1
|
Guay KP, Williams RV, Hebert DN. Calnexin reveals a sugar-free taste within the lipid bilayer. EMBO J 2022; 41:e113003. [PMID: 36377534 PMCID: PMC9753440 DOI: 10.15252/embj.2022113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Maturation of membrane proteins is complicated by the need to fold in three distinct environments. While much is known about folding in the two aqueous milieus constituted by cytoplasm and ER lumen, our knowledge of the folding, arrangement, and quality control of transmembrane regions within the lipid bilayer, and its facilitation by molecular chaperones, is limited. New work by Bloemeke et al now reveals an expanded role of the ER chaperone calnexin acting within the lipid bilayer in a carbohydrate-independent manner.
Collapse
Affiliation(s)
- Kevin P Guay
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMAUSA
- Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherstMAUSA
| | - Robert V Williams
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMAUSA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMAUSA
- Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
2
|
A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain. Nat Commun 2021; 12:2061. [PMID: 33824318 PMCID: PMC8024260 DOI: 10.1038/s41467-021-21983-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains. Glycoprotein US9 of human cytomegalovirus downregulates the activating immune ligand MICA*008 to avoid NK cell activation. Here, Seidel et al. show that the signal peptide of US9 is cleaved unusually slowly, causing MICA*008 to be retained in the endoplasmic reticulum (ER) and degraded via the ER quality control system.
Collapse
|
3
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Zimmermann C, Kowalewski D, Bauersfeld L, Hildenbrand A, Gerke C, Schwarzmüller M, Le-Trilling VTK, Stevanovic S, Hengel H, Momburg F, Halenius A. HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11. PLoS Pathog 2019; 15:e1008040. [PMID: 31527904 PMCID: PMC6764698 DOI: 10.1371/journal.ppat.1008040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/27/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome. The human immune system can cover the presentation of a wide array of pathogen derived antigens owing to the three extraordinary polymorphic MHC class I (MHC-I) gene loci, called HLA-A, -B and -C in humans. Studying the HLA peptide ligands of human cytomegalovirus (HCMV) infected cells, we realized that the HCMV encoded glycoprotein US11 targeted different HLA gene products in distinct manners. More than 20 years ago the first HCMV encoded MHC-I inhibitors were identified, including US11, targeting MHC-I for proteasomal degradation. Here, we describe that the prime target for US11-mediated degradation is HLA-A, whereas HLA-B can resist degradation. Our further mechanistic analysis revealed that US11 uses various domains for distinct functions. Remarkably, the ability of US11 to interact with assembled MHC-I and modify peptide loading of degradation-resistant HLA-B was dependent on a low-complexity region (LCR) located between the signal peptide and the immunoglobulin-like domain of US11. To redirect MHC-I for proteasomal degradation the LCR was dispensable. These findings now raise the intriguing question why US11 has evolved to target HLA-A and -B differentially. Possibly, HLA-B molecules are spared in order to dampen NK cell attack against infected cells.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hildenbrand
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Magdalena Schwarzmüller
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
5
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
6
|
Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nat Commun 2019; 10:3020. [PMID: 31289263 PMCID: PMC6617459 DOI: 10.1038/s41467-019-10865-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) can persistently infect humans, but how HCMV avoids humoral immunity is not clear. The neonatal Fc receptor (FcRn) controls IgG transport from the mother to the fetus and prolongs IgG half-life. Here we show that US11 inhibits the assembly of FcRn with β2m and retains FcRn in the endoplasmic reticulum (ER), consequently blocking FcRn trafficking to the endosome. Furthermore, US11 recruits the ubiquitin enzymes Derlin-1, TMEM129 and UbE2J2 to engage FcRn, consequently initiating the dislocation of FcRn from the ER to the cytosol and facilitating its degradation. Importantly, US11 inhibits IgG-FcRn binding, resulting in a reduction of IgG transcytosis across intestinal or placental epithelial cells and IgG degradation in endothelial cells. Hence, these results identify the mechanism by which HCMV infection exploits an ER-associated degradation pathway through US11 to disable FcRn functions. These results have implications for vaccine development and immune surveillance. Human cytomegalovirus (HCMV) can persist for the life of a host in the face of robust immune responses owing to a wide range of immune evasion strategies. Here Liu and colleagues show that HCMV evades the IgG-mediated response by the endoplasmic reticulum-associated degradation of the neonatal Fc receptor for IgG.
Collapse
|
7
|
Abstract
E3 ubiquitin ligases play a central role in viral and cellular degradation of MHC-I. HCMV US2 and US11 hijack the mammalian ERAD machinery to induce MHC-I degradation. We identified the TRC8 and TMEM129 E3 ligases as crucial for US2/11 function. The US2/11 degradation hubs are flexible and enable viral evasion of different immune functions. Cellular quality control of MHC-I is controlled by the HRD1/SEL1L E3 ligase complex.
The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2’s use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain.
Collapse
Affiliation(s)
- D J H van den Boomen
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| | - P J Lehner
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
8
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
9
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
10
|
The influenza virus neuraminidase protein transmembrane and head domains have coevolved. J Virol 2014; 89:1094-104. [PMID: 25378494 DOI: 10.1128/jvi.02005-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Transmembrane domains (TMDs) from single-spanning membrane proteins are commonly viewed as membrane anchors for functional domains. Influenza virus neuraminidase (NA) exemplifies this concept, as it retains enzymatic function upon proteolytic release from the membrane. However, the subtype 1 NA TMDs have become increasingly more polar in human strains since 1918, which suggests that selection pressure exists on this domain. Here, we investigated the N1 TMD-head domain relationship by exchanging a prototypical "old" TMD (1933) with a "recent" (2009), more polar TMD and an engineered hydrophobic TMD. Each exchange altered the TMD association, decreased the NA folding efficiency, and significantly reduced viral budding and replication at 37°C compared to at 33°C, at which NA folds more efficiently. Passaging the chimera viruses at 37°C restored the NA folding efficiency, viral budding, and infectivity by selecting for NA TMD mutations that correspond with their polar or hydrophobic assembly properties. These results demonstrate that single-spanning membrane protein TMDs can influence distal domain folding, as well as membrane-related processes, and suggest the NA TMD in H1N1 viruses has become more polar to maintain compatibility with the evolving enzymatic head domain. IMPORTANCE The neuraminidase (NA) protein from influenza A viruses (IAVs) functions to promote viral release and is one of the major surface antigens. The receptor-destroying activity in NA resides in the distal head domain that is linked to the viral membrane by an N-terminal hydrophobic transmembrane domain (TMD). Over the last century, the subtype 1 NA TMDs (N1) in human H1N1 viruses have become increasingly more polar, and the head domains have changed to alter their antigenicity. Here, we provide the first evidence that an "old" N1 head domain from 1933 is incompatible with a "recent" (2009), more polar N1 TMD sequence and that, during viral replication, the head domain drives the selection of TMD mutations. These mutations modify the intrinsic TMD assembly to restore the head domain folding compatibility and the resultant budding deficiency. This likely explains why the N1 TMDs have become more polar and suggests the N1 TMD and head domain have coevolved.
Collapse
|
11
|
van de Weijer ML, Bassik MC, Luteijn RD, Voorburg CM, Lohuis MAM, Kremmer E, Hoeben RC, LeProust EM, Chen S, Hoelen H, Ressing ME, Patena W, Weissman JS, McManus MT, Wiertz EJHJ, Lebbink RJ. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat Commun 2014; 5:3832. [PMID: 24807418 PMCID: PMC4024746 DOI: 10.1038/ncomms4832] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/08/2014] [Indexed: 01/05/2023] Open
Abstract
Misfolded ER proteins are retrotranslocated into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 exploits this ER-associated protein degradation (ERAD) pathway to downregulate HLA class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. US11-mediated degradation of HLA class I has been instrumental in the identification of key components of mammalian ERAD, including Derlin-1, p97, VIMP and SEL1L. Despite this, the process governing retrotranslocation of the substrate is still poorly understood. Here using a high-coverage genome-wide shRNA library, we identify the uncharacterized protein TMEM129 and the ubiquitin-conjugating E2 enzyme UBE2J2 to be essential for US11-mediated HLA class I downregulation. TMEM129 is an unconventional C4C4-type RING finger E3 ubiquitin ligase that resides within a complex containing various other ERAD components, including Derlin-1, Derlin-2, VIMP and p97, indicating that TMEM129 is an integral part of the ER-resident dislocation complex mediating US11-induced HLA class I degradation.
Collapse
Affiliation(s)
| | - Michael C Bassik
- 1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA [2]
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Cornelia M Voorburg
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Mirjam A M Lohuis
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Molecular Immunology, 81377 Munich, Germany
| | - Rob C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Emily M LeProust
- 1] Genomics Solution Unit, Agilent Technologies Inc., Santa Clara, California 95051, USA [2]
| | - Siyuan Chen
- 1] Genomics Solution Unit, Agilent Technologies Inc., Santa Clara, California 95051, USA [2]
| | - Hanneke Hoelen
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Maaike E Ressing
- 1] Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands [2] Department of Molecular Cell Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Weronika Patena
- 1] Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA [2] Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA [3]
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | - Emmanuel J H J Wiertz
- 1] Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands [2]
| | - Robert Jan Lebbink
- 1] Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands [2]
| |
Collapse
|
12
|
Cho S, Kim BY, Ahn K, Jun Y. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation. PLoS One 2013; 8:e72356. [PMID: 23951315 PMCID: PMC3741148 DOI: 10.1371/journal.pone.0072356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.
Collapse
Affiliation(s)
- Sunglim Cho
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bo Young Kim
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kwangseog Ahn
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngsoo Jun
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
13
|
Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 2013; 54:140-51. [PMID: 22454101 DOI: 10.1007/s12026-012-8304-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.
Collapse
Affiliation(s)
- Vanessa Noriega
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
14
|
Cho S, Lee M, Jun Y. Forced interaction of cell surface proteins with Derlin-1 in the endoplasmic reticulum is sufficient to induce their dislocation into the cytosol for degradation. Biochem Biophys Res Commun 2012. [PMID: 23206703 DOI: 10.1016/j.bbrc.2012.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aberrantly folded proteins in the endoplasmic reticulum (ER) are rapidly removed into the cytosol for degradation by the proteasome via an evolutionarily conserved process termed ER-associated protein degradation (ERAD). ERAD of a subset of proteins requires Derlin-1 for dislocation into the cytosol; however, the molecular function of Derlin-1 remains unclear. Human cytomegalovirus US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules for immune evasion. Because US11 binds to both MHC-I molecules and Derlin-1 via its luminal and transmembrane domains (TMDs), respectively, the major role of US11 has been proposed to simply be delivery of MHC-I molecules to Derlin-1. Here, we directly tested this proposal by generating a hybrid MHC-I molecule, which contains the US11 TMD, and thus can associate with Derlin-1 in the absence of US11. Intriguingly, this MHC-I hybrid was rapidly degraded in a Derlin-1- and proteasome-dependent manner. Similarly, the vesicular stomatitis virus G protein, otherwise expressed at the cell surface, was degraded via Derlin-1-dependent ERAD when its TMD was replaced with that of US11. Thus, forced interaction of cell surface proteins with Derlin-1 is sufficient to induce their degradation via ERAD. Taken together, these results suggest that the main role of US11 is to recruit MHC-I molecules to Derlin-1, which then mediates the dislocation of MHC-I molecules into the cytosol for degradation.
Collapse
Affiliation(s)
- Sunglim Cho
- Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | |
Collapse
|
15
|
Noriega VM, Hesse J, Gardner TJ, Besold K, Plachter B, Tortorella D. Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Mol Immunol 2012; 51:245-53. [PMID: 22497807 DOI: 10.1016/j.molimm.2012.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/18/2022]
Abstract
Human cytomegalovirus (HCMV), a member of the Herpesviridae family, is proficient at establishing lifelong persistence within the host in part due to immune modulating genes that limit immune recognition. HCMV encodes at least five glycoproteins within its unique short (US) genomic region that interfere with MHC class I antigen presentation, thus hindering viral clearance by cytotoxic T lymphocytes (CTL). Specifically, US3 retains class I within the endoplasmic reticulum (ER), while US2 and US11 induce class I heavy chain destruction. A cooperative effect on class I down-regulation during stable expression of HCMV US2 and US3 has been established. To address the impact of US3 on US11-mediated MHC class I down-regulation, the fate of class I molecules was examined in US3/US11-expressing cells and virus infection studies. Co-expression of US3 and US11 resulted in a decrease of surface expression of class I molecules. However, the class I molecules in US3/US11 cells were mostly retained in the ER with an attenuated rate of proteasome destruction. Analysis of class I levels from virus-infected cells using HCMV variants either expressing US3 or US11 revealed efficient surface class I down-regulation upon expression of both viral proteins. Cells infected with both US3 and US11 expressing viruses demonstrate enhanced retention of MHC class I complexes within the ER. Collectively, the data suggests a paradigm where HCMV-induced surface class I down-regulation occurs by diverse mechanisms dependent on the expression of specific US genes. These results validate the commitment of HCMV to limiting the surface expression of class I levels during infection.
Collapse
Affiliation(s)
- Vanessa M Noriega
- Mount Sinai School of Medicine, Department of Microbiology, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
16
|
Soetandyo N, Ye Y. The p97 ATPase dislocates MHC class I heavy chain in US2-expressing cells via a Ufd1-Npl4-independent mechanism. J Biol Chem 2010; 285:32352-9. [PMID: 20702414 DOI: 10.1074/jbc.m110.131649] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human cytomegalovirus (HCMV) protein US2 hijacks the endoplasmic reticulum (ER)-associated degradation machinery to dispose of MHC class I heavy chain (HC) at the ER. This process requires retrotranslocation of newly synthesized HC molecules from the ER membrane into the cytosol, but the mechanism underlying the dislocation reaction has been elusive. Here we establish an in vitro permeabilized cell assay that recapitulates the retrotranslocation of MHC HC in US2-expressing cells. Using this assay, we demonstrate that the dislocation process requires ATP and ubiquitin, as expected. The retrotranslocation also involves the p97 ATPase. However, the mechanism by which p97 dislocates MHC class I HC in US2 cells is distinct from that in US11 cells: the dislocation reaction in US2 cells is independent of the p97 cofactor Ufd1-Npl4. Our results suggest that different retrotranslocation mechanisms can employ distinct p97 ATPase complexes to dislocate substrates.
Collapse
Affiliation(s)
- Nia Soetandyo
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Ernst R, Mueller B, Ploegh HL, Schlieker C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol Cell 2009; 36:28-38. [PMID: 19818707 DOI: 10.1016/j.molcel.2009.09.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/14/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
YOD1 is a highly conserved deubiquitinating enzyme of the ovarian tumor (otubain) family, whose function has yet to be assigned in mammalian cells. YOD1 is a constituent of a multiprotein complex with p97 as its nucleus, suggesting a functional link to a pathway responsible for the dislocation of misfolded proteins from the endoplasmic reticulum. Expression of a YOD1 variant deprived of its deubiquitinating activity imposes a halt on the dislocation reaction, as judged by the stabilization of various dislocation substrates. Accordingly, we observe an increase in polyubiquitinated dislocation intermediates in association with p97 in the cytosol. This dominant-negative effect is dependent on the UBX and Zinc finger domains, appended to the N and C terminus of the catalytic otubain core domain, respectively. The assignment of a p97-associated ubiquitin processing function to YOD1 adds to our understanding of p97's role in the dislocation process.
Collapse
Affiliation(s)
- Robert Ernst
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
18
|
Oresic K, Ng CL, Tortorella D. TRAM1 participates in human cytomegalovirus US2- and US11-mediated dislocation of an endoplasmic reticulum membrane glycoprotein. J Biol Chem 2009; 284:5905-14. [PMID: 19121997 DOI: 10.1074/jbc.m807568200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human cytomegalovirus proteins US2 and US11 have co-opted endoplasmic reticulum (ER) quality control to facilitate the destruction of major histocompatibility complex class I heavy chains. The class I heavy chains are dislocated from the ER to the cytosol, where they are deglycosylated and subsequently degraded by the proteasome. We examined the role of TRAM1 (translocating chain-associated membrane protein-1) in the dislocation of class I molecules using US2- and US11-expressing cells. TRAM1 is an ER protein initially characterized for its role in processing nascent polypeptides. Co-immunoprecipitation studies demonstrated that TRAM1 can complex with the wild type US2 and US11 proteins as well as deglycosylated and polyubiquitinated class I degradation intermediates. In studies using US2- and US11-TRAM1 knockdown cells, we observed an increase in levels of class I heavy chains. Strikingly, increased levels of glycosylated heavy chains were observed in TRAM1 knockdown cells when compared with control cells in a pulse-chase experiment. In fact, US11-mediated class I dislocation was more sensitive to the lack of TRAM1 than US2. These results provide further evidence that these viral proteins may utilize distinct complexes to facilitate class I dislocation. For example, US11-mediated class I heavy chain degradation requires Derlin-1 and SEL1L, whereas signal peptide peptidase is critical for US2-induced class I destabilization. In addition, TRAM1 can complex with the dislocation factors Derlin-1 and signal peptide peptidase. Collectively, the data support a model in which TRAM1 functions as a cofactor to promote efficient US2- and US11-dependent dislocation of major histocompatibility complex class I heavy chains.
Collapse
Affiliation(s)
- Kristina Oresic
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
19
|
Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci U S A 2008; 105:12325-30. [PMID: 18711132 PMCID: PMC2527910 DOI: 10.1073/pnas.0805371105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Indexed: 11/18/2022] Open
Abstract
Membrane and secretory proteins that fail to pass quality control in the endoplasmic reticulum are discharged into the cytosol and degraded by the proteasome. Many of the mammalian components involved in this process remain to be identified. We performed a biochemical search for proteins that interact with SEL1L, a protein that is part of the mammalian HRD1 ligase complex and involved in substrate recognition. SEL1L is crucial for dislocation of Class I major histocompatibility complex heavy chains by the human cytomegalovirus US11 protein. We identified AUP1, UBXD8, UBC6e, and OS9 as functionally important components of this degradation complex in mammalian cells, as confirmed by mutagenesis and dominant negative versions of these proteins.
Collapse
Affiliation(s)
- Britta Mueller
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Elizabeth J. Klemm
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Jasper H. Claessen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| |
Collapse
|
20
|
Noriega VM, Tortorella D. A bipartite trigger for dislocation directs the proteasomal degradation of an endoplasmic reticulum membrane glycoprotein. J Biol Chem 2008; 283:4031-43. [PMID: 18086679 PMCID: PMC2613023 DOI: 10.1074/jbc.m706283200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polypeptides are organized into distinct substructures, termed protein domains, that are often associated with diverse functions. These modular units can act as binding sites, areas of post-translational modification, and sites of complex multimerization. The human cytomegalovirus US2 gene product is organized into discrete domains that together catalyze the proteasome-dependent degradation of class I major histocompatibility complex heavy chains. US2 co-opts the endogenous ER quality control pathway in order to dispose of class I. The US2 endoplasmic reticulum (ER)-lumenal region is the class I binding domain, whereas the carboxyl terminus can be referred to as the degradation domain. In the present study, we examined the role of the US2 transmembrane domain in virus-mediated class I degradation. Replacement of the US2 transmembrane domain with that of the CD4 glycoprotein completely blocked the ability of US2 to induce class I destruction. A more precise mutagenesis revealed that subregions of the US2 transmembrane domain differ in their ability to trigger class I degradation. Collectively, the data support a model in which US2-mediated class I degradation occurs as a highly regulated process where the US2 transmembrane domain and cytoplasmic tail work in concert to eliminate class I molecules. Host factors, including a signal peptidase complex, probably associate with the US2 molecule in a coordinated fashion to create a predislocation complex to promote the extraction of class I out of the ER. The results imply that the ER quality control machinery may recognize and eliminate misfolded proteins using a similar multistep regulated process.
Collapse
Affiliation(s)
- Vanessa M Noriega
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York 10029, USA
| | | |
Collapse
|
21
|
Abstract
Human cytomegalovirus (HCMV) has become a paradigm for viral immune evasion due to its unique multitude of immune-modulatory strategies. HCMV modulates the innate as well as adaptive immune response at every step of its life cycle. It dampens the induction of antiviral interferon-induced genes by several mechanisms. Further striking is the multitude of genes and strategies devoted to modulating and escaping the cellular immune response. Several genes are independently capable of inhibiting antigen presentation to cytolytic T cells by downregulating MHC class I. Recent data revealed an astounding variety of methods in triggering or inhibiting activatory and inhibitory receptors found on NK cells, NKT cells, T cells as well as auxiliary cells of the immune system. The multitude and complexity of these mechanisms is fascinating and continues to reveal novel insights into the host-pathogen interaction and novel cell biological and immunological concepts.
Collapse
Affiliation(s)
- C Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
22
|
Baker BM, Tortorella D. Dislocation of an Endoplasmic Reticulum Membrane Glycoprotein Involves the Formation of Partially Dislocated Ubiquitinated Polypeptides. J Biol Chem 2007; 282:26845-26856. [PMID: 17650499 DOI: 10.1074/jbc.m704315200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulation of improperly folded polypeptides in the endoplasmic reticulum (ER) can trigger a stress response that leads to the export of aberrant proteins into the cytosol and their ultimate proteasomal degradation. Human cytomegalovirus encodes a type I glycoprotein, US11, that binds to nascent MHC class I heavy chain molecules and causes their dislocation from the ER to the cytosol where they are degraded by the proteasome. Examination of US11-mediated class I degradation has identified a host of cellular proteins involved in the dislocation reaction, including the cytosolic AAA ATPase p97, the membrane protein Derlin-1, and the E3 ubiquitin ligase Sel1L. However, the intermediate steps occurring between the initiation of dislocation and full extraction of the misfolded substrate into the cytosol are not known. We demonstrate that US11 itself undergoes ER export and proteasomal degradation and utilize this system to define multiple steps of US11 dislocation. Treatment of US11-expressing cells with proteasome inhibitor resulted in the accumulation of glycosylated and ubiquitinated species as well as a deglycosylated US11 intermediate. Subcellular fractionation of proteasome-inhibited US11 cells demonstrated that deglycosylated intermediates continued to be integrated within the ER membrane, suggesting that the proteasome functions in the latter steps of dislocation. The data supports a model in which US11 is modified with ubiquitin, whereas the transmembrane region is integrated in the ER membrane, and deglycosylation occurs before complete dislocation.
Collapse
Affiliation(s)
- Brooke M Baker
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York 10029
| | - Domenico Tortorella
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York 10029.
| |
Collapse
|
23
|
Shin J, Park B, Lee S, Kim Y, Biegalke BJ, Kang S, Ahn K. A short isoform of human cytomegalovirus US3 functions as a dominant negative inhibitor of the full-length form. J Virol 2007; 80:5397-404. [PMID: 16699020 PMCID: PMC1472136 DOI: 10.1128/jvi.02397-05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Biological Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-Gu, Seoul 151-747, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Mueller B, Lilley BN, Ploegh HL. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. ACTA ACUST UNITED AC 2006; 175:261-70. [PMID: 17043138 PMCID: PMC2064567 DOI: 10.1083/jcb.200605196] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein quality control in the endoplasmic reticulum (ER) involves recognition of misfolded proteins and dislocation from the ER lumen into the cytosol, followed by proteasomal degradation. Viruses have co-opted this pathway to destroy proteins that are crucial for host defense. Examination of dislocation of class I major histocompatibility complex (MHC) heavy chains (HCs) catalyzed by the human cytomegalovirus (HCMV) immunoevasin US11 uncovered a conserved complex of the mammalian dislocation machinery. We analyze the contributions of a novel complex member, SEL1L, mammalian homologue of yHrd3p, to the dislocation process. Perturbation of SEL1L function discriminates between the dislocation pathways used by US11 and US2, which is a second HCMV protein that catalyzes dislocation of class I MHC HCs. Furthermore, reduction of the level of SEL1L by small hairpin RNA (shRNA) inhibits the degradation of a misfolded ribophorin fragment (RI332) independently of the presence of viral accessories. These results allow us to place SEL1L in the broader context of glycoprotein degradation, and imply the existence of multiple independent modes of extraction of misfolded substrates from the mammalian ER.
Collapse
Affiliation(s)
- Britta Mueller
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
25
|
Hegde NR, Chevalier MS, Wisner TW, Denton MC, Shire K, Frappier L, Johnson DC. The role of BiP in endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain induced by cytomegalovirus proteins. J Biol Chem 2006; 281:20910-20919. [PMID: 16731524 DOI: 10.1074/jbc.m602989200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV1) US11 and US2 proteins cause rapid degradation of major histocompatibility complex (MHC) molecules, apparently by ligating cellular endoplasmic reticulum (ER)-associated degradation machinery. Here, we show that US11 and US2 bind the ER chaperone BiP. Four related HCMV proteins, US3, US7, US9, and US10, which do not promote degradation of MHC proteins, did not bind BiP. Silencing BiP reduced US11- and US2-mediated degradation of MHC class I heavy chain (HC) without altering the synthesis or translocation of HC into the ER or the stability of HC in the absence of US11 or US2. Induction of the unfolded protein response (UPR) did not affect US11-mediated HC degradation and could not explain the stabilization of HC when BiP was silenced. Unlike in yeast, BiP did not act by maintaining substrates in a retrotranslocation-competent form. Our studies go beyond previous observations in mammalian cells correlating BiP release with degradation, demonstrating that BiP is functionally required for US2- and US11-mediated HC degradation. Further, US2 and US11 bound BiP even when HC was absent and degradation of US2 depended on HC. These data were consistent with a model in which US2 and US11 bridge HC onto BiP promoting interactions with other ER-associated degradation proteins.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mathieu S Chevalier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Todd W Wisner
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Michael C Denton
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239
| | - Kathy Shire
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lori Frappier
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239.
| |
Collapse
|
26
|
Abstract
Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions.
Collapse
Affiliation(s)
- Joana Loureiro
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, USA
| | | |
Collapse
|
27
|
Lilley BN, Ploegh HL. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 2005; 207:126-44. [PMID: 16181332 DOI: 10.1111/j.0105-2896.2005.00318.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Viruses that establish long-term infections in their hosts have evolved a number of methods to interfere with the activities of the innate and adaptive immune systems. Control of viral infections is achieved in part through the action of cytotoxic T lymphocytes (CTLs) that recognize cytosolically derived antigenic peptides in the context of class I major histocompatibility complex (MHC) molecules. Viral replication within host cells produces abundant proteinaceous fodder for proteasomal digestion and display by class I MHC products. Tactics that disrupt antigen-presentation pathways and prevent the display of peptides to CD8(+) CTLs have been favored during the course of host-virus co-evolution. Viral immunoevasins exploit diverse cellular processes to interfere with host antiviral functions. The study of such viral factors has uncovered novel host proteins that assist these viral factors in their task and that themselves perform important cellular functions. Here, we focus on viral immunoevasins that, together with their cellular targets, interfere with antigen-presentation pathways. In particular, we emphasize the intersection of the cellular quality-control machinery in the endoplasmic reticulum with the herpesvirus proteins that have co-opted it.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
28
|
Lilley BN, Ploegh HL. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci U S A 2005; 102:14296-301. [PMID: 16186509 PMCID: PMC1242303 DOI: 10.1073/pnas.0505014102] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polypeptides that fail to pass quality control in the endoplasmic reticulum (ER) are dislocated from the ER membrane to the cytosol where they are degraded by the proteasome. Derlin-1, a member of a family of proteins that bears homology to yeast Der1p, was identified as a factor that is required for the human cytomegalovirus US11-mediated dislocation of class I MHC heavy chains from the ER membrane to the cytosol. Derlin-1 acts in concert with the AAA ATPase p97 to remove dislocation substrate proteins from the ER membrane, but it is unknown whether other factors aid Derlin-1 in its function. Mammalian genomes encode two additional, related proteins (Derlin-2 and Derlin-3). The similarity of the mammalian Derlin-2 and Derlin-3 proteins to yeast Der1p suggested that these as-yet-uncharacterized Derlins also may play a role in ER protein degradation. We demonstrate here that Derlin-2 is an ER-resident protein that, similar to Derlin-1, participates in the degradation of proteins from the ER. Furthermore, we show that Derlin-2 forms a robust multiprotein complex with the p97 AAA ATPase as well as the mammalian orthologs of the yeast Hrd1p/Hrd3p ubiquitin-ligase complex. The data presented here define a set of interactions between proteins involved in dislocation of misfolded polypeptides from the ER.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Loch S, Tampé R. Viral evasion of the MHC class I antigen-processing machinery. Pflugers Arch 2005; 451:409-17. [PMID: 16086162 DOI: 10.1007/s00424-005-1420-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 03/22/2005] [Indexed: 12/22/2022]
Abstract
In their adaptation to the immune system in vertebrates, viruses have been forced to evolve elaborate strategies for evading the host's immune response. To ensure life-long persistence in the host, herpes viruses, adenoviruses and retroviruses have exploited multiple cellular pathways for their purpose, including the class I antigen-processing machinery. Attractive and prominent targets for viral attacks are the proteasome complex, the transporter associated with antigen processing, and MHC class I molecules. This review briefly outlines the different mechanisms of viral interference with the antigen-presentation pathway.
Collapse
Affiliation(s)
- Sandra Loch
- Institute of Biochemistry, Biocentre, J.W. Goethe-University Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt am Main, Germany
| | | |
Collapse
|
30
|
Tirosh B, Iwakoshi NN, Lilley BN, Lee AH, Glimcher LH, Ploegh HL. Human cytomegalovirus protein US11 provokes an unfolded protein response that may facilitate the degradation of class I major histocompatibility complex products. J Virol 2005; 79:2768-79. [PMID: 15708995 PMCID: PMC548438 DOI: 10.1128/jvi.79.5.2768-2779.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) glycoprotein US11 diverts class I major histocompatibility complex (MHC) heavy chains (HC) from the endoplasmic reticulum (ER) to the cytosol, where HC are subjected to proteasome-mediated degradation. In mouse embryonic fibroblasts that are deficient for X-box binding protein 1 (XBP-1), a key transcription factor in the unfolded protein response (UPR) pathway, we show that degradation of endogenous mouse HC is impaired. Moreover, the rate of US11-mediated degradation of ectopically expressed HLA-A2 is reduced when XBP-1 is absent. In the human astrocytoma cell line U373, turning on expression of US11, but not US2, is sufficient to induce a UPR, as manifested by upregulation of the ER chaperone Bip and by splicing of XBP-1 mRNA. In the presence of dominant-negative versions of XBP-1 and activating transcription factor 6, the kinetics of class I MHC HC degradation were delayed when expression of US11 was turned on. The magnitude of these effects, while reproducible, was modest. Conversely, in cells that stably express high levels of US11, the degradation of HC is not affected by the presence of the dominant negative effectors of the UPR. An infection of human foreskin fibroblasts with human cytomegalovirus induced XBP-1 splicing in a manner that coincides with US11 expression. We conclude that the contribution of the UPR is more pronounced on HC degradation shortly after induction of US11 expression and that US11 is sufficient to induce such a response.
Collapse
Affiliation(s)
- Boaz Tirosh
- Department of Pathology, Harvard Medical School, 77 Ave. Louis Pasteur, Room 836, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lilley BN, Ploegh HL. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 2004; 429:834-40. [PMID: 15215855 DOI: 10.1038/nature02592] [Citation(s) in RCA: 537] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 04/21/2004] [Indexed: 11/08/2022]
Abstract
After insertion into the endoplasmic reticulum (ER), proteins that fail to fold there are destroyed. Through a process termed dislocation such misfolded proteins arrive in the cytosol, where ubiquitination, deglycosylation and finally proteasomal proteolysis dispense with the unwanted polypeptides. The machinery involved in the extraction of misfolded proteins from the ER is poorly defined. The human cytomegalovirus-encoded glycoproteins US2 and US11 catalyse the dislocation of class I major histocompatibility complex (MHC) products, resulting in their rapid degradation. Here we show that US11 uses its transmembrane domain to recruit class I MHC products to a human homologue of yeast Der1p, a protein essential for the degradation of a subset of misfolded ER proteins. We show that this protein, Derlin-1, is essential for the degradation of class I MHC molecules catalysed by US11, but not by US2. We conclude that Derlin-1 is an important factor for the extraction of certain aberrantly folded proteins from the mammalian ER.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004; 429:841-7. [PMID: 15215856 DOI: 10.1038/nature02656] [Citation(s) in RCA: 750] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 05/17/2004] [Indexed: 11/10/2022]
Abstract
Elimination of misfolded proteins from the endoplasmic reticulum (ER) by retro-translocation is an important physiological adaptation to ER stress. This process requires recognition of a substrate in the ER lumen and its subsequent movement through the membrane by the cytosolic p97 ATPase. Here we identify a p97-interacting membrane protein complex in the mammalian ER that links these two events. The central component of the complex, Derlin-1, is a homologue of Der1, a yeast protein whose inactivation prevents the elimination of misfolded luminal ER proteins. Derlin-1 associates with different substrates as they move through the membrane, and inactivation of Derlin-1 in C. elegans causes ER stress. Derlin-1 interacts with US11, a virally encoded ER protein that specifically targets MHC class I heavy chains for export from the ER, as well as with VIMP, a novel membrane protein that recruits the p97 ATPase and its cofactor.
Collapse
Affiliation(s)
- Yihong Ye
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Misaghi S, Sun ZYJ, Stern P, Gaudet R, Wagner G, Ploegh H. Structural and functional analysis of human cytomegalovirus US3 protein. J Virol 2004; 78:413-23. [PMID: 14671122 PMCID: PMC303419 DOI: 10.1128/jvi.78.1.413-423.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) unique short region 3 (US3) protein, a type I membrane protein, prevents maturation of class I major histocompatibility complex (MHC) molecules by retaining them in the endoplasmic reticulum (ER) and thus helps inhibit antigen presentation to cytotoxic T cells. US3 molecules bind to class I MHC molecules in a transient fashion but retain them very efficiently in the ER nonetheless. The US3 luminal domain is responsible for ER retention of US3 itself, while both the US3 luminal and transmembrane domains are necessary for retaining class I MHC in the ER. We have expressed the luminal domain of US3 molecule in Escherichia coli and analyzed its secondary structure by using nuclear magnetic resonance. We then predicted the US3 tertiary structure by modeling it based on the US2 structure. Unlike the luminal domain of US2, the US3 luminal domain does not obviously interact with class I MHC molecules. The luminal domain of US3 dynamically oligomerizes in vitro and full-length US3 molecules associate with each other in vivo. We present a model depicting how dynamic oligomerization of US3 may enhance its ability to retain class I molecules within the ER.
Collapse
Affiliation(s)
- Shahram Misaghi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|