1
|
Proudfoot KG, Anderson SJ, Dave S, Bunning AR, Sinha Roy P, Bera A, Gupta ML. Checkpoint Proteins Bub1 and Bub3 Delay Anaphase Onset in Response to Low Tension Independent of Microtubule-Kinetochore Detachment. Cell Rep 2020; 27:416-428.e4. [PMID: 30970246 PMCID: PMC6485967 DOI: 10.1016/j.celrep.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 05/18/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores. Kinetochore attachment and tension are critical for proper chromosome segregation, but isolating the contribution of either stimulus has been challenging. Using a Taxol-sensitive yeast model, Proudfoot et al. show that reducing tension specifically produces a delay in mitotic progression that is temporally and mechanistically distinct from that produced by unattached kinetochores.
Collapse
Affiliation(s)
- Kathleen G Proudfoot
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Samuel J Anderson
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sandeep Dave
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Angela R Bunning
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pallavi Sinha Roy
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
2
|
Loss of Kif18A Results in Spindle Assembly Checkpoint Activation at Microtubule-Attached Kinetochores. Curr Biol 2018; 28:2685-2696.e4. [DOI: 10.1016/j.cub.2018.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
|
3
|
Raposo AE, Piller SC. Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 2018; 13:3. [PMID: 29568320 PMCID: PMC5859524 DOI: 10.1186/s13008-018-0036-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein–protein interactions, RNA splicing and transport. The enzymes responsible for arginine methylation, protein arginine methyltransferases (PRMTs), have been shown to methylate or associate with important regulatory proteins of the cell cycle and DNA damage repair pathways, such as cyclin D1, p53, p21 and the retinoblastoma protein. Overexpression of PRMTs resulting in aberrant methylation patterns in cancers often correlates with poor recovery prognosis. This indicates that protein arginine methylation is also an important regulator of the cell cycle, and consequently a target for cancer regulation. The effect of protein arginine methylation on the cell cycle and how this emerging key player of cell cycle regulation may be used in therapeutic strategies for cancer are the focus of this review.
Collapse
Affiliation(s)
- Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
4
|
Wu Q, Li Z, Huang Y, Qian D, Chen M, Xiao W, Wang B. Oxidative Stress Delays Prometaphase/Metaphase of the First Cleavage in Mouse Zygotes via the MAD2L1-Mediated Spindle Assembly Checkpoint. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2103190. [PMID: 29147457 PMCID: PMC5632912 DOI: 10.1155/2017/2103190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 02/05/2023]
Abstract
In zygotes, DNA damage delays the first cleavage to enable repair. Our previous study found that 0.03 mM hydrogen peroxide (H2O2) was the minimum concentration required for induction of oxidative DNA damage in mouse zygotes and that this represented the most similar situation to the clinical phenomenon. In this study, we quantified the cleavage rates of cells in blastocysts at different developmental stages, followed by immunofluorescence to detect activation of γ-H2A histone family member X (a marker of DNA damage) in zygotes to confirm that oxidative DNA damage was induced in H2O2-treated zygotes. Monitoring H3S10P (phosphorylation of Ser10 on histone H3; a prometaphase/metaphase marker) levels at different hour postinsemination revealed that treatment of zygotes with 0.03 mM H2O2 resulted in a prometaphase/metaphase delay. Furthermore, immunofluorescence staining for mitotic arrest deficient 2-like 1 and the protein kinase TTK, components of the spindle assembly checkpoint (SAC), suggested that this delay possibly involved SAC activation. These studies of the relationships between oxidative stress and SAC can promote the success rate of in vitro fertilization.
Collapse
Affiliation(s)
- Que Wu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yue Huang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Diting Qian
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Man Chen
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Wanfen Xiao
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Bin Wang
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
5
|
He B, Cimini D. Using Photoactivatable GFP to Study Microtubule Dynamics and Chromosome Segregation. Methods Mol Biol 2016; 1413:15-31. [PMID: 27193840 DOI: 10.1007/978-1-4939-3542-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitosis is a highly dynamic process during which the genetic material is equally distributed between two daughter cells. During mitosis, the sister chromatids of replicated chromosomes interact with dynamic microtubules and such interactions lead to stereotypical chromosome movements that eventually result in chromosome segregation and successful cell division. Approaches that allow quantification of microtubule dynamics and chromosome movements are of utmost importance for a mechanistic understanding of mitosis. In this chapter, we describe methods based on activation of photoactivatable green fluorescent protein (PA-GFP) that can be used for quantitative studies of microtubule dynamics and chromosome segregation.
Collapse
Affiliation(s)
- Bin He
- Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 2015; 76:1101-12. [PMID: 26563258 PMCID: PMC4648954 DOI: 10.1007/s00280-015-2903-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023]
Abstract
Cancer is a complex disease since it is adaptive in such a way that it can promote proliferation and invasion by means of an overactive cell cycle and in turn cellular division which is targeted by antimitotic drugs that are highly validated chemotherapy agents. However, antimitotic drug cytotoxicity to non-tumorigenic cells and multiple cancer resistance developed in response to drugs such as taxanes and vinca alkaloids are obstacles faced in both the clinical and basic research field to date. In this review, the classes of antimitotic compounds, their mechanisms of action and cancer cell resistance to chemotherapy and other limitations of current antimitotic compounds are highlighted, as well as the potential of novel 17-β estradiol analogs as cancer treatment.
Collapse
Affiliation(s)
| | - Michelle H Visagie
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa.
| | - Anne E Theron
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa
| | - Annie M Joubert
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa
| |
Collapse
|
7
|
Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat Commun 2015; 6:8987. [PMID: 26621779 PMCID: PMC4686852 DOI: 10.1038/ncomms9987] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome-spindle interactions is monitored by the SAC: kinetochore-microtubule attachment or the force generated by dynamic microtubules that signals stable biorientation of chromosomes? To answer this, we uncoupled these two processes by expressing a non-phosphorylatable version of the main microtubule-binding protein at kinetochores (HEC1-9A), causing stabilization of incorrect kinetochore-microtubule attachments despite persistent activity of the error-correction machinery. The SAC is fully functional in HEC1-9A-expressing cells, yet cells in which chromosomes cannot biorient but are stably attached to microtubules satisfy the SAC and exit mitosis. SAC satisfaction requires neither intra-kinetochore stretching nor dynamic microtubules. Our findings support the hypothesis that in human cells the end-on interactions of microtubules with kinetochores are sufficient to satisfy the SAC without the need for microtubule-based pulling forces.
Collapse
|
8
|
Comparison of the effects of BPA and BPAF on oocyte spindle assembly and polar body release in mice. ZYGOTE 2015; 24:172-80. [DOI: 10.1017/s0967199415000027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
SummaryBisphenol AF (BPAF), a homolog of bisphenol A (BPA), is a widely used environmental chemical that has adverse effects on reproduction. The aim of this study was to analyse the effects of BPA and BPAF exposure on oocyte maturation in vitro. Oocytes were cultured in the presence of BPA or BPAF (2, 20, 50 or 100 μg/ml) for 18 h. At concentrations of 50 and 100 μg/ml, BPA and BPAF inhibited oocyte maturation, with BPAF treatment causing a sharp decrease in the number of oocytes reaching maturity. Oocytes were exposed to BPA or BPAF at 2 μg/ml and cultured for different durations (6, 9, 12, 15 or 18 h). Both BPAF and BPA caused a cell cycle delay under these conditions. Oocytes cultured in the presence of BPA or BPAF (50 μg/ml) for 21 h were tested for the localization of α-tubulin and MAD2 using immunofluorescence. High concentrations of BPAF induced cell cycle arrest through the activation of the spindle assembly checkpoint. After 12 h of culture in BPAF (50 μg/ml), oocytes were transferred to control medium for 9 h. Only 63.3% oocytes treated in this manner progressed to metaphase II (MII). Oocytes exposed to high doses of BPA experienced a cell cycle delay, but managed to progress to MII when the culture period was prolonged. In addition, MAD2 was localized in the cytoplasm of these oocytes. In conclusion, both BPAF and BPA exposure affected oocyte maturation, however BPAF and BPA have differential effects on SAC activity.
Collapse
|
9
|
Abstract
The final stage of cell division (mitosis), involves the compaction of the duplicated genome into chromatid pairs. Each pair is captured by microtubules emanating from opposite spindle poles, aligned at the metaphase plate, and then faithfully segregated to form two identical daughter cells. Chromatids that are not correctly attached to the spindle are detected by the constitutively active spindle assembly checkpoint (SAC). Any stress that prevents correct bipolar spindle attachment, blocks the satisfaction of the SAC, and induces a prolonged mitotic arrest, providing the cell time to obtain attachment and complete segregation correctly. Unfortunately, during mitosis repairing damage is not generally possible due to the compaction of DNA into chromosomes, and subsequent suppression of gene transcription and translation. Therefore, in the presence of significant damage cell death is instigated to ensure that genomic stability is maintained. While most stresses lead to an arrest in mitosis, some promote premature mitotic exit, allowing cells to bypass mitotic cell death. This mini-review will focus on the effects and outcomes that common stresses have on mitosis, and how this impacts on the efficacy of mitotic chemotherapies.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia ; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia , Sydney, NSW , Australia
| | - Mina Rasouli
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Samuel Rogers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| |
Collapse
|
10
|
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, Shi L, Zangari M, Miles R, Bearss D, Tricot G, Zhan F. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013; 23:48-62. [PMID: 23328480 PMCID: PMC3954609 DOI: 10.1016/j.ccr.2012.12.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 03/22/2011] [Accepted: 12/04/2012] [Indexed: 01/07/2023]
Abstract
Using sequential gene expression profiling (GEP) samples, we defined a major functional group related to drug resistance that contains chromosomal instability (CIN) genes. One CIN gene in particular, NEK2, was highly correlated with drug resistance, rapid relapse, and poor outcome in multiple cancers. Overexpressing NEK2 in cancer cells resulted in enhanced CIN, cell proliferation and drug resistance, while targeting NEK2 by NEK2 shRNA overcame cancer cell drug resistance and induced apoptosis in vitro and in a xenograft myeloma mouse model. High expression of NEK2 induced drug resistance mainly through activation of the efflux pumps. Thus, NEK2 represents a strong predictor for drug resistance and poor prognosis in cancer and could be an important target for cancer therapy.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Ye Yang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Jiliang Xia
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - He Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Mohamed E Salama
- Department of Pathology, University of Utah and ARUP Lab, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Wei Xiong
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Hongwei Xu
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Shashirekha Shetty
- Cleveland Clinic, 9500 Euclid Avenue, Mail Code LL2-2, Cleveland, OH 44195, USA
| | - Tiehua Chen
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Zhaoyang Zeng
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Lei Shi
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Maurizio Zangari
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Rodney Miles
- Department of Pathology, University of Utah and ARUP Lab, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David Bearss
- Physiology & Developmental Biology 471 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - Guido Tricot
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (F. Z.), (G. T.)
| | - Fenghuang Zhan
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
- Correspondence: (F. Z.), (G. T.)
| |
Collapse
|
11
|
Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 2011; 31:3085-93. [PMID: 21628528 DOI: 10.1128/mcb.05326-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.
Collapse
|
12
|
Abstract
In each cell division, the newly duplicated chromosomes must be evenly distributed between the sister cells. Errors in this process during meiosis or mitosis are equally fatal: improper segregation of the chromosome 21 during human meiosis leads to Down syndrome (Conley, Aneuploidy: etiology and mechanisms, pp 35-89, 1985), whereas in somatic cells, aneuploidy has been linked to carcinogenesis, by unbalancing the ratio of oncogenes and tumor suppressors (Holland and Cleveland, Nat Rev Mol Cell Biol 10(7):478-487, 2009; Yuen et al., Curr Opin Cell Biol 17(6):576-582, 2005). Eukaryotic cells have developed a mechanism, known as the spindle assembly checkpoint, to detect erroneous attachment of chromosomes to the mitotic/meiotic spindle and delay the cell cycle to give enough time to resolve these defects. Research in the last 20 years, has demonstrated that the spindle assembly checkpoint is not only a pure checkpoint pathway, but plays a constitutive role in every cell cycle. Here, we review our current knowledge of how the spindle assembly checkpoint is integrated into the cell cycle machinery, and discuss some of the questions that have to be addressed in the future.
Collapse
|
13
|
Caenorhabditis elegans cyclin B3 is required for multiple mitotic processes including alleviation of a spindle checkpoint-dependent block in anaphase chromosome segregation. PLoS Genet 2010; 6:e1001218. [PMID: 21124864 PMCID: PMC2991249 DOI: 10.1371/journal.pgen.1001218] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/25/2010] [Indexed: 12/22/2022] Open
Abstract
The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3–depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3–dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC–dependent block in anaphase chromosome segregation. Every time a cell divides in two, the genetic material, DNA, is copied; each copied chromosome is referred to as a pair of sister chromatids. Each chromatid must be cleanly separated from its sister so that each daughter cell inherits the same DNA complement as the starting cell. The mitotic spindle is a cellular machine that physically separates the sister chromatids from one another. The chromatids are attached to the spindle at kinetochores, which are structures built at specific sites (centromeres) on each chromatid. The cell monitors the attachment of each chromatid and blocks their separation until they are all properly attached. This process is called the spindle assembly checkpoint (SAC). Here we report that loss of an evolutionarily conserved cell cycle regulator, Cyclin B3/CYB-3, results in an unusual and strikingly persistent SAC–dependent delay in sister chromatid separation. Furthermore, CYB-3 promotes the activity of a cellular motor, dynein, in this and other mitotic processes. Altogether, our results indicate that Cyclin B3 genetically interacts with mitotic dynein and is absolutely required to satisfy a SAC–dependent inhibition in sister chromatid separation.
Collapse
|
14
|
Recruitment of Cdc20 to the kinetochore requires BubR1 but not Mad2 in Drosophila melanogaster. Mol Cell Biol 2010; 30:3384-95. [PMID: 20421417 DOI: 10.1128/mcb.00258-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To prevent aneuploidy, cells require a mitotic surveillance mechanism, the spindle assembly checkpoint (SAC). The SAC prevents metaphase/anaphase transition by blocking the ubiquitylation and destruction of cyclin B and securin via the Cdc20-activated anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway. This checkpoint involves the kinetochore proteins Mad2, BubR1, and Cdc20. Mad2 and BubR1 are inhibitors of the APC/C, but Cdc20 is an activator. Exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear; in vertebrates, most current models suggest that kinetochore-bound Mad2 is required for initial binding to Cdc20 to form a stable complex that includes BubR1. Here, we show that the Mad2 kinetochore dimerization recruitment mechanism is conserved and that the recruitment of Cdc20 to kinetochores in Drosophila requires BubR1 but not Mad2. BubR1 and Mad2 can bind to Cdc20 independently, and the interactions are enhanced after cells are arrested at mitosis by the depletion of Cdc27 using RNA interference (RNAi) in S2 cells or by MG132 treatment in syncytial embryos. These findings offer an explanation of why BubR1 is more important than Mad2 for SAC function in flies. These findings could lead to a better understanding of vertebrate SAC mechanisms.
Collapse
|
15
|
Re-evaluating the role of Tao1 in the spindle checkpoint. Chromosoma 2010; 119:371-9. [DOI: 10.1007/s00412-010-0261-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 01/27/2023]
|
16
|
Schvartzman JM, Sotillo R, Benezra R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 2010; 10:102-15. [PMID: 20094045 PMCID: PMC5526619 DOI: 10.1038/nrc2781] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stepwise progression from an early dysplastic lesion to full-blown metastatic malignancy is associated with increases in genomic instability. Mitotic chromosomal instability - the inability to faithfully segregate equal chromosome complements to two daughter cells during mitosis - is a widespread phenomenon in solid tumours that is thought to serve as the fuel for tumorigenic progression. How chromosome instability (CIN) arises in tumours and what consequences it has are still, however, hotly debated issues. Here we review the recent literature with an emphasis on models that recapitulate observations from human disease.
Collapse
Affiliation(s)
- Juan-Manuel Schvartzman
- Program in Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | |
Collapse
|
17
|
Osmundson EC, Ray D, Moore FE, Kiyokawa H. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis. Cell Div 2009; 4:14. [PMID: 19583833 PMCID: PMC2714307 DOI: 10.1186/1747-1028-4-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023] Open
Abstract
The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C) is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2), is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus)-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2), known as a negative regulator of transforming growth factor-beta (TGF-β) signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by perturbed mitotic control.
Collapse
Affiliation(s)
- Evan C Osmundson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 E, Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
18
|
Lu Y, Wang Z, Ge L, Chen N, Liu H. The RZZ complex and the spindle assembly checkpoint. Cell Struct Funct 2009; 34:31-45. [PMID: 19420794 DOI: 10.1247/csf.08040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved protein Rod is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. Rod is required for proper chromosome segregation during both mitosis and meiosis. The effects of rod mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. Recent studies have shown that Rod is a significant component of the mitotic checkpoint. It can form the RZZ complex with Zw10 and Zwilch, which plays an important role in maintaining a functional spindle assembly checkpoint.
Collapse
Affiliation(s)
- Yujian Lu
- MOE Key Laboratory of Arid and Grassland Ecology, Institute of Cell Biology, Life Science School, Lanzhou University, Lanzhou, PR China
| | | | | | | | | |
Collapse
|
19
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
20
|
Sivaram MVS, Wadzinski TL, Redick SD, Manna T, Doxsey SJ. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J 2009; 28:902-14. [PMID: 19229290 DOI: 10.1038/emboj.2009.38] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 01/26/2009] [Indexed: 12/23/2022] Open
Abstract
The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells depleted of dynein light intermediate chain 1 (LIC1) delay in metaphase with increased interkinetochore distances; dynein remains intact, localised and functional. The checkpoint proteins Mad1/2 and Zw10 localise to kinetochores under full tension, whereas BubR1 is diminished at kinetochores. Metaphase delay and increased interkinetochore distances are suppressed by depletion of Mad1, Mad2 or BubR1 or by re-expression of wtLIC1 or a Cdk1 site phosphomimetic LIC1 mutant, but not Cdk1-phosphorylation-deficient LIC1. When the checkpoint is activated by microtubule depolymerisation, Mad1/2 and BubR1 localise to kinetochores. We conclude that a Cdk1 phosphorylated form of LIC1 is required to remove Mad1/2 and Zw10 but not BubR1 from kinetochores during spindle assembly checkpoint silencing.
Collapse
Affiliation(s)
- Mylavarapu V S Sivaram
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
21
|
Ibrahim B, Schmitt E, Dittrich P, Diekmann S. In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly. Biosystems 2009; 95:35-50. [DOI: 10.1016/j.biosystems.2008.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 02/07/2023]
|
22
|
Ho CY, Wong CH, Li HY. Perturbation of the chromosomal binding of RCC1, Mad2 and survivin causes spindle assembly defects and mitotic catastrophe. J Cell Biochem 2008; 105:835-46. [PMID: 18712773 DOI: 10.1002/jcb.21879] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitotic catastrophe is a form of cell death that results from aberrant mitosis. Currently, the mechanisms involved in this form of cell death remain poorly understood. We found that actinomycin D induces mitotic catastrophe with severe spindle assembly defects. We have studied the nature of three groups of chromosome binding proteins in mitotic cells treated with actinomycin D. We found that actinomycin D reduced the binding affinity of RCC1 to the mitotic chromosome, which led to a reduction of RanGTP level. In addition, Mad2 was not concentrated at the kinetochores, indicating that the mitotic spindle checkpoint was affected. Furthermore, the localization of survivin was altered in cells. These data suggested that chromosomal binding of the mitotic regulators such as RCC1, Mad2 and survivin is essential for mitotic progression. Mitotic chromosomes not only carry the genetic material needed for the newly synthesized daughter cells, but also serve as docking sites for some of the mitotic regulators. Perturbation of their binding to the mitotic chromosome by actinomycin D could affect their functions in regulating mitotic progression thus leading to severe spindle defects and mitotic catastrophe.
Collapse
Affiliation(s)
- Chin-Yee Ho
- Division of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | | | | |
Collapse
|
23
|
Huang H, Hittle J, Zappacosta F, Annan RS, Hershko A, Yen TJ. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. ACTA ACUST UNITED AC 2008; 183:667-80. [PMID: 19015317 PMCID: PMC2582891 DOI: 10.1083/jcb.200805163] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BubR1 kinase is essential for the mitotic checkpoint and also for kinetochores to establish microtubule attachments. In this study, we report that BubR1 is phosphorylated in mitosis on four residues that differ from sites recently reported to be phosphorylated by Plk1 (Elowe, S., S. Hummer, A. Uldschmid, X. Li, and E.A. Nigg. 2007. Genes Dev. 21:2205–2219; Matsumura, S., F. Toyoshima, and E. Nishida. 2007. J. Biol. Chem. 282:15217–15227). S670, the most conserved residue, is phosphorylated at kinetochores at the onset of mitosis and dephosphorylated before anaphase onset. Unlike the Plk1-dependent S676 phosphorylation, S670 phosphorylation is sensitive to microtubule attachments but not to kinetochore tension. Functionally, phosphorylation of S670 is essential for error correction and for kinetochores with end-on attachments to establish tension. Furthermore, in vitro data suggest that the phosphorylation status of BubR1 is important for checkpoint inhibition of the anaphase-promoting complex/cyclosome. Finally, RNA interference experiments show that Mps1 is a major but not the exclusive kinase that specifies BubR1 phosphorylation in vivo. The combined data suggest that BubR1 may be an effector of multiple kinases that are involved in discrete aspects of kinetochore attachments and checkpoint regulation.
Collapse
Affiliation(s)
- Haomin Huang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
24
|
Whyte J, Bader JR, Tauhata SBF, Raycroft M, Hornick J, Pfister KK, Lane WS, Chan GK, Hinchcliffe EH, Vaughan PS, Vaughan KT. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. ACTA ACUST UNITED AC 2008; 183:819-34. [PMID: 19029334 PMCID: PMC2592828 DOI: 10.1083/jcb.200804114] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytoplasmic dynein functions at several sites during mitosis; however, the basis of targeting to each site remains unclear. Tandem mass spectrometry analysis of mitotic dynein revealed a phosphorylation site in the dynein intermediate chains (ICs) that mediates binding to kinetochores. IC phosphorylation directs binding to zw10 rather than dynactin, and this interaction is needed for kinetochore dynein localization. Phosphodynein associates with kinetochores from nuclear envelope breakdown to metaphase, but bioriented microtubule (MT) attachment and chromosome alignment induce IC dephosphorylation. IC dephosphorylation stimulates binding to dynactin and poleward streaming. MT depolymerization, release of kinetochore tension, and a PP1-γ mutant each inhibited IC dephosphorylation, leading to the retention of phosphodynein at kinetochores and reduced poleward streaming. The depletion of kinetochore dynactin by moderate levels of p50(dynamitin) expression disrupted the ability of dynein to remove checkpoint proteins by streaming at metaphase but not other aspects of kinetochore dynein activity. Together, these results suggest a new model for localization of kinetochore dynein and the contribution of kinetochore dynactin.
Collapse
Affiliation(s)
- Jacqueline Whyte
- Department of Biological Sciences and 2Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:60-72. [PMID: 18662747 DOI: 10.1016/j.bbcan.2008.07.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022]
Abstract
The Aurora protein kinase family (consisting of Aurora-A, -B and -C) is an important group of enzymes that controls several aspects of cell division in mammalian cells. Dysfunction of these kinases has been associated with a failure to maintain a stable chromosome content, a state that can contribute to tumourigenesis. Additionally, Aurora-A is frequently found amplified in a variety of tumour types and displays oncogenic activity. On the other hand, therapeutic inhibition of these kinases has shown great promise as potential anti-cancer treatment, most likely because of their essential roles during cell division. This review will focus on our present understanding of the different roles played by these kinases, their regulation throughout cell division, their deregulation in human cancers and on the progress that is made in targeting these important regulators in the treatment of cancer.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, Stratenum 2.125, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
26
|
Vader G, Maia AF, Lens SM. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Div 2008; 3:10. [PMID: 18507820 PMCID: PMC2430558 DOI: 10.1186/1747-1028-3-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/28/2008] [Indexed: 01/16/2023] Open
Abstract
During mitosis, correct bipolar chromosome attachment to the mitotic spindle is an essential prerequisite for the equal segregation of chromosomes. The spindle assembly checkpoint can prevent chromosome segregation as long as not all chromosome pairs have obtained bipolar attachment to the spindle. The chromosomal passenger complex plays a crucial role during chromosome alignment by correcting faulty chromosome-spindle interactions (e.g. attachments that do not generate tension). In the process of doing so, the chromosomal passenger complex generates unattached chromosomes, a specific situation that is known to promote checkpoint activity. However, several studies have implicated an additional, more direct role for the chromosomal passenger complex in enforcing the mitotic arrest imposed by the spindle assembly checkpoint. In this review, we discuss the different roles played by the chromosomal passenger complex in ensuring proper mitotic checkpoint function. Additionally, we discuss the possibility that besides monitoring the presence of unattached kinetochores, the spindle assembly checkpoint may also be capable of responding to chromosome-microtubule interactions that do not generate tension and we propose experimental set-ups to study this.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
27
|
Courtheoux T, Gay G, Reyes C, Goldstone S, Gachet Y, Tournier S. Dynein participates in chromosome segregation in fission yeast. Biol Cell 2008; 99:627-37. [PMID: 17561805 DOI: 10.1042/bc20070047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi-orientation). At the metaphase-anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule-dependent forces. RESULTS We have studied the role of the minus-end-directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle-assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2-dependent spindle-assembly checkpoint. CONCLUSIONS These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi-orientation during early mitosis.
Collapse
Affiliation(s)
- Thibault Courtheoux
- LBCMCP-CNRS UMR5088, Institut d'Exploration, Fonctionelle des Génomes (IFR109), Université Paul, Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
28
|
In-silico modeling of the mitotic spindle assembly checkpoint. PLoS One 2008; 3:e1555. [PMID: 18253502 PMCID: PMC2215771 DOI: 10.1371/journal.pone.0001555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 01/14/2008] [Indexed: 01/28/2023] Open
Abstract
Background The Mitotic Spindle Assembly Checkpoint (MSAC) is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer. Principle Findings We have constructed and validated for the human MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the “Dissociation” and the “Convey” model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments. Conclusion Only in the controlled case, our models show MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.
Collapse
|
29
|
Kubiak JZ, Chesnel F, Richard-Parpaillon L, Bazile F, Pascal A, Polanski Z, Sikora-Polaczek M, Maciejewska Z, Ciemerych MA. Temporal regulation of the first mitosis in Xenopus and mouse embryos. Mol Cell Endocrinol 2008; 282:63-9. [PMID: 18178304 DOI: 10.1016/j.mce.2007.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cell cycle regulation in Eukaryotes is based on common molecular actors and mechanisms. However, the canonical cell cycle is modified in certain cells. Such modifications play a key role in oocyte maturation and embryonic development. They can be achieved either by introduction of new components, pathways, substrates, changed interactions between them, or by elimination of some factors inherited by the cells from previous developmental stages. Here we discuss a particular temporal regulation of the first embryonic M-phase of Xenopus and mouse embryos. These two examples help to understand better the general regulation of M-phase of the cell cycle.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- CNRS/University of Rennes 1, Institute of Genetics & Development, UMR 6061, Mitosis & Meiosis Group, Faculty of Medicine, 2 Ave. Prof. Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
King EM, Rachidi N, Morrice N, Hardwick KG, Stark MJ. Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores. Genes Dev 2008; 21:1163-8. [PMID: 17504936 PMCID: PMC1865488 DOI: 10.1101/gad.431507] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spindle checkpoint delays anaphase onset until all chromosomes are correctly attached to microtubules. Ipl1 protein kinase (Aurora B) is required to correct inappropriate kinetochore-microtubule attachments and for the response to lack of tension between sister kinetochores. Here we identify residues in the checkpoint protein Mad3p that are phosphorylated by Ipl1p. When phosphorylation of Mad3p at two sites is prevented, the cell's response to reduced kinetochore tension is dramatically curtailed. Our data provide strong evidence for a distinct checkpoint pathway responding to lack of sister kinetochore tension, in which Ipl1p-dependent phosphorylation of Mad3p is a key step.
Collapse
Affiliation(s)
- Emma M.J. King
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Najma Rachidi
- Division of Gene Regulation and Expression, College of Life Sciences, Medical Sciences Institute/Wellcome Trust Biocentre Complex, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nick Morrice
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, Medical Sciences Institute/Wellcome Trust Biocentre Complex, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- ; FAX 44-131-6507037
| | - Michael J.R. Stark
- Division of Gene Regulation and Expression, College of Life Sciences, Medical Sciences Institute/Wellcome Trust Biocentre Complex, University of Dundee, Dundee DD1 5EH, United Kingdom
- Corresponding authors.E-MAIL ; FAX 44-1382-384782
| |
Collapse
|
31
|
Aurora B Kinase-Dependent Recruitment of hZW10 and hROD to Tensionless Kinetochores. Curr Biol 2007; 17:2143-9. [DOI: 10.1016/j.cub.2007.11.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/22/2022]
|
32
|
Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta Rev Cancer 2007; 1785:96-132. [PMID: 18068131 DOI: 10.1016/j.bbcan.2007.10.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/23/2007] [Accepted: 10/28/2007] [Indexed: 01/09/2023]
Abstract
The taxanes, paclitaxel and docetaxel are microtubule-stabilizing agents that function primarily by interfering with spindle microtubule dynamics causing cell cycle arrest and apoptosis. However, the mechanisms underlying their action have yet to be fully elucidated. These agents have become widely recognized as active chemotherapeutic agents in the treatment of metastatic breast cancer and early-stage breast cancer with benefits gained in terms of overall survival (OS) and disease-free survival (DFS). However, even with response to taxane treatment the time to progression (TTP) is relatively short, prolonging life for a matter of months, with studies showing that patients treated with taxanes eventually relapse. This review focuses on chemoresistance to taxane treatment particularly in relation to the spindle assembly checkpoint (SAC) and dysfunctional regulation of apoptotic signaling. Since spindle microtubules are the primary drug targets for taxanes, important SAC proteins such as MAD2, BUBR1, Synuclein-gamma and Aurora A have emerged as potentially important predictive markers of taxane resistance, as have specific checkpoint proteins such as BRCA1. Moreover, overexpression of the drug efflux pump MDR-1/P-gp, altered expression of microtubule-associated proteins (MAPs) including tau, stathmin and MAP4 may help to identify those patients who are most at risk of recurrence and those patients most likely to benefit from taxane treatment.
Collapse
|
33
|
Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 2007; 21:2205-19. [PMID: 17785528 PMCID: PMC1950859 DOI: 10.1101/gad.436007] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/19/2007] [Indexed: 11/25/2022]
Abstract
Mitotic phosphorylation of the spindle checkpoint component BubR1 is highly conserved throughout evolution. Here, we demonstrate that BubR1 is phosphorylated on the Cdk1 site T620, which triggers the recruitment of Plk1 and phosphorylation of BubR1 by Plk1 both in vitro and in vivo. Phosphorylation does not appear to be required for spindle checkpoint function but instead is important for the stability of kinetochore-microtubule (KT-MT) interactions, timely mitotic progression, and chromosome alignment onto the metaphase plate. By quantitative mass spectrometry, we identify S676 as a Plk1-specific phosphorylation site on BubR1. Furthermore, using a phospho-specific antibody, we show that this site is phosphorylated during prometaphase, but dephosphorylated at metaphase upon establishment of tension between sister chromatids. These findings describe the first in vivo verified phosphorylation site for human BubR1, identify Plk1 as the kinase responsible for causing the characteristic mitotic BubR1 upshift, and attribute a KT-specific function to the hyperphosphorylated form of BubR1 in the stabilization of KT-MT interactions.
Collapse
Affiliation(s)
- Sabine Elowe
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Stefan Hümmer
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Andreas Uldschmid
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Xiuling Li
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Erich A. Nigg
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
34
|
Taylor SS, Hardwick KG, Sawin KE, Biggins S, Piatti S, Khodjakov A, Rieder CL, Salmon ED, Musacchio A. Comment on "A centrosome-independent role for gamma-TuRC proteins in the spindle assembly checkpoint". Science 2007; 316:982; author reply 982. [PMID: 17510347 PMCID: PMC2590763 DOI: 10.1126/science.1139484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Müller et al. (Reports, 27 October 2006, p. 654) showed that inhibition of the gamma-tubulin ring complex (gamma-TuRC) activates the spindle assembly checkpoint (SAC), which led them to suggest that gamma-TuRC proteins play molecular roles in SAC activation. Because gamma-TuRC inhibition leads to pleiotropic spindle defects, which are well known to activate kinetochore-derived checkpoint signaling, we believe that this conclusion is premature.
Collapse
Affiliation(s)
- Stephen S. Taylor
- Faculty of Life Sciences, University of Manchester, Manchester, UK
- To whom correspondence should be addressed. E-mail: (S.S.T.); (A.M.)
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kenneth E. Sawin
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Sue Biggins
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Simonetta Piatti
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Alexey Khodjakov
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Conly L. Rieder
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Edward D. Salmon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- To whom correspondence should be addressed. E-mail: (S.S.T.); (A.M.)
| |
Collapse
|
35
|
Matsumura S, Toyoshima F, Nishida E. Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem 2007; 282:15217-27. [PMID: 17376779 DOI: 10.1074/jbc.m611053200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and physically interacts with Plk1 in prometaphase cells. Down-regulation of Plk1 by small interfering RNA abolished the mobility-shifted, hyperphosphorylated form of BubR1 in the prometaphase-arrested cells. In addition, BubR1 was phosphorylated by Plk1 in vitro at two Plk1 consensus sites in the kinase domain of BubR1. The add-back of either wild-type BubR1 or BubR1 2E, in which the two Plk1 phosphorylation sites were replaced by glutamic acids, but not that of BubR1 2A, an unphosphorylatable mutant, rescued the chromosome alignment defects in BubR1-deficient cells. Moreover, when both Plk1 and BubR1 were down-regulated, the add-back of BubR1 2E, but not that of wild-type BubR1, rescued the chromosome alignment defects. These results taken together suggest that Plk1 facilitates chromosome alignment during prometaphase through BubR1.
Collapse
Affiliation(s)
- Shigeru Matsumura
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
36
|
Weaver BAA, Cleveland DW. Comment on "A Centrosome-Independent Role for γ-TuRC Proteins in the Spindle Assembly Checkpoint". Science 2007; 316:982; author reply 982. [PMID: 17510348 DOI: 10.1126/science.1139523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Müller et al. (Reports, 27 October 2006, p. 654) proposed a role for microtubule nucleation in mitotic checkpoint signaling. However, their observations of spindle defects and mitotic delay after depletion of gamma-tubulin ring complex (gamma-TuRC) components are fully consistent with activation of the established pathway of checkpoint signaling in response to incomplete or unstable interactions between kinetochores of mitotic chromosomes and spindle microtubules.
Collapse
Affiliation(s)
- Beth A A Weaver
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0670, USA
| | | |
Collapse
|
37
|
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8:379-93. [PMID: 17426725 DOI: 10.1038/nrm2163] [Citation(s) in RCA: 1689] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | |
Collapse
|
38
|
Zhang D, Yin S, Jiang MX, Ma W, Hou Y, Liang CG, Yu LZ, Wang WH, Sun QY. Cytoplasmic dynein participates in meiotic checkpoint inactivation in mouse oocytes by transporting cytoplasmic mitotic arrest-deficient (Mad) proteins from kinetochores to spindle poles. Reproduction 2007; 133:685-95. [PMID: 17504913 DOI: 10.1530/rep.1.01167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was designed to investigate the localization and function of cytoplasmic dynein (dynein) during mouse oocyte meiosis and its relationship with two major spindle checkpoint proteins, mitotic arrest-deficient (Mad) 1 and Mad2. Oocytes at various stages during the first meiosis were fixed and immunostained for dynein, Mad1, Mad2, kinetochores, microtubules, and chromosomes. Some oocytes were treated with nocodazole before examination. Anti-dynein antibody was injected into the oocytes at germinal vesicle (GV) stage before the examination of its effects on meiotic progression or Mad1 and Mad2 localization. Results showed that dynein was present in the oocytes at various stages from GV to metaphase II and the locations of Mad1 and Mad2 were associated with dynein’s movement. Both Mad1 and Mad2 had two existing states: one existed in the cytoplasm (cytoplasmic Mad1 or cytoplasmic Mad2), which did not bind to kinetochores, while the other bound to kinetochores (kinetochore Mad1 or kinetochore Mad2). The equilibrium between the two states varied during meiosis and/or in response to the changes of the connection between microtubules and kinetochores. Cytoplasmic Mad1 and Mad2 recruited to chromosomes when the connection between microtubules and chromosomes was destroyed. Inhibition of dynein interferes with cytoplasmic Mad1 and Mad2 transportation from chromosomes to spindle poles, thus inhibits checkpoint silence and delays anaphase onset. These results indicate that dynein may play a role in spindle checkpoint inactivation.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Karen M May
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR, UK
| | | |
Collapse
|
40
|
Stavropoulou V, Vasquez V, Cereser B, Freda E, Masucci MG. TPPII promotes genetic instability by allowing the escape from apoptosis of cells with activated mitotic checkpoints. Biochem Biophys Res Commun 2006; 346:415-25. [PMID: 16762321 DOI: 10.1016/j.bbrc.2006.05.141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Overexpression of TPPII correlates with accelerated growth and the appearance of centrosome and chromosome aberrations, suggesting that the activity of this enzyme may be critical for the induction and/or maintenance of genetic instability in malignant cells. We now find that the length of mitosis and of the entire cell cycle is significantly reduced in TPPII overexpressing HEK293 cells compared to untransfected and control transfected cells. Functional TPPII knockdown by shRNA interference caused a significant slowdown in cell growth and the accumulation of cells that delayed or failed to complete mitosis. TPPII overexpressing cells evade mitotic arrest induced by spindle poisons and display high levels of polyploidy despite the constitutively high expression of major components of the spindle checkpoint. TPPII overexpression correlated with upregulation of IAPs and with resistance to mitochondria dependent apoptosis induced by p53 stabilization. Thus, TPPII appears to promote malignant cell growth by allowing exit from mitosis and the survival of cells with severe mitotic spindle damage.
Collapse
Affiliation(s)
- Vaia Stavropoulou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
41
|
Orjalo AV, Arnaoutov A, Shen Z, Boyarchuk Y, Zeitlin SG, Fontoura B, Briggs S, Dasso M, Forbes DJ. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell 2006; 17:3806-18. [PMID: 16807356 PMCID: PMC1593160 DOI: 10.1091/mbc.e05-11-1061] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.
Collapse
Affiliation(s)
- Arturo V Orjalo
- Sections of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego Medical School, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mapelli M, Filipp FV, Rancati G, Massimiliano L, Nezi L, Stier G, Hagan RS, Confalonieri S, Piatti S, Sattler M, Musacchio A. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 2006; 25:1273-84. [PMID: 16525508 PMCID: PMC1422169 DOI: 10.1038/sj.emboj.7601033] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/09/2006] [Indexed: 11/08/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors chromosome attachment to spindle microtubules. SAC proteins operate at kinetochores, scaffolds mediating chromosome-microtubule attachment. The ubiquitous SAC constituents Mad1 and Mad2 are recruited to kinetochores in prometaphase. Mad2 sequesters Cdc20 to prevent its ability to mediate anaphase onset. Its function is counteracted by p31comet (formerly CMT2). Upon binding Cdc20, Mad2 changes its conformation from O-Mad2 (Open) to C-Mad2 (Closed). A Mad1-bound C-Mad2 template, to which O-Mad2 binds prior to being converted into Cdc20-bound C-Mad2, assists this process. A molecular understanding of this prion-like property of Mad2 is missing. We characterized the molecular determinants of the O-Mad2:C-Mad2 conformational dimer and derived a rationalization of the binding interface in terms of symmetric and asymmetric components. Mutation of individual interface residues abrogates the SAC in Saccharomyces cerevisiae. NMR chemical shift perturbations indicate that O-Mad2 undergoes a major conformational rearrangement upon binding C-Mad2, suggesting that dimerization facilitates the structural conversion of O-Mad2 required to bind Cdc20. We also show that the negative effects of p31comet on the SAC are based on its competition with O-Mad2 for C-Mad2 binding.
Collapse
Affiliation(s)
- Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | | | - Giulia Rancati
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Milano, Italy
| | - Lucia Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Gunter Stier
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert S Hagan
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Milano, Italy
| | | | - Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milan 20141, Italy. Tel.: +39 02 5748 9871; Fax: +39 02 5748 9851; E-mail:
| |
Collapse
|
43
|
Hoffmann I. Protein kinases involved in mitotic spindle checkpoint regulation. Results Probl Cell Differ 2006; 42:93-109. [PMID: 16903209 DOI: 10.1007/b138827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A number of checkpoint controls function to preserve the genome by restraining cell cycle progression until prerequisite events have been properly completed. Chromosome attachment to the mitotic spindle is monitored by the spindle assembly checkpoint. Sister chromatid separation in anaphase is initiated only once all chromosomes have been attached to both poles of the spindle. Premature separation of sister chromatids leads to the loss or gain of chromosomes in daughter cells (aneuploidy), a prevalent form of genetic instability of human cancer. The spindle assembly checkpoint ensures that cells with misaligned chromosomes do not exit mitosis and divide to form aneuploid cells. A number of protein kinases and checkpoint phosphoproteins are required for the function of the spindle assembly checkpoint. This review discusses the recent progress in understanding the role of protein kinases of the mitotic checkpoint complex in the surveillance pathway of the checkpoint.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, Heidelberg.
| |
Collapse
|
44
|
Gachet Y, Reyes C, Goldstone S, Tournier S. The fission yeast spindle orientation checkpoint: a model that generates tension? Yeast 2006; 23:1015-29. [PMID: 17072894 DOI: 10.1002/yea.1410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression.
Collapse
Affiliation(s)
- Yannick Gachet
- LBCMCP-CNRS UMR5088, Institut d'Exploration Fonctionelle des Génomes (IFR109), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
45
|
Cimini D, Degrassi F. Aneuploidy: a matter of bad connections. Trends Cell Biol 2005; 15:442-51. [PMID: 16023855 DOI: 10.1016/j.tcb.2005.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/06/2005] [Accepted: 06/29/2005] [Indexed: 11/20/2022]
Abstract
Proper chromosome segregation is required to maintain the appropriate number of chromosomes from one cell generation to the next and to prevent aneuploidy, the condition in which a cell has gained or lost one or several chromosomes during cell division. Aneuploidy is a hallmark associated with birth defects and cancer, and is observed at relatively high frequencies in human somatic cells. Recent studies in mammalian tissue culture cells suggest that the persistence of kinetochore-microtubule misattachments through mitosis is a major cause of chromosome mis-segregation and aneuploidy. Furthermore, studies in mice and humans suggest that small changes in the expression, rather than complete inactivation, of genes encoding specific proteins might be associated with aneuploidy in living organisms. In this article (which is part of the Chromosome Segregation and Aneuploidy series), we survey the outcome of these studies, focusing on the importance of kinetochore misattachments in producing aneuploid cells.
Collapse
Affiliation(s)
- Daniela Cimini
- Department of Biology, University of North Carolina at Chapel Hill, 607 Fordham Hall, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
46
|
Chan GK, Liu ST, Yen TJ. Kinetochore structure and function. Trends Cell Biol 2005; 15:589-98. [PMID: 16214339 DOI: 10.1016/j.tcb.2005.09.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/16/2022]
Abstract
The vertebrate kinetochore is a complex structure that specifies the attachments between the chromosomes and microtubules of the spindle and is thus essential for accurate chromosome segregation. Kinetochores are assembled on centromeric chromatin through complex pathways that are coordinated with the cell cycle. In the light of recent discoveries on how proteins assemble onto kinetochores and interact with each other, we review these findings in this article (which is part of the Chromosome Segregation and Aneuploidy series), and discuss their implications for the current mitotic checkpoint models - the template model and the two-step model. The template model proposes that Mad1-Mad2 at kinetochores acts as a template to change the conformation of another binding molecule of Mad2. This templated change in conformation is postulated as a mechanism for the amplification of the 'anaphase wait' signal. The two-step model proposes that the mitotic checkpoint complex (MCC) is the kinetochore-independent anaphase inhibitor, and the role of the unaligned kinetochore is to sensitize the anaphase-promoting complex/cyclosome (APC/C) to MCC-mediated inhibition.
Collapse
Affiliation(s)
- Gordon K Chan
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2.
| | | | | |
Collapse
|
47
|
Shannon KB, Canman JC, Ben Moree C, Tirnauer JS, Salmon ED. Taxol-stabilized microtubules can position the cytokinetic furrow in mammalian cells. Mol Biol Cell 2005; 16:4423-36. [PMID: 15975912 PMCID: PMC1196349 DOI: 10.1091/mbc.e04-11-0974] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 06/03/2005] [Accepted: 06/14/2005] [Indexed: 12/20/2022] Open
Abstract
How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation.
Collapse
Affiliation(s)
- Katie B Shannon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | | | | | |
Collapse
|
48
|
Morrow CJ, Tighe A, Johnson VL, Scott MIF, Ditchfield C, Taylor SS. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J Cell Sci 2005; 118:3639-52. [PMID: 16046481 DOI: 10.1242/jcs.02487] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The spindle checkpoint maintains genome stability by inhibiting Cdc20-mediated activation of the anaphase promoting complex/cyclosome (APC/C) until all the chromosomes correctly align on the microtubule spindle apparatus via their kinetochores. BubR1, an essential component of this checkpoint, localises to kinetochores and its kinase activity is regulated by the kinesin-related motor protein Cenp-E. BubR1 also inhibits APC/CCdc20 in vitro, thus providing a molecular link between kinetochore-microtubule interactions and the proteolytic machinery that regulates mitotic progression. Several other protein kinases, including Bub1 and members of the Ipl1/aurora family, also regulate anaphase onset. However, in human somatic cells Bub1 and aurora B kinase activity do not appear to be essential for spindle checkpoint function. Specifically, when Bub1 is inhibited by RNA interference, or aurora kinase activity is inhibited with the small molecule ZM447439, cells arrest transiently in mitosis following exposure to spindle toxins that prevent microtubule polymerisation. Here, we show that mitotic arrest of Bub1-deficient cells is dependent on aurora kinase activity, and vice versa. We suggest therefore that the checkpoint is composed of two arms, one dependent on Bub1, the other on aurora B. Analysis of BubR1 complexes suggests that both of these arms converge on the mitotic checkpoint complex (MCC), which includes BubR1, Bub3, Mad2 and Cdc20. Although it is known that MCC components can bind and inhibit the APC/C, we show here for the first time that the binding of the MCC to the APC/C is dependent on an active checkpoint signal. Furthermore, we show that both Bub1 and aurora kinase activity are required to promote binding of the MCC to the APC/C. These observations provide a simple explanation of why BubR1 and Mad2 are essential for checkpoint function following spindle destruction, yet Bub1 and aurora B kinase activity are not. Taken together with other observations, we suggest that these two arms respond to different spindle cues: whereas the Bub1 arm monitors kinetochore-microtubule attachment, the aurora B arm monitors biorientation. This bifurcation in the signalling mechanism may help explain why many tumour cells mount a robust checkpoint response following spindle damage, despite exhibiting chromosome instability.
Collapse
Affiliation(s)
- Christopher J Morrow
- Faculty of Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
49
|
Burds AA, Lutum AS, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A 2005; 102:11296-301. [PMID: 16055552 PMCID: PMC1182134 DOI: 10.1073/pnas.0505053102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Indexed: 12/21/2022] Open
Abstract
Cancer cells exhibit high levels of chromosome instability (CIN), and considerable interest surrounds the possibility that inactivation of the spindle checkpoint is involved. However, homozygous disruption of Mad and Bub checkpoint genes in metazoans causes cell death rather than CIN. We now report the isolation and characterization of blastocysts and two independent mouse embryonic fibroblast lines carrying deletions in Mad2 and p53. These cells lack a functional spindle checkpoint, undergo anaphase prematurely, and exhibit an extraordinarily high level of CIN. We conclude that the mitotic checkpoint is not essential for viability per se and that a CIN phenotype can be established in culture through the inactivation of both the Mad2- and p53-dependent checkpoint pathways.
Collapse
Affiliation(s)
- Aurora A Burds
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
50
|
DeAntoni A, Sala V, Musacchio A. Explaining the oligomerization properties of the spindle assembly checkpoint protein Mad2. Philos Trans R Soc Lond B Biol Sci 2005; 360:637-47, discussion 447-8. [PMID: 15897186 PMCID: PMC1569476 DOI: 10.1098/rstb.2004.1618] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mad2 is an essential component of the spindle assembly checkpoint (SAC), a molecular device designed to coordinate anaphase onset with the completion of chromosome attachment to the spindle. Capture of chromosome by microtubules occur on protein scaffolds known as kinetochores. The SAC proteins are recruited to kinetochores in prometaphase where they generate a signal that halts anaphase until all sister chromatid pairs are bipolarly oriented. Mad2 is a subunit of the mitotic checkpoint complex, which is regarded as the effector of the spindle checkpoint. Its function is the sequestration of Cdc20, a protein required for progression into anaphase. The function of Mad2 in the checkpoint correlates with a dramatic conformational rearrangement of the Mad2 protein. Mad2 adopts a closed conformation (C-Mad2) when bound to Cdc20, and an open conformation (O-Mad2) when unbound to this ligand. Checkpoint activation promotes the conversion of O-Mad2 to Cdc20-bound C-Mad2. We show that this conversion requires a C-Mad2 template and we identify this in Mad1-bound Mad2. In our proposition, Mad1-bound C-Mad2 recruits O-Mad2 to kinetochores, stimulating Cdc20 capture, implying that O-Mad2 and C-Mad2 form dimers. We discuss Mad2 oligomerization and link our discoveries to previous observations related to Mad2 oligomerization.
Collapse
|