1
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
2
|
de Talhouët C, Esteras N, Soutar MPM, O'Callaghan B, Plun-Favreau H. KAT8 compound inhibition inhibits the initial steps of PINK1-dependant mitophagy. Sci Rep 2024; 14:11721. [PMID: 38777823 PMCID: PMC11111795 DOI: 10.1038/s41598-024-60602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
It has recently been shown that KAT8, a genome-wide association study candidate risk gene for Parkinson's Disease, is involved in PINK1/Parkin-dependant mitophagy. The KAT8 gene encodes a lysine acetyltransferase and represents the catalytically active subunit of the non-specific lethal epigenetic remodelling complex. In the current study, we show that contrary to KAT5 inhibition, dual inhibition of KAT5 and KAT8 via the MG149 compound inhibits the initial steps of the PINK1-dependant mitophagy process. More specifically, our study shows that following mitochondrial depolarisation induced by mitochondrial toxins, MG149 treatment inhibits PINK1-dependant mitophagy initiation by impairing PINK1 activation, and subsequent phosphorylation of Parkin and ubiquitin. While this inhibitory effect of MG149 on PINK1-activation is potent, MG149 treatment in the absence of mitochondrial toxins is sufficient to depolarise the mitochondrial membrane, recruit PINK1 and promote partial downstream recruitment of the autophagy receptor p62, leading to an increase in mitochondrial delivery to the lysosomes. Altogether, our study provides additional support for KAT8 as a regulator of mitophagy and autophagy processes.
Collapse
Affiliation(s)
- Capucine de Talhouët
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Noemi Esteras
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marc P M Soutar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin O'Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Helene Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Soutar MPM, Melandri D, O’Callaghan B, Annuario E, Monaghan AE, Welsh NJ, D’Sa K, Guelfi S, Zhang D, Pittman A, Trabzuni D, Verboven AHA, Pan KS, Kia DA, Bictash M, Gandhi S, Houlden H, Cookson MR, Kasri NN, Wood NW, Singleton AB, Hardy J, Whiting PJ, Blauwendraat C, Whitworth AJ, Manzoni C, Ryten M, Lewis PA, Plun-Favreau H. Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci. Brain 2022; 145:4349-4367. [PMID: 36074904 PMCID: PMC9762952 DOI: 10.1093/brain/awac325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.
Collapse
Affiliation(s)
- Marc P M Soutar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Daniela Melandri
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Emily Annuario
- Department of Basic and Clinical Neuroscience, King’s College, London, UK
| | - Amy E Monaghan
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Natalie J Welsh
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Karishma D’Sa
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Francis Crick Institute, London, UK
| | - Sebastian Guelfi
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St Georges University, London, UK
| | - Daniah Trabzuni
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Kylie S Pan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Magda Bictash
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Francis Crick Institute, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nicholas W Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- UCL Dementia Research Institute, London, UK
| | - Paul J Whiting
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Patrick A Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, LondonUK
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Chen HY, Hsu CL, Lin HY, Lin YF, Tsai SF, Ho YJ, Li YR, Tsai JW, Teng SC, Lin CH. Clinical and functional characterization of a novel STUB1 frameshift mutation in autosomal dominant spinocerebellar ataxia type 48 (SCA48). J Biomed Sci 2021; 28:65. [PMID: 34565360 PMCID: PMC8466936 DOI: 10.1186/s12929-021-00763-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterozygous pathogenic variants in STUB1 are implicated in autosomal dominant spinocerebellar ataxia type 48 (SCA48), which is a rare familial ataxia disorder. We investigated the clinical, genetic and functional characteristics of STUB1 mutations identified from a Taiwanese ataxia cohort. METHODS We performed whole genome sequencing in a genetically undiagnosed family with an autosomal dominant ataxia syndrome. Further Sanger sequencing of all exons and intron-exon boundary junctions of STUB1 in 249 unrelated patients with cerebellar ataxia was performed. The pathogenicity of the identified novel STUB1 variant was investigated. RESULTS We identified a novel heterozygous frameshift variant, c.832del (p.Glu278fs), in STUB1 in two patients from the same family. This rare mutation is located in the U-box of the carboxyl terminus of the Hsc70-interacting protein (CHIP) protein, which is encoded by STUB1. Further in vitro experiments demonstrated that this novel heterozygous STUB1 frameshift variant impairs the CHIP protein's activity and its interaction with the E2 ubiquitin ligase, UbE2D1, leading to neuronal accumulation of tau and α-synuclein, caspase-3 activation, and promoting cellular apoptosis through a dominant-negative pathogenic effect. The in vivo study revealed the influence of the CHIP expression level on the differentiation and migration of cerebellar granule neuron progenitors during cerebellar development. CONCLUSIONS Our findings provide clinical, genetic, and a mechanistic insight linking the novel heterozygous STUB1 frameshift mutation at the highly conserved U-box domain of CHIP as the cause of autosomal dominant SCA48. Our results further stress the importance of CHIP activity in neuronal protein homeostasis and cerebellar functions.
Collapse
Affiliation(s)
- Huan-Yun Chen
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, Number 7, Chung-Shan South Road, Taipei, 10051, Taiwan
| | - Yung-Feng Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jung Ho
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ye-Ru Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Center of Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Number 7, Chung-Shan South Road, Taipei, 10051, Taiwan.
| |
Collapse
|
5
|
López-Doménech G, Howden JH, Covill-Cooke C, Morfill C, Patel JV, Bürli R, Crowther D, Birsa N, Brandon NJ, Kittler JT. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J 2021; 40:e100715. [PMID: 34152608 PMCID: PMC8280823 DOI: 10.15252/embj.2018100715] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/31/2022] Open
Abstract
Clearance of mitochondria following damage is critical for neuronal homeostasis. Here, we investigate the role of Miro proteins in mitochondrial turnover by the PINK1/Parkin mitochondrial quality control system in vitro and in vivo. We find that upon mitochondrial damage, Miro is promiscuously ubiquitinated on multiple lysine residues. Genetic deletion of Miro or block of Miro1 ubiquitination and subsequent degradation lead to delayed translocation of the E3 ubiquitin ligase Parkin onto damaged mitochondria and reduced mitochondrial clearance in both fibroblasts and cultured neurons. Disrupted mitophagy in vivo, upon post-natal knockout of Miro1 in hippocampus and cortex, leads to a dramatic increase in mitofusin levels, the appearance of enlarged and hyperfused mitochondria and hyperactivation of the integrated stress response (ISR). Altogether, our results provide new insights into the central role of Miro1 in the regulation of mitochondrial homeostasis and further implicate Miro1 dysfunction in the pathogenesis of human neurodegenerative disease.
Collapse
Affiliation(s)
| | - Jack H Howden
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Corinne Morfill
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Jigna V Patel
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Roland Bürli
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Nicol Birsa
- UCL Institute of Neurology, Queen Square, London, UK
| | | | - Josef T Kittler
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
6
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
7
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
8
|
Mazzetti S, De Leonardis M, Gagliardi G, Calogero AM, Basellini MJ, Madaschi L, Costa I, Cacciatore F, Spinello S, Bramerio M, Cilia R, Rolando C, Giaccone G, Pezzoli G, Cappelletti G. Phospho-HDAC6 Gathers Into Protein Aggregates in Parkinson's Disease and Atypical Parkinsonisms. Front Neurosci 2020; 14:624. [PMID: 32655357 PMCID: PMC7324673 DOI: 10.3389/fnins.2020.00624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 05/19/2020] [Indexed: 01/10/2023] Open
Abstract
HDAC6 is a unique histone deacetylase that targets cytoplasmic non-histone proteins and has a specific ubiquitin-binding activity. Both of these activities are required for HDAC6-mediated formation of aggresomes, which contain misfolded proteins that will ultimately be degraded via autophagy. HDAC6 deacetylase activity is increased following phosphorylation on serine 22 (phospho-HDAC6). In human, HDAC6 localizes in neuronal Lewy bodies in Parkinson’s disease (PD) and in oligodendrocytic Papp–Lantos bodies in multiple system atrophy (MSA). However, the expression of phospho-HDAC6 in post-mortem human brains is currently unexplored. Here, we evaluate and compare the distribution of HDAC6 and its phosphorylated form in human brains obtained from patients affected by three forms of parkinsonism: two synucleinopathies (PD and MSA) and a tauopathy (progressive supranuclear palsy, PSP). We find that both HDAC6 and its phosphorylated form localize with pathological protein aggregates, including α-synuclein-positive Lewy bodies in PD and Papp–Lantos bodies in MSA, and phospho-tau-positive neurofibrillary tangles in PSP. We further find a direct interaction of HDAC6 with α-synuclein with proximity ligation assay (PLA) in neuronal cell of PD patients. Taken together, our findings suggest that both HDAC6 and phospho-HDAC6 regulate the homeostasis of intra-neuronal proteins in parkinsonism.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Mara De Leonardis
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gloria Gagliardi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Laura Madaschi
- UNITECH NO LIMITS, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Costa
- Imaging TDU, IFOM Foundation, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca Cacciatore
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sonia Spinello
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Manuela Bramerio
- S. C. Divisione Oncologia Falck and S. C. Divisione Anatomia Patologica, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Roberto Cilia
- Parkinson Institute, ASST "G.Pini-CTO," Milan, Italy
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO," Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Soutar MPM, Kempthorne L, Annuario E, Luft C, Wray S, Ketteler R, Ludtmann MHR, Plun-Favreau H. FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy 2019; 15:2002-2011. [PMID: 31060423 PMCID: PMC6844515 DOI: 10.1080/15548627.2019.1603549] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial quality control is essential for maintaining a healthy population of mitochondria. Two proteins associated with Parkinson disease, the kinase PINK1 and the E3 ubiquitin ligase PRKN, play a central role in the selective degradation of heavily damaged mitochondria (mitophagy), thus avoiding their toxic accumulation. Most of the knowledge on PINK1-PRKN mitophagy comes from in vitro experiments involving the treatment of mammalian cells with high concentrations of mitochondrial uncouplers, such as CCCP. These chemicals have been shown to mediate off target effects, other than mitochondrial depolarization. A matter of controversy between mitochondrial physiologists and cell biologists is the discrepancy between concentrations of CCCP needed to activate mitophagy (usually >10 μM), when compared to the much lower concentrations used to depolarize mitochondria (<1 μM). Thus, there is an urgent need for optimizing the current methods to assess PINK1-PRKN mitophagy in vitro. In this study, we address the utilization of high CCCP concentrations commonly used to activate mitophagy. Combining live fluorescence microscopy and biochemistry, we show that the FBS/BSA in the cell culture medium reduces the ability of CCCP to induce PINK1 accumulation at depolarized mitochondria, subsequent PRKN recruitment and ubiquitin phosphorylation, and ultimately mitochondrial clearance. As a result, high concentrations of CCCP are required to induce mitophagy in FBS/BSA containing media. These data unite mitochondrial physiology and mitophagy studies and are a first step toward a consensus on optimal experimental conditions for PINK1-PRKN mitophagy and mitochondrial physiology investigations to be carried out in parallel. Abbreviations: BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; DMEM: dulbecco's Modified Eagle's Medium; DNP: 2,4-dinitrophenol; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; GSH: glutathione; HBSS: Hanks' balanced salt solution; mtKeima: mitochondria-targeted monomeric keima-red; PBS: phosphate buffered saline; PD: Parkinson disease; PINK1: PTEN induced kinase 1; POE SHSY5Ys: FLAG-PRKN over-expressing SHSY5Y cells; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TMRM: tetramethylrhodamine methyl ester; WB: western blot; WT: wild-type; ΔΨm: mitochondrial membrane potential.
Collapse
Affiliation(s)
| | - Liam Kempthorne
- Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Emily Annuario
- Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, UCL, London, UK
| | - Selina Wray
- Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, London, UK
| | | | | |
Collapse
|
10
|
Gerhardt MJ, Marsh JA, Morrison M, Kazlauskas A, Khadka A, Rosenkranz S, DeAngelis MM, Saint-Geniez M, Jacobo SMP. ER stress-induced aggresome trafficking of HtrA1 protects against proteotoxicity. J Mol Cell Biol 2019; 9:516-532. [PMID: 28992183 PMCID: PMC5823240 DOI: 10.1093/jmcb/mjx024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/08/2017] [Indexed: 01/13/2023] Open
Abstract
High temperature requirement A1 (HtrA1) belongs to an ancient protein family that is linked to various human disorders. The precise role of exon 1-encoded N-terminal domains and how these influence the biological functions of human HtrA1 remain elusive. In this study, we traced the evolutionary origins of these N-terminal domains to a single gene fusion event in the most recent common ancestor of vertebrates. We hypothesized that human HtrA1 is implicated in unfolded protein response. In highly secretory cells of the retinal pigmented epithelia, endoplasmic reticulum (ER) stress upregulated HtrA1. HtrA1 co-localized with vimentin intermediate filaments in highly arborized fashion. Upon ER stress, HtrA1 tracked along intermediate filaments, which collapsed and bundled in an aggresome at the microtubule organizing center. Gene silencing of HtrA1 altered the schedule and amplitude of adaptive signaling and concomitantly resulted in apoptosis. Restoration of wild-type HtrA1, but not its protease inactive mutant, was necessary and sufficient to protect from apoptosis. A variant of HtrA1 that harbored exon 1 substitutions displayed reduced efficacy in rescuing cells from proteotoxicity. Our results illuminate the integration of HtrA1 in the toolkit of mammalian cells against protein misfolding and the implications of defects in HtrA1 in proteostasis.
Collapse
Affiliation(s)
- Maximilian J Gerhardt
- Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department III of Internal Medicine, Cologne University Heart Center, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaux Morrison
- Department of Ophthalmology and Visual Sciences, University of Utah and John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Arogya Khadka
- Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Stephan Rosenkranz
- Department III of Internal Medicine, Cologne University Heart Center, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah and John A. Moran Eye Center, Salt Lake City, UT 84132, USA
| | - Magali Saint-Geniez
- Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Sarah Melissa P Jacobo
- Department of Ophthalmology, Harvard Medical School, The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| |
Collapse
|
11
|
Yeshaw WM, van der Zwaag M, Pinto F, Lahaye LL, Faber AI, Gómez-Sánchez R, Dolga AM, Poland C, Monaco AP, van IJzendoorn SC, Grzeschik NA, Velayos-Baeza A, Sibon OC. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. eLife 2019; 8:43561. [PMID: 30741634 PMCID: PMC6389287 DOI: 10.7554/elife.43561] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/10/2019] [Indexed: 02/03/2023] Open
Abstract
The VPS13A gene is associated with the neurodegenerative disorder Chorea Acanthocytosis. It is unknown what the consequences are of impaired function of VPS13A at the subcellular level. We demonstrate that VPS13A is a peripheral membrane protein, associated with mitochondria, the endoplasmic reticulum and lipid droplets. VPS13A is localized at sites where the endoplasmic reticulum and mitochondria are in close contact. VPS13A interacts with the ER residing protein VAP-A via its FFAT domain. Interaction with mitochondria is mediated via its C-terminal domain. In VPS13A-depleted cells, ER-mitochondria contact sites are decreased, mitochondria are fragmented and mitophagy is decreased. VPS13A also localizes to lipid droplets and affects lipid droplet motility. In VPS13A-depleted mammalian cells lipid droplet numbers are increased. Our data, together with recently published data from others, indicate that VPS13A is required for establishing membrane contact sites between various organelles to enable lipid transfer required for mitochondria and lipid droplet related processes.
Collapse
Affiliation(s)
- Wondwossen M Yeshaw
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesco Pinto
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liza L Lahaye
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anita Ie Faber
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rubén Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Conor Poland
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.,Office of the President, Tufts University, Medford, United States
| | - Sven Cd van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Ody Cm Sibon
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Soutar MPM, Kempthorne L, Miyakawa S, Annuario E, Melandri D, Harley J, O'Sullivan GA, Wray S, Hancock DC, Cookson MR, Downward J, Carlton M, Plun-Favreau H. AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Sci Rep 2018; 8:8855. [PMID: 29891871 PMCID: PMC5995958 DOI: 10.1038/s41598-018-26949-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
The discovery of mutations within genes associated with autosomal recessive Parkinson's disease allowed for the identification of PINK1/Parkin regulated mitophagy as an important pathway for the removal of damaged mitochondria. While recent studies suggest that AKT-dependent signalling regulates Parkin recruitment to depolarised mitochondria, little is known as to whether this can also regulate PINK1 mitochondrial accumulation and downstream mitophagy. Here, we demonstrate that inhibition of AKT signalling decreases endogenous PINK1 accumulation in response to mitochondria depolarisation, subsequent Parkin recruitment, phosphorylation of ubiquitin, and ultimately mitophagy. Conversely, we show that upon stimulation of AKT signalling via insulin, the mitophagy pathway is increased in SHSY5Y cells. These data suggest that AKT signalling is an upstream regulator of PINK1 accumulation on damaged mitochondria. Importantly, we show that the AKT pathway also regulates endogenous PINK1-dependent mitophagy in human iPSC-derived neurons.
Collapse
Affiliation(s)
- Marc P M Soutar
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Liam Kempthorne
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Shuichi Miyakawa
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emily Annuario
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Daniela Melandri
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jasmine Harley
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David C Hancock
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, NIH, Building 35, Room 1A116, 35 Convent Drive, Bethesda, MD, 20814, USA
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark Carlton
- CereVance Ltd. 418 Science Park, Milton Rd, Cambridge, CB4 0PZ, UK
| | - Hélène Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
13
|
Radón V, Czesla M, Reichelt J, Fehlert J, Hammel A, Rosendahl A, Knop JH, Wiech T, Wenzel UO, Sachs M, Reinicke AT, Stahl RA, Meyer-Schwesinger C. Ubiquitin C-Terminal Hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney. Kidney Int 2018; 93:110-127. [DOI: 10.1016/j.kint.2017.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
|
14
|
Sheng XJ, Tu HJ, Chien WL, Kang KH, Lu DH, Liou HH, Lee MJ, Fu WM. Antagonism of proteasome inhibitor-induced heme oxygenase-1 expression by PINK1 mutation. PLoS One 2017; 12:e0183076. [PMID: 28806787 PMCID: PMC5555616 DOI: 10.1371/journal.pone.0183076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) is an integral protein in the mitochondrial membrane and maintains mitochondrial fidelity. Pathogenic mutations in PINK1 have been identified as a cause of early-onset autosomal recessive familial Parkinson’s disease (PD). The ubiquitin proteasome pathway is associated with neurodegenerative diseases. In this study, we investigated whether mutations of PINK1 affects the cellular stress response following proteasome inhibition. Administration of MG132, a peptide aldehyde proteasome inhibitor, significantly increased the expression of heme oxygenase-1 (HO-1) in rat dopaminergic neurons in the substantia nigra and in the SH-SY5Y neuronal cell line. The induction of HO-1 expression by proteasome inhibition was reduced in PINK1 G309D mutant cells. MG132 increased the levels of HO-1 through the Akt, p38, and Nrf2 signaling pathways. Compared with the cells expressing WT-PINK1, the phosphorylation of Akt and p38 was lower in those cells expressing the PINK1 G309D mutant, which resulted in the inhibition of the nuclear translocation of Nrf2. Furthermore, MG132-induced neuronal death was enhanced by the PINK1 G309D mutation. In this study, we demonstrated that the G309D mutation impairs the neuroprotective function of PINK1 following proteasome inhibition, which may be related to the pathogenesis of PD.
Collapse
Affiliation(s)
- Xiang-Jun Sheng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hunag-Ju Tu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Lin Chien
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Hsiang Kang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dai-Hua Lu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (WF); (ML)
| | - Wen-Mei Fu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (WF); (ML)
| |
Collapse
|
15
|
Chen L, Liu S, Xu F, Kong Y, Wan L, Zhang Y, Zhang Z. Inhibition of Proteasome Activity Induces Aggregation of IFIT2 in the Centrosome and Enhances IFIT2-Induced Cell Apoptosis. Int J Biol Sci 2017; 13:383-390. [PMID: 28367102 PMCID: PMC5370445 DOI: 10.7150/ijbs.17236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/27/2016] [Indexed: 01/18/2023] Open
Abstract
IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), one of the most highly responsive interferon-stimulated genes, inhibits the proliferation and migration of cancer cells and regulates viral replication. IFIT2 has been demonstrated to be a cytoskeleton-associated protein that becomes enriched in the mitotic spindle of cells. However, the molecular mechanisms by which IFIT2 executes biological functions are largely unclear. The findings of this study showed that inhibiting the activation of proteasome led to the enrichment of IFIT2 and induced the aggregation of IFIT2 protein in the centrosome. Microtubule inhibitor colchicine and dynein inhibitor ciliobrevin inhibited the proteasome inhibitor-induced aggregation of IFIT2 protein in the centrosome. Intriguingly, IFIT2 and proteasome inhibitor worked together to induce the apoptosis of cancer cells. The results of the present study revealed that the inhibition of proteasome activity blocked the degradation of IFIT2 and promoted the aggregation of IFIT2 in the centrosome, which in turn induced cell apoptosis. In short, IFIT2 may be a potential target for cancer therapeutics.
Collapse
Affiliation(s)
- Limin Chen
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China;; Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuyuan Liu
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fen Xu
- Department of Clinical Laboratory Technology, Jiangxi Medical College, Shangrao, Jiangxi 334000, China
| | - Yunyuan Kong
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lagen Wan
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yonglu Zhang
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhanglin Zhang
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
16
|
Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G. Sci Rep 2016; 6:34830. [PMID: 27713507 PMCID: PMC5054386 DOI: 10.1038/srep34830] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative disorders and several mutations in different genes have been identified to contribute to the disease. A loss of function parkin RING1 domain mutant (C289G) is associated with autosomal-recessive juvenile-onset Parkinsonism (AR-JP) and displays altered solubility and sequesters into aggregates. Single overexpression of almost each individual member of the Hsp40 (DNAJ) family of chaperones efficiently reduces parkin C289G aggregation and requires interaction with and activity of endogenously expressed Hsp70 s. For DNAJB6 and DNAJB8, potent suppressors of aggregation of polyglutamine proteins for which they rely mainly on an S/T-rich region, it was found that the S/T-rich region was dispensable for suppression of parkin C289G aggregation. Our data implies that different disease-causing proteins pose different challenges to the protein homeostasis system and that DNAJB6 and DNAJB8 are highly versatile members of the DNAJ protein family with multiple partially non-overlapping modes of action with respect to handling disease-causing proteins, making them interesting potential therapeutic targets.
Collapse
|
17
|
Interdependence of laforin and malin proteins for their stability and functions could underlie the molecular basis of locus heterogeneity in Lafora disease. J Biosci 2016; 40:863-71. [PMID: 26648032 DOI: 10.1007/s12038-015-9570-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lafora disease (LD), an autosomal recessive and fatal form of neurodegenerative disorder, is characterized by the presence of polyglucosan inclusions in the affected tissues including the brain. LD can be caused by defects either in the EPM2A gene coding for the laforin protein phosphatase or the NHLRC1 gene coding for the malin ubiquitin ligase. Since the clinical symptoms of LD patients representing the two genetic groups are very similar and since malin is known to interact with laforin, we were curious to examine the possibility that the two proteins regulate each other's function. Using cell biological assays we demonstrate here that (i) malin promotes its own degradation via autoubiquitination, (ii) laforin prevents the auto-degradation of malin by presenting itself as a substrate and (iii) malin preferentially degrades the phosphatase-inactive laforin monomer. Our results that laforin and malin regulate each other's stability and activity offers a novel and attractive model to explain the molecular basis of locus heterogeneity observed in LD.
Collapse
|
18
|
Berezhnov AV, Soutar MPM, Fedotova EI, Frolova MS, Plun-Favreau H, Zinchenko VP, Abramov AY. Intracellular pH Modulates Autophagy and Mitophagy. J Biol Chem 2016; 291:8701-8. [PMID: 26893374 DOI: 10.1074/jbc.m115.691774] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 12/15/2022] Open
Abstract
The specific autophagic elimination of mitochondria (mitophagy) plays the role of quality control for this organelle. Deregulation of mitophagy leads to an increased number of damaged mitochondria and triggers cell death. The deterioration of mitophagy has been hypothesized to underlie the pathogenesis of several neurodegenerative diseases, most notably Parkinson disease. Although some of the biochemical and molecular mechanisms of mitochondrial quality control are described in detail, physiological or pathological triggers of mitophagy are still not fully characterized. Here we show that the induction of mitophagy by the mitochondrial uncoupler FCCP is independent of the effect of mitochondrial membrane potential but dependent on acidification of the cytosol by FCCP. The ionophore nigericin also reduces cytosolic pH and induces PINK1/PARKIN-dependent and -independent mitophagy. The increase of intracellular pH with monensin suppresses the effects of FCCP and nigericin on mitochondrial degradation. Thus, a change in intracellular pH is a regulator of mitochondrial quality control.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- From the Department of Intracellular Signaling, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russian Federation and
| | - Marc P M Soutar
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Evgeniya I Fedotova
- From the Department of Intracellular Signaling, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russian Federation and
| | - Maria S Frolova
- From the Department of Intracellular Signaling, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russian Federation and
| | - Helene Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Valery P Zinchenko
- From the Department of Intracellular Signaling, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russian Federation and
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
19
|
Zhang CW, Hang L, Yao TP, Lim KL. Parkin Regulation and Neurodegenerative Disorders. Front Aging Neurosci 2016; 7:248. [PMID: 26793099 PMCID: PMC4709595 DOI: 10.3389/fnagi.2015.00248] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Cheng-Wu Zhang
- Neurodegeneration Research Laboratory, National Neuroscience InstituteSingapore, Singapore; Institute of Advanced Materials, Nanjing Tech UniversityNanjing, People's Republic of China
| | - Liting Hang
- Department of Physiology, National University of Singapore Singapore, Singapore
| | - Tso-Pang Yao
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center Durham, NC, USA
| | - Kah-Leong Lim
- Neurodegeneration Research Laboratory, National Neuroscience InstituteSingapore, Singapore; Institute of Advanced Materials, Nanjing Tech UniversityNanjing, People's Republic of China; Department of Physiology, National University of SingaporeSingapore, Singapore; Duke-NUS Graduate Medical School, National University of SingaporeSingapore, Singapore
| |
Collapse
|
20
|
D’Amico AG, Maugeri G, Magro G, Salvatorelli L, Drago F, D’Agata V. Expression pattern of parkin isoforms in lung adenocarcinomas. Tumour Biol 2015; 36:5133-41. [DOI: 10.1007/s13277-015-3166-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022] Open
|
21
|
Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2014; 25:125-36. [PMID: 25468068 DOI: 10.1016/j.tcb.2014.10.004] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Abstract
Tubulin and microtubules are subject to a remarkable number of post-translational modifications. Understanding the roles these modifications play in determining the functions and properties of microtubules has presented a major challenge that is only now being met. Many of these modifications are found concurrently, leading to considerable diversity in cellular microtubules, which varies with development, differentiation, cell compartment, and cell cycle. We now know that post-translational modifications of tubulin affect, not only the dynamics of the microtubules, but also their organization and interaction with other cellular components. Many early suggestions of how post-translational modifications affect microtubules have been replaced with new ideas and even new modifications as our understanding of cellular microtubule diversity comes into focus.
Collapse
Affiliation(s)
- Yuyu Song
- Yale School of Medicine, Department of Genetics and Howard Hughes Medical Institute, Boyer Center, 295 Congress Avenue, New Haven, CT 065105, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, 808 S. Wood St., Rm 578 (M/C 512), University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Yamada T, Kawabata Y. Pneumocyte injury and ubiquitin-positive pneumocytes in interstitial lung diseases. Histopathology 2014; 66:161-72. [PMID: 25123224 PMCID: PMC4329384 DOI: 10.1111/his.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pneumocyte injury is a characteristic of pulmonary interstitial pneumonias (IPs). Histological markers of pneumocyte injury and inflammation include pneumocyte necrosis, erosion, hyaline membrane and fibrin exudation with subsequent intraluminal granulation tissue formation. We found that intracytoplasmic inclusions in pneumocytes are ubiquitin-positive (Ub+) and that the number of Ub+ pneumocytes shows positive correlation with the extent of diffuse alveolar damage (DAD). To determine the role of Ub+ pneumocytes and inclusions in IPs, we studied their relationship with pathological and clinical features of DAD, usual interstitial pneumonia (UIP) and organizing pneumonia (OP), including airspace enlargement with fibrosis (AEF). We analysed Ub+ pneumocytes, inclusions, erosions and intraluminal granulation tissue in relation to pneumocyte injury. The numbers of immunohistochemically identified Ub+ inclusions in each IP were higher than the number of inclusions detected by light microscopy. The inclusions detected by Ub+ immunostaining were identical to the inclusions observed by light microscopy. UIP and DAD had many Ub+ inclusions, while OP and AEF had fewer Ub+ inclusions. These results suggest that the extent of Ub+ inclusions reflects the severity of pneumocyte injury among IPs. Thus, Ub+ inclusions are a histological marker of pneumocyte injury that may be helpful in determining the severity and prognosis of IPs.
Collapse
Affiliation(s)
- Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
23
|
Kim HJ, Kim HJ, Jeong JE, Baek JY, Jeong J, Kim S, Kim YM, Kim Y, Nam JH, Huh SH, Seo J, Jin BK, Lee KJ. N-terminal truncated UCH-L1 prevents Parkinson's disease associated damage. PLoS One 2014; 9:e99654. [PMID: 24959670 PMCID: PMC4069018 DOI: 10.1371/journal.pone.0099654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jae-Eun Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jeong Yeob Baek
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Young-Mee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Youhwa Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jin Han Nam
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sue Hee Huh
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jawon Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| |
Collapse
|
24
|
Vonk WIM, Kakkar V, Bartuzi P, Jaarsma D, Berger R, Hofker MH, Klomp LWJ, Wijmenga C, Kampinga HH, van de Sluis B. The Copper Metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner. PLoS One 2014; 9:e92408. [PMID: 24691167 PMCID: PMC3972230 DOI: 10.1371/journal.pone.0092408] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/21/2014] [Indexed: 01/27/2023] Open
Abstract
The Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α). Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1) and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS), cause misfolding and aggregation of the mutant SOD1 (mSOD1) protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson’s disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington’s disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.
Collapse
Affiliation(s)
- Willianne I. M. Vonk
- University Medical Center Utrecht, Department of Metabolic and Endocrine Diseases, and Netherlands Metabolomics Center, Utrecht, the Netherlands
- University Medical Center Utrecht, Complex Genetics Section, Utrecht, the Netherlands
| | - Vaishali Kakkar
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Groningen, the Netherlands
| | - Paulina Bartuzi
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, the Netherlands
| | - Dick Jaarsma
- Erasmus Medical Center, Department of Neuroscience, Rotterdam, the Netherlands
| | - Ruud Berger
- University Medical Center Utrecht, Department of Metabolic and Endocrine Diseases, and Netherlands Metabolomics Center, Utrecht, the Netherlands
| | - Marten H. Hofker
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, the Netherlands
| | - Leo W. J. Klomp
- University Medical Center Utrecht, Department of Metabolic and Endocrine Diseases, and Netherlands Metabolomics Center, Utrecht, the Netherlands
| | - Cisca Wijmenga
- University Medical Center Utrecht, Complex Genetics Section, Utrecht, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Harm H. Kampinga
- University of Groningen, University Medical Center Groningen, Department of Cell Biology, Groningen, the Netherlands
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Molecular Genetics, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
25
|
Birsa N, Norkett R, Wauer T, Mevissen TET, Wu HC, Foltynie T, Bhatia K, Hirst WD, Komander D, Plun-Favreau H, Kittler JT. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 2014; 289:14569-82. [PMID: 24671417 PMCID: PMC4031514 DOI: 10.1074/jbc.m114.563031] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial transport plays an important role in matching mitochondrial distribution to localized energy production and calcium buffering requirements. Here, we demonstrate that Miro1, an outer mitochondrial membrane (OMM) protein crucial for the regulation of mitochondrial trafficking and distribution, is a substrate of the PINK1/Parkin mitochondrial quality control system in human dopaminergic neuroblastoma cells. Moreover, Miro1 turnover on damaged mitochondria is altered in Parkinson disease (PD) patient-derived fibroblasts containing a pathogenic mutation in the PARK2 gene (encoding Parkin). By analyzing the kinetics of Miro1 ubiquitination, we further demonstrate that mitochondrial damage triggers rapid (within minutes) and persistent Lys-27-type ubiquitination of Miro1 on the OMM, dependent on PINK1 and Parkin. Proteasomal degradation of Miro1 is then seen on a slower time scale, within 2-3 h of the onset of ubiquitination. We find Miro ubiquitination in dopaminergic neuroblastoma cells is independent of Miro1 phosphorylation at Ser-156 but is dependent on the recently identified Ser-65 residue within Parkin that is phosphorylated by PINK1. Interestingly, we find that Miro1 can stabilize phospho-mutant versions of Parkin on the OMM, suggesting that Miro is also part of a Parkin receptor complex. Moreover, we demonstrate that Ser-65 in Parkin is critical for regulating Miro levels upon mitochondrial damage in rodent cortical neurons. Our results provide new insights into the ubiquitination-dependent regulation of the Miro-mediated mitochondrial transport machinery by PINK1/Parkin and also suggest that disruption of this regulation may be implicated in Parkinson disease pathogenesis.
Collapse
Affiliation(s)
- Nicol Birsa
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Rosalind Norkett
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Tobias Wauer
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Tycho E T Mevissen
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Hsiu-Chuan Wu
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Thomas Foltynie
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Kailash Bhatia
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Warren D Hirst
- the Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | - David Komander
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Helene Plun-Favreau
- the University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom, and
| | - Josef T Kittler
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
26
|
Asada A, Yamazaki R, Kino Y, Saito T, Kimura T, Miyake M, Hasegawa M, Nukina N, Hisanaga SI. Cyclin-dependent kinase 5 phosphorylates and induces the degradation of ataxin-2. Neurosci Lett 2014; 563:112-7. [DOI: 10.1016/j.neulet.2014.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/24/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022]
|
27
|
The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 2013; 16:1257-65. [PMID: 23933751 PMCID: PMC3827746 DOI: 10.1038/nn.3489] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/05/2013] [Indexed: 01/03/2023]
Abstract
Compelling evidence indicates that two autosomal recessive Parkinson’s disease genes, PINK1 (PARK6) and Parkin (PARK2), co-operate to mediate the autophagic clearance of damaged mitochondria (mitophagy). Mutations in the F-box domain containing protein Fbxo7 (PARK15) also cause early onset autosomal recessive Parkinson’s disease by an unknown mechanism. Here we show that Fbxo7 participates in mitochondrial maintenance through direct interaction with PINK1 and Parkin and plays a role in Parkin-mediated mitophagy. Cells with reduced Fbxo7 expression show deficiencies in Parkin mitochondrial translocation, ubiquitination of mitofusin 1 and mitophagy. In Drosophila, ectopic overexpression of Fbxo7 rescued loss of Parkin supporting a functional relationship between the two proteins. Parkinson’s disease-causing mutations in Fbxo7 interfere with this process, emphasising the importance of mitochondrial dysfunction in Parkinson’s disease pathogenesis.
Collapse
|
28
|
Taylor JM, Brody KM, Lockhart PJ. Parkin Co-Regulated Gene is involved in aggresome formation and autophagy in response to proteasomal impairment. Exp Cell Res 2012; 318:2059-70. [DOI: 10.1016/j.yexcr.2012.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
|
29
|
Abstract
No animal model to date perfectly replicates Parkinson's disease (PD) etiopathogenesis, and the anatomical organization of the nigrostriatal system differs considerably between species. Human postmortem material therefore remains the gold standard for both formulating hypotheses for subsequent testing in in vitro and in vivo PD models and verifying hypotheses derived from experimental PD models with regard to their validity in the human disease. This article focuses on recent and relevant fields in which human postmortem work has generated significant impact in our understanding of PD. These fields include Lewy body formation, regional vulnerability of dopaminergic neurons, oxidative/nitrative cellular stress, inflammation, apoptosis, infectious and environmental agents, and nondopaminergic lesions.
Collapse
Affiliation(s)
- Andreas Hartmann
- Fédération de Neurologie, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
30
|
Chhangani D, Joshi AP, Mishra A. E3 ubiquitin ligases in protein quality control mechanism. Mol Neurobiol 2012; 45:571-85. [PMID: 22610945 DOI: 10.1007/s12035-012-8273-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/26/2012] [Indexed: 12/11/2022]
Abstract
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.
Collapse
Affiliation(s)
- Deepak Chhangani
- Biology Laboratory, Indian Institute of Technology Rajasthan, Jodhpur, 342011, India
| | | | | |
Collapse
|
31
|
Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012; 2012:736905. [PMID: 22518139 PMCID: PMC3320095 DOI: 10.1155/2012/736905] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/06/2012] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation is a continuous process in our cells. Some proteins aggregate in a regulated manner required for different vital functional processes in the cells whereas other protein aggregates result from misfolding caused by various stressors. The decision to form an aggregate is largely made by chaperones and chaperone-assisted proteins. Proteins that are damaged beyond repair are degraded either by the proteasome or by the lysosome via autophagy. The aggregates can be degraded by the proteasome and by chaperone-mediated autophagy only after dissolution into soluble single peptide species. Hence, protein aggregates as such are degraded by macroautophagy. The selective degradation of protein aggregates by macroautophagy is called aggrephagy. Here we review the processes of aggregate formation, recognition, transport, and sequestration into autophagosomes by autophagy receptors and the role of aggrephagy in different protein aggregation diseases.
Collapse
|
32
|
Misfolded Gβ is recruited to cytoplasmic dynein by Nudel for efficient clearance. Cell Res 2012; 22:1140-54. [PMID: 22430153 DOI: 10.1038/cr.2012.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Gβγ heterodimer is an important signal transducer. Gβ, however, is prone to misfolding due to its requirement for Gγ and chaperones for proper folding. How cells dispose of misfolded Gβ (mfGβ) is not clear. Here, we showed that mfGβ was able to be polyubiquitinated and subsequently degraded by the proteasome. It was sequestered in aggresomes after the inhibition of the proteasome activity with MG132. Sustained activation of Gβγ signaling further elevated cellular levels of the ubiquitinated Gβ. Moreover, Nudel, a regulator of cytoplasmic dynein, the microtubule minus end-directed motor, directly interacted with both the unubiquitinated and ubiquitinated mfGβ. Increasing the levels of both mfGβ and Nudel promoted the association of Gβ with both Nudel and dynein, resulting in robust aggresome formation in a dynein-dependent manner. Depletion of Nudel by RNAi reduced the dynein-associated mfGβ, impaired the MG132-induced aggresome formation, and markedly prolonged the half-life of nascent Gβ. Therefore, cytosolic mfGβ is recruited to dynein by Nudel and transported to the centrosome for rapid sequestration and degradation. Such a process not only eliminates mfGβ efficiently for the control of protein quality, but may also help to terminate the Gβγ signaling.
Collapse
|
33
|
Gómez-Garre P, Jesús S, Carrillo F, Cáceres-Redondo MT, Bernal-Bernal I, Carballo M, Gao L, Mir P. PSMC1Gene in Parkinsons Disease. Eur Neurol 2012; 68:193-8. [DOI: 10.1159/000339003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022]
|
34
|
Kumar P, Pradhan K, Karunya R, Ambasta RK, Querfurth HW. Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders. J Neurochem 2011; 120:350-70. [DOI: 10.1111/j.1471-4159.2011.07588.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Diaz-Corrales FJ, Miyazaki I, Asanuma M, Ruano D, Rios RM. Centrosomal aggregates and Golgi fragmentation disrupt vesicular trafficking of DAT. Neurobiol Aging 2011; 33:2462-77. [PMID: 22177721 DOI: 10.1016/j.neurobiolaging.2011.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/13/2022]
Abstract
Lewy bodies containing the centrosomal protein γ-tubulin and fragmentation of Golgi apparatus (GA) have been described in nigral neurons of Parkinson's disease (PD) patients. However, the relevance of these features in PD pathophysiology remains unknown. We analyzed the impact of proteasome inhibition in the formation of γ-tubulin-containing aggregates as well as on GA structure. SH-SY5Y cells were treated with the proteasome inhibitor Z-Leu-Leu-Leu-al (MG132) to induce centrosomal-protein aggregates. Then, microtubules (MTs) and Golgi dynamics, as well as the vesicular transport of dopamine transporter (DAT) were evaluated both in vitro and in living cells. MG132 treatment induced γ-tubulin aggregates which altered microtubule nucleation. MG132-treated cells containing γ-tubulin aggregates showed fragmentation of GA and perturbation of the trans-Golgi network. Under these conditions, the DAT accumulated at the centrosomal-Golgi region indicating that the vesicular transport of DAT was disrupted. Thus, centrosomal aggregates and fragmentation of GA are 2 closely related processes that could result in the disruption of the vesicular transport of DAT toward the plasma membrane in a model of dopaminergic neuronal degeneration.
Collapse
Affiliation(s)
- Francisco J Diaz-Corrales
- Departamento de Señalización Celular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Seville, Spain.
| | | | | | | | | |
Collapse
|
36
|
Nemes Z. Effects and Analysis of Transglutamination on Protein Aggregation and Clearance in Neurodegenerative Diseases. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:347-83. [DOI: 10.1002/9781118105771.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Parelkar SS, Cadena JG, Kim C, Wang Z, Sugal R, Bentley B, Moral L, Ardley HC, Schwartz LM. The Parkin-Like Human Homolog of Drosophila Ariadne-1 (HHARI) Can Induce Aggresome Formation in Mammalian Cells and Is Immunologically Detectable in Lewy Bodies. J Mol Neurosci 2011; 46:109-21. [DOI: 10.1007/s12031-011-9535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/28/2011] [Indexed: 01/03/2023]
|
38
|
Moszczynska A, Yamamoto BK. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem 2011; 116:1005-17. [PMID: 21166679 PMCID: PMC3610410 DOI: 10.1111/j.1471-4159.2010.07147.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methamphetamine (METH) is toxic to dopaminergic (DAergic) terminals in animals and humans. An early event in METH neurotoxicity is an oxidative stress followed by damage to proteins and lipids. The removal of damaged proteins is accomplished by the ubiquitin-proteasome system (UPS) and the impairment of this system can cause neurodegeneration. Whether dysfunction of the UPS contributes to METH toxicity to DAergic terminals has not been determined. The present investigation examined the effects of METH on functions of parkin and proteasome in rat striatal synaptosomes. METH rapidly modified parkin via conjugation with 4-hydroxy-2-nonenal (4-HNE) to decrease parkin levels and decreased the activity of the 26S proteasome while simultaneously increasing chymotrypsin-like activity and 20S proteasome levels. Prior injections of vitamin E diminished METH-induced changes to parkin and the 26S proteasome as well as long-term decreases in DA and its metabolites' concentrations in striatal tissue. These results suggest that METH causes lipid peroxidation-mediated damage to parkin and the 26S proteasome. As the changes in parkin and 26S occur before the sustained deficits in DAergic markers, an early loss of UPS function may be important in mediating the long-term degeneration of striatal DAergic terminals via toxic accumulation of parkin substrates and damaged proteins.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, USA.
| | | |
Collapse
|
39
|
Miki Y, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K. Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions. Neuropathology 2011; 31:561-8. [DOI: 10.1111/j.1440-1789.2011.01200.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Morrison E, Thompson J, Williamson SJM, Cheetham ME, Robinson PA. A simple cell based assay to measure Parkin activity. J Neurochem 2011; 116:342-9. [PMID: 21091474 DOI: 10.1111/j.1471-4159.2010.07113.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Parkin is an ubiquitin-protein ligase mutated in Autosomal Recessive - Juvenile Parkinsonism. Here, we describe a cell-based assay to measure Parkin's ubiquitin-protein ligase activity. It relies on the ability of Parkin to recognise depolarised mitochondria and exploits a cell line where Parkin expression is inducible. In these cells, Parkin expression promotes mitophagy and accelerates cell death in response to mitochondrial depolarisers. Time-lapse imaging confirmed cell death and revealed increased perinuclear mitochondrial clustering following induction of Parkin expression in cells exposed to carbonyl cyanide m-chlorophenylhydrazone. Similar effects were not observed with α-synuclein or DJ-1, other proteins associated with the development of Parkinson's disease, confirming the specificity of the assay. We have used this assay to demonstrate that ligase-defective Parkin mutants are inactive, and cellular proteasomal activity (using the proteasomal inhibitors MG132, clasto-lactacystin β-lactone and epoxomicin) is essential for the Parkin mediated effect. As the assay is suitable for high-throughput screening, it has the potential to identify novel proteostasis compounds that stimulate the activity of Parkin mutants for therapeutic purposes, to identify modulators of kinase activities that impact on Parkin function, and to act as a functional read-out in reverse genetics screens aimed at identifying modifiers of Parkin function during mitophagy.
Collapse
Affiliation(s)
- Ewan Morrison
- Section of Ophthalmology and Neuroscience, Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
41
|
Rose JM, Novoselov SS, Robinson PA, Cheetham ME. Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Hum Mol Genet 2011; 20:16-27. [PMID: 20889486 PMCID: PMC3000674 DOI: 10.1093/hmg/ddq428] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is characteristic of many neurodegenerative diseases. The Parkinson's disease-associated ubiquitin-protein ligase, Parkin, is important in the elimination of damaged mitochondria by autophagy (mitophagy) in a multistep process. Here, we show that a Parkin RING domain mutant (C289G) fails to redistribute to damaged mitochondria and cannot induce mitophagy after treatment with the mitochondrial uncoupler carbonyl cyanide m-methylhydrazone, because of protein misfolding and aggregation. Parkin(C289G) aggregation and inclusion formation were suppressed by the neuronal DnaJ/Hsp40 chaperone HSJ1a(DNAJB2a). Importantly, HSJ1a and DNAJB6 also restored mitophagy by promoting the relocation of Parkin(C289G) and the autophagy marker LC3 to depolarized mitochondria. The rescue of Parkin activity and suppression of aggregation were J domain dependent for HSJ1a, suggesting the involvement of Hsp70 in these processes, but were not dependent on the HSJ1a ubiquitin interaction motif. HSJ1a expression did not enhance mitophagy mediated by wild-type Parkin. These data show the potential of molecular chaperones to mediate the functional recovery of Parkin misfolding mutants and to combat deficits associated with Parkin aggregation in Parkinson's disease.
Collapse
Affiliation(s)
- Johanna M. Rose
- UCL Institute of Ophthalmology, 11–43 Bath Street, LondonEC1V 9EL, UK and
| | | | - Philip A. Robinson
- Leeds Institute of Molecular Medicine, University of Leeds, Level 8, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | | |
Collapse
|
42
|
Yamada T, Sunagawa K, Homma T, Uehara K, Mizutani T, Kawabata Y. Ubiquitin-positive pneumocytes and inclusion bodies are present in secondary organizing pneumonia. Intern Med 2011; 50:277-83. [PMID: 21325758 DOI: 10.2169/internalmedicine.50.4156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE We previously reported that various types of interstitial pneumonia (IP) patterns contain intracytoplasmic eosinophilic inclusions or Mallory bodies (inclusions) that are ubiquitin positive (Ub+). In the present study, we examined tissues with the organizing pneumonia pattern (OP) to determine if they contain inclusions and Ub+ pneumocytes using lobectomized specimens. METHODS Tissues from 34 patients with secondary OP, which appeared in 33 carcinomas and 1 pulmonary abscess, were histologically evaluated for the type of intraluminal granulation tissue and the presence of erosions and inclusions. Granulation tissues were classified into polypoid, mural and occluded subtypes according to Basset's criteria and scored. RESULTS Inclusions were noted in 5.9% of the secondary OP cases with light microscope. Ub+ pneumocytes were detected after immunostaining and all inclusions were Ub+. Ub+ pneumocytes (inclusions) were noted in 14.7% of the secondary OP cases. OP contained pneumocyte erosions and inflammatory cell infiltration without a significant difference in the Ub+ and Ub- subgroups. Although there was no significant difference in the polypoid type of granulation tissue between the Ub+ and Ub- negative (Ub-) subgroups, the Ub+ subgroup had significant increases (p<0.05) in the mural-occluded type of granulation tissue (Ub+: 1.76±0.64, n=5 vs. Ub-: 0.72±0.87, n=29) as compared to the Ub- subgroup. CONCLUSION Some patients with secondary OP had Ub+ inclusions as pneumocyte injury.
Collapse
Affiliation(s)
- Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Minami R, Hayakawa A, Kagawa H, Yanagi Y, Yokosawa H, Kawahara H. BAG-6 is essential for selective elimination of defective proteasomal substrates. ACTA ACUST UNITED AC 2010; 190:637-50. [PMID: 20713601 PMCID: PMC2928017 DOI: 10.1083/jcb.200908092] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BAG-6/Scythe/BAT3 is a ubiquitin-like protein that was originally reported to be the product of a novel gene located within the human major histocompatibility complex, although the mechanisms of its function remain largely obscure. Here, we demonstrate the involvement of BAG-6 in the degradation of a CL1 model defective protein substrate in mammalian cells. We show that BAG-6 is essential for not only model substrate degradation but also the ubiquitin-mediated metabolism of newly synthesized defective polypeptides. Furthermore, our in vivo and in vitro analysis shows that BAG-6 interacts physically with puromycin-labeled nascent chain polypeptides and regulates their proteasome-mediated degradation. Finally, we show that knockdown of BAG-6 results in the suppressed presentation of MHC class I on the cell surface, a procedure known to be affected by the efficiency of metabolism of defective ribosomal products. Therefore, we propose that BAG-6 is necessary for ubiquitin-mediated degradation of newly synthesized defective polypeptides.
Collapse
Affiliation(s)
- Ryosuke Minami
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG, Wooten MC. Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease. J Biomed Biotechnol 2010; 2006:62079. [PMID: 17047309 PMCID: PMC1559922 DOI: 10.1155/jbb/2006/62079] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic
situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be
prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their
degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved
by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been
shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome.
P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases.
Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor
to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.
Collapse
Affiliation(s)
- Marie W. Wooten
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiao Hu
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - J. Ramesh Babu
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - M. Lamar Seibenhener
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- *M. Lamar Seibenhener:
| | - Thangiah Geetha
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael G. Paine
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael C. Wooten
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
45
|
Yasuda T, Mochizuki H. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010; 15:1312-21. [DOI: 10.1007/s10495-010-0486-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Rao SNR, Sharma J, Maity R, Jana NR. Co-chaperone CHIP stabilizes aggregate-prone malin, a ubiquitin ligase mutated in Lafora disease. J Biol Chem 2010; 285:1404-13. [PMID: 19892702 PMCID: PMC2801266 DOI: 10.1074/jbc.m109.006312] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 11/04/2009] [Indexed: 01/21/2023] Open
Abstract
Lafora disease (LD) is an autosomal recessive neurodegenerative disorder caused by mutation in either the dual specificity phosphatase laforin or ubiquitin ligase malin. A pathological hallmark of LD is the accumulation of cytoplasmic polyglucosan inclusions commonly known as Lafora bodies in both neuronal and non-neuronal tissues. How mutations in these two proteins cause disease pathogenesis is not well understood. Malin interacts with laforin and recruits to aggresomes upon proteasome inhibition and was shown to degrade misfolded proteins. Here we report that malin is spontaneously misfolded and tends to be aggregated, degraded by proteasomes, and forms not only aggresomes but also other cytoplasmic and nuclear aggregates in all transfected cells upon proteasomal inhibition. Malin also interacts with Hsp70. Several disease-causing mutants of malin are comparatively more unstable than wild type and form aggregates in most transfected cells even without the inhibition of proteasome function. These cytoplasmic and nuclear aggregates are immunoreactive to ubiquitin and 20 S proteasome. Interestingly, progressive proteasomal dysfunction and cell death is also most frequently observed in the mutant malin-overexpressed cells compared with the wild-type counterpart. Finally, we demonstrate that the co-chaperone carboxyl terminus of the Hsc70-interacting protein (CHIP) stabilizes malin by modulating the activity of Hsp70. All together, our results suggest that malin is unstable, and the aggregate-prone protein and co-chaperone CHIP can modulate its stability.
Collapse
Affiliation(s)
- Sudheendra N. R. Rao
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | - Jaiprakash Sharma
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | - Ranjan Maity
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | - Nihar Ranjan Jana
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| |
Collapse
|
47
|
Rosen KM, Moussa CEH, Lee HK, Kumar P, Kitada T, Qin G, Fu Q, Querfurth HW. Parkin reverses intracellular beta-amyloid accumulation and its negative effects on proteasome function. J Neurosci Res 2010; 88:167-78. [PMID: 19610108 PMCID: PMC2844439 DOI: 10.1002/jnr.22178] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The significance of intracellular beta-amyloid (Abeta(42)) accumulation is increasingly recognized in Alzheimer's disease (AD) pathogenesis. Abeta removal mechanisms that have attracted attention include IDE/neprilysin degradation and antibody-mediated uptake by immune cells. However, the role of the ubiquitin-proteasome system (UPS) in the disposal of cellular Abeta has not been fully explored. The E3 ubiquitin ligase Parkin targets several proteins for UPS degradation, and Parkin mutations are the major cause of autosomal recessive Parkinson's disease. We tested whether Parkin has cross-function to target misfolded proteins in AD for proteasome-dependent clearance in SH-SY5Y and primary neuronal cells. Wild-type Parkin greatly decreased steady-state levels of intracellular Abeta(42), an action abrogated by proteasome inhibitors. Intracellular Abeta(42) accumulation decreased cell viability and proteasome activity. Accordingly, Parkin reversed both effects. Changes in mitochondrial ATP production from Abeta or Parkin did not account for their effects on the proteasome. Parkin knock-down led to accumulation of Abeta. In AD brain, Parkin was found to interact with Abeta and its levels were reduced. Thus, Parkin is cytoprotective, partially by increasing the removal of cellular Abeta through a proteasome-dependent pathway.
Collapse
Affiliation(s)
- Kenneth M. Rosen
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Charbel E.-H. Moussa
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Han-Kyu Lee
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Pravir Kumar
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Tohru Kitada
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gangjian Qin
- Department of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Qinghao Fu
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Henry W. Querfurth
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
48
|
Fishman-Jacob T, Reznichenko L, Youdim MBH, Mandel SA. A sporadic Parkinson disease model via silencing of the ubiquitin-proteasome/E3 ligase component SKP1A. J Biol Chem 2009; 284:32835-45. [PMID: 19748892 DOI: 10.1074/jbc.m109.034223] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to develop a new model of sporadic Parkinson disease (PD) based on silencing of the SKP1A gene, a component of the ubiquitin-proteasome/E3 ligase complex, Skp1, Cullin 1, F-box protein, which was found to be highly decreased in the substantia nigra of sporadic PD patients. Initially, an embryonic mouse substantia nigra-derived cell line (SN4741 cells) was infected with short hairpin RNA lentiviruses encoding the murine transcript of the SKP1A gene or with scrambled vector. SKP1A silencing resulted in increased susceptibility to neuronal damages induced by the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium ion and serum starvation, in parallel with a decline in the expression of the dopaminergic markers, dopamine transporter and vesicular monoamine transporter-2. SKP1A-deficient cells presented a delay in completion of the cell cycle and the inability to arrest at the G(0)/G(1) phase when induced to differentiate. Instead, the cells progressed through S phase, developing rounded aggregates with characteristics of aggresomes including immunoreactivity for gamma-tubulin, alpha-synuclein, ubiquitin, tyrosine hydroxylase, Hsc-70 (70-kDa heat shock cognate protein), and proteasome subunit, and culminating in a lethal phenotype. Conversely, stably enforced expression of wild type SKP1A duplicated the survival index of naïve SN4741 cells under proteasomal inhibition injury, suggesting a new structural role of SKP1 in dopaminergic neuronal function, besides its E3 ligase activity. These results link, for the first time, SKP1 to dopamine neuronal function and survival, suggesting an essential role in sporadic PD. In summary, this new model has reproduced to a significant extent the molecular alterations described in sporadic PD at the cellular level, implicating Skp1 as a potential modifier in sporadic PD neurodegeneration.
Collapse
Affiliation(s)
- Tali Fishman-Jacob
- Eve Topf and National Parkinson Foundation Centers for Neurodegenerative Diseases and the Department of Molecular Pharmacology, Faculty of Medicine, Technion, 31096 Haifa, Israel
| | | | | | | |
Collapse
|
49
|
Abstract
Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. In Parkinson's disease (PD), research on protein misfolding and aggregation has taken center stage following the association of alpha-synuclein gene mutations with familial forms of the disease, and importantly, the identification of the protein as a major component of Lewy bodies, a pathological hallmark of PD. Fueling this excitement is the subsequent identification of another PD-linked gene, parkin, as a ubiquitin ligase associated with the proteasome, a major intracellular protein degradation machinery that destroys unwanted, albeit mainly soluble, proteins. Notably, a role for parkin in the clearance of insoluble protein aggregates via macroautophagy has also been implicated by more recent studies. Paradoxically, like alpha-synuclein, parkin is also prone to misfolding, especially in the presence of age-related stress. Similarly, protein misfolding can also affect the function of other key PD-linked genes such as DJ-1, PINK1, and perhaps also LRRK2. Here, we discuss the role of protein misfolding and aggregation in PD, and how impairments of the various cellular protein quality systems could precipitate these events and lead to neuronal demise. Towards the end of our discussion, we also revisited the role of Lewy body formation in PD.
Collapse
Affiliation(s)
- Jeanne M M Tan
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| | | | | |
Collapse
|
50
|
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32. [PMID: 19593531 PMCID: PMC11115675 DOI: 10.1007/s00018-009-0080-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022]
Abstract
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome marker protein LC3, the ER-resident protein calnexin and endosomal/lysosomal membrane protein LAMP-2, even under nutrient-rich conditions. The recruitment of Rab32 to the ER membrane was necessary for autophagic vacuole formation, suggesting involvement of the ER as a source of autophagosome membranes. In contrast, the expression of the inactive form of, or siRNA-specific for, Rab32 caused the formation of p62/SQSTM1 and ubiquitinated protein-accumulating aggresome-like structures and significantly prevented constitutive autophagy. We postulate that Rab32 facilitates the formation of autophagic vacuoles whose membranes are derived from the ER and regulates the clearance of aggregated proteins by autophagy.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| |
Collapse
|