1
|
Cui F, Chen Y, Wu X, Zhao W. NEK2 promotes cancer cell progression and 5-fluorouracil resistance via the Wnt/β-catenin signaling pathway in colorectal cancer. Discov Oncol 2025; 16:417. [PMID: 40153115 PMCID: PMC11953509 DOI: 10.1007/s12672-025-02154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/17/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Never-in-mitosis gene A-related-kinase-2 (NEK2) plays a pivotal role in malignant progression and chemotherapy sensitivity. This study aimed to elucidate the role of NEK2 in colorectal cancer (CRC) and its potential contribution to 5-fluorouracil (5‑FU) resistance mechanisms. METHODS Quantitative real-time PCR (qRT‑PCR), western blotting, and immunohistochemical (IHC) staining were used to assess the expression of NEK2 in CRC tissues and cells. The effects of NEK2 and 5‑FU on the proliferation, apoptosis, migration, and invasion of cancer cells were investigated via Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, wound healing, and transwell assays, respectively. Methyl 3-(4-methylphenylsulfonamido) benzoate (MSAB) was used as a Wnt/beta (β)-catenin pathway inhibitor in this study. RESULTS NEK2 expression was significantly upregulated in CRC tissues and cells compared to normal controls. High NEK2 expression in CRC tissues was correlated with advanced tumor-node-metastasis (TNM) stage, lymph node metastasis, distant metastasis, and a poor tumor prognosis. NEK2 overexpression promoted the proliferation, migration, and invasion of CRC cells. NEK2 overexpression inhibited the cytotoxic effect of 5-FU on CRC cells. NEK2 overexpression promoted the nuclear accumulation of β-catenin and activated the Wnt/β-catenin signaling pathway. MSAB reversed the stimulatory effect of NEK2 upregulation on proliferation and resistance to 5-FU in CRC cells. CONCLUSIONS In summary, NEK2 promotes cell survival and decreases sensitivity to 5-FU in CRC by activating the Wnt/β-catenin signaling pathway. Consequently, NEK2 holds promise as a potential therapeutic target for CRC management.
Collapse
Affiliation(s)
- Facai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Yu Chen
- Department of Pathology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Wu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Lemay SE, Mougin M, Sauvaget M, El Kabbout R, Valasarajan C, Yamamoto K, Martineau S, Pelletier A, Bilodeau C, Grobs Y, Bourgeois A, Romanet C, Breuils-Bonnet S, Montesinos MS, Lu M, Chen H, Gilbert M, Théberge C, Potus F, Pullamsetti S, Provencher S, Bonnet S, Boucherat O. Unraveling AURKB as a potential therapeutic target in pulmonary hypertension using integrated transcriptomic analysis and pre-clinical studies. Cell Rep Med 2025; 6:101964. [PMID: 39933527 DOI: 10.1016/j.xcrm.2025.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/29/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Despite advances in treatment, the prognosis for patients with pulmonary arterial hypertension (PAH) remains dismal, highlighting the need for further therapeutic advances. By using RNA sequencing on pulmonary artery smooth muscle cells (PASMCs), functional enrichment, and connectivity map analyses, we identify Aurora kinase B (AURKB) as a candidate therapeutic target. We show that AURKB inhibition blocks cell cycle progression and reverses the gene signature of PAH-PASMCs. We also report that PAH-PASMCs that escape apoptosis acquire a senescence-associated secretory phenotype. In vivo, AURKB inhibition using barasertib improves hemodynamics in two preclinical models of established PAH by attenuating pulmonary vascular remodeling. A therapeutic effect is also observed in human precision-cut lung slices. Finally, we demonstrate that the combination of barasertib with a p21 attenuator is more effective in reducing vascular remodeling than either drug alone. These findings provide insight into strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Manon Mougin
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Mélanie Sauvaget
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Reem El Kabbout
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Keiko Yamamoto
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Andréanne Pelletier
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Coralie Bilodeau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | | | - Min Lu
- Morphic Therapeutic, Inc, Waltham, MA, USA
| | | | - Mégan Gilbert
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Charlie Théberge
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada
| | - Soni Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Bad Nauheim, Germany; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Justus Liebig University, member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada.
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada.
| |
Collapse
|
3
|
Bobbitt JR, Cuellar-Vite L, Weber-Bonk KL, Yancey MR, Majmudar PR, Keri RA. Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability. J Biol Chem 2025; 301:108196. [PMID: 39826695 PMCID: PMC11849632 DOI: 10.1016/j.jbc.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Selective inhibitors that target cyclin-dependent kinases 4 and 6 (CDK4/6i) are approved by the U.S. Food and Drug Administration (FDA) for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the antitumor effects of CDK4/6i involve the induction of chromosomal instability (CIN). Here, we exploit this mechanism by combining CDK4/6i with other instability-promoting agents to induce maladaptive CIN and irreversible cell fates. Specifically, dual targeting of CDK4/6 and the mitotic kinase NEK2 in vitro drives centrosome amplification and the accumulation of CIN that induces catastrophic mitoses, cell cycle exit, and cell death. Dual targeting also induces CIN in vivo and significantly decreases mouse tumor volume to a greater extent than either drug alone, without inducing overt toxicity. Importantly, we provide evidence that breast cancer cells are selectively dependent on NEK2, but nontransformed cells are not, in contrast with other mitotic kinases that are commonly essential in all cell types. These findings implicate NEK2 as a potential therapeutic target for breast cancer that could circumvent the dose-limiting toxicities that are commonly observed when blocking other mitotic kinases. Moreover, these data suggest that NEK2 inhibitors could be used to sensitize tumors to FDA-approved CDK4/6i for the treatment of breast cancers, improving their efficacy and providing a foundation for expanding the patient population that could benefit from CDK4/6i.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Pathology School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marlee R Yancey
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Lim J, Hwang YS, Kim JT, Yoon HR, Park HM, Han J, Kwon T, Lee KH, Cho HJ, Lee HG. NEK2 Phosphorylates RhoGDI1 to Promote Cell Proliferation, Migration and Invasion Through the Activation of RhoA and Rac1 in Colon Cancer Cells. Cells 2024; 13:2072. [PMID: 39768163 PMCID: PMC11674122 DOI: 10.3390/cells13242072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a critical role in regulating the activity of Rho guanosine triphosphatases (GTPases). Phosphorylation of RhoGDI1 dynamically modulates the activation of Rho GTPases, influencing cell proliferation and migration. This study explored the involvement of Never In Mitosis A (NIMA)-related serine/threonine protein kinase 2 (NEK2) in phosphorylating RhoGDI1 and its implications in cancer cell behavior associated with tumor progression. We employed GST pull-down assays and immunoprecipitation to investigate the interaction between NEK2 and RhoGDI1. Truncation fragments identified the region of RhoGDI1 responsible for binding with NEK2. Phosphorylation assays determined the site of NEK2-mediated phosphorylation on RhoGDI1. Functional assays were conducted using overexpression of the RhoGDI1 substitution mutant to assess their impact on cancer cell behavior. NEK2 directly bound to RhoGDI1 and phosphorylated it at Ser174. This phosphorylation event facilitated cancer cell proliferation and motility by activating RhoA and Rac1. The RhoGDI1 aa 112-134 region was critical for the binding to NEK2. Disruption of the NEK2-RhoGDI1 interaction through overexpression of a RhoGDI1 truncated fragment (aa 112-134) led to diminished RhoGDI1 phosphorylation and RhoA/Rac1 activation induced by NEK2, resulting in reduced cancer cell proliferation and migration. Moreover, in vivo studies showed reduced tumor growth and lung metastasis when the NEK2-RhoGDI1 interaction was disrupted. This study indicates that NEK2 promotes the metastatic behaviors of cancer cells by activating RhoA and Rac1 by phosphorylating RhoGDI1.
Collapse
Affiliation(s)
- Jeewon Lim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yo-Sep Hwang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Jong-Tae Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Hyang-Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Hyo-Min Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
| | - Jahyeong Han
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea;
| | - Kyung-Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28644, Republic of Korea;
| | - Hee-Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.L.); (Y.-S.H.); (J.-T.K.); (H.-R.Y.); (H.-M.P.); (J.H.)
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Zhang L, Li Y, Deng J, Liao W, Liu T, Shen F. NEK2 is a potential pan-cancer biomarker and immunotherapy target. Discov Oncol 2024; 15:626. [PMID: 39505744 PMCID: PMC11541068 DOI: 10.1007/s12672-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND NEK2 is a member of the NEKs family and plays an important role in cell mitosis. Increasing evidence suggests that NEK2 is associated with the development of multiple tumors, but systematic studies of NEK2 in cancer are still lacking. Therefore, we evaluated the prognostic value of NEK2 in 33 cancers to elucidate the potential function of NEK2 in pan-cancers. METHODS We investigated the role of NEK2 in pan-cancers utilizing The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. Additionally, we analyzed the association between NEK2 gene expression across various cancers, protein expression, the tumor microenvironment (TME), and drug sensitivity using several software and web platforms.The potential oncogenic role of NEK2 was initially explored using bioinformatics methods. Furthermore, we conducted in vitro experiments to preliminarily validate the function of NEK2 in cervical cancer. RESULTS NEK2 is overexpressed in almost all tumors, and mutation of NEK2 are associated with a poorer tumor prognosis. In addition, the correlation between NEK2 and immune features such as immune cell infiltration, immune checkpoint genes, tumor mutational burden (TMB), Microsatellite instability(MSI) etc. suggest that NEK2 could potentially be applied in the immunotherapy of tumors. CONCLUSION NEK2 may be a potential pan-cancer biomarker and immunotherapeutic target for improving the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Lanyue Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Juexiao Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Wenxin Liao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Fujin Shen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 239 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
6
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Özduman G, Şimşek F, Javed A, Korkmaz KS. HN1 expression contributes to mitotic fidelity through Aurora A-PLK1-Eg5 axis. Cytoskeleton (Hoboken) 2024. [PMID: 39291428 DOI: 10.1002/cm.21928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Hematological and neurological expressed 1 (HN1) is homolog of Jupiter protein from Drosophila melanogaster where it functions as a microtubule-associated protein. However, in mammalian cells, HN1 is associated partially with y-tubulin in centrosomes, Stathmin for stabilizing microtubules, and Cdh1 for regulating Cyclin B1 for cell cycle regulation. Moreover, HN1 overexpression leads to early mitotic exit as well. Other molecular functions and interactions of HN1 are not clear yet. Here, based on our previous analysis where HN1 was shown to cluster supernumerary centrosomes and maintain mitotic spindle assembly, we further investigated the role of HN1 in centrosome maintenance and mitotic fidelity in PC-3 prostate and MDA-MB231 mammary cancer cell lines. The maturation-associated roles of HN1 during cell division by examining the AuroraA-PLK1 axis involving a plus end kinesin, Eg5 as well as pericentriolar matrix protein (PCM1) as components of centrosomes were established. We found that HN1 co-localized to centrioles with Eg5 and Aurora A to suppress aberrant spindle formation to ensure the fidelity of centriole/centrosome duplication when overexpressed. Consistently, depleting the HN1 expression using siRNA or shRNA resulted in an increased number of dysregulated mitotic spindle structures, where Aurora A as well as PLK1 co-localizations with Eg5 and PCM1 were disrupted. Further, the PLK1 and Aurora A kinase's phosphorylations also decreased, confirming the hypothesis that the cells struggle in mitotic progression, display nuclear and cytokinetic abnormalities with supernumerary but immature mononucleated centrosomes. In summary, we described the role of HN1 in centrosome nucleation/maturation in PLK1-Eg5 axis and concomitant mitotic spindle formation in human cells.
Collapse
Affiliation(s)
- Gülseren Özduman
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Faruk Şimşek
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Aadil Javed
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Kemal Sami Korkmaz
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| |
Collapse
|
9
|
Peng J, Liu H, Liu Y, Liu J, Zhao Q, Liu W, Niu H, Xue H, Sun J, Wu J. HDAC6 mediates tumorigenesis during mitosis and the development of targeted deactivating agents. Bioorg Chem 2024; 153:107818. [PMID: 39288633 DOI: 10.1016/j.bioorg.2024.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, Shandong Province, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
10
|
Bayliss R, Fry T, Mahen R, Shackleton S, Tanaka K. Remembering Andrew Fry (1966-2024). J Cell Sci 2024; 137:jcs263478. [PMID: 39240162 DOI: 10.1242/jcs.263478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
In this article we reflect on the life and work of Andrew Fry, a renowned molecular cell biologist and a cherished member of the scientific community at the University of Leicester, UK, who passed away on 30th April 2024 at the age of 57. His groundbreaking work on the cellular mechanisms of Never in Mitosis gene-A related kinases (Neks) made an indelible mark on the field. Alongside his scientific achievements, Andrew was an exceptional mentor, a thoughtful academic leader and a dependable collaborator. To understand what motivated Andrew, we first need to look into his background.
Collapse
Affiliation(s)
- Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Robert Mahen
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
11
|
Zhou HY, Wang YC, Wang T, Wu W, Cao YY, Zhang BC, Wang MD, Mao P. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle. Oncol Lett 2024; 27:206. [PMID: 38516683 PMCID: PMC10956385 DOI: 10.3892/ol.2024.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Glioblastoma (GBM) is characterized by significant heterogeneity, leading to poor survival outcomes for patients, despite the implementation of comprehensive treatment strategies. The roles of cyclin A2 (CCNA2) and NIMA related kinase 2 (NEK2) have been extensively studied in numerous cancers, but their specific functions in GBM remain to be elucidated. The present study aimed to investigate the potential molecular mechanisms of CCNA2 and NEK2 in GBM. CCNA2 and NEK2 expression and prognosis in glioma were evaluated by bioinformatics methods. In addition, the distribution of CCNA2 and NEK2 expression in GBM subsets was determined using pseudo-time analysis and tricycle position of single-cell sequencing. Gene Expression Omnibus and Kyoto Encyclopedia of Genes and Genome databases were employed and enrichment analyses were conducted to investigate potential signaling pathways in GBM subsets and a nomogram was established to predict 1-, 2- and 3-year overall survival probability in GBM. CCNA2 and NEK2 expression levels were further validated by western blot analysis and immunohistochemical staining in GBM samples. High expression of CCNA2 and NEK2 in glioma indicates poor clinical outcomes. Single-cell sequencing of GBM revealed that these genes were upregulated in a subset of positive neural progenitor cells (P-NPCs), which showed significant proliferation and progression properties and may activate G2M checkpoint pathways. A comprehensive nomogram predicts 1-, 2- and 3-year overall survival probability in GBM by considering P-NPCs, age, chemotherapy and radiotherapy scores. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle, thus indicating the potential of novel therapy directed to CCNA2 and NEK2 in GBM.
Collapse
Affiliation(s)
- Hao-Yu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Yang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bei-Chen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
White MC, Wong JP, Damania B. Inhibition of NEK2 Promotes Chemosensitivity and Reduces KSHV-positive Primary Effusion Lymphoma Burden. CANCER RESEARCH COMMUNICATIONS 2024; 4:1024-1040. [PMID: 38592451 PMCID: PMC11003453 DOI: 10.1158/2767-9764.crc-23-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.
Collapse
Affiliation(s)
- Maria C. White
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason P. Wong
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Kalkan BM, Ozcan SC, Cicek E, Gonen M, Acilan C. Nek2A prevents centrosome clustering and induces cell death in cancer cells via KIF2C interaction. Cell Death Dis 2024; 15:222. [PMID: 38493150 PMCID: PMC10944510 DOI: 10.1038/s41419-024-06601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Unlike normal cells, cancer cells frequently exhibit supernumerary centrosomes, leading to formation of multipolar spindles that can trigger cell death. Nevertheless, cancer cells with supernumerary centrosomes escape the deadly consequences of unequal segregation of genomic material by coalescing their centrosomes into two poles. This unique trait of cancer cells presents a promising target for cancer therapy, focusing on selectively attacking cells with supernumerary centrosomes. Nek2A is a kinase involved in mitotic regulation, including the centrosome cycle, where it phosphorylates linker proteins to separate centrosomes. In this study, we investigated if Nek2A also prevents clustering of supernumerary centrosomes, akin to its separation function. Reduction of Nek2A activity, achieved through knockout, silencing, or inhibition, promotes centrosome clustering, whereas its overexpression results in inhibition of clustering. Significantly, prevention of centrosome clustering induces cell death, but only in cancer cells with supernumerary centrosomes, both in vitro and in vivo. Notably, none of the known centrosomal (e.g., CNAP1, Rootletin, Gas2L1) or non-centrosomal (e.g., TRF1, HEC1) Nek2A targets were implicated in this machinery. Additionally, Nek2A operated via a pathway distinct from other proteins involved in centrosome clustering mechanisms, like HSET and NuMA. Through TurboID proximity labeling analysis, we identified novel proteins associated with the centrosome or microtubules, expanding the known interaction partners of Nek2A. KIF2C, in particular, emerged as a novel interactor, confirmed through coimmunoprecipitation and localization analysis. The silencing of KIF2C diminished the impact of Nek2A on centrosome clustering and rescued cell viability. Additionally, elevated Nek2A levels were indicative of better patient outcomes, specifically in those predicted to have excess centrosomes. Therefore, while Nek2A is a proposed target, its use must be specifically adapted to the broader cellular context, especially considering centrosome amplification. Discovering partners such as KIF2C offers fresh insights into cancer biology and new possibilities for targeted treatment.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | | | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | - Mehmet Gonen
- Koç University, School of Medicine, Istanbul, Turkey
- Koç University, College of Engineering, Department of Industrial Engineering, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey.
- Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
14
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
15
|
McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, Doshier C, Patel V, Post GR, De Loose A, Rodriguez A, Shultz LD, Zhan F, Yoon D, Frett B, Kendrick S. Bifunctional Inhibitor Reveals NEK2 as a Therapeutic Target and Regulator of Oncogenic Pathways in Lymphoma. Mol Cancer Ther 2024; 23:316-329. [PMID: 37816504 PMCID: PMC10932871 DOI: 10.1158/1535-7163.mct-23-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.
Collapse
Affiliation(s)
- Mason McCrury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kennith Swafford
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sydnye L. Shuttleworth
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Syed Hassan Mehdi
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Baku Acharya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin Naceanceno
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Claire Doshier
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vijay Patel
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ginell R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Annick De Loose
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Donghoon Yoon
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
16
|
Makiyama T, Obama T, Watanabe Y, Chatani M, Azetsu Y, Kawaguchi K, Imanaka T, Itabe H. Behavior of intracellular lipid droplets during cell division in HuH7 hepatoma cells. Exp Cell Res 2023; 433:113855. [PMID: 37995922 DOI: 10.1016/j.yexcr.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Intracellular lipid droplets (LDs) are ubiquitous organelles found in many cell types. During mitosis, membranous organelles, including mitochondria, are divided into small pieces and transferred to daughter cells; however, the process of LD transfer to daughter cells is not fully elucidated. Herein, we investigated the behavior of LDs during mitosis in HuH7 human hepatoma cells. While fragments of the Golgi apparatus were scattered in the cytosol during mitosis, intracellular LDs retained their size and spherical morphology as they translocated to the two daughter cells. LDs were initially distributed throughout the cell during prophase but positioned outside the spindle in metaphase, aligning at the far sides of the centrioles. A similar distribution of LDs during mitosis was observed in another hepatocarcinoma HepG2 cells. When the spindle was disrupted by nocodazole treatment or never in mitosis gene A-related kinase 2A knockdown, LDs were localized in the area outside the chromosomes, suggesting that spindle formation is not necessary for LD localization at metaphase. The amount of major LD protein perilipin 2 reduced while LDs were enriched in perilipin 3 during mitosis, indicating the potential alteration of LD protein composition. Conclusively, the behavior of LDs during mitosis is distinct from that of other organelles in hepatocytes.
Collapse
Affiliation(s)
- Tomohiko Makiyama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Takashi Obama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuichi Watanabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure City, Hiroshima, 737-0112, Japan
| | - Hiroyuki Itabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
17
|
Gregorczyk M, Parkes EE. Targeting mitotic regulators in cancer as a strategy to enhance immune recognition. DNA Repair (Amst) 2023; 132:103583. [PMID: 37871511 DOI: 10.1016/j.dnarep.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eileen E Parkes
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
18
|
Guo D, Yao W, Du X, Dong J, Zhang X, Shen W, Zhu S. NEK2 promotes esophageal squamous cell carcinoma cell proliferation, migration and invasion through the Wnt/β-catenin signaling pathway. Discov Oncol 2023; 14:80. [PMID: 37233832 DOI: 10.1007/s12672-023-00692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES The NEK2 (never in mitosis gene A-related kinase 2), a serine/threonine kinase involved in chromosome instability and tumorigenesis. Hence, this study aimed to explore the molecular function of NEK2 in esophageal squamous cell carcinoma (ESCC). METHODS By available transcriptome datasets (GSE53625 cohort, GSE38129 cohort, and GSE21293 cohort), we analyzed the differentially expressed genes in invading and non-invading ESCC. Subsequently, we evaluated the association between NEK2 expression level and clinical outcomes through Kaplan-Meier analysis method. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) analyses were performed to determine the expression levels of NEK2 mRNA and protein, respectively. We knocked down the NEK2 expression in ESCC cells (ECA109 and TE1), and evaluated the NEK2 biology function associated with ESCC cell proliferation, migration, invasion, and colony formation abilities. Finally, the downstream pathway of NEK2 was analyzed through Gene Set Enrichment Analysis (GSEA) and validated the regulatory mechanism of NEK2 on the potential pathway through WB. RESULTS We found that NEK2 was highly expressed in ESCC cells compared with human esophageal epithelial cells (HEEC) (P < 0.0001), and high NEK2 expression was remarkably associated with poor survival (P = 0.019). Knockdown of NEK2 showed the significant inhibitory effect for tumorigenesis, and suppressed the ESCC cells proliferation, migration, invasion, and formation of colonies abilities. Additionally, GSEA revealed that Wnt/β-catenin pathway was a downstream pathway of NEK2. WB results further validated the regulatory mechanism of NEK2 for Wnt/β-catenin signaling. CONCLUSIONS Our results indicated that NEK2 promotes ESCC cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. NEK2 could be a promising target for ESCC.
Collapse
Affiliation(s)
- Dong Guo
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Weinan Yao
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xingyu Du
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jing Dong
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xueyuan Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenbin Shen
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuchai Zhu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
19
|
Song C, Zhang Y, Li Y, Bie J, Wang Z, Yang X, Li H, Zhu L, Zhang T, Chang Q, Luo J. The phosphorylation of PHF5A by TrkA-ERK1/2-ABL1 cascade regulates centrosome separation. Cell Death Dis 2023; 14:98. [PMID: 36759599 PMCID: PMC9911754 DOI: 10.1038/s41419-023-05561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
During interphase, the newly duplicated pairs of centrosomes are held together by a centrosome linker, and the centrosome separation needs the disruption of this linker to induce the duplicated centrosomes separating into two distinct microtubule organization centers. The mechanism of regulating centrosome separation is however poorly understood. Here, we demonstrated that the phosphorylation of PHF5A at Y36 by the TrkA-ERK1/2-ABL1 cascade plays a critical role in regulating centrosome separation. PHF5A, a well-characterized spliceosome component, is enriched in the centrosome. The pY36-PHF5A promotes the interaction between CEP250 and Nek2A in a spliceosomal-independent manner, which leads to premature centrosome separation. Furthermore, the unmatured centrosome remodels the microtubule and subsequently regulates cell proliferation and migration. Importantly, we found that the phosphorylation cascade of TrkA-ERK1/2-ABL1-PHF5A is hyper-regulated in medulloblastoma. The inhibition of this cascade can induce senescence and restrict the proliferation of medulloblastoma. Our findings on this phosphorylation cascade in regulating centrosome separation could provide a series of potential targets for restricting the progress of medulloblastoma.
Collapse
Affiliation(s)
- Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Haishuang Li
- Department of Pathology, Peking University School of Basic Medical Science; Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Liangyi Zhu
- Department of Pathology, Peking University School of Basic Medical Science; Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Qing Chang
- Department of Pathology, Peking University School of Basic Medical Science; Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
20
|
Rivera-Rivera Y, Vargas G, Jaiswal N, Núñez-Marrero A, Li J, Chen DT, Eschrich S, Rosa M, Johnson JO, Dutil J, Chellappan SP, Saavedra HI. Ethnic and racial-specific differences in levels of centrosome-associated mitotic kinases, proliferative and epithelial-to-mesenchymal markers in breast cancers. Cell Div 2022; 17:6. [PMID: 36494865 PMCID: PMC9733043 DOI: 10.1186/s13008-022-00082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular epidemiology evidence indicates racial and ethnic differences in the aggressiveness and survival of breast cancer. Hispanics/Latinas (H/Ls) and non-Hispanic Black women (NHB) are at higher risk of breast cancer (BC)-related death relative to non-Hispanic white (NHW) women in part because they are diagnosed with hormone receptor-negative (HR) subtype and at higher stages. Since the cell cycle is one of the most commonly deregulated cellular processes in cancer, we propose that the mitotic kinases TTK (or Mps1), TBK1, and Nek2 could be novel targets to prevent breast cancer progression among NHBs and H/Ls. In this study, we calculated levels of TTK, p-TBK1, epithelial (E-cadherin), mesenchymal (Vimentin), and proliferation (Ki67) markers through immunohistochemical (IHC) staining of breast cancer tissue microarrays (TMAs) that includes samples from 6 regions in the Southeast of the United States and Puerto Rico -regions enriched with NHB and H/L breast cancer patients. IHC analysis showed that TTK, Ki67, and Vimentin were significantly expressed in triple-negative (TNBC) tumors relative to other subtypes, while E-cadherin showed decreased expression. TTK correlated with all of the clinical variables but p-TBK1 did not correlate with any of them. TCGA analysis revealed that the mRNA levels of multiple mitotic kinases, including TTK, Nek2, Plk1, Bub1, and Aurora kinases A and B, and transcription factors that are known to control the expression of these kinases (e.g. FoxM1 and E2F1-3) were upregulated in NHBs versus NHWs and correlated with higher aneuploidy indexes in NHB, suggesting that these mitotic kinases may be future novel targets for breast cancer treatment in NHB women.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Pharmacology and Cancer Biology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, 7004, Ponce, PR, 00716-2347, USA
| | - Geraldine Vargas
- Pharmacology and Cancer Biology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, 7004, Ponce, PR, 00716-2347, USA
| | - Neha Jaiswal
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Angel Núñez-Marrero
- Biochemistry and Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Steven Eschrich
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Marilin Rosa
- Departments of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Julie Dutil
- Biochemistry and Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harold I Saavedra
- Pharmacology and Cancer Biology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, 7004, Ponce, PR, 00716-2347, USA.
| |
Collapse
|
21
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
22
|
Ordóñez AJL, Fasiczka R, Fernández B, Naaldijk Y, Fdez E, Ramírez MB, Phan S, Boassa D, Hilfiker S. The LRRK2 signaling network converges on a centriolar phospho-Rab10/RILPL1 complex to cause deficits in centrosome cohesion and cell polarization. Biol Open 2022; 11:275880. [PMID: 35776681 PMCID: PMC9346292 DOI: 10.1242/bio.059468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
The Parkinson's-disease-associated LRRK2 kinase phosphorylates multiple Rab GTPases including Rab8 and Rab10, which enhances their binding to RILPL1 and RILPL2. The nascent interaction between phospho-Rab10 and RILPL1 blocks ciliogenesis in vitro and in the intact brain, and interferes with the cohesion of duplicated centrosomes in dividing cells. We show here that regulators of the LRRK2 signaling pathway including vps35 and PPM1H converge upon causing centrosomal deficits. The cohesion alterations do not require the presence of other LRRK2 kinase substrates including Rab12, Rab35 and Rab43 or the presence of RILPL2. Rather, they depend on the RILPL1-mediated centrosomal accumulation of phosphorylated Rab10. RILPL1 localizes to the subdistal appendage of the mother centriole, followed by recruitment of the LRRK2-phosphorylated Rab proteins to cause the centrosomal defects. The centrosomal alterations impair cell polarization as monitored by scratch wound assays which is reverted by LRRK2 kinase inhibition. These data reveal a common molecular pathway by which enhanced LRRK2 kinase activity impacts upon centrosome-related events to alter the normal biology of a cell. Summary: The Parkinson's disease LRRK2 signaling pathway converges upon the formation of a complex at the subdistal appendage of the mother centriole which causes centrosomal deficits and impairs appropriate cell polarization.
Collapse
Affiliation(s)
- Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Belén Fernández
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Yahaira Naaldijk
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elena Fdez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marian Blanca Ramírez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sébastien Phan
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
23
|
Fdez E, Madero-Pérez J, Lara Ordóñez AJ, Naaldijk Y, Fasiczka R, Aiastui A, Ruiz-Martínez J, López de Munain A, Cowley SA, Wade-Martins R, Hilfiker S. Pathogenic LRRK2 regulates centrosome cohesion via Rab10/RILPL1-mediated CDK5RAP2 displacement. iScience 2022; 25:104476. [PMID: 35721463 PMCID: PMC9198432 DOI: 10.1016/j.isci.2022.104476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022] Open
Abstract
Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes. We show here that centrosomal deficits mediated by pathogenic LRRK2 can also be observed in patient-derived iPS cells, and we have used transiently transfected cell lines to identify the underlying mechanism. The LRRK2-mediated centrosomal cohesion deficits are dependent on both the GTP conformation and phosphorylation status of the Rab proteins. Pathogenic LRRK2 does not displace proteinaceous linker proteins which hold duplicated centrosomes together, but causes the centrosomal displacement of CDK5RAP2, a protein critical for centrosome cohesion. The LRRK2-mediated centrosomal displacement of CDK5RAP2 requires RILPL1 and phospho-Rab proteins, which stably associate with centrosomes. These data provide fundamental information as to how pathogenic LRRK2 alters the normal physiology of a cell.
Collapse
Affiliation(s)
- Elena Fdez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Antonio J Lara Ordóñez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Yahaira Naaldijk
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Rachel Fasiczka
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ana Aiastui
- CIBERNED (Institute Carlos III), Madrid, Spain.,Cell Culture Platform, Biodonostia Institute, San Sebastian, Spain
| | - Javier Ruiz-Martínez
- CIBERNED (Institute Carlos III), Madrid, Spain.,Department of Neurology, Hospital Universitario Donostia-OSAKIDETZA, San Sebastian, Spain.,Neurosciences Area, Biodonostia Institute, San Sebastian, Spain
| | - Adolfo López de Munain
- CIBERNED (Institute Carlos III), Madrid, Spain.,Department of Neurology, Hospital Universitario Donostia-OSAKIDETZA, San Sebastian, Spain.,Neurosciences Area, Biodonostia Institute, San Sebastian, Spain.,Department of Neurosciences, University of the Basque Country, San Sebastian, Spain
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
24
|
Bao Q, Zhang X, Bao P, Liang C, Guo X, Yin M, Chu M, Yan P. Genome-wide identification, characterization, and expression analysis of keratin genes (KRTs) family in yak (Bos grunniens). Gene X 2022; 818:146247. [PMID: 35085710 DOI: 10.1016/j.gene.2022.146247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
As the largest subgroup of intermediate filament proteins, keratins are divided into two types of subfamily. Currently, the molecular mechanism of keratins in several animals has been reported but is limited in yak. Here, 53 different kinds of keratins were identified in the yak genome, including 23 type I and 30 type II keratins. Bioinformatics analysis in this study revealed that multiple phosphorylation sites were identified among all the family members. And the subcellular localization of these proteins was predicted to be in the nucleus, cytoskeleton, and cytoplasm. All keratin family proteins were unstable and the scores of instability coefficient were higher than 40. Phylogenetic analysis showed that high consistency results of the sequence conservation and grouping were found in the genomes of yak, sheep, cattle, mouse, rat, and human. Based on the expression patterns obtained from the transcriptome data, keratin genes (KRTs) were grouped into five clusters, and results also showed that KRTs were highly activated in skin tissues during the hair cycle in yak. Among the five clusters, Cluster II contained the most KRTs, which was the main expression pattern of the yak hair follicle cycle, followed by Cluster III. These results indicated the transition period from telogen to anagen and catagen to telogen were highly dynamic in yak. Gene expression correlation analysis showed that KRTs exhibited a strong correlation (mainly positive correlation) throughout the hair follicle development cycle. And the identification of hub KRTs in specific modules related to hair follicle development in this study was performed using the Weight Gene Co-Expression Network Analysis (WGCNA). Specific modules that include KRTs were darkgreen (KRT40), darkgrey (KRT5), turquoise (KRT1, KRT2, KRT10), bisque4 (KRT4), thistle2 (KRT9, KRT39), and yellowgreen (KRT24). The interaction network showed that these genes were found to be related to the regulation of cell cycle, melanogenesis, hair follicle development, keratinocyte proliferation. Our study provides theoretical support for the study of the evolutionary relationship and molecular mechanism of keratin family in B. grunnien.
Collapse
Affiliation(s)
- Qi Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Xiaolan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Mancai Yin
- Datong Cattle Farm in Qinghai Province, Xining 810000, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China.
| |
Collapse
|
25
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
26
|
Chu Z, Gruss OJ. Mitotic Maturation Compensates for Premature Centrosome Splitting and PCM Loss in Human cep135 Knockout Cells. Cells 2022; 11:cells11071189. [PMID: 35406752 PMCID: PMC8997944 DOI: 10.3390/cells11071189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Centrosomes represent main microtubule organizing centers (MTOCs) in animal cells. Their duplication in S-phase enables the establishment of two MTOCs in M-phase that define the poles of the spindle and ensure equal distribution of chromosomes and centrosomes to the two daughter cells. While key functions of many centrosomal proteins have been addressed in RNAi experiments and chronic knockdown, knockout experiments with complete loss of function in all cells enable quantitative analysis of cellular phenotypes at all cell-cycle stages. Here, we show that the centriolar satellite proteins SSX2IP and WDR8 and the centriolar protein CEP135 form a complex before centrosome assembly in vertebrate oocytes and further functionally interact in somatic cells with established centrosomes. We present stable knockouts of SSX2IP, WDR8, and CEP135 in human cells. While loss of SSX2IP and WDR8 are compensated for, cep135 knockout cells display compromised PCM recruitment, reduced MTOC function, and premature centrosome splitting with imbalanced PCMs. Defective cep135 knockout centrosomes, however, manage to establish balanced spindle poles, allowing unperturbed mitosis and regular cell proliferation. Our data show essential functions of CEP135 in interphase MTOCs and demonstrate that loss of individual functions of SSX2IP, WDR8, and CEP135 are fully compensated for in mitosis.
Collapse
|
27
|
Feng X, Guo J, An G, Wu Y, Liu Z, Meng B, He N, Zhao X, Chen S, Zhu Y, Xia J, Li X, Yu Z, Li R, Ren G, Chen J, Wu M, He Y, Qiu L, Zhou J, Zhou W. Genetic Aberrations and Interaction of NEK2 and TP53 Accelerate Aggressiveness of Multiple Myeloma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104491. [PMID: 35088582 PMCID: PMC8948659 DOI: 10.1002/advs.202104491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Indexed: 05/31/2023]
Abstract
It has been previously shown that (never in mitosis gene A)-related kinase 2 (NEK2) is upregulated in multiple myeloma (MM) and contributes to drug resistance. However, the mechanisms behind this upregulation remain poorly understood. In this study, it is found that amplification of NEK2 and hypermethylation of distal CpG islands in its promoter correlate strongly with increased NEK2 expression. Patients with NEK2 amplification have a poor rate of survival and often exhibit TP53 deletion, which is an independent prognostic factor in MM. This combination of TP53 knockout and NEK2 overexpression induces asymmetric mitosis, proliferation, drug resistance, and tumorigenic behaviors in MM in vitro and in vivo. In contrast, delivery of wild type p53 and suppression of NEK2 in TP53-/- MM cell lines inhibit tumor formation and enhance the effect of Bortezomib against MM. It is also discovered that inactivating p53 elevates NEK2 expression genetically by inducing NEK2 amplification, transcriptionally by increased activity of cell cycle-related genes like E2F8 and epigenetically by upregulating DNA methyltransferases. Dual defects of TP53 and NEK2 may define patients with the poorest outcomes in MM with p53 inactivation, and NEK2 may serve as a novel therapeutic target in aggressive MM with p53 abnormalities.
Collapse
Affiliation(s)
- Xiangling Feng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jiaojiao Guo
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Gang An
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Yangbowen Wu
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Zhenhao Liu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Shanghai Center for Bioinformation TechnologyShanghai201203China
| | - Bin Meng
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Nihan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Xinying Zhao
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Shilian Chen
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Yinghong Zhu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Jiliang Xia
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Xin Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Zhiyong Yu
- Department of PathologyChangsha eighth hospitalChangshaHunan410199China
| | - Ruixuan Li
- The third Xiangya Hospital of Central South UniversityChangshaHunan410013China
| | - Guofeng Ren
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Jihua Chen
- Xiang Ya School of Public HealthCentral South UniversityChangshaHunan410028China
| | - Minghua Wu
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| | - Yanjuan He
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
| | - Lugui Qiu
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300041China
| | - Wen Zhou
- State Key Laboratory of Experimental HematologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationKey Laboratory of CarcinogenesisNational Health and Family Planning Commission; Department of HematologyXiangya HospitalCentral South UniversityChangshaHunan410028China
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South University110 # Xiangya streetChangshaHunan410028China
| |
Collapse
|
28
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
29
|
Estrogens—Origin of Centrosome Defects in Human Cancer? Cells 2022; 11:cells11030432. [PMID: 35159242 PMCID: PMC8833882 DOI: 10.3390/cells11030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Estrogens are associated with a variety of diseases and play important roles in tumor development and progression. Centrosome defects are hallmarks of human cancers and contribute to ongoing chromosome missegragation and aneuploidy that manifest in genomic instability and tumor progression. Although several mechanisms underlie the etiology of centrosome aberrations in human cancer, upstream regulators are hardly known. Accumulating experimental and clinical evidence points to an important role of estrogens in deregulating centrosome homeostasis and promoting karyotype instability. Here, we will summarize existing literature of how natural and synthetic estrogens might contribute to structural and numerical centrosome defects, genomic instability and human carcinogenesis.
Collapse
|
30
|
Tischer T, Yang J, Barford D. The APC/C targets the Cep152-Cep63 complex at the centrosome to regulate mitotic spindle assembly. J Cell Sci 2022; 135:jcs259273. [PMID: 34878135 PMCID: PMC8917351 DOI: 10.1242/jcs.259273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase-promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions, including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and an APC/C substrate. Previous studies have shown that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitylation of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.
Collapse
Affiliation(s)
- Thomas Tischer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
31
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
32
|
Ota M, Funakoshi T, Aki T, Unuma K, Uemura K. Oxcarbazepine induces mitotic catastrophe and apoptosis in NRK-52E proximal tubular cells. Toxicol Lett 2021; 350:240-248. [PMID: 34333065 DOI: 10.1016/j.toxlet.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Certain medicines including anticancer drugs, NSAIDs and antiepileptic drugs are known to cause drug-induced nephropathy. For example, antiepileptic drugs such as carbamazepine (CBZ) and valproic acid have been reported to cause damage to the proximal tubular cells. Although there has been a great deal of research concerning the nephrotoxicity of CBZ, little is known about that of oxcarbazepine (OXC), a derivative of CBZ. To investigate the molecular mechanism underlying renal proximal tubular cell death caused by OXC, we examined alterations in the gene expression profile of NRK-52E proximal tubular cells during OXC exposure. DNA microarray analysis revealed that the levels of genes related to mitotic processes including chromosomal and cytoplasmic segregation, progression to G2/M phase, and formation of the mitotic spindle are increased after exposure to 50 μM OXC for 6 h. Cell cycle analysis by flow cytometry showed that OXC at concentrations between 25 and 100 μM induces G2/M arrest. We also found that OXC significantly increases histone H3 phosphorylation, indicative of mitotic cells. These results imply that OXC induces cell cycle arrest at the mitotic phase. Immunofluorescence analysis showed monopolar spindles, which are formed in response to centrosome separation defects, in OXC-treated cells. We also show that OXC suppresses the phosphorylation of PLK1, which is involved not only in the activation of the kinesin family of motor proteins for centrosome separation and bipolar spindle assembly, but also in the cleavage of centrosomal proteins. Thus, our results indicate that OXC inhibits centrosome separation by reducing the activation of PLK1, which leads to the formation of an abnormal spindle and induces mitotic catastrophe and apoptosis in NRK-52E cells.
Collapse
Affiliation(s)
- Momoka Ota
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
33
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
34
|
Zhang X, Huang X, Xu J, Li E, Lao M, Tang T, Zhang G, Guo C, Zhang X, Chen W, Yadav DK, Bai X, Liang T. NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat Commun 2021; 12:4536. [PMID: 34315872 PMCID: PMC8316469 DOI: 10.1038/s41467-021-24769-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023] Open
Abstract
Despite the substantial impact of post-translational modifications on programmed cell death 1 ligand 1 (PD-L1), its importance in therapeutic resistance in pancreatic cancer remains poorly defined. Here, we demonstrate that never in mitosis gene A-related kinase 2 (NEK2) phosphorylates PD-L1 to maintain its stability, causing PD-L1-targeted pancreatic cancer immunotherapy to have poor efficacy. We identify NEK2 as a prognostic factor in immunologically "hot" pancreatic cancer, involved in the onset and development of pancreatic tumors in an immune-dependent manner. NEK2 deficiency results in the suppression of PD-L1 expression and enhancement of lymphocyte infiltration. A NEK binding motif (F/LXXS/T) is identified in the glycosylation-rich region of PD-L1. NEK2 interacts with PD-L1, phosphorylating the T194/T210 residues and preventing ubiquitin-proteasome pathway-mediated degradation of PD-L1 in ER lumen. NEK2 inhibition thereby sensitizes PD-L1 blockade, synergically enhancing the anti-pancreatic cancer immune response. Together, the present study proposes a promising strategy for improving the effectiveness of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Huang C, Luo H, Huang Y, Fang C, Zhao L, Li P, Zhong C, Liu F. AURKB, CHEK1 and NEK2 as the Potential Target Proteins of Scutellaria barbata on Hepatocellular Carcinoma: An Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:3295-3312. [PMID: 34285555 PMCID: PMC8285231 DOI: 10.2147/ijgm.s318077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objective We aim to explore the potential anti-HCC mechanism of Scutellaria barbata through integrated bioinformatics analysis. Methods We searched active ingredients and related targets of Scutellaria barbata via TCMSP database, PubChem and SwissTargetPrediction database. Then, we identified HCC disease targets from GEO dataset by WGCNA. Next, the intersected targets of disease targets and drug targets were input into STRING database to construct PPI networking in order to obtain potential therapeutic targets of Scutellaria barbata. Cytoscape software was used to carry out network topology analysis of potential targets. We used the R package for GO analysis and KEGG analysis. Finally, we used AutoDock vina and PyMOL software for molecular docking. Results Sixteen active components from Scutellaria barbata were lastly selected for further investigation. A total of 442 component targets were identified from 16 active ingredients of Scutellaria barbata after the removal of duplicate targets. GSE45436 was selected for construction of WGCNA and screening of differentially expressed genes. A total of 354 genes were up-regulated in HCC samples and 100 were down-regulated in HCC patients. Twenty-one common genes were obtained by intersection and 10 critical targets were filtered for further investigation. The enrichment analysis showed that cell cycle, DNA replication, p53 signaling pathway were mainly involved. The molecular docking results showed that 4 potential combinations were with the best binding energy and molecular interactions. Conclusion AURKB, CHEK1 and NEK2 could be the potential target proteins of Scutellaria barbata in treating HCC. Cell cycle, DNA replication, p53 signaling pathway consist of the fundamental regulation cores in this mechanism.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hu Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuancheng Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chongkai Fang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lina Zhao
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Peiwu Li
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Fengbin Liu
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of gastroenterology, Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
36
|
Khedkar HN, Wang YC, Yadav VK, Srivastava P, Lawal B, Mokgautsi N, Sumitra MR, Wu ATH, Huang HS. In-Silico Evaluation of Genetic Alterations in Ovarian Carcinoma and Therapeutic Efficacy of NSC777201, as a Novel Multi-Target Agent for TTK, NEK2, and CDK1. Int J Mol Sci 2021; 22:ijms22115895. [PMID: 34072728 PMCID: PMC8198179 DOI: 10.3390/ijms22115895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease’s pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Harshita Nivrutti Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Prateeti Srivastava
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- National Defense Medical Center, School of Pharmacy, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| |
Collapse
|
37
|
Chi W, Wang G, Xin G, Jiang Q, Zhang C. PLK4-phosphorylated NEDD1 facilitates cartwheel assembly and centriole biogenesis initiations. J Cell Biol 2021; 220:211633. [PMID: 33351100 PMCID: PMC7759300 DOI: 10.1083/jcb.202002151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.
Collapse
Affiliation(s)
- Wangfei Chi
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
38
|
Alfaro E, López‐Jiménez P, González‐Martínez J, Malumbres M, Suja JA, Gómez R. PLK1 regulates centrosome migration and spindle dynamics in male mouse meiosis. EMBO Rep 2021; 22:e51030. [PMID: 33615693 PMCID: PMC8025030 DOI: 10.15252/embr.202051030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.
Collapse
Affiliation(s)
- Enrique Alfaro
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Pablo López‐Jiménez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | | | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José A Suja
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Rocío Gómez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
39
|
Reglero C, Ortiz del Castillo B, Rivas V, Mayor F, Penela P. Mdm2-Mediated Downmodulation of GRK2 Restricts Centrosome Separation for Proper Chromosome Congression. Cells 2021; 10:729. [PMID: 33806062 PMCID: PMC8064503 DOI: 10.3390/cells10040729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
The timing of centrosome separation and the distance moved apart influence the formation of the bipolar spindle, affecting chromosome stability. Epidermal growth factor receptor (EGFR) signaling induces early centrosome separation through downstream G protein-coupled receptor kinase GRK2, which phosphorylates the Hippo pathway component MST2 (Mammalian STE20-like protein kinase 2), in turn allowing NIMA kinase Nek2A activation for centrosomal linker disassembly. However, the mechanisms that counterbalance centrosome disjunction and separation remain poorly understood. We unveil that timely degradation of GRK2 by the E3 ligase Mdm2 limits centrosome separation in the G2. Both knockout expression and catalytic inhibition of Mdm2 result in GRK2 accumulation and enhanced centrosome separation before mitosis onset. Phosphorylation of GRK2 on residue S670 enables a complex pattern of non-K48-linked polyubiquitin chains assembled by Mdm2, which correlate with kinase protein degradation. Remarkably, GRK2-S670A protein fails to phosphorylate MST2 despite overcoming Mdm2-dependent degradation, which results in defective centrosome separation, shorter spindles, and abnormal chromosome congression. Conversely, extra levels of wild-type kinase in the G2 cause increased inter-centrosome distances with longer spindles, also converging in congression issues. Our findings show that the signals enabling activity of the GRK2/MST2/Nek2A axis for separation also switches on Mdm2 degradation of GRK2 to ensure accurate centrosome dynamics and proper mitotic spindle functionality.
Collapse
Affiliation(s)
- Clara Reglero
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
| | - Belén Ortiz del Castillo
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Verónica Rivas
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (B.O.d.C.); (V.R.); (F.M.J.)
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
40
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
41
|
Centrosome dysfunction in human diseases. Semin Cell Dev Biol 2021; 110:113-122. [DOI: 10.1016/j.semcdb.2020.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
42
|
Morahan BJ, Abrie C, Al-Hasani K, Batty MB, Corey V, Cowell AN, Niemand J, Winzeler EA, Birkholtz LM, Doerig C, Garcia-Bustos JF. Human Aurora kinase inhibitor Hesperadin reveals epistatic interaction between Plasmodium falciparum PfArk1 and PfNek1 kinases. Commun Biol 2020; 3:701. [PMID: 33219324 PMCID: PMC7679417 DOI: 10.1038/s42003-020-01424-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
Mitosis has been validated by numerous anti-cancer drugs as being a druggable process, and selective inhibition of parasite proliferation provides an obvious opportunity for therapeutic intervention against malaria. Mitosis is controlled through the interplay between several protein kinases and phosphatases. We show here that inhibitors of human mitotic kinases belonging to the Aurora family inhibit P. falciparum proliferation in vitro with various potencies, and that a genetic selection for mutant parasites resistant to one of the drugs, Hesperadin, identifies a resistance mechanism mediated by a member of a different kinase family, PfNek1 (PF3D7_1228300). Intriguingly, loss of PfNek1 catalytic activity provides protection against drug action. This points to an undescribed functional interaction between Ark and Nek kinases and shows that existing inhibitors can be used to validate additional essential and druggable kinase functions in the parasite. Morahan et al. investigate inhibitors of human mitotic kinases in P. falciparum and show a resistance mechanism to the drug Hesperadin through an epistatic interaction between the PfArk1 and PfNek1 kinases. This study demonstrates that existing inhibitors can be used to validate additional essential and druggable kinase functions in the parasite.
Collapse
Affiliation(s)
- Belinda J Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Clarissa Abrie
- Faculty of Natural and Agricultural Sciences, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Keith Al-Hasani
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.,Department of Diabetes, Monash University Central Clinical School, Alfred Centre, Melbourne, VIC, 3004, Australia
| | - Mitchell B Batty
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.,Department of Diabetes, Monash University Central Clinical School, Alfred Centre, Melbourne, VIC, 3004, Australia
| | - Victoria Corey
- Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.,Illumina, 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Anne N Cowell
- Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.,Department of Medicine, University of California San Diego School of Medicine, 9444 Medical Center Drive, MC 0879, La Jolla, CA, 92093-0879, USA
| | - Jandeli Niemand
- Faculty of Natural and Agricultural Sciences, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA
| | - Lyn-Marie Birkholtz
- Faculty of Natural and Agricultural Sciences, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia. .,School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| | - Jose F Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
43
|
Uddin MH, Kim B, Cho U, Azmi AS, Song YS. Association of ALDH1A1-NEK-2 axis in cisplatin resistance in ovarian cancer cells. Heliyon 2020; 6:e05442. [PMID: 33241139 PMCID: PMC7672295 DOI: 10.1016/j.heliyon.2020.e05442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
Development of acquired resistance to cisplatin (CDDP) is a major obstacle in the treatment of ovarian cancer patients. According to the cancer stem cell (CSC) hypothesis, the recurrence and chemoresistance are presumed to be linked to cancer stem/progenitor cells. Here, we investigated the CSC-like phenotypes and mechanism of chemoresistance in CDDP resistant ovarian cancer cells. A well-established CDDP sensitive ovarian cancer cell line A2780 and its resistant population A2780-Cp were used. We also developed a supra resistant population (SKOV3-Cp) from a naturally CDDP resistant cell line SKOV3. Both resistant/supra resistant cell lines showed significantly higher self-renewal capability than their parental counterparts. They also showed significant resistance to apoptosis and sub-G1 arrest by CDDP treatment. Stem cell marker ALDH1 positivity rates were higher both in A2780-Cp and SKOV3-Cp cell lines than in their counterparts, quantified by Aldefluor assay kit. Hoechst 33342 dye effluxing side populations were increased up to about five folds in A2780-Cp cells and two folds in SKOV3-Cp cells compared to A2780 and SKOV3 cells, respectively. Among major stemness related genes (POU5F1/OCT4, SOX2, NANOG, NES, BMI1, KLF4 and ALDH1A1), ALDH1A1 and KLF4 were significantly overexpressed in both resistant/supra resistant cells. Silencing ALDH1A1 in A2780 and A2780-Cp cells using siRNA greatly reduced the stem cell population and sensitized cells to CDDP. Moreover, silencing of ALDH1A1 reduced the transcript and protein level of its downstream target NEK-2. We also observed the downregulation of ABC transporters (ABCB1/MDR1, ABCG2 and ABCC1/MRP1) either by ALDH1A1 or NEK-2 silencing and upreguation of ABCB1/MDR1 due to the overexpression of NEK-2. Taken together, the present study suggests that stemness gene ALDH1A1 can be involved in CDDP resistance through the upregulation of NEK-2 in ovarian cancer.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Oncology, Karmanos Cancer Institute, Wayen State University, Detroit, Michigan 48201, USA
| | - Boyun Kim
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Untack Cho
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayen State University, Detroit, Michigan 48201, USA
| | - Yong Sang Song
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul, 03080, Republic of Korea
| |
Collapse
|
44
|
Shigdel UK, Lee SJ, Sowa ME, Bowman BR, Robison K, Zhou M, Pua KH, Stiles DT, Blodgett JAV, Udwary DW, Rajczewski AT, Mann AS, Mostafavi S, Hardy T, Arya S, Weng Z, Stewart M, Kenyon K, Morgenstern JP, Pan E, Gray DC, Pollock RM, Fry AM, Klausner RD, Townson SA, Verdine GL. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface. Proc Natl Acad Sci U S A 2020; 117:17195-17203. [PMID: 32606248 PMCID: PMC7382241 DOI: 10.1073/pnas.2006560117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.
Collapse
Affiliation(s)
| | | | | | | | | | - Minyun Zhou
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | | | | | | | | | - Alan S Mann
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | - Tara Hardy
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | - Sukrat Arya
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | | | | | - Kyle Kenyon
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | - Ende Pan
- Warp Drive Bio, Inc., Redwood City, CA 94063
| | | | | | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom
| | | | | | - Gregory L Verdine
- Warp Drive Bio, Inc., Redwood City, CA 94063;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
45
|
Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, Paredez AR. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia. Mol Biol Cell 2020; 31:1611-1622. [PMID: 32459558 PMCID: PMC7521801 DOI: 10.1091/mbc.e19-07-0406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Giardia has 198 Nek kinases whereas humans have only 11. Giardia has a complex microtubule cytoskeleton that includes eight flagella and several unique microtubule arrays that are utilized for parasite attachment and facilitation of rapid mitosis and cytokinesis. The need to regulate these structures may explain the parallel expansion of the number of Nek family kinases. Here we use live and fixed cell imaging to uncover the role of Nek8445 in regulating Giardia cell division. We demonstrate that Nek8445 localization is cell cycle regulated and this kinase has a role in regulating overall microtubule organization. Nek8445 depletion results in short flagella, aberrant ventral disk organization, loss of the funis, defective axoneme exit, and altered cell shape. The axoneme exit defect is specific to the caudal axonemes, which exit from the posterior of the cell, and this defect correlates with rounding of the cell posterior and loss of the funis. Our findings implicate a role for the funis in establishing Giardia's cell shape and guiding axoneme docking. On a broader scale our results support the emerging view that Nek family kinases have a general role in regulating microtubule organization.
Collapse
Affiliation(s)
| | | | - Ilse Rogiers
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Renyu Li
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
46
|
Ko D, Kim J, Rhee K, Choi HJ. Identification of a Structurally Dynamic Domain for Oligomer Formation in Rootletin. J Mol Biol 2020; 432:3915-3932. [DOI: 10.1016/j.jmb.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
47
|
Romano A, Capozza MA, Mastrangelo S, Maurizi P, Triarico S, Rolesi R, Attinà G, Fetoni AR, Ruggiero A. Assessment and Management of Platinum-Related Ototoxicity in Children Treated for Cancer. Cancers (Basel) 2020; 12:1266. [PMID: 32429551 PMCID: PMC7281210 DOI: 10.3390/cancers12051266] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Platinum compounds are a group of chemotherapeutic agents included in many pediatric and adult oncologic treatment protocols. The main platinum compounds are cisplatin, carboplatin, and oxaliplatin. Their use in clinical practice has greatly improved long-term survival of pediatric patients, but they also cause some toxic effects: ototoxicity, myelosuppression, nephrotoxicity, and neurotoxicity. Hearing damage is one of the main toxic effects of platinum compounds, and it derives from the degeneration of hair cells of the ear, which, not having self-renewal capacity, cannot reconstitute themselves. Hearing loss from platinum exposure is typically bilateral, sensorineural, and permanent, and it is caused by the same mechanisms with which platinum acts on neoplastic cells. According to available data from the literature, the optimal timing for the audiological test during and after treatment with platinum compounds is not well defined. Moreover, no substances capable of preventing the onset of hearing loss have been identified.
Collapse
Affiliation(s)
- Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| | - Rolando Rolesi
- Otolaryngology Division, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (R.R.); (A.R.F.)
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| | - Anna Rita Fetoni
- Otolaryngology Division, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (R.R.); (A.R.F.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A.Gemelli IRCCS, Universita’ Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.A.C.); (S.M.); (P.M.); (S.T.); (G.A.)
| |
Collapse
|
48
|
Au FK, Hau BK, Qi RZ. Nek2-mediated GAS2L1 phosphorylation and centrosome-linker disassembly induce centrosome disjunction. J Cell Biol 2020; 219:e201909094. [PMID: 32289147 PMCID: PMC7199859 DOI: 10.1083/jcb.201909094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Centrosome disjunction occurs in late G2 to facilitate bipolar spindle formation and is mediated by the NIMA-related kinase Nek2. Here, we show that GAS2L1, a microtubule- and F-actin-binding protein required for centrosome disjunction, undergoes Nek2-mediated phosphorylation at Ser352 in G2/M. The phosphorylation is essential for centrosome disjunction in late G2 and for proper spindle assembly and faithful chromosome segregation in mitosis. GAS2L1 contains a calponin-homology (CH) domain and a GAS2-related (GAR) domain, which bind to F-actin and microtubules, respectively. Notably, the CH and GAR domains bind to each other to inhibit the functions of both domains, and Ser352 phosphorylation disrupts the interaction between the two domains and relieves the autoinhibition. We dissected the roles of the GAS2L1 phosphorylation and of centrosome-linker disassembly, which is another Nek2-mediated event, and found that these events together trigger centrosome disjunction. Therefore, our findings demonstrate the concerted Nek2 actions that split the centrosomes in late G2.
Collapse
Affiliation(s)
- Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Bill K.T. Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
49
|
Viol L, Hata S, Pastor-Peidro A, Neuner A, Murke F, Wuchter P, Ho AD, Giebel B, Pereira G. Nek2 kinase displaces distal appendages from the mother centriole prior to mitosis. J Cell Biol 2020; 219:e201907136. [PMID: 32211891 PMCID: PMC7055001 DOI: 10.1083/jcb.201907136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Distal appendages (DAs) of the mother centriole are essential for the initial steps of ciliogenesis in G1/G0 phase of the cell cycle. DAs are released from centrosomes in mitosis by an undefined mechanism. Here, we show that specific DAs lose their centrosomal localization at the G2/M transition in a manner that relies upon Nek2 kinase activity to ensure low DA levels at mitotic centrosomes. Overexpression of active Nek2A, but not kinase-dead Nek2A, prematurely displaced DAs from the interphase centrosomes of immortalized retina pigment epithelial (RPE1) cells. This dramatic impact was also observed in mammary epithelial cells with constitutively high levels of Nek2. Conversely, Nek2 knockout led to incomplete dissociation of DAs and cilia in mitosis. As a consequence, we observed the presence of a cilia remnant that promoted the asymmetric inheritance of ciliary signaling components and supported cilium reassembly after cell division. Together, our data establish Nek2 as an important kinase that regulates DAs before mitosis.
Collapse
Affiliation(s)
- Linda Viol
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Centre, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, Heidelberg, Germany
| | - Shoji Hata
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Ana Pastor-Peidro
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Centre for Cell and Molecular Biology, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, University of Heidelberg, Heidelberg, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Patrick Wuchter
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony D. Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gislene Pereira
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- German Cancer Research Centre, German Cancer Research Centre-Centre for Cell and Molecular Biology Alliance, Heidelberg, Germany
| |
Collapse
|
50
|
Penela P, Ribas C, Sánchez-Madrid F, Mayor F. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 2019; 76:4423-4446. [PMID: 31432234 PMCID: PMC6841920 DOI: 10.1007/s00018-019-03274-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates that G protein-coupled receptor kinase 2 (GRK2) is a versatile protein that acts as a signaling hub by modulating G protein-coupled receptor (GPCR) signaling and also via phosphorylation or scaffolding interactions with an extensive number of non-GPCR cellular partners. GRK2 multifunctionality arises from its multidomain structure and from complex mechanisms of regulation of its expression levels, activity, and localization within the cell, what allows the precise spatio-temporal shaping of GRK2 targets. A better understanding of the GRK2 interactome and its modulation mechanisms is helping to identify the GRK2-interacting proteins and its substrates involved in the participation of this kinase in different cellular processes and pathophysiological contexts.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
- Cell-Cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain.
| |
Collapse
|