these cellular proteins are ubiquitylated and degraded by the proteasome. Second, the low level of activated Rho proteins which results from the dual molecular mechanism of action of CNF1 (Rho protein activation followed by their degradation), confers high invasive properties to UPECs. Finally, we have reported that ubiquitylation and degradation of Rac is lost in HEp-2 carcinoma cells, thereby suggesting a possible link between Rho protein ubiquitylation and tumor progression.
Collapse
Affiliation(s)
- Luce Landraud
- INSERM U452, Faculté de Médecine de Nice, Nice, France
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The actin cytoskeleton of mammalian cells is involved in many processes that affect the growth and colonization of bacteria, such as migration of immune cells, phagocytosis by macrophages, secretion of cytokines, maintenance of epithelial barrier functions and others. With respect to these functions, it is not surprising that many bacterial protein toxins, which are important virulence factors and causative agents of human and/or animal diseases, target the actin cytoskeleton of the host. Some toxins target actin directly, such as the C2 toxin produced by Clostridium botulinum. Moreover, bacterial toxins target the cytoskeleton indirectly by modifying actin regulators such as the low-molecular-mass guanosine triphosphate (GTP)-binding proteins of the Rho family. Remarkably, toxins affect these GTPases in a bidirectional manner. Some toxins inhibit and some activate the GTPases. Here we review the Rho-activating toxins CNF1 and CNF2 (cytotoxic necrotizing factors) from Escherichia coli, the Yersinia CNF(Y) and the dermonecrotic toxin (DNT) from Bordetella species. We describe and compare their uptake into mammalian cells, mode of action, structure-function relationship, substrate specificity and role in diseases.
Collapse
Affiliation(s)
- C Hoffmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albert-Str. 25, 79104, Freiburg, Germany
| | | |
Collapse
|
50
|
Willhite DC, Blanke SR. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol 2004; 6:143-54. [PMID: 14706100 DOI: 10.1046/j.1462-5822.2003.00347.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) intoxicates mammalian cells resulting in reduction of mitochondrial transmembrane potential (Delta Psi m reduction) and cytochrome c release, two events consistent with the modulation of mitochondrial membrane permeability. We now demonstrate that the entry of VacA into cells and the capacity of VacA to form anion-selective channels are both essential for Delta Psi m reduction and cytochrome c release. Subsequent to cell entry, a substantial fraction of VacA localizes to the mitochondria. Neither Delta Psi m reduction nor cytochrome c release within VacA-intoxicated cells requires cellular caspase activity. Moreover, VacA cellular activity is not sensitive to cyclosporin A, suggesting that VacA does not induce the mitochondrial permeability transition as a mechanism for Delta Psi m reduction and cytochrome c release. Time-course and dose-response studies indicate that Delta Psi m reduction occurs substantially before and at lower concentrations of VacA than cytochrome c release. Collectively, these results support a model that VacA enters mammalian cells, localizes to the mitochondria, and modulates mitochondrial membrane permeability by a mechanism dependent on toxin channel activity ultimately resulting in cytochrome c release. This model represents a novel mechanism for regulation of a mitochondrial-dependent apoptosis pathway by a bacterial toxin.
Collapse
Affiliation(s)
- David C Willhite
- Department of Biology and Biochemistry, University of Houston, 369 Science and Research Building II, Houston, TX 77204-5001, USA
| | | |
Collapse
|