1
|
Ly QK, Nguyen MT, Ngo THP, Lee W. Essential Role of Cortactin in Myogenic Differentiation: Regulating Actin Dynamics and Myocardin-Related Transcription Factor A-Serum Response Factor (MRTFA-SRF) Signaling. Int J Mol Sci 2024; 25:13564. [PMID: 39769327 PMCID: PMC11677934 DOI: 10.3390/ijms252413564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation. CTTN expression declined during myogenic differentiation, paralleling the reduction in MyoD, suggesting a potential role in the early stages of myogenesis. We also found that CTTN knockdown in C2C12 myoblasts reduced filamentous actin, enhanced globular actin levels, and inhibited the nuclear translocation of MRTFA, resulting in suppressed SRF activity. This led to the subsequent downregulation of myogenic regulatory factors, such as MyoD and MyoG. Furthermore, CTTN knockdown reduced the nuclear localization of YAP1, a mechanosensitive transcription factor, further supporting its regulatory roles in cell cycle and proliferation. Consequently, CTTN depletion impeded proliferation, differentiation, and myotube formation in C2C12 myoblasts, highlighting its dual role in the coordination of cell cycle regulation and myogenic differentiation of progenitor cells during myogenesis. This study identifies CTTN as an essential regulator of myogenic differentiation via affecting the actin remodeling-MRTFA-SRF signaling axis and cell proliferation.
Collapse
Affiliation(s)
- Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Thanh Huu Phan Ngo
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (Q.K.L.); (M.T.N.); (T.H.P.N.)
- Section of Molecular and Cellular Medicine, Medical Institute of Dongguk University, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Nguyen MT, Ly QK, Kim HJ, Lee W. WAVE2 Is a Vital Regulator in Myogenic Differentiation of Progenitor Cells through the Mechanosensitive MRTFA-SRF Axis. Cells 2023; 13:9. [PMID: 38201213 PMCID: PMC10778525 DOI: 10.3390/cells13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal myogenesis is an intricate process involving the differentiation of progenitor cells into myofibers, which is regulated by actin cytoskeletal dynamics and myogenic transcription factors. Although recent studies have demonstrated the pivotal roles of actin-binding proteins (ABPs) as mechanosensors and signal transducers, the biological significance of WAVE2 (Wiskott-Aldrich syndrome protein family member 2), an ABP essential for actin polymerization, in myogenic differentiation of progenitor cells has not been investigated. Our study provides important insights into the regulatory roles played by WAVE2 in the myocardin-related transcription factor A (MRTFA)-serum response factor (SRF) signaling axis and differentiation of myoblasts. We demonstrate that WAVE2 expression is induced during myogenic differentiation and plays a pivotal role in actin cytoskeletal remodeling in C2C12 myoblasts. Knockdown of WAVE2 in C2C12 cells reduced filamentous actin levels, increased globular actin accumulation, and impaired the nuclear translocation of MRTFA. Furthermore, WAVE2 depletion in myoblasts inhibited the expression and transcriptional activity of SRF and suppressed cell proliferation in myoblasts. Consequently, WAVE2 knockdown suppressed myogenic regulatory factors (i.e., MyoD, MyoG, and SMYD1) expressions, thereby hindering the differentiation of myoblasts. Thus, this study suggests that WAVE2 is essential for myogenic differentiation of progenitor cells by modulating the mechanosensitive MRTFA-SRF axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Song R, Zhao S, Xu Y, Hu J, Ke S, Li F, Tian G, Zheng X, Li J, Gu L, Xu Y. MRTF-A regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration. J Cell Mol Med 2021; 25:8645-8661. [PMID: 34347392 PMCID: PMC8435411 DOI: 10.1111/jcmm.16820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardin-related transcription factor-A/serum response factor (MRTF-A/SRF), a well-known transcriptional programme, has been proposed to play crucial roles in skeletal muscle development and function. However, whether MRTF-A participates in muscle regeneration and the molecular mechanisms are not completely understood. Here, we show that MRTF-A levels are highly correlated with myogenic genes using a RNA-seq assay, which reveal that MRTF-A knockdown in C2C12 cells significantly reduces PAX7 expression. Subsequent in vitro and in vivo data show that MRTF-A and PAX7 present identical expression patterns during myoblast differentiation and CTX-induced muscle injury and repair. Remarkably, MRTF-A overexpression promotes myoblast proliferation, while inhibiting cell differentiation and the expression of MyoD and MyoG. MRTF-A loss of function produces the opposite effect. Moreover, mice with lentivirus (MRTF-A) injection possesses more PAX7+ satellite cells, but less differentiating MyoD+ and MyoG+ cells, leading subsequently to diminished muscle regeneration. Our mechanistic results reveal that MRTF-A contributes to PAX7-mediated myoblast self-renewal, proliferation, and differentiation by binding to its distal CArG box. Overall, we propose that MRTF-A functions as a novel PAX7 regulator upon myoblast commitment to differentiation, which could provide pathways for dictating muscle stem cell fate and open new avenues to explore stem cell-based therapy for muscle degenerative diseases.
Collapse
Affiliation(s)
- Ruhui Song
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shengnan Zhao
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yue Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jian Hu
- Animal Disease Control and Prevention Centre of Chongqing City, Chongqing, 401120, China
| | - Shuangao Ke
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Fan Li
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Gaohui Tian
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Xiao Zheng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jiajun Li
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Lixing Gu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
4
|
Hernández-Hernández O, Ávila-Avilés RD, Hernández-Hernández JM. Chromatin Landscape During Skeletal Muscle Differentiation. Front Genet 2020; 11:578712. [PMID: 33193700 PMCID: PMC7530293 DOI: 10.3389/fgene.2020.578712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular commitment and differentiation involve highly coordinated mechanisms by which tissue-specific genes are activated while others are repressed. These mechanisms rely on the activity of specific transcription factors, chromatin remodeling enzymes, and higher-order chromatin organization in order to modulate transcriptional regulation on multiple cellular contexts. Tissue-specific transcription factors are key mediators of cell fate specification with the ability to reprogram cell types into different lineages. A classic example of a master transcription factor is the muscle specific factor MyoD, which belongs to the family of myogenic regulatory factors (MRFs). MRFs regulate cell fate determination and terminal differentiation of the myogenic precursors in a multistep process that eventually culminate with formation of muscle fibers. This developmental progression involves the activation and proliferation of muscle stem cells, commitment, and cell cycle exit and fusion of mononucleated myoblast to generate myotubes and myofibers. Although the epigenetics of muscle regeneration has been extensively addressed and discussed over the recent years, the influence of higher-order chromatin organization in skeletal muscle regeneration is still a field of development. In this review, we will focus on the epigenetic mechanisms modulating muscle gene expression and on the incipient work that addresses three-dimensional genome architecture and its influence in cell fate determination and differentiation to achieve skeletal myogenesis. We will visit known alterations of genome organization mediated by chromosomal fusions giving rise to novel regulatory landscapes, enhancing oncogenic activation in muscle, such as alveolar rhabdomyosarcomas (ARMS).
Collapse
Affiliation(s)
- Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Rodolfo Daniel Ávila-Avilés
- Laboratory of Epigenetics of Skeletal Muscle Regeneration, Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - J Manuel Hernández-Hernández
- Laboratory of Epigenetics of Skeletal Muscle Regeneration, Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
5
|
Asahi W, Kurihara R, Takeyama K, Umehara Y, Kimura Y, Kondo T, Tanabe K. Aggregate Formation of BODIPY-Tethered Oligonucleotides That Led to Efficient Intracellular Penetration and Gene Regulation. ACS APPLIED BIO MATERIALS 2019; 2:4456-4463. [DOI: 10.1021/acsabm.9b00631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wataru Asahi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ryohsuke Kurihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kotaro Takeyama
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yui Umehara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yu Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
6
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
7
|
Cai R, Qimuge N, Ma M, Wang Y, Tang G, Zhang Q, Sun Y, Chen X, Yu T, Dong W, Yang G, Pang W. MicroRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and Wnt1. J Biol Chem 2018; 293:19177-19190. [PMID: 30323063 DOI: 10.1074/jbc.ra118.003198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression at the post-transcriptional level and are involved in the regulation of the formation, maintenance, and function of skeletal muscle. Using miRNA sequencing and bioinformatics analysis, we previously found that the miRNA miR-664-5p is significantly differentially expressed in longissimus dorsi muscles of Rongchang pigs. However, the molecular mechanism by which miR-664-5p regulates myogenesis remains unclear. In this study, using flow cytometry, 5-ethynyl-2'-deoxyuridine staining, and cell count and immunofluorescent assays, we found that cell-transfected miR-664-5p mimics greatly promoted proliferation of C2C12 mouse myoblasts by increasing the proportion of cells in the S- and G2-phases and up-regulating the expression of cell cycle genes. Moreover, miR-664-5p inhibited myoblast differentiation by down-regulating myogenic gene expression. In contrast, miR-664-5p inhibitor repressed myoblast proliferation and promoted myoblast differentiation. Mechanistically, using dual-luciferase reporter gene experiments, we demonstrated that miR-664-5p directly targets the 3'-UTR of serum response factor (SRF) and Wnt1 mRNAs. We also observed that miR-664-5p inhibits both mRNA and protein levels of SRF and Wnt1 during myoblast proliferation and myogenic differentiation, respectively. Furthermore, the activating effect of miR-664-5p on myoblast proliferation was attenuated by SRF overexpression, and miR-664-5p repressed myogenic differentiation by diminishing the accumulation of nuclear β-catenin. Of note, miR-664-5p's inhibitory effect on myogenic differentiation was abrogated by treatment with Wnt1 protein, the key activator of the Wnt/β-catenin signaling pathway. Collectively, our findings suggest that miR-664-5p controls SRF and canonical Wnt/β-catenin signaling pathways in myogenesis.
Collapse
Affiliation(s)
- Rui Cai
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Naren Qimuge
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Meilin Ma
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yingqian Wang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Guorong Tang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Que Zhang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yunmei Sun
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Xiaochang Chen
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Taiyong Yu
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Wuzi Dong
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Gongshe Yang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Weijun Pang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| |
Collapse
|
8
|
MUNC, an Enhancer RNA Upstream from the MYOD Gene, Induces a Subgroup of Myogenic Transcripts in trans Independently of MyoD. Mol Cell Biol 2018; 38:MCB.00655-17. [PMID: 30037979 DOI: 10.1128/mcb.00655-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
MyoD upstream noncoding RNA (MUNC) initiates in the distal regulatory region (DRR) enhancer of MYOD and is formally classified as an enhancer RNA (DRReRNA). MUNC is required for optimal myogenic differentiation, induces specific myogenic transcripts in trans (MYOD, MYOGENIN, and MYH3), and has a functional human homolog. The vast majority of eRNAs are believed to act in cis primarily on their neighboring genes (1, 2), making it likely that MUNC action is dependent on the induction of MYOD RNA. Surprisingly, MUNC overexpression in MYOD -/- C2C12 cells induces many myogenic transcripts in the complete absence of MyoD protein. Genomewide analysis showed that, while many genes are regulated by MUNC in a MyoD-dependent manner, there is a set of genes that are regulated by MUNC, both upward and downward, independently of MyoD. MUNC and MyoD even appear to act antagonistically on certain transcripts. Deletion mutagenesis showed that there are at least two independent functional sites on the MUNC long noncoding RNA (lncRNA), with exon 1 more active than exon 2 and with very little activity from the intron. Thus, although MUNC is an eRNA of MYOD, it is also a trans-acting lncRNA whose sequence, structure, and cooperating factors, which include but are not limited to MyoD, determine the regulation of many myogenic genes.
Collapse
|
9
|
Randrianarison-Huetz V, Papaefthymiou A, Herledan G, Noviello C, Faradova U, Collard L, Pincini A, Schol E, Decaux JF, Maire P, Vassilopoulos S, Sotiropoulos A. Srf controls satellite cell fusion through the maintenance of actin architecture. J Cell Biol 2017; 217:685-700. [PMID: 29269426 PMCID: PMC5800804 DOI: 10.1083/jcb.201705130] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023] Open
Abstract
This work describes a crucial role for the transcription factor Srf and F-actin scaffold to drive muscle stem cell fusion in vitro and in vivo and provides evidence of how actin cytoskeleton architecture affects myoblast fusion in vertebrates. Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here, we show that serum response factor (Srf) is needed for optimal SC-mediated hypertrophic growth. We identified Srf as a master regulator of SC fusion required in both fusion partners, whereas it was dispensable for SC proliferation and differentiation. We show that SC-specific Srf deletion leads to impaired actin cytoskeleton and report the existence of finger-like actin–based protrusions at fusion sites in vertebrates that were notoriously absent in fusion-defective myoblasts lacking Srf. Restoration of a polymerized actin network by overexpression of an α-actin isoform in Srf mutant SCs rescued their fusion with a control cell in vitro and in vivo and reestablished overload-induced muscle growth. These findings demonstrate the importance of Srf in controlling the organization of actin cytoskeleton and actin-based protrusions for myoblast fusion in mammals and its requirement to achieve efficient hypertrophic myofiber growth.
Collapse
Affiliation(s)
- Voahangy Randrianarison-Huetz
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Aikaterini Papaefthymiou
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gaëlle Herledan
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Chiara Noviello
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Ulduz Faradova
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | | - Alessandra Pincini
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Emilie Schol
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jean François Decaux
- Université Pierre et Marie Curie Paris 6, Centre National de la Recherche Scientifique UMR8256, Institut National de la Santé et de la Recherche Médicale U1164, Institute of Biology Paris-Seine, Paris, France
| | - Pascal Maire
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stéphane Vassilopoulos
- Institut National de la Santé et de la Recherche Médicale/University Pierre and Marie Curie UMR-S974, Institut de Myologie, Paris, France
| | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France .,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
10
|
Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A 2017; 114:E3071-E3080. [PMID: 28351977 DOI: 10.1073/pnas.1613592114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The myogenic regulatory factor MyoD has been implicated as a key regulator of myogenesis, and yet there is little information regarding its upstream regulators. We found that Deltex2 inhibits myogenic differentiation in vitro, and that skeletal muscle stem cells from Deltex2 knockout mice exhibit precocious myogenic differentiation and accelerated regeneration in response to injury. Intriguingly, Deltex2 inhibits myogenesis by suppressing MyoD transcription, and the Deltex2 knockout phenotype can be rescued by a loss-of-function allele for MyoD In addition, we obtained evidence that Deltex2 regulates MyoD expression by promoting the enrichment of histone 3 modified by dimethylation at lysine 9 at a key regulatory region of the MyoD locus. The enrichment is attributed to a Deltex2 interacting protein, Jmjd1c, whose activity is directly inhibited by Deltex2 and whose expression is required for MyoD expression in vivo and in vitro. Finally, we find that Deltex2 causes Jmjd1c monoubiquitination and inhibits its demethylase activity. Mutation of the monoubiquitination site in Jmjd1c abolishes the inhibitory effect of Deltex2 on Jmjd1c demethylase activity. These results reveal a mechanism by which a member of the Deltex family of proteins can inhibit cellular differentiation, and demonstrate a role of Deltex in the epigenetic regulation of myogenesis.
Collapse
|
11
|
Functions of the Tumor Suppressors p53 and Rb in Actin Cytoskeleton Remodeling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9231057. [PMID: 28078303 PMCID: PMC5203884 DOI: 10.1155/2016/9231057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells sense their microenvironments with mechanosensing biomolecules, which is accompanied by the modulation of actin cytoskeleton structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer therapies.
Collapse
|
12
|
Cenik BK, Liu N, Chen B, Bezprozvannaya S, Olson EN, Bassel-Duby R. Myocardin-related transcription factors are required for skeletal muscle development. Development 2016; 143:2853-61. [PMID: 27385017 PMCID: PMC5004908 DOI: 10.1242/dev.135855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022]
Abstract
Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies.
Collapse
Affiliation(s)
- Bercin K Cenik
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Beibei Chen
- Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| |
Collapse
|
13
|
Tizioto PC, Coutinho LL, Mourão GB, Gasparin G, Malagó-Jr W, Bressani FA, Tullio RR, Nassu RT, Taylor JF, Regitano LCA. Variation inmyogenic differentiation 1mRNA abundance is associated with beef tenderness in Nelore cattle. Anim Genet 2016; 47:491-4. [DOI: 10.1111/age.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 01/12/2023]
Affiliation(s)
| | - L. L. Coutinho
- Department of Animal Science; University of São Paulo/ESALQ; Piracicaba SP Brazil
| | - G. B. Mourão
- Department of Animal Science; University of São Paulo/ESALQ; Piracicaba SP Brazil
| | - G. Gasparin
- Department of Animal Science; University of São Paulo/ESALQ; Piracicaba SP Brazil
| | - W. Malagó-Jr
- Embrapa Southeast Livestock; São Carlos SP Brazil
| | | | - R. R. Tullio
- Embrapa Southeast Livestock; São Carlos SP Brazil
| | - R. T. Nassu
- Embrapa Southeast Livestock; São Carlos SP Brazil
| | - J. F. Taylor
- Division of Animal Sciences; University of Missouri; Columbia MO USA
| | | |
Collapse
|
14
|
Association of lamin A/C with muscle gene-specific promoters in myoblasts. Biochem Biophys Rep 2015; 4:76-82. [PMID: 29124189 PMCID: PMC5668900 DOI: 10.1016/j.bbrep.2015.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/10/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022] Open
Abstract
The A-type and B-type lamins form a filamentous meshwork underneath the inner nuclear membrane called the nuclear lamina, which is an important component of nuclear architecture in metazoan cells. The lamina interacts with large, mostly repressive chromatin domains at the nuclear periphery. In addition, genome–lamina interactions also involve dynamic association of lamin A/C with gene promoters in adipocytes. Mutations in the human lamin A gene cause a spectrum of hereditary diseases called the laminopathies which affect muscle, cardiac and adipose tissues. Since most mutations in lamin A/C affect skeletal muscle, we investigated lamin–chromatin interactions at promoters of muscle specific genes in both muscle and non-muscle cell lines by ChIP-qPCR. We observed that lamin A/C was specifically associated with promoter regions of muscle genes in myoblasts but not in fibroblasts. Lamin A/C dissociated from the promoter regions of the differentiation specific MyoD, myogenin and muscle creatine kinase genes when myoblasts were induced to differentiate. In the promoter regions of the myogenin and MyoD genes, the binding of lamin A/C in myoblasts inversely correlated with the active histone mark, H3K4me3. Lamin A/C binding on muscle genes was reduced and differentiation potential was enhanced on treatment of myoblasts with a histone deacetylase inhibitor. These findings suggest a role for lamina–chromatin interactions in muscle differentiation and have important implications for the pathological mechanisms of striated muscle associated laminopathies. Lamina–chromatin interactions are important for nuclear processes. We show lamin A/C binding to promoters of muscle genes in myoblasts. Lamin A/C binding is reduced upon myoblast differentiation. Lamin A/C binding inversely correlates with active histone marks on muscle genes. Our findings suggest that lamin A/C binding to promoters is cell-type specific.
Collapse
|
15
|
|
16
|
Law C, Cheung P. Expression of Non-acetylatable H2A.Z in Myoblast Cells Blocks Myoblast Differentiation through Disruption of MyoD Expression. J Biol Chem 2015; 290:13234-49. [PMID: 25839232 DOI: 10.1074/jbc.m114.595462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 11/06/2022] Open
Abstract
H2A.Z is a histone H2A variant that is essential for viability in Tetrahymena and Drosophila and also during embryonic development of mice. Although implicated in diverse cellular processes, including transcriptional regulation, chromosome segregation, and heterochromatin formation, its essential function in cells remains unknown. Cellular differentiation is part of the developmental process of multicellular organisms. To elucidate the roles of H2A.Z and H2A.Z acetylation in cellular differentiation, we examined the effects of expressing wild type (WT) or a non-acetylatable form of H2A.Z in the growth and differentiation of the myoblast C2C12 cell line. Ectopic expression of wild type or mutant H2A.Z resulted in distinct phenotypes in the differentiation of the C2C12 cells and the formation of myotubes. Most strikingly, expression of the H2A.Z non-acetylatable mutant (H2A.Z-Ac-mut) resulted in a complete block of myoblast differentiation. We determined that this phenotype is caused by a loss of MyoD expression in the Ac-mut-expressing cells prior to and after induction of differentiation. Moreover, chromatin accessibility assays showed that the promoter region of MyoD is less accessible in the differentiation-defective cells. Altogether, these new findings show that expression of the Ac-mut form of H2A.Z resulted in a dominant phenotype that blocked differentiation due to chromatin changes at the MyoD promoter.
Collapse
Affiliation(s)
- Cindy Law
- From the Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada and
| | - Peter Cheung
- From the Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada and the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
17
|
Ting CH, Ho PJ, Yen BL. Age-related decreases of serum-response factor levels in human mesenchymal stem cells are involved in skeletal muscle differentiation and engraftment capacity. Stem Cells Dev 2014; 23:1206-16. [PMID: 24576136 DOI: 10.1089/scd.2013.0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle (SkM) comprise ∼40% of human body weight. Injury or damage to this important tissue can result in physical disability, and in severe cases is difficult for its endogenous stem cell-the satellite cell-to reverse effectively. Mesenchymal stem cells (MSC) are postnatal progenitor/stem cells that possess multilineage mesodermal differentiation capacity, including toward SkM. Adult bone marrow (BM) is the best-studied source of MSCs; however, aging also decreases BMMSC numbers and can adversely affect differentiation capacity. Therefore, we asked whether human sources of developmentally early stage mesenchymal stem cells (hDE-MSCs) isolated from embryonic stem cells, fetal bone, and term placenta could be cellular sources for SkM repair. Under standard muscle-inducing conditions, hDE-MPCs differentiate toward a SkM lineage rather than cardiomyocytic or smooth muscle lineages, as evidenced by increased expression of SkM-associated markers and in vitro myotube formation. In vivo transplantation revealed that SkM-differentiated hDE-MSCs can efficiently incorporate into host SkM tissue in a mouse model of SkM injury. In contrast, adult BMMSCs do not express SkM-associated genes after in vitro SkM differentiation nor engraft in vivo. Further investigation of possible factors responsible for this difference in SkM differentiation potential revealed that, compared with adult BMMSCs, hDE-MSCs expressed higher levels of serum response factor (SRF), a transcription factor critical for SkM lineage commitment. Moreover, knockdown of SRF in hDE-MSCs resulted in decreased expression of SkM-related genes after in vitro differentiation and decreased in vivo engraftment. Our results implicate SRF as a key factor in age-related SkM differentiation capacity of MSCs, and demonstrate that hDE-MSCs are possible candidates for SkM repair.
Collapse
Affiliation(s)
- Chiao-Hsuan Ting
- 1 Graduate Institute of Life Sciences, National Defense Medical Center , Taipei, Taiwan
| | | | | |
Collapse
|
18
|
Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 2013; 280:6097-113. [PMID: 24102982 PMCID: PMC3877849 DOI: 10.1111/febs.12529] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.
Collapse
Affiliation(s)
- Melissa P. Wu
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA 02115, USA
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Jamie R. Doyle
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brenda Barry
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Ariane Beauvais
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA 02115, USA
| | - Michael W. Lawlor
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Alan S. Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christopher A. Walsh
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| |
Collapse
|
19
|
Six1 regulates MyoD expression in adult muscle progenitor cells. PLoS One 2013; 8:e67762. [PMID: 23840772 PMCID: PMC3695946 DOI: 10.1371/journal.pone.0067762] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/22/2013] [Indexed: 12/21/2022] Open
Abstract
Quiescent satellite cells are myogenic progenitors that enable regeneration of skeletal muscle. One of the early events of satellite cell activation following myotrauma is the induction of the myogenic regulatory factor MyoD, which eventually induces terminal differentiation and muscle function gene expression. The purpose of this study was to elucidate the mechanism by which MyoD is induced during activation of satellite cells in mouse muscle undergoing regeneration. We show that Six1, a transcription factor essential for embryonic myogenesis, also regulates MyoD expression in muscle progenitor cells. Six1 knock-down by RNA interference leads to decreased expression of MyoD in myoblasts. Chromatin immunoprecipitation assays reveal that Six1 binds the Core Enhancer Region of MyoD. Further, transcriptional reporter assays demonstrate that Core Enhancer Region reporter gene activity in myoblasts and in regenerating muscle depends on the expression of Six1 and on Six1 binding sites. Finally, we provide evidence indicating that Six1 is required for the proper chromatin structure at the Core Enhancer Region, as well as for MyoD binding at its own enhancer. Together, our results reveal that MyoD expression in satellite cells depends on Six1, supporting the idea that Six1 plays an important role in adult myogenesis, in addition to its role in embryonic muscle formation.
Collapse
|
20
|
MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ 2013; 20:1194-208. [PMID: 23764775 DOI: 10.1038/cdd.2013.62] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023] Open
Abstract
In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx(5cv) mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.
Collapse
|
21
|
Harafuji N, Schneiderat P, Walter MC, Chen YW. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis 2013; 8:55. [PMID: 23561550 PMCID: PMC3637251 DOI: 10.1186/1750-1172-8-55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscle disorder, which is linked to the contraction of the D4Z4 array at chromosome 4q35. Recent studies suggest that this shortening of the D4Z4 array leads to aberrant expression of double homeobox protein 4 (DUX4) and causes FSHD. In addition, misregulation of microRNAs (miRNAs) has been reported in muscular dystrophies including FSHD. In this study, we identified a miRNA that is differentially expressed in FSHD myoblasts and investigated its function. METHODS To identify misregulated miRNAs and their potential targets in FSHD myoblasts, we performed expression profiling of both miRNA and mRNA using TaqMan Human MicroRNA Arrays and Affymetrix Human Genome U133A plus 2.0 microarrays, respectively. In addition, we over-expressed miR-411 in C₂C₁₂ cells to determine the effect of miR-411 on myogenic markers. RESULTS Using miRNA and mRNA expression profiling, we identified 8 miRNAs and 1,502 transcripts that were differentially expressed in FSHD myoblasts during cell proliferation. One of the 8 differentially expressed miRNAs, miR-411, was validated by quantitative RT-PCR in both primary (2.1 fold, p<0.01) and immortalized (2.7 fold, p<0.01) myoblasts. In situ hybridization showed cytoplasmic localization of miR-411 in FSHD myoblasts. By analyzing both miRNA and mRNA data using Partek Genomics Suite, we identified 4 mRNAs potentially regulated by miR-411 including YY1 associated factor 2 (YAF2). The down-regulation of YAF2 in immortalized myoblasts was validated by immunoblotting (-3.7 fold, p<0.01). C₂C₁₂ cells were transfected with miR-411 to determine whether miR-411 affects YAF2 expression in myoblasts. The results showed that over-expression of miR-411 reduced YAF2 mRNA expression. In addition, expression of myogenic markers including Myod, myogenin, and myosin heavy chain 1 (Myh1) were suppressed by miR-411. CONCLUSIONS The study demonstrated that miR-411 was differentially expressed in FSHD myoblasts and may play a role in regulating myogenesis.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC, USA
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC, USA
- Department of Integrative Systems Biology and Department of Pediatrics, George Washington University, Washington, DC, USA
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| |
Collapse
|
22
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
23
|
Borensztein M, Monnier P, Court F, Louault Y, Ripoche MA, Tiret L, Yao Z, Tapscott SJ, Forné T, Montarras D, Dandolo L. Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. Development 2013; 140:1231-9. [PMID: 23406902 DOI: 10.1242/dev.084665] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The myogenic regulatory factor Myod and insulin-like growth factor 2 (Igf2) have been shown to interact in vitro during myogenic differentiation. In order to understand how they interact in vivo, we produced double-mutant mice lacking both the Myod and Igf2 genes. Surprisingly, these mice display neonatal lethality due to severe diaphragm atrophy. Alteration of diaphragm muscle development occurs as early as 15.5 days post-coitum in the double-mutant embryos and leads to a defect in the terminal differentiation of muscle progenitor cells. A negative-feedback loop was detected between Myod and Igf2 in embryonic muscles. Igf2 belongs to the imprinted H19-Igf2 locus. Molecular analyses show binding of Myod on a mesodermal enhancer (CS9) of the H19 gene. Chromatin conformation capture experiments reveal direct interaction of CS9 with the H19 promoter, leading to increased H19 expression in the presence of Myod. In turn, the non-coding H19 RNA represses Igf2 expression in trans. In addition, Igf2 also negatively regulates Myod expression, possibly by reducing the expression of the Srf transcription factor, a known Myod activator. In conclusion, Igf2 and Myod are tightly co-regulated in skeletal muscles and act in parallel pathways in the diaphragm, where they affect the progression of myogenic differentiation. Igf2 is therefore an essential player in the formation of a functional diaphragm in the absence of Myod.
Collapse
Affiliation(s)
- Maud Borensztein
- Genetics and Development Department, Inserm U1016, CNRS UMR 8104, University of Paris Descartes, Institut Cochin, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Actin dynamics are implicated in various cellular processes, not only through the regulation of cytoskeletal organization, but also via the control of gene expression. In the present study we show that the Src family kinase substrate p130Cas (Cas is Crk-associated substrate) influences actin remodelling and concomitant muscle-specific gene expression, thereby regulating myogenic differentiation. In C2C12 myoblasts, silencing of p130Cas expression by RNA interference impaired F-actin (filamentous actin) formation and nuclear localization of the SRF (serum-response factor) co-activator MAL (megakaryocytic acute leukaemia) following the induction of myogenic differentiation. Consequently, formation of multinucleated myotubes was abolished. Re-introduction of wild-type p130Cas, but not its phosphorylation-defective mutant, into p130Cas-knockdown myoblasts restored F-actin assembly, MAL nuclear localization and myotube formation. Depletion of the adhesion molecule integrin β3, a key regulator of myogenic differentiation as well as actin cytoskeletal organization, attenuated p130Cas phosphorylation and MAL nuclear localization during C2C12 differentiation. Moreover, knockdown of p130Cas led to the activation of the F-actin-severing protein cofilin. The introduction of a dominant-negative mutant of cofilin into p130Cas-knockdown myoblasts restored muscle-specific gene expression and myotube formation. The results of the present study suggest that p130Cas phosphorylation, mediated by integrin β3, facilitates cofilin inactivation and promotes myogenic differentiation through modulating actin cytoskeleton remodelling.
Collapse
|
25
|
Mokalled MH, Johnson AN, Creemers EE, Olson EN. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 2012; 26:190-202. [PMID: 22279050 DOI: 10.1101/gad.179663.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
26
|
Alter J, Bengal E. Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation. PLoS One 2011; 6:e29498. [PMID: 22242125 PMCID: PMC3248460 DOI: 10.1371/journal.pone.0029498] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
When mouse myoblasts or satellite cells differentiate in culture, the expression of myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do not differentiate. The mechanism involved in the repression of MyoD expression remains largely unknown. Here we report that a stress-response pathway repressing MyoD transcription is transiently activated in mouse-derived C2C12 myoblasts growing under differentiation-promoting conditions. We show that phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) is followed by expression of C/EBP homology protein (CHOP) in some myoblasts. ShRNA-driven knockdown of CHOP expression caused earlier and more robust differentiation, whereas its constitutive expression delayed differentiation relative to wild type myoblasts. Cells expressing CHOP did not express the myogenic regulatory factors MyoD and myogenin. These results indicated that CHOP directly repressed the transcription of the MyoD gene. In support of this view, CHOP associated with upstream regulatory region of the MyoD gene and its activity reduced histone acetylation at the enhancer region of MyoD. CHOP interacted with histone deacetylase 1 (HDAC1) in cells. This protein complex may reduce histone acetylation when bound to MyoD regulatory regions. Overall, our results suggest that the activation of a stress pathway in myoblasts transiently downregulate the myogenic program.
Collapse
Affiliation(s)
- Joel Alter
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
27
|
Collins-Hooper H, Luke G, Cranfield M, Otto WR, Ray S, Patel K. Efficient myogenic reprogramming of adult white fat stem cells and bone marrow stem cells by freshly isolated skeletal muscle fibers. Transl Res 2011; 158:334-43. [PMID: 22061041 DOI: 10.1016/j.trsl.2011.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 11/16/2022]
Abstract
Stem cells that can be directed to differentiate into specific cell types offer the prospect of a renewable source of replacement cells to treat diseases. This study evaluates the reprogramming of 2 readily available stem cell populations into skeletal muscle. We show for the first time that freshly isolated muscle fibers reprogram bone marrow or white fat stem cells far more efficiently than muscle cell lines. In addition, we show that the ability of muscle fibers to reprogram stem cells can be almost doubled through the use of chromatin remodeling reagents such as trichostatin A. This novel approach permits the generation of myogenic cells that could be used to treat a range of muscle-wasting diseases.
Collapse
|
28
|
Serum response factor utilizes distinct promoter- and enhancer-based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol Cell Biol 2010; 31:861-75. [PMID: 21135125 DOI: 10.1128/mcb.00836-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells of the monocyte/macrophage lineage play essential roles in tissue homeostasis and immune responses, but mechanisms underlying the coordinated expression of cytoskeletal genes required for specialized functions of these cells, such as directed migration and phagocytosis, remain unknown. Here, using genetic and genomic approaches, we provide evidence that serum response factor (SRF) regulates both general and cell type-restricted components of the cytoskeletal gene expression program in macrophages. Genome-wide location analysis of SRF in macrophages demonstrates enrichment of SRF binding at ubiquitously expressed target gene promoters, as expected, but also reveals that the majority of SRF binding sites associated with cell type-restricted target genes are at distal inter- and intragenic locations. Most of these distal SRF binding sites are established by the prior binding of the macrophage- and the B cell-specific transcription factor PU.1 and exhibit histone modifications characteristic of enhancers. Consistent with this, representative cytoskeletal target genes associated with these elements require both SRF and PU.1 for full expression. These findings suggest that SRF uses two distinct molecular strategies to regulate programs of cytoskeletal gene expression: a promoter-based strategy for ubiquitously expressed target genes and an enhancer-based strategy at target genes that exhibit cell type-restricted patterns of expression.
Collapse
|
29
|
L'honoré A, Ouimette JF, Lavertu-Jolin M, Drouin J. Pitx2 defines alternate pathways acting through MyoD during limb and somitic myogenesis. Development 2010; 137:3847-56. [PMID: 20978076 DOI: 10.1242/dev.053421] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The MyoD gene is part of the core regulatory network that governs skeletal myogenesis and acts as an essential determinant of the myogenic cell fate. Although generic regulatory networks converging on this gene have been described, the specific mechanisms leading to MyoD expression in muscles of different ontology remain misunderstood. We now show that the homeobox gene Pitx2 is required for initial activation of the MyoD gene in limb muscle precursors through direct binding of Pitx2 to the MyoD core enhancer. Whereas Myf5 and Mrf4 are dispensable for limb muscle progenitor fate, inactivation of Myf5 and Mrf4 in Pitx2 mutants results in a drastic decrease of limb MyoD expression. Thus, Pitx2 and Myf5 define parallel genetic pathways for limb myogenesis. We show a similar dependence on Pitx2 and Myf5(Mrf4) in myotome, where MyoD expression is initially activated by Myf5 and Mrf4. In their absence, MyoD expression is eventually rescued by a Pax3-dependent mechanism. We now provide evidence that Pitx2 contributes to the rescue of MyoD expression and that it acts downstream of Pax3. We thus propose that myogenic differentiation of somite-derived muscle cells relies on two parallel genetic pathways, with the Pitx2 pathway being of primary importance for limb myogenesis but the Myf5 and Mrf4 pathway predominating in myotome. Muscle-specific wiring of regulatory networks composed of similar transcription factors thus underlies development of distinct skeletal muscles.
Collapse
Affiliation(s)
- Aurore L'honoré
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), QC, Canada
| | | | | | | |
Collapse
|
30
|
Carvajal JJ, Rigby PWJ. Regulation of gene expression in vertebrate skeletal muscle. Exp Cell Res 2010; 316:3014-8. [PMID: 20633554 DOI: 10.1016/j.yexcr.2010.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/28/2010] [Accepted: 07/03/2010] [Indexed: 11/26/2022]
Abstract
During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.
Collapse
Affiliation(s)
- Jaime J Carvajal
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, England.
| | | |
Collapse
|
31
|
Macharia R, Otto A, Valasek P, Patel K. Neuromuscular junction morphology, fiber-type proportions, and satellite-cell proliferation rates are altered in MyoD(-/-) mice. Muscle Nerve 2010; 42:38-52. [PMID: 20544915 DOI: 10.1002/mus.21637] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.
Collapse
Affiliation(s)
- Raymond Macharia
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | | | | | | |
Collapse
|
32
|
Li D, Niu Z, Yu W, Qian Y, Wang Q, Li Q, Yi Z, Luo J, Wu X, Wang Y, Schwartz RJ, Liu M. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res 2010; 37:7059-71. [PMID: 19783823 PMCID: PMC2790895 DOI: 10.1093/nar/gkp773] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SMYD1 is a heart and muscle specific SET-MYND domain containing protein, which functions as a histone methyltransferase and regulates downstream gene transcription. We demonstrated that the expression of SMYD1 is restricted in the heart and skeletal muscle tissues in human. To reveal the regulatory mechanisms of SMYD1 expression during myogenesis and cardiogenesis, we cloned and characterized the human SMYD1 promoter, which contains highly conserved serum response factor (SRF) and myogenin binding sites. Overexpression of SRF and myogenin significantly increased the endogenous expression level of Smyd1 in C2C12 cells, respectively. Deletion of Srf in the heart of mouse embryos dramatically decreased the expression level of Smyd1 mRNA and the expression of Smyd1 can be rescued by exogenous SRF introduction in SRF null ES cells during differentiation. Furthermore, we demonstrated that SRF binds to the CArG site and myogenin binds to the E-box element on Smyd1 promoter region using EMSA and ChIP assays. Moreover, forced expression of SMYD1 accelerates myoblast differentiation and myotube formation in C2C12 cells. Taken together, these studies demonstrated that SMYD1 is a key regulator of myogenic differentiation and acts as a downstream target of muscle regulatory factors, SRF and myogenin.
Collapse
Affiliation(s)
- Dali Li
- The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kimura Y, Morita T, Hayashi K, Miki T, Sobue K. Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells. Cancer Res 2010; 70:501-11. [PMID: 20068148 DOI: 10.1158/0008-5472.can-09-1469] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardin is an important transcriptional regulator in smooth and cardiac muscle development. We noticed that the expression of myocardin was markedly downregulated in human uterine leiomyosarcoma cells. Restoration of myocardin expression induced the reexpression of smooth muscle marker proteins and the formation of well-developed actin fibers. A concomitant increase in the expression of a cyclin-dependent kinase inhibitor, p21, led to significantly reduced cell proliferation, via p21's inhibition of the G(1)-S transition. A p21 promoter-reporter assay showed that myocardin markedly increased p21's promoter activity. Furthermore, a serum response factor (SRF)-binding cis-element CArG box in the p21 promoter region was required for this myocardin effect. Chromatin immunoprecipitation and DNA-protein binding assays showed that myocardin indirectly bound to the CArG box in the p21 promoter through the interaction with SRF. Furthermore, immunohistochemistry revealed that the levels of myocardin and p21 were both lower in leiomyosarcoma samples than in normal smooth muscle tissue. Taken together, our results indicate that the downregulation of myocardin expression facilitates cell cycle progression via the reduction of p21 expression in human leimyosarcomas and suggest that myocardin could be a useful therapeutic target for this disease.
Collapse
Affiliation(s)
- Yasunori Kimura
- Department of Neuroscience, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
34
|
Sambasivan R, Cheedipudi S, Pasupuleti N, Saleh A, Pavlath GK, Dhawan J. The small chromatin-binding protein p8 coordinates the association of anti-proliferative and pro-myogenic proteins at the myogenin promoter. J Cell Sci 2009; 122:3481-91. [PMID: 19723804 PMCID: PMC2746131 DOI: 10.1242/jcs.048678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2009] [Indexed: 01/09/2023] Open
Abstract
Quiescent muscle progenitors called satellite cells persist in adult skeletal muscle and, upon injury to muscle, re-enter the cell cycle and either undergo self-renewal or differentiate to regenerate lost myofibers. Using synchronized cultures of C2C12 myoblasts to model these divergent programs, we show that p8 (also known as Nupr1), a G1-induced gene, negatively regulates the cell cycle and promotes myogenic differentiation. p8 is a small chromatin protein related to the high mobility group (HMG) family of architectural factors and binds to histone acetyltransferase p300 (p300, also known as CBP). We confirm this interaction and show that p300-dependent events (Myc expression, global histone acetylation and post-translational acetylation of the myogenic regulator MyoD) are all affected in p8-knockdown myoblasts, correlating with repression of MyoD target-gene expression and severely defective differentiation. We report two new partners for p8 that support a role in muscle-specific gene regulation: p68 (Ddx5), an RNA helicase reported to bind both p300 and MyoD, and MyoD itself. We show that, similar to MyoD and p300, p8 and p68 are located at the myogenin promoter, and that knockdown of p8 compromises chromatin association of all four proteins. Thus, p8 represents a new node in a chromatin regulatory network that coordinates myogenic differentiation with cell-cycle exit.
Collapse
|
35
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
36
|
Freer-Prokop M, O'Flaherty J, Ross JA, Weyman CM. Non-canonical role for the TRAIL receptor DR5/FADD/caspase pathway in the regulation of MyoD expression and skeletal myoblast differentiation. Differentiation 2009; 78:205-12. [PMID: 19523746 DOI: 10.1016/j.diff.2009.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/17/2009] [Accepted: 05/13/2009] [Indexed: 12/25/2022]
Abstract
We report herein that the TRAIL receptor DR5/FADD/caspase pathway plays a role in skeletal myoblast differentiation through modulation of the expression of the muscle regulatory transcription factor MyoD. Specifically, treatment with the selective caspase 3 inhibitor DEVD-fmk or the selective caspase 8 inhibitor IETD-fmk in growth media (GM), prior to culture in differentiation media (DM), inhibited differentiation. Further, this treatment resulted in decreased levels of MyoD message and protein. We next explored a role for the TRAIL receptor DR5/FADD pathway. We found that expression of either dominant negative (dn) FADD or dominant negative (dn) DR5 also resulted in decreased levels of MyoD mRNA and protein and blocked differentiation. This decreased level of MyoD mRNA was not a consequence of altered stability. Treatment with TSA, an inhibitor of histone deacetylases (HDACs), allowed MyoD expression in myoblasts expressing dnDR5. Finally, acetylation of histones associated with the distal regulatory region (DRR) enhancer of MyoD was decreased in myoblasts expressing dnDR5. Thus, our data suggests a non-canonical role for the TRAIL receptor/FADD pathway in the regulation of MyoD expression and skeletal myoblast differentiation.
Collapse
Affiliation(s)
- Margot Freer-Prokop
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
37
|
Kim JR, Kee HJ, Kim JY, Joung H, Nam KI, Eom GH, Choe N, Kim HS, Kim JC, Kook H, Seo SB, Kook H. Enhancer of polycomb1 acts on serum response factor to regulate skeletal muscle differentiation. J Biol Chem 2009; 284:16308-16316. [PMID: 19359245 DOI: 10.1074/jbc.m807725200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation is well regulated by a series of transcription factors. We reported previously that enhancer of polycomb1 (Epc1), a chromatin protein, can modulate skeletal muscle differentiation, although the mechanisms of this action have yet to be defined. Here we report that Epc1 recruits both serum response factor (SRF) and p300 to induce skeletal muscle differentiation. Epc1 interacted physically with SRF. Transfection of Epc1 to myoblast cells potentiated the SRF-induced expression of skeletal muscle-specific genes as well as multinucleation. Proximal CArG box in the skeletal alpha-actin promoter was responsible for the synergistic activation of the promoter-luciferase. Epc1 knockdown caused a decrease in the acetylation of histones associated with serum response element (SRE) of the skeletal alpha-actin promoter. The Epc1.SRF complex bound to the SRE, and the knockdown of Epc1 resulted in a decrease in SRF binding to the skeletal alpha-actin promoter. Epc1 recruited histone acetyltransferase activity, which was potentiated by cotransfection with p300 but abolished by si-p300. Epc1 directly bound to p300 in myoblast cells. Epc1+/- mice showed distortion of skeletal alpha-actin, and the isolated myoblasts from the mice had impaired muscle differentiation. These results suggest that Epc1 is required for skeletal muscle differentiation by recruiting both SRF and p300 to the SRE of muscle-specific gene promoters.
Collapse
Affiliation(s)
- Ju-Ryoung Kim
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746
| | - Hae Jin Kee
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746; BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-745, South Korea
| | - Hosouk Joung
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746
| | - Kwang-Il Nam
- BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746; Anatomy, Gwangju 501-746
| | - Gwang Hyeon Eom
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746
| | - Nakwon Choe
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746
| | - Hyung-Suk Kim
- BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746; Forensic Medicine, Gwangju 501-746
| | | | - Hoon Kook
- Pediatrics, Chonnam National University Hospital, Gwangju 501-746
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-745, South Korea
| | - Hyun Kook
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746; BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746.
| |
Collapse
|
38
|
Myofibroblasts in pulmonary and brain metastases of alveolar soft-part sarcoma: a novel target for treatment? Neoplasia 2009; 10:940-8. [PMID: 18714394 DOI: 10.1593/neo.08456] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 01/28/2023] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is a rare neoplasm with chromosomal translocation that results in ASPL-TFE3 fusion. It is a slow-growing lesion associated with a high incidence of pulmonary and brain metastases indicating poor survival. We demonstrated that the ASPS metastases include also stromal myofibroblasts. These cells proliferate, express smooth-muscle genes, and synthesize extracellular matrix proteins, all of which are characteristics of activated myofibroblasts. The tumor cells also exhibited stromal components such as transforming growth factor beta (TGFbeta)-dependent, hypoxia-regulated cytoglobin (stellate cell activation association protein, cytg/STAP) and prolyl 4-hydroxylase, a collagen cross-linking enzyme. The pulmonary ASPS myofibroblasts synthesize serum response factor (SRF), a repressor of Smad3-mediated TGFbeta signaling essential for myofibroblast differentiation and Smad3. The phosphorylated active Smad3 was found mostly in the tumor cells. The brain tumor cells express cytg/STAP, but in contrast to the lung metastases, they also express SRF, Smad3, and phospho-Smad3. Halofuginone, an inhibitor of myofibroblasts' activation and Smad3 phosphorylation, inhibited tumor development in xenografts derived from renal carcinoma cells harboring a reciprocal ASPL-TFE3 fusion transcript. This inhibition was associated with the inhibition of TGFbeta/SRF signaling, with the inhibition of myofibroblasts' activation, and with the complete loss in TFE3 synthesis by the tumor cells. These results suggest that the myofibroblasts may serve as a novel target for treatment of ASPS metastases.
Collapse
|
39
|
Hu P, Geles KG, Paik JH, DePinho RA, Tjian R. Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 2008; 15:534-46. [PMID: 18854138 PMCID: PMC2614327 DOI: 10.1016/j.devcel.2008.08.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 07/21/2008] [Accepted: 08/29/2008] [Indexed: 11/18/2022]
Abstract
Although FoxO and Pax proteins represent two important families of transcription factors in determining cell fate, they had not been functionally or physically linked together in mediating regulation of a common target gene during normal cellular transcription programs. Here, we identify MyoD, a key regulator of myogenesis, as a direct target of FoxO3 and Pax3/7 in myoblasts. Our cell-based assays and in vitro studies reveal a tight codependent partnership between FoxO3 and Pax3/7 to coordinately recruit RNA polymerase II and form a preinitiation complex (PIC) to activate MyoD transcription in myoblasts. The role of FoxO3 in regulating muscle differentiation is confirmed in vivo by observed defects in muscle regeneration caused by MyoD downregulation in FoxO3 null mice. These data establish a mutual interdependence and functional link between two families of transcription activators serving as potential signaling sensors and regulators of cell fate commitment in directing tissue specific MyoD transcription.
Collapse
Affiliation(s)
- Ping Hu
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkley, CA94720, USA
| | - Kenneth G. Geles
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkley, CA94720, USA
| | - Ji-Hye Paik
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ronald A. DePinho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkley, CA94720, USA
- correspondence:
| |
Collapse
|
40
|
Iwasaki K, Hayashi K, Fujioka T, Sobue K. Rho/Rho-associated kinase signal regulates myogenic differentiation via myocardin-related transcription factor-A/Smad-dependent transcription of the Id3 gene. J Biol Chem 2008; 283:21230-41. [PMID: 18477564 PMCID: PMC3258938 DOI: 10.1074/jbc.m710525200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 05/05/2008] [Indexed: 12/27/2022] Open
Abstract
RhoA is known to be involved in myogenic differentiation, but whether it acts as a positive or negative regulator is controversial. To resolve this issue, we investigated the differentiation stage-specific roles of RhoA and its effector, Rho-associated kinase, using C2C12 myoblasts. We found that proliferating myoblasts show high levels of RhoA and serum-response factor activities and strong expression of the downstream target of RhoA, myocardin-related transcription factor-A (MRTF-A or MAL); these activities and expression are markedly lower in differentiating myocytes. We further demonstrated that, in proliferating myoblasts, an increase in MRTF-A, which forms a complex with Smad1/4, strikingly activates the expression level of the Id3 gene; the Id3 gene product is a potent inhibitor of myogenic differentiation. Finally, we found that during differentiation, one of the forkhead transcription factors translocates into the nucleus and suppresses Id3 expression by preventing the association of the MRTF-A-Smad complex with the Id3 promoter, which leads to the enhancement of myogenic differentiation. We conclude that RhoA/Rho-associated kinase signaling plays positive and negative roles in myogenic differentiation, mediated by MRTF-A/Smad-dependent transcription of the Id3 gene in a differentiation stage-specific manner.
Collapse
Affiliation(s)
- Kazuhiro Iwasaki
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| | - Ken'ichiro Hayashi
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| | - Tomoaki Fujioka
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| | - Kenji Sobue
- Department of Neuroscience
(D13), Research Center for Child
Mental Development, Osaka University Graduate School of Medicine, Yamadaoka
2-2, Suita, Osaka, 565-0871 and the
Department of Urology, Iwate Medical
University, Uchimaru 19-1, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
41
|
Chargé SB, Brack AS, Bayol SA, Hughes SM. MyoD- and nerve-dependent maintenance of MyoD expression in mature muscle fibres acts through the DRR/PRR element. BMC DEVELOPMENTAL BIOLOGY 2008; 8:5. [PMID: 18215268 PMCID: PMC2259323 DOI: 10.1186/1471-213x-8-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND MyoD is a transcription factor implicated in the regulation of adult muscle gene expression. Distinguishing the expression of MyoD in satellite myoblasts and muscle fibres has proved difficult in vivo leading to controversy over the significance of MyoD expression within adult innervated muscle fibres. Here we employ the MD6.0-lacZ transgenic mouse, in which the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD drives lacZ, to show that MyoD is present and transcriptionally active in many adult muscle fibres. RESULTS In culture, MD6.0-lacZ expresses in myotubes but not myogenic cells, unlike endogenous MyoD. Reporter expression in vivo is in muscle fibre nuclei and is reduced in MyoD null mice. The MD6.0-lacZ reporter is down-regulated both in adult muscle fibres by denervation or muscle disuse and in cultured myotubes by inhibition of activity. Activity induces and represses MyoD through the DRR and PRR, respectively. During the postnatal period, accumulation of beta-galactosidase correlates with maturation of innervation. Strikingly, endogenous MyoD expression is up-regulated in fibres by complete denervation, arguing for a separate activity-dependent suppression of MyoD requiring regulatory elements outside the DRR/PRR. CONCLUSION The data show that MyoD regulation is more complex than previously supposed. Two factors, MyoD protein itself and fibre activity are required for essentially all expression of the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD in adult fibres. We propose that modulation of MyoD positive feedback by electrical activity determines the set point of MyoD expression in innervated fibres through the DRR/PRR element.
Collapse
Affiliation(s)
- Sophie B Chargé
- Randall Division for Cell and Molecular Biophysics and the MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | | | | | | |
Collapse
|
42
|
Gopinath SD, Narumiya S, Dhawan J. The RhoA effector mDiaphanous regulates MyoD expression and cell cycle progression via SRF-dependent and SRF-independent pathways. J Cell Sci 2007; 120:3086-98. [PMID: 17684061 DOI: 10.1242/jcs.006619] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Expression of the key muscle transcription factor MyoD is regulated by RhoA GTPase, which is an important regulator of adhesion-dependent signaling. We show that mDiaphanous (mDia)--an adaptor protein that mediates the effects of RhoA on cell motility and the cytoskeleton--is an upstream regulator of MyoD in C2C12 mouse myoblasts. Knockdown of mDia1 reduced MyoD expression and proliferation via a serum-response factor (SRF)-dependent pathway. Surprisingly, overexpression of a Rho-independent form of mDia1 (mDiaDeltaN3), despite activating SRF, also suppressed MyoD and the cell cycle, suggesting the presence of a second pathway downstream of mDia1. We present evidence that the alternative pathway by which mDia1 regulates MyoD involves T-cell factor (TCF)/lymphoid enhancer factor (LEF) and its co-activator, beta-catenin. TCF activity was suppressed by mDiaDeltaN3 and induced by silencing mDia. mDiaDeltaN3 disrupted the signal-dependent nuclear localization of beta-catenin and suppressed MyoD expression. Co-expression of a degradation-resistant form of beta-catenin with mDiaDeltaN3 restored MyoD expression, suggesting a mechanistic link between the two signaling proteins. We also implicate a region encompassing the FH1 domain of mDia1 in beta-catenin-TCF regulation. Taken together, our results suggest that a balance between two pathways downstream of mDia regulates MyoD expression and cell cycle progression.
Collapse
|
43
|
L'honore A, Rana V, Arsic N, Franckhauser C, Lamb NJ, Fernandez A. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis. Mol Biol Cell 2007; 18:1992-2001. [PMID: 17377068 PMCID: PMC1877109 DOI: 10.1091/mbc.e06-09-0867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 02/06/2007] [Accepted: 03/14/2007] [Indexed: 01/19/2023] Open
Abstract
MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD expression during myoblast growth and muscle regeneration in vivo. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and microinjection analyses show this element is a hybrid SRF- and MEF2 Binding (SMB) sequence where myocyte enhancer factor 2 (MEF2) complexes can compete out binding of SRF at the onset of differentiation. As cells differentiate into postmitotic myotubes, MyoD expression no longer requires SRF but instead MEF2 binding to this dual-specificity element. As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes. Therefore, SMB is a DNA element with dual and stage-specific binding activity, which modulates the effects of regulatory proteins critical in controlling the balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Aurore L'honore
- Cell Biology Unit, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 05, France
| | - Vanessa Rana
- Cell Biology Unit, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 05, France
| | - Nikola Arsic
- Cell Biology Unit, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 05, France
| | - Celine Franckhauser
- Cell Biology Unit, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 05, France
| | - Ned J. Lamb
- Cell Biology Unit, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 05, France
| | - Anne Fernandez
- Cell Biology Unit, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 05, France
| |
Collapse
|
44
|
Pomiès P, Pashmforoush M, Vegezzi C, Chien KR, Auffray C, Beckerle MC. The cytoskeleton-associated PDZ-LIM protein, ALP, acts on serum response factor activity to regulate muscle differentiation. Mol Biol Cell 2007; 18:1723-33. [PMID: 17332502 PMCID: PMC1855033 DOI: 10.1091/mbc.e06-09-0815] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this report, an antisense RNA strategy has allowed us to show that disruption of ALP expression affects the expression of the muscle transcription factors myogenin and MyoD, resulting in the inhibition of muscle differentiation. Introduction of a MyoD expression construct into ALP-antisense cells is sufficient to restore the capacity of the cells to differentiate, illustrating that ALP function occurs upstream of MyoD. It is known that MyoD is under the control of serum response factor (SRF), a transcriptional regulator whose activity is modulated by actin dynamics. A dramatic reduction of actin filament bundles is observed in ALP-antisense cells and treatment of these cells with the actin-stabilizing drug jasplakinolide stimulates SRF activity and restores the capacity of the cells to differentiate. Furthermore, we show that modulation of ALP expression influences SRF activity, the level of its coactivator, MAL, and muscle differentiation. Collectively, these results suggest a critical role of ALP on muscle differentiation, likely via cytoskeletal regulation of SRF.
Collapse
Affiliation(s)
- Pascal Pomiès
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5237, Centre de Recherches de Biochimie Macromoléculaire, 34293 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
45
|
Tan X, Zhang Y, Zhang PJ, Xu P, Xu Y. Molecular structure and expression patterns of flounder (Paralichthys olivaceus) Myf-5, a myogenic regulatory factor. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:204-13. [PMID: 16963299 DOI: 10.1016/j.cbpb.2006.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 06/29/2006] [Accepted: 07/15/2006] [Indexed: 12/01/2022]
Abstract
Myf-5, a member of the myogenic regulatory factors (MRF), has been shown to be expressed in muscle precursors in early stage zebrafish embryos. The MRFs, including MyoD, Myf-5, Myogenin and MRF4, belong to the basic Helix-Loop-Helix transcription factors that contain a conserved basic Helix-Loop-Helix (bHLH) domain. To better understand the role of Myf-5 in the development of fish muscles, we have isolated the Myf-5 genomic sequence and cDNA from Flounder (Paralichthys olivaceus), and analyzed its structures and patterns of expression. Promoter analysis identified several putative transcription factor binding sites such as an E-box, NF-Y sites that might confer muscle-specific expression. Myf-5 transcripts were first detected in the paraxial mesoderm that gives rise to slow muscles. During somitogenesis, Myf-5 expression was found in developing somites. Myf-5 expression decreased gradually in somites in the anterior region, but remained strong in the newly formed somites. In the hatching stage, the expression was also detected in other muscle cells such as head muscle and fin muscle. In the growing fish, RT-PCR results showed that Myf-5 was expressed in the skeletal muscle and intestine.
Collapse
Affiliation(s)
- Xungang Tan
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P.R. China
| | | | | | | | | |
Collapse
|
46
|
Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Sotiropoulos A, Renou L, Schmitt A, Melki J, Li Z, Daegelen D, Tuil D. New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 2006; 26:6664-74. [PMID: 16914747 PMCID: PMC1592825 DOI: 10.1128/mcb.00138-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Cell Nucleus/metabolism
- Cell Size
- Gene Expression Regulation
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Integrases/genetics
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Organ Size
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regeneration
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Serum Response Factor/deficiency
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
Collapse
Affiliation(s)
- Claude Charvet
- Institut Cochin, Faculté de Médecine Cochin Port Royal, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bryan BA, Mitchell DC, Zhao L, Ma W, Stafford LJ, Teng BB, Liu M. Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol Cell Biol 2006; 25:11089-101. [PMID: 16314529 PMCID: PMC1316953 DOI: 10.1128/mcb.25.24.11089-11101.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho family guanine nucleotide exchange factors (GEFs) regulate diverse cellular processes including cytoskeletal reorganization, cell adhesion, and differentiation via activation of the Rho GTPases. However, no studies have yet implicated Rho-GEFs as molecular regulators of the mesenchymal cell fate decisions which occur during development and repair of tissue damage. In this study, we demonstrate that the steady-state protein level of the Rho-specific GEF GEFT is modulated during skeletal muscle regeneration and that gene transfer of GEFT into cardiotoxin-injured mouse tibialis anterior muscle exerts a powerful promotion of skeletal muscle regeneration in vivo. In order to molecularly characterize this regenerative effect, we extrapolate the mechanism of action by examining the consequence of GEFT expression in multipotent cell lines capable of differentiating into a number of cell types, including muscle and adipocyte lineages. Our data demonstrate that endogenous GEFT is transcriptionally upregulated during myogenic differentiation and downregulated during adipogenic differentiation. Exogenous expression of GEFT promotes myogenesis of C2C12 cells via activation of RhoA, Rac1, and Cdc42 and their downstream effector proteins, while a dominant-negative mutant of GEFT inhibits this process. Moreover, we show that GEFT inhibits insulin-induced adipogenesis in 3T3L1 preadipocytes. In summary, we provide the first evidence that the Rho family signaling pathways act as potential regulators of skeletal muscle regeneration and provide the first reported molecular mechanism illustrating how a mammalian Rho family GEF controls this process by modulating mesenchymal cell fate decisions.
Collapse
Affiliation(s)
- Brad A Bryan
- The Institute of Biosciences and Technology and Department of Medical Biochemistry and Genetics, University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
René C, Taulan M, Iral F, Doudement J, L'Honoré A, Gerbon C, Demaille J, Claustres M, Romey MC. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway. Nucleic Acids Res 2005; 33:5271-90. [PMID: 16170155 PMCID: PMC1216340 DOI: 10.1093/nar/gki837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.
Collapse
Affiliation(s)
- Céline René
- Laboratoire de Génétique Moléculaire et Chromosomique, Institut Universitaire de Recherche Clinique, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cen B, Selvaraj A, Prywes R. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 2005; 93:74-82. [PMID: 15352164 DOI: 10.1002/jcb.20199] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myocardin, megakaryoblastic leukemia-1 (MKL1), and MKL2 belong to a newly defined family of transcriptional coactivators. All three family members bind to serum response factor (SRF) and strongly activate transcription from promoters with SRF binding sites. SRF is required for the serum induction of immediate early genes such as c-fos and for the expression of many muscle specific genes. Consistent with a role in muscle specific gene expression, myocardin is specifically expressed in cardiac and smooth muscle cells while MKL1 and 2 are broadly expressed. Myocardin has particularly been shown to be required for smooth muscle development while MKL1/2 are required for the RhoA signaling pathway for induction of immediate early genes. SRF can be activated by at least two families of coactivators, p62TCF and myocardin/MKL. These factors bind to the same region of SRF such that their binding is mutually exclusive. This provides one mechanism of regulation of SRF target genes by pathways that differentially activate the coactivators. The RhoA pathway appears to activate MKL1 by altering MKL1's binding to actin and causing MKL1's translocation from the cytoplasm to the nucleus. However, this mechanism of activation of the myocardin/MKL family has not been observed in all cell types such that other regulatory mechanism(s) likely exist. In particular, rapid serum inducible phosphorylation of MKL1 was observed. The regulation of this coactivator family is key to understanding how SRF target genes are activated during muscle cell differentiation or growth factor induced cell proliferation.
Collapse
Affiliation(s)
- Bo Cen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
50
|
Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 2005; 18:2627-38. [PMID: 15520282 PMCID: PMC525543 DOI: 10.1101/gad.1241904] [Citation(s) in RCA: 503] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ezh2 protein endows the Polycomb PRC2 and PRC3 complexes with histone lysine methyltransferase (HKMT) activity that is associated with transcriptional repression. We report that Ezh2 expression was developmentally regulated in the myotome compartment of mouse somites and that its down-regulation coincided with activation of muscle gene expression and differentiation of satellite-cell-derived myoblasts. Increased Ezh2 expression inhibited muscle differentiation, and this property was conferred by its SET domain, required for the HKMT activity. In undifferentiated myoblasts, endogenous Ezh2 was associated with the transcriptional regulator YY1. Both Ezh2 and YY1 were detected, with the deacetylase HDAC1, at genomic regions of silent muscle-specific genes. Their presence correlated with methylation of K27 of histone H3. YY1 was required for Ezh2 binding because RNA interference of YY1 abrogated chromatin recruitment of Ezh2 and prevented H3-K27 methylation. Upon gene activation, Ezh2, HDAC1, and YY1 dissociated from muscle loci, H3-K27 became hypomethylated and MyoD and SRF were recruited to the chromatin. These findings suggest the existence of a two-step activation mechanism whereby removal of H3-K27 methylation, conferred by an active Ezh2-containing protein complex, followed by recruitment of positive transcriptional regulators at discrete genomic loci are required to promote muscle gene expression and cell differentiation.
Collapse
Affiliation(s)
- Giuseppina Caretti
- Muscle Gene Expression Group, Laboratory of Muscle Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|