1
|
Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The Configuration of GRB2 in Protein Interaction and Signal Transduction. Biomolecules 2024; 14:259. [PMID: 38540680 PMCID: PMC10968029 DOI: 10.3390/biom14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 07/02/2024] Open
Abstract
Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
Collapse
Affiliation(s)
- Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guoxia Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- School of Life Science, Tianjin University, Tianjin 200072, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
2
|
Xu J, Zhong Y, Yin H, Linneman J, Luo Y, Xia S, Xia Q, Yang L, Huang X, Kang K, Wang J, Niu Y, Li L, Gou D. Methylation-mediated silencing of PTPRD induces pulmonary hypertension by promoting pulmonary arterial smooth muscle cell migration via the PDGFRB/PLCγ1 axis. J Hypertens 2022; 40:1795-1807. [PMID: 35848503 PMCID: PMC9451921 DOI: 10.1097/hjh.0000000000003220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Pulmonary hypertension is a lethal disease characterized by pulmonary vascular remodeling and is mediated by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Platelet-derived growth factor BB (PDGF-BB) is the most potent mitogen for PASMCs and is involved in vascular remodeling in pulmonary hypertension development. Therefore, the objective of our study is to identify novel mechanisms underlying vascular remodeling in pulmonary hypertension. METHODS We explored the effects and mechanisms of PTPRD downregulation in PASMCs and PTPRD knockdown rats in pulmonary hypertension induced by hypoxia. RESULTS We demonstrated that PTPRD is dramatically downregulated in PDGF-BB-treated PASMCs, pulmonary arteries from pulmonary hypertension rats, and blood and pulmonary arteries from lung specimens of patients with hypoxic pulmonary arterial hypertension (HPAH) and idiopathic PAH (iPAH). Subsequently, we found that PTPRD was downregulated by promoter methylation via DNMT1. Moreover, we found that PTPRD knockdown altered cell morphology and migration in PASMCs via modulating focal adhesion and cell cytoskeleton. We have demonstrated that the increase in cell migration is mediated by the PDGFRB/PLCγ1 pathway. Furthermore, under hypoxic condition, we observed significant pulmonary arterial remodeling and exacerbation of pulmonary hypertension in heterozygous PTPRD knock-out rats compared with the wild-type group. We also demonstrated that HET group treated with chronic hypoxia have higher expression and activity of PLCγ1 in the pulmonary arteries compared with wild-type group. CONCLUSION We propose that PTPRD likely plays an important role in the process of pulmonary vascular remodeling and development of pulmonary hypertension in vivo .
Collapse
Affiliation(s)
- Junhua Xu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanfeng Zhong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Haoyang Yin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - John Linneman
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yixuan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Sijian Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Qinyi Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Lei Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Xingtao Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Kang Kang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| |
Collapse
|
3
|
Simonowski A, Wilhelm T, Habib P, Zorn CN, Huber M. Differential use of BTK and PLC in FcεRI- and KIT-mediated mast cell activation: A marginal role of BTK upon KIT activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118622. [PMID: 31837347 DOI: 10.1016/j.bbamcr.2019.118622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/16/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
In mast cells (MCs), the TEC family kinase (TFK) BTK constitutes a central regulator of antigen (Ag)-triggered, FcεRI-mediated PLCγ phosphorylation, Ca2+ mobilization, degranulation, and pro-inflammatory cytokine production. Less is known about the function of BTK in the context of stem cell factor (SCF)-induced KIT signaling. In bone marrow-derived MCs (BMMCs), Ag stimulation caused intense phosphorylation of BTK at Y551 in its active center and at Y223 in its SH3-domain, whereas in response to SCF only Y223 was significantly phosphorylated. Further data using the TFK inhibitor Ibrutinib indicated that BTK Y223 is phosphorylated by a non-BTK TFK upon SCF stimulation. In line, SCF-induced PLCγ1 phosphorylation was stronger attenuated by Ibrutinib than by BTK deficiency. Subsequent pharmacological analysis of PLCγ function revealed a total block of SCF-induced Ca2+ mobilization by PLC inhibition, whereas only the sustained phase of Ca2+ flux was curtailed in Ag-stimulated BMMCs. Despite this severe stimulus-dependent difference in inducing Ca2+ mobilization, PLCγ inhibition suppressed Ag- and SCF-induced degranulation and pro-inflammatory cytokine production to comparable extents, suggesting involvement of additional TFK(s) or PLCγ-dependent signaling components. In addition to PLCγ, the MAPKs p38 and JNK were activated by Ag in a BTK-dependent manner; this was not observed upon SCF stimulation. Hence, FcεRI and KIT employ different mechanisms for activating PLCγ, p38, and JNK, which might strengthen their cooperation regarding pro-inflammatory MC effector functions. Importantly, our data clearly demonstrate that analyzing BTK Y223 phosphorylation is not sufficient to prove BTK activation.
Collapse
Affiliation(s)
- Anne Simonowski
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Carolin N Zorn
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Verstraelen S, Nelissen I, Hooyberghs J, Witters H, Schoeters G, Van Cauwenberge P, Van Den Heuvel R. Gene profiles of THP-1 macrophages after in vitro exposure to respiratory (non-)sensitizing chemicals: Identification of discriminating genetic markers and pathway analysis. Toxicol In Vitro 2009; 23:1151-62. [DOI: 10.1016/j.tiv.2009.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/04/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
|
5
|
Smith D, Shimamura T, Barbera S, Bejcek BE. NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 2007; 307:141-7. [PMID: 17828582 DOI: 10.1007/s11010-007-9593-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
NF-kappaB is a family of transcription factors that have been shown to be elevated in a variety of tumor types and in some cases central to their survival and growth. Here we present evidence that U-87 MG and U-118 MG growth is regulated by NF-kappaB and controlled by PDGF. NF-kappaB activity was suppressed by a dominant negative mutant of the human PDGF type beta receptor and PDGF-B chain neutralizing antibodies. Creation of cell lines that had inducible expression of shRNAs directed against either c-Rel or RelA inhibited growth almost 90% indicating that NF-kappaB plays a central role in glioblastoma growth.
Collapse
Affiliation(s)
- Denise Smith
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
6
|
Lee JW, Kim JE, Park EJ, Kim JH, Lee CH, Lee SR, Kwon J. Two conserved cysteine residues are critical for the enzymic function of the human platelet-derived growth factor receptor-beta: evidence for different roles of Cys-822 and Cys-940 in the kinase activity. Biochem J 2005; 382:631-9. [PMID: 15175016 PMCID: PMC1133820 DOI: 10.1042/bj20040624] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 06/03/2004] [Indexed: 02/07/2023]
Abstract
The platelet-derived growth factor receptor-beta (PDGFR-beta) has a number of conserved cysteine residues on its cytoplasmic domain. We have examined whether the cysteine residues play a role in the enzymic function of PDGFR-beta. We found that N-ethylmaleimide, which selectively alkylates free thiol groups of cysteine residues, completely inhibited the kinase activity of PDGFR-beta. We then identified, through site-directed mutagenesis, two conserved cysteine residues critical for the enzymic function of PDGFR-beta. Cys to Ser mutations for either Cys-822, positioned in the catalytic loop, or Cys-940, located in the C-terminal kinase subdomain, significantly reduced the activities of autophosphorylation and phosphorylation towards exogenous substrates. The non-reducing gel analysis indicated that neither of these cysteine residues contributes to the kinase activity by disulphide-bond formation. In addition, the individual mutation of Cys-822 and Cys-940 had no effect on protein stability or the binding of substrates or ATP, implying that these cysteine residues are involved in enzyme catalysis. Finally, proteolytic cleavage assays showed that the mutation of Cys-940, but not Cys-822, induced a protein conformational change. Taken together, these results suggest that Cys-940 contributes to the catalytic activity of PDGFR-beta by playing a structural role, whereas Cys-822 contributes through a different mechanism.
Collapse
Affiliation(s)
- Joon-Won Lee
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | - Jee-Eun Kim
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun-Jung Park
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | - Jin-Hyun Kim
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | - Chang-Hun Lee
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | - Seung-Rock Lee
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
| | - Jongbum Kwon
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, South Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Bae SS, Choi JH, Oh YS, Yun SU, Ryu SH, Suh PG. Regulation of phospholipase C-gamma1 by protein kinase A-dependent phosphorylation. ADVANCES IN ENZYME REGULATION 2002; 42:195-211. [PMID: 12123716 DOI: 10.1016/s0065-2571(01)00031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sun Sik Bae
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Kyungbuk 790-784, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Chiu CW, Dalton M, Ishiai M, Kurosaki T, Chan AC. BLNK: molecular scaffolding through 'cis'-mediated organization of signaling proteins. EMBO J 2002; 21:6461-72. [PMID: 12456653 PMCID: PMC136961 DOI: 10.1093/emboj/cdf658] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 10/14/2002] [Accepted: 10/17/2002] [Indexed: 11/14/2022] Open
Abstract
Assembly of intracellular macromolecular complexes is thought to provide an important mechanism to coordinate the generation of second messengers upon receptor activation. We have previously identified a B cell linker protein, termed BLNK, which serves such a scaffolding function in B cells. We demonstrate here that phosphorylation of five tyrosine residues within human BLNK nucleates distinct signaling effectors following B cell antigen receptor activation. The phosphorylation of multiple tyrosine residues not only amplifies PLCgamma-mediated signaling but also supports 'cis'-mediated interaction between distinct signaling effectors within a large molecular complex. These data demonstrate the importance of coordinate phosphorylation of molecular scaffolds, and provide insights into how assembly of macromolecular complexes is required for normal receptor function.
Collapse
Affiliation(s)
| | | | - Masamichi Ishiai
- Center for Immunology, Washington University School of Medicine, St Louis, MO 63110,
Genentech, Inc., Department of Immunology, South San Francisco, CA 94080, USA and Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan Corresponding author e-mail:
| | - Tomohiro Kurosaki
- Center for Immunology, Washington University School of Medicine, St Louis, MO 63110,
Genentech, Inc., Department of Immunology, South San Francisco, CA 94080, USA and Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan Corresponding author e-mail:
| | - Andrew C. Chan
- Center for Immunology, Washington University School of Medicine, St Louis, MO 63110,
Genentech, Inc., Department of Immunology, South San Francisco, CA 94080, USA and Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-8506, Japan Corresponding author e-mail:
| |
Collapse
|
9
|
Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M. Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene 2002; 21:1800-11. [PMID: 11896612 DOI: 10.1038/sj.onc.1205261] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 11/02/2001] [Accepted: 12/12/2001] [Indexed: 11/08/2022]
Abstract
Many human cancers have been associated with the deregulation of receptor tyrosine kinases (RTK). However, the individual contribution of receptor-associated signaling proteins in cellular transformation and metastasis is poorly understood. To examine the role of RTK activated signal transduction pathways to processes involved in cell transformation, we have exploited the oncogenic derivative of the Met RTK (Tpr-Met). Unlike other RTKs, twin tyrosine residues in the carboxy-terminal tail of the Met oncoprotein and receptor are required for all biological and transforming activities, and a mutant lacking these tyrosines is catalytically active but non transforming. Using this mutant we have inserted oligonucleotide cassettes, each encoding a binding site for a specific signaling protein derived from other RTKs. We have generated variant forms of the Tpr-Met oncoprotein with the ability to bind individually to the p85 subunit of PI3'K, PLCgamma, or to the Grb2 or Shc adaptor proteins. Variants that recruit the Shc or Grb2 adaptor proteins generated foci of morphologically transformed fibroblast cells and induced anchorage-independent growth, scattering of epithelial cells and experimental metastasis. In contrast, variants that bind and activate PI3'K or PLCgamma failed to generate readily detectable foci. Although cell lines expressing the PI3'K variant grew in soft-agar, these cells were non metastatic. Using this unique RTK oncoprotein model, we have established that Grb2 or Shc dependent signaling pathways are sufficient for cell transformation and metastatic spread.
Collapse
Affiliation(s)
- Caroline Saucier
- Molecular Oncology Group, McGill University Hospital Center, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
We have investigated the regulation of protein tyrosine phosphatases (PTPs) by reactive oxygen species (ROS) in a cellular environment. We demonstrate that multiple PTPs were reversibly oxidized and inactivated following treatment of Rat-1 cells with H(2)O(2) and that inhibition of PTP function was important for ROS-induced mitogenesis. Furthermore, we show transient oxidation of the SH2 domain containing PTP, SHP-2, in response to PDGF that requires association with the PDGFR. Our results indicate that SHP-2 inhibits PDGFR signaling and suggest a mechanism by which autophosphorylation of the PDGFR occurs despite its association with SHP-2. The data suggest that several PTPs may be regulated by oxidation and that characterization of this process may define novel links between specific PTPs and particular signaling pathways in vivo.
Collapse
Affiliation(s)
- Tzu-Ching Meng
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
11
|
Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell 2001; 12:931-42. [PMID: 11294897 PMCID: PMC32277 DOI: 10.1091/mbc.12.4.931] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.
Collapse
Affiliation(s)
- K C Hart
- Department of Chemistry and Biochemistry, and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0367, USA
| | | | | |
Collapse
|
12
|
Liao HJ, Ji QS, Carpenter G. Phospholipase C-gamma1 is required for the induction of immediate early genes by platelet-derived growth factor. J Biol Chem 2001; 276:8627-30. [PMID: 11254653 DOI: 10.1074/jbc.c100030200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To explore the functional role of phospholipase C-gamma1 (PLC-gamma1) in the induction of immediate early genes (IEGs), we have examined the influence of Plcg1 gene disruption on the expression of 14 IEG mRNAs induced by platelet-derived growth factor (PDGF). Plcg1-null embryos were used to produce immortalized fibroblasts genetically deficient in PLC-gamma1 (Null cells), and retroviral infection of those cells was used to derive PLC-gamma1 re-expressing cells (Null+ cells). In terms of PDGF activation of PDGF receptor tyrosine phosphorylation as well as the mitogen-activated protein kinases Erk1 and Erk2, Null and Null+ cells responded equivalently. However, the PDGF-dependent expression of all IEG mRNAs was diminished in cells lacking PLC-gamma1. The expression of FIC, COX-2, KC, JE, and c-fos mRNAs were most strongly compromised, as the stimulation of these genes was reduced by more than 90% in cells lacking PLC-gamma1. The combination of PMA and ionomycin, downstream analogs of PLC activation, did provoke expression of mRNAs for these IEGs in the Null cells. We conclude that PLC-gamma1 is necessary for the maximal expression of many PDGF-induced IEGs and is essential for significant induction of at least five IEGs.
Collapse
Affiliation(s)
- H J Liao
- Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
13
|
Tallquist MD, Klinghoffer RA, Heuchel R, Mueting-Nelsen PF, Corrin PD, Heldin CH, Johnson RJ, Soriano P. Retention of PDGFR-beta function in mice in the absence of phosphatidylinositol 3'-kinase and phospholipase Cgamma signaling pathways. Genes Dev 2000; 14:3179-90. [PMID: 11124809 PMCID: PMC317125 DOI: 10.1101/gad.844700] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Signal transduction by the platelet-derived growth-factor receptor beta (PDGFR-beta) tyrosine kinase is required for proper formation of vascular smooth muscle cells (VSMC). However, the importance of individual PDGFR-beta signal transduction pathways in vivo is not known. To investigate the role of two of the pathways believed to be critical for PDGF signal transduction, we have generated mice that bear a PDGFR-beta that can no longer activate PI3kinase or PLCgamma. Although these mutant mice have normal vasculature, we provide multiple lines of evidence in vivo and from cells derived from the mutant mice that suggest that the mutant PDGFR-beta operates at suboptimal levels. Our observations indicate that although loss of these pathways can lead to attenuated PDGF-dependent cellular function, certain PDGFR-beta-induced signal cascades are not essential for survival in mice.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Division/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Enzyme Activation
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/metabolism
- Glomerular Mesangium/pathology
- Glomerulonephritis/pathology
- Homozygote
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phospholipase C gamma
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Receptor, Platelet-Derived Growth Factor beta/drug effects
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction
- Type C Phospholipases/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- M D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chattopadhyay A, Vecchi M, Ji QS, Mernaugh R, Carpenter G. The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor. J Biol Chem 1999; 274:26091-7. [PMID: 10473558 DOI: 10.1074/jbc.274.37.26091] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two SH2 (Src homology domain 2) domains present in phospholipase C-gamma1 (PLC-gamma1) were assayed for their capacities to recognize the five autophosphorylation sites in the epidermal growth factor receptor. Plasmon resonance and immunological techniques were employed to measure interactions between SH2 fusion proteins and phosphotyrosine-containing peptides. The N-SH2 domain recognized peptides in the order of pY1173 > pY992 > pY1068 > pY1148 >> pY1086, while the C-SH2 domain recognized peptides in the order of pY992 > pY1068 > pY1148 >> pY1086 and pY1173. The major autophosphorylation site, pY1173, was recognized only by the N-SH2 domain. Contributions of the N-SH2 and C-SH2 domains to the association of the intact PLC-gamma1 molecule with the activated epidermal growth factor (EGF) receptor were assessed in vivo. Loss of function mutants of each SH2 domain were produced in a full-length epitope-tagged PLC-gamma1. After expression of the mutants, cells were treated with EGF and association of exogenous PLC-gamma1 with EGF receptors was measured. In this context the N-SH2 is the primary contributor to PLC-gamma1 association with the EGF receptor. The combined results suggest an association mechanism involving the N-SH2 domain and the pY1173 autophosphorylation site as a primary event and the C-SH2 domain and the pY992 autophosphorylation site as a secondary event.
Collapse
Affiliation(s)
- A Chattopadhyay
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
15
|
Ji QS, Chattopadhyay A, Vecchi M, Carpenter G. Physiological requirement for both SH2 domains for phospholipase C-gamma1 function and interaction with platelet-derived growth factor receptors. Mol Cell Biol 1999; 19:4961-70. [PMID: 10373546 PMCID: PMC84312 DOI: 10.1128/mcb.19.7.4961] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two approaches have been utilized to investigate the role of individual SH2 domains in growth factor activation of phospholipase C-gamma1 (PLC-gamma1). Surface plasmon resonance analysis indicates that the individual N-SH2 and C-SH2 domains are able to specifically recognize a phosphotyrosine-containing peptide corresponding to Tyr 1021 of the platelet-derived growth factor (PDGF) beta receptor. To assess SH2 function in the context of the full-length PLC-gamma1 molecule as well as within the intact cell, PLC-gamma1 SH2 domain mutants, disabled by site-directed mutagenesis of the N-SH2 and/or C-SH2 domain(s), were expressed in Plcg1(-/-) fibroblasts. Under equilibrium incubation conditions (4 degrees C, 40 min), the N-SH2 domain, but not the C-SH2 domain, was sufficient to mediate significant PLC-gamma1 association with the activated PDGF receptor and PLC-gamma1 tyrosine phosphorylation. When both SH2 domains in PLC-gamma1 were disabled, the double mutant did not associate with activated PDGF receptors and was not tyrosine phosphorylated. However, no single SH2 mutant was able to mediate growth factor activation of Ca2+ mobilization or inositol 1,4,5-trisphosphate (IP3) formation. Subsequent kinetic experiments demonstrated that each single SH2 domain mutant was significantly impaired in its capacity to mediate rapid association with activated PDGF receptors and become tyrosine phosphorylated. Hence, when assayed under physiological conditions necessary to achieve a rapid biological response (Ca2+ mobilization and IP3 formation), both SH2 domains of PLC-gamma1 are essential to growth factor responsiveness.
Collapse
Affiliation(s)
- Q S Ji
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
16
|
Sachsenmaier C, Sadowski HB, Cooper JA. STAT activation by the PDGF receptor requires juxtamembrane phosphorylation sites but not Src tyrosine kinase activation. Oncogene 1999; 18:3583-92. [PMID: 10380880 DOI: 10.1038/sj.onc.1202694] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the platelet-derived growth factor (PDGF) receptor tyrosine kinase induces tyrosine phosphorylation of Signal Transducer and Activator of Transcription (STAT) proteins. Since the PDGF receptor also activates the Src tyrosine kinase, it is possible that Src mediates tyrosine phosphorylation of STATs in PDGF-treated cells. Consistent with a role for Src in STAT activation, we found that a PDGF receptor juxtamembrane tyrosine residue required for Src activation is necessary and sufficient for activation of STATs 1 and 3. To test the Src requirement further, we made other mutations in the PDGF receptor juxtamembrane region that increased or decreased Src binding. In epithelial and fibroblast cells, PDGF activated STAT1, 3 and 6 in the absence of detectable binding and activation of Src. In addition, PDGF induced c-myc RNA expression and DNA synthesis even though Src was not detectably activated. The activation of MAP kinase and the induction of c-fos gene expression both correlated with STAT but not Src activation by the receptor. We conclude that juxtamembrane tyrosine phosphorylation is necessary for both Src tyrosine kinase and STAT activation by the betaPDGF receptor, but that both processes are regulated independently by this region.
Collapse
Affiliation(s)
- C Sachsenmaier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
17
|
Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97:727-41. [PMID: 10380925 DOI: 10.1016/s0092-8674(00)80785-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We sought to explore the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the transcriptional induction of immediate early genes (IEGs). Using global expression monitoring, we identified 66 fibroblast IEGs induced by platelet-derived growth factor beta receptor (PDGFRbeta) signaling. Mutant receptors lacking binding sites for activation of the PLCgamma, PI3K, SHP2, and RasGAP pathways still retain partial ability to induce 64 of these IEGs. Removal of the Grb2-binding site further broadly reduces induction. These results suggest that the diverse pathways exert broadly overlapping effects on IEG induction. Interestingly, a mutant receptor that restores the RasGAP-binding site promotes induction of an independent group of genes, normally induced by interferons. Finally, we compare the PDGFRbeta and fibroblast growth factor receptor 1; each induces essentially identical IEGs in fibroblasts.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cell Line, Transformed
- Fibroblasts/cytology
- Gene Expression Regulation
- Genes, Immediate-Early
- Genes, Overlapping
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Mice
- Mutagenesis
- Phenylalanine/genetics
- Phenylalanine/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptor, Platelet-Derived Growth Factor beta
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Signal Transduction
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- D Fambrough
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
18
|
Bai RY, Dieter P, Peschel C, Morris SW, Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998; 18:6951-61. [PMID: 9819383 PMCID: PMC109278 DOI: 10.1128/mcb.18.12.6951] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/1998] [Accepted: 08/14/1998] [Indexed: 11/20/2022] Open
Abstract
Large-cell anaplastic lymphoma is a subtype of non-Hodgkin's lymphoma characterized by the expression of CD30. More than half of these lymphomas have a chromosomal translocation, t(2;5), that leads to the expression of a hybrid protein comprised of the nucleolar phosphoprotein nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK). Here we show that transfection of the constitutively active tyrosine kinase NPM-ALK into Ba/F3 and Rat-1 cells leads to a transformed phenotype. Oncogenic tyrosine kinases transform cells by activating the mitogenic signal transduction pathways, e.g., by binding and activating SH2-containing signaling molecules. We found that NPM-ALK binds most specifically to the SH2 domains of phospholipase C-gamma (PLC-gamma) in vitro. Furthermore, we showed complex formation of NPM-ALK and PLC-gamma in vivo by coimmunoprecipitation experiments in large-cell anaplastic lymphoma cells. This complex formation leads to the tyrosine phosphorylation and activation of PLC-gamma, which can be corroborated by enhanced production of inositol phosphates (IPs) in NPM-ALK-expressing cells. By phosphopeptide competition experiments, we were able to identify the tyrosine residue on NPM-ALK responsible for interaction with PLC-gamma as Y664. Using site-directed mutagenesis, we constructed a comprehensive panel of tyrosine-to-phenylalanine NPM-ALK mutants, including NPM-ALK(Y664F). NPM-ALK(Y664F), when transfected into Ba/F3 cells, no longer forms complexes with PLC-gamma or leads to PLC-gamma phosphorylation and activation, as confirmed by low IP levels in these cells. Most interestingly, Ba/F3 and Rat-1 cells expressing NPM-ALK(Y664F) also show a biological phenotype in that they are not stably transformed. Overexpression of PLC-gamma can partially rescue the proliferative response of Ba/F3 cells to the NPM-ALK(Y664F) mutant. Thus, PLC-gamma is an important downstream target of NPM-ALK that contributes to its mitogenic activity and is likely to be important in the molecular pathogenesis of large-cell anaplastic lymphomas.
Collapse
Affiliation(s)
- R Y Bai
- Laboratory of Leukemogenesis, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
19
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
20
|
Mathias RS, Zhang SJ, Wilson E, Gardner P, Ives HE. Non-capacitative calcium entry in Chinese hamster ovary cells expressing the platelet-derived growth factor receptor. J Biol Chem 1997; 272:29076-82. [PMID: 9360982 DOI: 10.1074/jbc.272.46.29076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Platelet-derived growth factor (PDGF) is believed to produce intracellular calcium (Ca2+i) transients by inositol trisphosphate (InsP3)-mediated release of intracellular Ca2+ stores followed by "capacitative" Ca2+ entry due to emptying of these stores. We examined the roles for the phospholipase Cgamma-InsP3 pathway and the emptying of InsP3-dependent intracellular Ca2+ stores in PDGF-mediated Ca2+ entry. Intracellular Ca2+ release and Ca2+ entry were measured with fluorometric methods in Chinese hamster ovary cells expressing wild type or mutant PDGF receptors. Activation of the wild type PDGF receptor caused both intracellular "Ca2+ release, " measured in nominally 0 Ca2+ extracellular medium, and "Ca2+ entry, " measured upon addition of 2 mM Ca2+ medium. Both phases were absent in Chinese hamster ovary cells expressing a PDGF receptor mutant (Y977F,Y989F) that fails to bind phospholipase Cgamma. Blockade of the InsP3 receptor, by microinjection of single cells with low molecular weight heparin (5-50 mg/ml), blocked only Ca2+i release (following PDGF or flash photolysis of caged InsP3) and had no effect on PDGF-induced Ca2+ entry. In whole cell patch-clamp experiments, intracellular heparin also failed to block PDGF-evoked ion currents. Release of InsP3-dependent intracellular Ca2+ stores, by flash photolysis of caged InsP3, was apparently not sufficient to maximally activate Ca2+ entry. Intracellular InsP3 caused significantly less Ca2+ entry than PDGF alone. These data suggest that InsP3 alone is not sufficient to maximally activate Ca2+ entry by the capacitative pathway and that products of phosphatidylinositol 4,5-bisphosphate breakdown other than InsP3 probably play a role in PDGF-mediated Ca2+ entry.
Collapse
Affiliation(s)
- R S Mathias
- Department of Pediatrics, University of California, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|
21
|
Christensen ST, Leick V, Rasmussen L, Wheatley DN. Signaling in unicellular eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:181-253. [PMID: 9378617 DOI: 10.1016/s0074-7696(08)62233-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aspects of intercellular and intracellular signaling systems in cell survival, proliferation, differentiation, chemosensory behavior, and programmed cell death in free-living unicellular eukaryotes have been reviewed. Comparisons have been made with both bacteria and metazoa. The central organisms were flagellates (Trypanosoma, Leishmania, and Crithidia), slime molds (Dictyostelium), yeast cells (Saccharomyces cerevisiae), and ciliates (Paramecium, Euplotes, and Tetrahymena). There are two novel aspects in this review. First, cellular responses are viewed in an evolutionary perspective, rather than from the more prevailing one, in which the unicellular eukaryotes are seen by the mammalian organisms. Second, results obtained with cell cultures in minimal, chemically defined nutrient media at low cell densities where intercellular signaling is strongly reduced are discussed. These results shed light on control mechanisms and their cooperation inside the living cell. Intracellular systems have many common features in unicellular and multicellular organisms.
Collapse
Affiliation(s)
- S T Christensen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
22
|
Kamat A, Carpenter G. Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev 1997; 8:109-17. [PMID: 9244406 DOI: 10.1016/s1359-6101(97)00003-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phospholipase C(gamma)1 (PLC-gamma1), a tyrosine kinase substrate, is a multi-domain molecule that modulates the intracellular levels of the second messenger molecules: Ca2+ and diacylglycerol. Although a wide variety of growth factor receptor tyrosine kinases phosphorylate and activate PLC-gamma1, the biological role and necessity of this signal transduction element in mitogenesis has remained unclear. Recent results, however, point to a more essential role than was suggested by initial studies. Also, biochemical studies have indicated a putative means for the intramolecular repression of PLC-gamma1 activity and provide a means for interpreting activation signals through a derepression mechanism.
Collapse
Affiliation(s)
- A Kamat
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
23
|
Fanger GR, Vaillancourt RR, Heasley LE, Montmayeur JP, Johnson GL, Maue RA. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation. Mol Cell Biol 1997; 17:89-99. [PMID: 8972189 PMCID: PMC231733 DOI: 10.1128/mcb.17.1.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation.
Collapse
Affiliation(s)
- G R Fanger
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Most mammalian cells have the capacity to migrate. When placed into culture, cells will generally display a set rate of basal, unstimulated locomotion. The cells will begin to move in one direction and, after some time, change directions resulting in a random walk. External stimuli can influence cell motility in several ways to either enhance or retard the rate of migration (chemokinesis), to change the average amount of cell migration observed before the cell turns (persistence), or to increase the directionality of movement by limiting the number of turns made by the cells. Several factors have been identified that stimulate cell movement, but the signaling mechanisms that mediate this induced cell movement have only recently begun to be studied. In this review, we discuss the signals that support the directional movement of fibroblasts and epithelial cells in response to chemoattractant gradients. The work will emphasize studies carried out by our laboratory and others on the stimulation of cell motility by the PDGF. These results indicate that at least two sets of signaling molecules cooperate to regulate cell motility in vivo. These include phospholipase C-gamma, phosphoinositide-3' kinase and the Ras-GTPase activating protein Ras-GAP. The first set are those which bind to the intracellular domain of the receptor tyrosine kinase and bring about the phosphorylation and/or activation of intracellular effectors proximal to the receptor. The second is a set of down-stream effectors that regulate either the rate of cell movement or the directionality of that movement depending on the cell type. These include Ras and the Ras-related GTPase Rac along with free phosphoinositides and calcium ions that regulate the actin polymerization machinery. Signals that mediate nuclear changes leading to cell proliferation, such as elements of the MAP kinase pathway, do not appear to play a role in PDGF-stimulated cell migration. Current work thus suggests that a coordinated spatial regulation of signaling elements that interact with the cell membrane and cytoskeleton but not necessarily with nuclear elements is the controlling mediator of directional cell motility.
Collapse
Affiliation(s)
- B Anand-Apte
- Department of Cell Biology, Cleveland Clinic Research Institute, OH 44195, USA
| | | |
Collapse
|
25
|
Coats SR, Pledger WJ, Awazu M, Daniel TO. Detergent solubility defines an alternative itinerary for a subpopulation of PDGF beta receptors. J Cell Physiol 1996; 168:412-23. [PMID: 8707877 DOI: 10.1002/(sici)1097-4652(199608)168:2<412::aid-jcp20>3.0.co;2-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Current models of platelet-derived growth factor (PDGF) beta receptor itinerary are based upon the properties of receptors recovered from nonionic detergent-solubilized cellular extracts. Comparing several commonly used cell extraction procedures, we have determined that up to 50% of immunoreactive PDGF beta receptors, reside in a Triton X-100 insoluble pool in a wide distribution of cultured cell lines, including Balb/c-3T3, NIH 3T3, and Swiss fibroblasts, primary murine and human fibroblasts, and primary human glial cells. Many properties of Triton insoluble receptors are distinct from the well-characterized PDGF beta receptors, including 1) delayed arrival of newly synthesized receptors into the Triton insoluble fraction, 2) prolonged half-life in the presence of PDGF, 3) increased abundance with increasing cell density, 4) inaccessibility to modification by extracellular compartment enzymes, 5) cofractionation with cytoskeletal proteins, and 6) a higher basal tyrosine phosphorylation state. PDGF stimulates accumulation of tyrosine phosphorylated PDGF beta receptors in the Triton X-100 insoluble fraction. Cell surface PDGF beta receptors modified by enzymatic desialylation redistribute to the insoluble fraction. These findings distinguish the itinerary of a large subpopulation of PDGF beta receptors from those characterized previously. Receptors in this fraction represent a long-lived tyrosine phosphorylated population that may effect responses for extended periods following ligand activation.
Collapse
Affiliation(s)
- S R Coats
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
26
|
Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 1996; 10:1084-95. [PMID: 8654924 DOI: 10.1101/gad.10.9.1084] [Citation(s) in RCA: 353] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The production, survival, and function of monocytes and macrophages is regulated by the macrophage colony-stimulating factor (M-CSF or CSF-1) through its tyrosine kinase receptor Fms. Binding of M-CSF to Fms induces the tyrosine phosphorylation and association of a 150-kD protein with the phosphotyrosine-binding (PTB) domain of Shc. We have cloned p150 using a modified yeast two-hybrid screen. p150 contains one SH2 domain, two potential PTB-binding sites, an ATP/GTP-binding domain, several potential SH3-binding sites, and a domain with homology to inositol polyphosphate-5-phosphatases. p150 antibodies detect this protein in FDC-P1 myeloid cells, but the same protein is not detectable in fibroblasts. The antibodies immunoprecipitate a 150-kD protein from quiescent or M-CSF-stimulated FDC-P1 cells that hydrolyzes PtdIns(3,4,5)P3, to PtdIns(3,4)P2. This activity is observed in Shc immunoprecipitates only after M-CSF stimulation. Retroviral expression of p15O in FD-Fms cells results in strong inhibition of cell growth in M-CSF and a lesser inhibition in IL-3. Ectopic expression of p150 in fibroblasts does not inhibit growth. This novel protein, p150(ship) (SH2-containing inositol phosphatase), identifies a component of a new growth factor-receptor signaling pathway in hematopoietic cells.
Collapse
Affiliation(s)
- M N Lioubin
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | | | | | |
Collapse
|
27
|
PDGF and FGF receptors in health and disease. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5687(96)80009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Noh DY, Shin SH, Rhee SG. Phosphoinositide-specific phospholipase C and mitogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:99-113. [PMID: 7492569 DOI: 10.1016/0304-419x(95)00006-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The importance of PLC activation in cell proliferation is evident from the fact that the hydrolysis of PtdIns(4,5)P2 is one of the early events that follow the interaction of many growth factors and mitogens with their respective receptors. However, the importance of PLC activation is not restricted to proliferation; it is one of the most common transmembrane signaling events elicited by receptors that regulate many other cellular processes, including differentiation, metabolism, secretion, contraction, and sensory perception. It is also clear that cell proliferation signaling does not always require PLC, as indicated by the fact that growth factors such as insulin and CSF-1 do not appear to elicit the hydrolysis of PtdIns(4,5)P2, even though the intracellular domains of their receptors carry a PTK domain and the receptors show topologies very similar to those of the PLC-activating growth factors PDGF, EGF, and FGF. The growth factor-dependent activation of PLC is initiated by the formation of a complex between the receptor PTK and PLC-gamma; the formation of this complex is mediated by a specific interaction between a tyrosine phosphate residue on the intracellular domain of PTK and the SH2 domain of PLC-gamma. The receptor PTK subsequently phosphorylates PLC-gamma, of which two distinct isozymes, PLC-gamma 1 and PLC-gamma 2, have been identified. Proliferation of T cells and B cells in response to the aggregation of their respective cell surface receptors is also accompanied by the activation of PLC-gamma isozymes at an early stage. Unlike growth factor receptors, the T cell and B cell receptors lack intrinsic PTK activity but associate with several non-receptor PTKs of the Src and Syk families. Although the specific kinases are not known, one or more of these enzymes phosphorylate and activate PLC-gamma 1 and PLC-gamma 2. Transduction of growth signals by G protein-coupled receptors such as those for thrombin or bombesin also requires PtdIns(4,5)P2 hydrolysis, which, in this instance, is mediated by PLC-beta isozymes. The PLC-beta subfamily consists of four distinct members: PLC-beta 1, PLC-beta 2, PLC-beta 3, and PLC-beta 4. Agonist interaction with specific G protein-coupled receptors causes the dissociation of Gq proteins into G alpha and G beta gamma subunits and the exchange of GDP bound to G alpha for GTP. The resulting GTP-bound G alpha subunit then activates PLC-beta isoforms by binding to the carboxyl-terminal region of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Y Noh
- Laboratory of Cell Signaling, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
29
|
Abstract
BACKGROUND & AIMS Epidermal growth factor (EGF) has been shown to induce intestinal proliferation and maturation; however, little information is available regarding substrates of the intestinal EGF receptor tyrosine kinase. The purpose of this study was to determine if src homologous collagen-like protein (Shc) was an in vivo substrate of the intestinal EGF receptor. METHODS Ten-day-old rats were treated with EGF or were breast-fed. In some experiments, IEC-6 cells were treated with EGF. Intestinal tissue and cell fractions were studied by immunodetection to compare the tyrosine phosphorylation state and the subcellular localization of intestinal proteins. RESULTS The total tyrosine phosphorylation state of intestinal proteins was increased threefold by EGF. Tyrosine phosphorylation of the EGF receptor and Shc were rapidly increased by EGF. The association of Grb2 with Shc increased fourfold and fivefold. Plasma membrane translocation of Shc and associated phosphotyrosyl proteins was increased within 30 seconds of EGF treatment. CONCLUSIONS Shc is a substrate of the intestinal EGF receptor in vivo. EGF-induced association of Shc with the adapter protein Grb2 may have implications for activation of the p21ras signaling pathway in the intestine. The EGF-induced membrane association of Shc with two other phosphotyrosyl proteins suggests involvement of Shc in additional aspects of EGF-receptor signaling in the intestine.
Collapse
Affiliation(s)
- D B Polk
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Batzer AG, Blaikie P, Nelson K, Schlessinger J, Margolis B. The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor. Mol Cell Biol 1995; 15:4403-9. [PMID: 7542744 PMCID: PMC230680 DOI: 10.1128/mcb.15.8.4403] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Shc is an SH2 domain protein that is tyrosine phosphorylated in cells stimulated with a variety of growth factors and cytokines. Once phosphorylated, Shc binds the Grb2-Sos complex, leading to Ras activation. Shc can interact with tyrosine-phosphorylated proteins by binding to phosphotyrosine in the context of an NPXpY motif, where pY is a phosphotyrosine. This is an unusual binding site for an SH2 domain protein whose binding specificity is usually controlled by residues carboxy terminal, not amino terminal, to the phosphotyrosine. Recently we identified a second region in Shc, named the phosphotyrosine interaction (PI) domain, and we have found it to be present in a variety of other cellular proteins. In this study we used a dephosphorylation protection assay, competition analysis with phosphotyrosine-containing synthetic peptides, and epidermal growth factor receptor (EGFR) mutants to determine the binding sites of the PI domain of Shc on the EGFR. We demonstrate that the PI domain of Shc binds the LXNPXpY motif that encompasses Y-1148 of the activated EGFR. We conclude that the PI domain imparts to Shc its ability to bind the NPXpY motif.
Collapse
Affiliation(s)
- A G Batzer
- Department of Pharmacology, New York University Medical Center, New York, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
An emerging theme in both the biology of signal transduction and the biochemistry of proteins has been the modular function of small protein domains. In some cases these can directly regulate catalytic activity. In others, they serve to interconnect important regulatory proteins. SH2 (src homology 2) domains represent some of the best studied models. Originally identified on the basis of homology in src and fps [1], SH2s are elements that ordinarily respond to tyrosine phosphorylation by binding the phosphorylated sequence. As such, they are key elements in tyrosine kinase regulation of cellular processes. Because SH2 interactions result from phosphorylation, such elements provide a regulatable circuitry along which signals can be transmitted in a timely manner. Because the regulation is based on a common mechanism, signal generators can target several different proteins coordinately. The PDGF receptor (PDGFr), for example, may interact with as many as ten different elements [2,3]. There are a number of excellent reviews on SH2 domains available [4-11]. This discussion will try to show how genetic, biochemical and biophysical results can be integrated in a satisfying way.
Collapse
Affiliation(s)
- B Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
32
|
Bornfeldt KE, Graves LM, Raines EW, Igarashi Y, Wayman G, Yamamura S, Yatomi Y, Sidhu JS, Krebs EG, Hakomori S. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 1995; 130:193-206. [PMID: 7790372 PMCID: PMC2120520 DOI: 10.1083/jcb.130.1.193] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activation of the PDGF receptor on human arterial smooth muscle cells (SMC) induces migration and proliferation via separable signal transduction pathways. Sphingosine-1-phosphate (Sph-1-P) can be formed following PDGF receptor activation and therefore may be implicated in PDGF-receptor signal transduction. Here we show that Sph-1-P does not significantly affect PDGF-induced DNA synthesis, proliferation, or activation of mitogenic signal transduction pathways, such as the mitogen-activated protein (MAP) kinase cascade and PI 3-kinase, in human arterial SMC. On the other hand, Sph-1-P strongly mimics PDGF receptor-induced chemotactic signal transduction favoring actin filament disassembly. Although Sph-1-P mimics PDGF, exogenously added Sph-1-P induces more prolonged and quantitatively greater PIP2 hydrolysis compared to PDGF-BB, a markedly stronger calcium mobilization and a subsequent increase in cyclic AMP levels and activation of cAMP-dependent protein kinase. This excessive and prolonged signaling favors actin filament disassembly by Sph-1-P, and results in inhibition of actin nucleation, actin filament assembly and formation of focal adhesion sites. Sph-1-P-induced interference with the dynamics of PDGF-stimulated actin filament disassembly and assembly results in a marked inhibition of cell spreading, of extension of the leading lamellae toward PDGF, and of chemotaxis toward PDGF. The results suggest that spatial and temporal changes in phosphatidylinositol turnover, calcium mobilization and actin filament disassembly may be critical to PDGF-induced chemotaxis and suggest a possible role for endogenous Sph-1-P in the regulation of PDGF receptor chemotactic signal transduction.
Collapse
Affiliation(s)
- K E Bornfeldt
- Department of Pathology, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vaillancourt RR, Heasley LE, Zamarripa J, Storey B, Valius M, Kazlauskas A, Johnson GL. Mitogen-activated protein kinase activation is insufficient for growth factor receptor-mediated PC12 cell differentiation. Mol Cell Biol 1995; 15:3644-53. [PMID: 7540718 PMCID: PMC230602 DOI: 10.1128/mcb.15.7.3644] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
When expressed in PC12 cells, the platelet-derived growth factor beta receptor (beta PDGF-R) mediates cell differentiation. Mutational analysis of the beta PDGF-R indicated that persistent receptor stimulation of the Ras/Raf/mitogen-activated protein (MAP) kinase pathway alone was insufficient to sustain PC12 cell differentiation. PDGF receptor activation of signal pathways involving p60c-src or the persistent regulation of phospholipase C gamma was required for PC12 cell differentiation. beta PDGF-R regulation of phosphatidylinositol 3-kinase, the GTPase-activating protein of Ras, and the tyrosine phosphatase, Syp, was not required for PC12 cell differentiation. In contrast to overexpression of oncoproteins involved in regulating the MAP kinase pathway, growth factor receptor-mediated differentiation of PC12 cells requires the integration of other signals with the Ras/Raf/MAP kinase pathway.
Collapse
Affiliation(s)
- R R Vaillancourt
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Sillman AL, Monroe JG. Association of p72syk with the src homology-2 (SH2) domains of PLC gamma 1 in B lymphocytes. J Biol Chem 1995; 270:11806-11. [PMID: 7744830 DOI: 10.1074/jbc.270.20.11806] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phospholipase C gamma-catalyzed inositol phospholipid hydrolysis, a critical step in B cell antigen receptor signaling leading to second messenger generation and proliferation, depends upon tyrosine kinase activation. The B cell antigen receptor-associated tyrosine kinases p53/56lyn, p59fyn, p55blk, and p72syk are assumed to participate in receptor-initiated signaling. It is unknown, however, which of these kinases is involved in the tyrosine phosphorylation and resulting activation of phospholipase C gamma in response to antigen receptor cross-linking. We have used a fusion protein containing the tandem src homology-2 (SH2) domains of phospholipase C gamma 1 (PLC gamma 1) to identify B cell kinases which associate with PLC gamma 1. Using an in vitro kinase assay, we demonstrate SH2-dependent association of tyrosine kinase activity from anti-mu-stimulated B cells. The PLC gamma 1 SH2 domains associate with a prominent 70-72-kDa tyrosine phosphoprotein from anti-mu-stimulated, but not resting, B cells. Immunoblotting and secondary immunoprecipitation studies definitively identify this protein as p72syk. These results imply a physical interaction between PLC gamma 1 and p72syk in antigen receptor-stimulated B cells. This conclusion is confirmed by our ability to co-immunoprecipitate p72syk and PLC gamma 1 from lysates of anti-mu-stimulated B cells. These results implicate p72syk in the activation of phospholipase C gamma 1 during B cell antigen receptor signaling.
Collapse
Affiliation(s)
- A L Sillman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
35
|
Drummond-Barbosa D, Vaillancourt RR, Kazlauskas A, DiMaio D. Ligand-independent activation of the platelet-derived growth factor beta receptor: requirements for bovine papillomavirus E5-induced mitogenic signaling. Mol Cell Biol 1995; 15:2570-81. [PMID: 7739538 PMCID: PMC230487 DOI: 10.1128/mcb.15.5.2570] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The E5 protein of bovine papillomavirus type 1 binds to and activates the endogenous platelet-derived growth factor (PDGF) beta receptor in fibroblasts, resulting in cell transformation. We have developed a functional assay to test the ability of PDGF beta receptor mutants to mediate a mitogenic signal initiated by the E5 protein. Lymphoid Ba/F3 cells are strictly dependent on interleukin-3 for growth, but coexpression of the wild-type PDGF beta receptor and the E5 or v-sis-encoded protein generated a mitogenic signal which allowed Ba/F3-derived cells to proliferate in the absence of interleukin-3. In these cells, the E5 protein bound to and caused increased tyrosine phosphorylation of both the mature and the precursor forms of the wild-type PDGF beta receptor. The tyrosine kinase activity of the receptor was necessary for E5-induced receptor tyrosine phosphorylation and mitogenic activity but not for complex formation with the E5 protein. In contrast, the PDGF-binding domain of the receptor was not required for complex formation with the E5 protein, E5-induced tyrosine phosphorylation or mitogenic activity, demonstrating that E5-mediated receptor activation is ligand independent. Analysis of receptor mutants lacking various combinations of tyrosine phosphorylation sites revealed that the E5 and v-sis-encoded proteins display similar requirements for signaling and suggested that the wild-type PDGF beta receptor can generate multiple independent mitogenic signals. Importantly, these mutants dissociated two activities of the PDGF beta receptor tyrosine kinase, both of which are required for sustained mitogenic signaling: (i) receptor autophosphorylation and creation of binding sites for SH2 domain-containing proteins and (ii) phosphorylation of substrates other than the receptor itself.
Collapse
Affiliation(s)
- D Drummond-Barbosa
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
36
|
Charriaut-Marlangue C, Margaill I, Plotkine M, Ben-Ari Y. Early endonuclease activation following reversible focal ischemia in the rat brain. J Cereb Blood Flow Metab 1995; 15:385-8. [PMID: 7713995 DOI: 10.1038/jcbfm.1995.48] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The structural changes that occur in chromatin DNA after ischemic brain injury are poorly understood. The presence of oligonucleosome fragments that are recognized as the characteristic DNA ladder has been demonstrated in global and focal ischemia, associated or not with random DNA fragmentation. Using pulsed-field gel electrophoresis, which improves DNA separation, we have now detected initial stages of DNA fragmentation that occur already 6 h after reversible focal cerebral ischemia in rats. This result confirms that internucleosomal DNA fragmentation precedes random DNA fragmentation in vulnerable striatal and cortical neurons following reversible focal cerebral ischemia.
Collapse
|
37
|
Suzuki M, Asplund T, Yamashita H, Heldin CH, Heldin P. Stimulation of hyaluronan biosynthesis by platelet-derived growth factor-BB and transforming growth factor-beta 1 involves activation of protein kinase C. Biochem J 1995; 307 ( Pt 3):817-21. [PMID: 7741713 PMCID: PMC1136722 DOI: 10.1042/bj3070817] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular signal transduction pathways that mediate the stimulatory effects of platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-beta on hyaluronan biosynthesis in human fibroblasts were investigated. The stimulatory effects of both PDGF-BB and TGF-beta 1 were dependent on protein kinase C (PKC), since the PKC inhibitor calphostin C inhibited the stimulation by the growth factors. Direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) also stimulated hyaluronan production, and the combination of either PDGF-BB or TGF-beta 1 and PMA gave an increased effect. One possible mechanism for activation of PKC is via induction of phospholipase C (PLC) activity; U-17322, an inhibitor of PLC-gamma, was found to inhibit partially PDGF-BB-stimulated hyaluronan synthesis. PDGF-BB is known to activate PLC-gamma through tyrosine phosphorylation; however, a PDGF beta-receptor mutant unable to interact with and activate PLC-gamma was still able to mediate induction of hyaluronan biosynthesis, indicating that PDGF-mediated stimulation is not entirely dependent on PLC-gamma. The stimulations by PDGF-BB and TGF-beta 1 were partly dependent on protein synthesis, since parts of the effects were inhibited by cycloheximide; in contrast, the effects mediated by PMA were not. Our results indicate that PKC is involved in the transduction of the effects of growth factors on hyaluronan biosynthesis, and that the effects involve direct or indirect activation of existing hyaluronan synthetase molecules, as well as induction of new enzyme molecules.
Collapse
Affiliation(s)
- M Suzuki
- Department of Medical and Physiological Chemistry, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
38
|
Valgeirsdóttir S, Eriksson A, Nistér M, Heldin CH, Westermark B, Claesson-Welsh L. Compartmentalization of autocrine signal transduction pathways in Sis-transformed NIH 3T3 cells. J Biol Chem 1995; 270:10161-70. [PMID: 7730319 DOI: 10.1074/jbc.270.17.10161] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The transforming protein of simian sarcoma virus is homologous to the platelet-derived growth factor (PDGF) B-chain. Fibroblasts transformed with simian sarcoma virus constitutively produce a growth factor that stimulates the endogenous tyrosine kinase of PDGF receptors in an autocrine manner. Autophosphorylation of PDGF receptors upon ligand stimulation provides binding sites for Src homology 2 domains of intracellular signaling molecules, which thereby become activated. We have characterized the PDGF receptor-mediated signal transduction in NIH 3T3 cells transformed with a PDGF B-chain cDNA (Sis 3T3 cells) in the absence and presence of suramin, a polyanionic compound that quenches PDGF-induced mitogenicity and reverts the transformed phenotype of the Sis 3T3 cells. Our data show that in the presence of suramin the general level of tyrosine phosphorylation was decreased. Nevertheless, autophosphorylated receptors complexed with substrates persisted in the cells. Suramin had no effect on activation of phosphatidylinositol 3'-kinase or on tyrosine phosphorylation of phospholipase C-gamma and GTPase-activating protein of Ras. On the other hand, kinase activation of Src and Raf-1, phosphorylation of protein-tyrosine phosphatase 1D/Syp and Shc, and complex formation with Grb2 were greatly diminished by suramin. A possible explanation for our findings is that different PDGF receptor-coupled signaling pathways are active in different structural or functional compartments in the cell. Those pathways that are not affected by suramin might elicit distinct cellular responses, which are not sufficient for growth and transformation.
Collapse
Affiliation(s)
- S Valgeirsdóttir
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important component of several intracellular signaling pathways. It serves as a substrate for phospholipase C, which produces the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. It is also a substrate for a phosphatidylinositol 3-kinase, and regulates the function of a number of actin-binding proteins. PIP2 has been shown recently to serve as a cofactor for a phosphatidylcholine-specific phospholipase D and as a membrane-attachment site for many signaling proteins containing pleckstrin homology domains. The need to stringently regulate the cellular concentration of PIP2 is reflected in part by the fact that there are at least ten distinct mammalian phospholipase C isozymes and multiple mechanisms linking these isozymes to various receptors.
Collapse
Affiliation(s)
- S B Lee
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Eriksson A, Nånberg E, Rönnstrand L, Engström U, Hellman U, Rupp E, Carpenter G, Heldin CH, Claesson-Welsh L. Demonstration of functionally different interactions between phospholipase C-gamma and the two types of platelet-derived growth factor receptors. J Biol Chem 1995; 270:7773-81. [PMID: 7535778 DOI: 10.1074/jbc.270.13.7773] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphorylated tyrosine residues in receptor tyrosine kinases serve as binding sites for signal transduction molecules. We have identified two autophosphorylation sites, Tyr-988 and Tyr-1018, in the platelet-derived growth factor (PDGF) alpha-receptor carboxyl-terminal tail, which are involved in binding of phospholipase C-gamma (PLC-gamma). The capacities of the Y988F and Y1018F mutant PDGF alpha-receptors, expressed in porcine aortic endothelial cells, to bind PLC-gamma are 60 and 5% of that of the wild-type receptor, respectively. Phosphorylated but not unphosphorylated peptides containing Tyr-1018 are able to compete with the intact receptor for binding to immobilized PLC-gamma SH2 domains; a phosphorylated Tyr-988 peptide competes 10 times less efficiently. The complex between PLC-gamma and the PDGF alpha-receptor is more stable than that of PLC-gamma and the PDGF beta-receptor. However, PDGF stimulation results in a smaller fraction of tyrosine-phosphorylated PLC-gamma and a smaller accumulation of inositol trisphosphate in cells expressing the alpha-receptor as compared with cells expressing the beta-receptor. We conclude that phosphorylated Tyr-988 and Tyr-1018 in the PDGF alpha-receptor carboxyl-terminal tail bind PLC-gamma, but this association leads to only a relatively low level of tyrosine phosphorylation and activation of PLC-gamma.
Collapse
Affiliation(s)
- A Eriksson
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Larose L, Gish G, Pawson T. Construction of an SH2 domain-binding site with mixed specificity. J Biol Chem 1995; 270:3858-62. [PMID: 7876130 DOI: 10.1074/jbc.270.8.3858] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SH2 domains bind to specific phosphotyrosine-containing sites in a fashion dictated by the amino acids flanking the phosphotyrosine. Attention has focused on the role of the three COOH-terminal positions (+1 to +3) in generating specificity. Autophosphorylation of Tyr1021 in the tail of the beta-receptor for platelet-derived growth factor creates a specific binding site for the COOH-terminal SH2 domain of phospholipase C (PLC)-gamma 1. We show that the residues 4 and 5 amino acids COOH-terminal to Tyr1021 (+4 Leu and +5 Pro) are required for efficient PLC-gamma 1 binding, and that their replacement with the corresponding residues from a phosphatidylinositol 3'-kinase binding site abrogates stable association with PLC-gamma 1. In contrast, replacement of the +3 Pro with Met produces a Tyr1021 site with mixed specificity that binds both PLC-gamma 1 and phosphatidylinositol 3'-kinase. This motif is rendered specific for phosphatidylinositol 3'-kinase by further substitution of the +4 Leu. These results indicate that the +4 and +5 residues are important for the selective binding of specific SH2 domains. This study suggests that phosphotyrosine sites can be tailored to bind one or more SH2 domains with high affinity, depending on the combination of residues in the +1 to +5 positions.
Collapse
Affiliation(s)
- L Larose
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Abstract
Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.
Collapse
Affiliation(s)
- T Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Vetter ML, Bishop JM. Beta PDGF receptor mutants defective for mitogenesis promote neurite outgrowth in PC12 cells. Curr Biol 1995; 5:168-78. [PMID: 7743180 DOI: 10.1016/s0960-9822(95)00038-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) promotes mitogenesis in fibroblast cell lines but stimulates neurite outgrowth in PC12 cells that ectopically express the beta PDGF receptor. To determine which substrates must associate with this receptor protein-tyrosine kinase in order to promote neurite outgrowth, we introduced into PC12 pheochromocytoma cells three mutant forms of the beta PDGF receptor that no longer associate with specific substrate proteins. We then assayed the ability of these receptor mutants to affect neurite extension. RESULTS Receptors lacking the kinase-insert domain did not associate with either phosphatidylinositol 3-kinase (PI 3-kinase) or Ras GTPase-activating protein (Ras-GAP) in PC12 cells. A carboxy-terminal truncation of the beta PDGF receptor eliminated the association of phospholipase C-gamma 1 (PLC-gamma 1) with the receptor and prevented phosphorylation of PLC-gamma 1 in PC12 cells. Finally, beta PDGF receptors that have tyrosine-to-phenylalanine point mutations at positions 708, 719, 977 and 989 did not associate with either PI 3-kinase or PLC-gamma 1. All three mutant forms of the beta PDGF receptor promoted PDGF-dependent neurite outgrowth in PC12 cells and elicited activation of mitogen-activated protein (MAP) kinases. CONCLUSIONS PC12 cells expressing the beta PDGF receptor extend neurites in response to PDGF in the absence of signalling through PI 3-kinase, RasGAP, and PLC-gamma 1. This contrasts with the requirements for mitogenesis for epithelial and fibroblast cell lines, in which the association of PI 3-kinase with the beta PDGF receptor is essential. This receptor protein-tyrosine kinase therefore phosphorylates and activates a similar set of intracellular signalling molecules in the context of both mitogenesis and differentiation, but the importance of particular pathways for each phenotypic response is distinct.
Collapse
Affiliation(s)
- M L Vetter
- George Williams Hooper Foundation, University of California, San Francisco 94143-0552, USA
| | | |
Collapse
|
44
|
Ma YH, Reusch HP, Wilson E, Escobedo JA, Fantl WJ, Williams LT, Ives HE. Activation of Na+/H+ exchange by platelet-derived growth factor involves phosphatidylinositol 3'-kinase and phospholipase C gamma. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43875-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Rupp E, Siegbahn A, Rönnstrand L, Wernstedt C, Claesson-Welsh L, Heldin CH. A unique autophosphorylation site in the platelet-derived growth factor alpha receptor from a heterodimeric receptor complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:29-41. [PMID: 7523122 DOI: 10.1111/j.1432-1033.1994.00029.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The platelet-derived growth factor (PDGF) alpha and beta receptors undergo dimerization as a consequence of ligand binding. Depending on the PDGF isoform (PDGF-AA, -AB or -BB), homodimers or heterodimers of receptors are formed. In this study, we have used transfected porcine aortic endothelial cells, coexpressing cDNAs for the alpha receptor and the beta receptor at comparable levels, to investigate the properties of the alpha beta-heterodimeric receptor complex. PDGF-AB, which mainly induced alpha beta-heterodimeric complexes, was the most efficient isoform for stimulating mitogenicity. Actin reorganization, in the form of circular membrane ruffling and chemotaxis, was induced by PDGF-AB and PDGF-BB, but not by PDGF-AA, thus indicating that the beta receptor in the homodimeric or heterodimeric configuration was required for induction of motility responses. The molecular basis for the apparent receptor dimer-specific properties was examined by analyzing receptor autophosphorylation and phosphorylation of substrates. The alpha receptor was found to be phosphorylated at an additional tyrosine residue, Tyr754, in the heterodimeric complex as compared to the alpha alpha receptor homodimer. Phosphorylation of this tyrosine residue could permit the binding of a specific signal-tranducing protein. A candidate is a 134,000-M(r) protein, which was shown to associate preferentially with the alpha receptor in the heterodimeric receptor complex. It is possible that phosphorylated Tyr754 in the alpha receptor mediates activation of specific signal-tranducing molecules like the 134,000-M(r) substrate, and thereby initiates signal-tranduction pathways from the alpha beta receptor heterodimer, which are distinct from those initiated via homodimeric receptor complexes.
Collapse
Affiliation(s)
- E Rupp
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2's SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.
Collapse
|
47
|
Batzer AG, Rotin D, Ureña JM, Skolnik EY, Schlessinger J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol 1994; 14:5192-201. [PMID: 7518560 PMCID: PMC359038 DOI: 10.1128/mcb.14.8.5192-5201.1994] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2's SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.
Collapse
Affiliation(s)
- A G Batzer
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | | | | | |
Collapse
|
48
|
Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A 1994; 91:7335-9. [PMID: 8041791 PMCID: PMC44394 DOI: 10.1073/pnas.91.15.7335] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein-tyrosine-phosphatase SHPTP2 (Syp/PTP-1D/PTP2C) is the homologue of the Drosophila corkscrew (csw) gene product, which transmits positive signals from receptor tyrosine kinases. Likewise, SHPTP2 has been implicated in positive signaling from platelet-derived growth factor receptor beta (PDGFR). Upon PDGF stimulation, SHPTP2 binds to the PDGFR and becomes tyrosine-phosphorylated. We have identified tyrosine-542 (pY542TNI) as the major in vivo site of SHPTP2 tyrosine phosphorylation. The pY542TNI sequence conforms to the consensus binding site for the SH2 domain of Grb2, which, by association with Sos1, couples some growth factor receptors to Ras. Following PDGF stimulation, Grb2 binds tyrosine-phosphorylated SHPTP2. Moreover, a mutant PDGFR lacking its SHPTP2 binding site displays markedly reduced Grb2 binding. These data indicate that phosphorylation of SHPTP2 couples Grb2 to PDGFR in vivo, providing a mechanism for Ras activation by PDGFR and for positive signaling via SHPTP2 and Csw.
Collapse
Affiliation(s)
- A M Bennett
- Molecular Medicine Unit, Beth Israel Hospital, Boston, MA 02215
| | | | | | | | | |
Collapse
|
49
|
Mundschau L, Forman L, Weng H, Faller D. Platelet-derived growth factor (PDGF) induction of egr-1 is independent of PDGF receptor autophosphorylation on tyrosine. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33983-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Yokote K, Mori S, Hansen K, McGlade J, Pawson T, Heldin C, Claesson-Welsh L. Direct interaction between Shc and the platelet-derived growth factor beta-receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36611-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|