1
|
Braza MKE, Dennis EA, Amaro RE. Conformational dynamics and activation of membrane-associated human Group IVA cytosolic phospholipase A 2 (cPLA 2 ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644760. [PMID: 40196679 PMCID: PMC11974688 DOI: 10.1101/2025.03.22.644760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cytosolic phospholipase A 2 (cPLA 2 ) associates with membranes where it hydrolyzes phospholipids containing arachidonic acid to initiate an inflammatory cascade. All-atom molecular dynamics simulations were employed to understand the activation process when cPLA 2 associates with the endoplasmic reticulum (ER) membrane of macrophages where it acts. We found that membrane association causes the lid region of cPLA 2 to undergo a closed-to-open state transition that is accompanied by the sideways movement of loop 495-540, allowing the exposure of a cluster of lysine residues (K488, K541, K543, and K544), which binds the allosteric activator PIP 2 in the membrane. The active site of the open form of cPLA 2 , containing the catalytic dyad residues S228 and D549, exhibited a three-fold larger cavity than the closed form of cPLA 2 in aqueous solution. These findings provide mechanistic insight as to how cPLA 2 ER membrane association promotes major transitions between conformational states critical to allosteric activation and enzymatic phospholipid hydrolysis.
Collapse
|
2
|
Bernstein AD, Asante Ampadu GA, Yang Y, Acharya GR, Osborn Popp TM, Nieuwkoop AJ. Effects of Ca 2+ on the Structure and Dynamics of PIP 3 in Model Membranes Containing PC and PS. Biochemistry 2025; 64:127-137. [PMID: 39656263 DOI: 10.1021/acs.biochem.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Phosphatidylinositol phosphates (PIPs) are a family of seven different eukaryotic membrane lipids that have a large role in cell viability, despite their minor concentration in eukaryotic cellular membranes. PIPs tightly regulate cellular processes, such as cellular growth, metabolism, immunity, and development through direct interactions with partner proteins. Understanding the biophysical properties of PIPs in the complex membrane environment is important to understand how PIPs selectively regulate a partner protein. Here, we investigate the structure and dynamics of PIP3 in lipid bilayers that are simplified models of the natural membrane environment. We probe the effects of the anionic lipid phosphatidylserine (PS) and the divalent cation Ca2+ by using full-length lipids in well-formed bilayers. We used solution and solid-state NMR on naturally abundant 1H, 31P, and 13C atoms combined with molecular dynamics (MD) simulations to characterize the structure and dynamics of PIPs. 1H and 31P 1D spectra show good resolution at temperatures above the phase transition with isolated peaks in the headgroup, interfacial, and bilayer regions. Site-specific assignment of the chemical shifts of these reporters enables the measurement of the effects of Ca2+ and PS at the single atom level. In particular, the resolved 31P signals of the PIP3 headgroup allow for extremely well-localized information about PIP3 phosphate dynamics, which the MD simulations can further explain. A quantitative assessment of cross-polarization kinetics provides additional dynamics measurements for the PIP3 headgroups.
Collapse
Affiliation(s)
- Ashley D Bernstein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Gertrude A Asante Ampadu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yanxing Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Gobin Raj Acharya
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas M Osborn Popp
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Bernstein AD, Yang Y, Osborn Popp TM, Ampadu GA, Acharya GR, Nieuwkoop AJ. Effects of Ca 2+ on the Structure and Dynamics of PIP3 in Model Membranes Containing PC and PS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596302. [PMID: 38854128 PMCID: PMC11160587 DOI: 10.1101/2024.05.28.596302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Phosphatidylinositol phosphates (PIPs) are a family of seven different eukaryotic membrane lipids that have a large role in cell viability, despite their minor concentration in eukaryotic cellular membranes. PIPs tightly regulate cellular processes such as cellular growth, metabolism, immunity, and development through direct interactions with partner proteins. Understanding the biophysical properties of PIPs in the complex membrane environment is important to understand how PIPs selectively regulate a partner protein. Here we investigate the structure and dynamics of PIP3 in lipid bilayers that are simplified models of the natural membrane environment. We probe the effects of the anionic lipid phosphatidylserine (PS) and the divalent cation Ca 2+ . We use solution and solid-state 1 H, 31 P, and 13 C NMR all at natural abundance combined with MD simulations to characterize the structure and dynamics of PIPs. 1 H and 31 P 1D spectra show good resolution at high temperatures with isolated peaks in the headgroup, interfacial, and bilayer regions. Site specific assignment of these 1D reporters were made and used to measure the effects of Ca 2+ and PS. In particular, the resolved 31 P signals of the PIP3 headgroup allowed for extremely well localized information about PIP3 phosphate dynamics, which the MD simulations were able to help explain. Cross polarization kinetics provided additional site-specific dynamics measurements for the PIP3 headgroups.
Collapse
|
4
|
Wu J, Xing L, Zheng Y, Yu Y, Wu R, Liu X, Li L, Huang Y. Disease-specific protein corona formed in pathological intestine enhances the oral absorption of nanoparticles. Acta Pharm Sin B 2023; 13:3876-3891. [PMID: 37719377 PMCID: PMC10501873 DOI: 10.1016/j.apsb.2023.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Protein corona (PC) has been identified to impede the transportation of intravenously injected nanoparticles (NPs) from blood circulation to their targeted sites. However, how intestinal PC (IPC) affects the delivery of orally administered NPs are still needed to be elucidated. Here, we found that IPC exerted "positive effect" or "negative effect" depending on different pathological conditions in the gastrointestinal tract. We prepared polystyrene nanoparticles (PS) adsorbed with different IPC derived from the intestinal tract of healthy, diabetic, and colitis rats (H-IPC@PS, D-IPC@PS, C-IPC@PS). Proteomics analysis revealed that, compared with healthy IPC, the two disease-specific IPC consisted of a higher proportion of proteins that were closely correlated with transepithelial transport across the intestine. Consequently, both D-IPC@PS and C-IPC@PS mainly exploited the recycling endosome and ER-Golgi mediated secretory routes for intracellular trafficking, which increased the transcytosis from the epithelium. Together, disease-specific IPC endowed NPs with higher intestinal absorption. D-IPC@PS posed "positive effect" on intestinal absorption into blood circulation for diabetic therapy. Conversely, C-IPC@PS had "negative effect" on colitis treatment because of unfavorable absorption in the intestine before arriving colon. These results imply that different or even opposite strategies to modulate the disease-specific IPC need to be adopted for oral nanomedicine in the treatment of variable diseases.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxian Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yinglan Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ruinan Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Abstract
Constitutive vesicle trafficking is the default pathway used by all cells for movement of intracellular cargoes between subcellular compartments and in and out of the cell. Classically, constitutive trafficking was thought to be continuous and unregulated, in contrast to regulated secretion, wherein vesicles are stored intracellularly until undergoing synchronous membrane fusion following a Ca2+ signal. However, as shown in the literature reviewed here, many continuous trafficking steps can be up- or down-regulated by Ca2+, including several steps associated with human pathologies. Notably, we describe a series of Ca2+ pumps, channels, Ca2+-binding effector proteins, and their trafficking machinery targets that together regulate the flux of cargo in response to genetic alterations as well as baseline and agonist-dependent Ca2+ signals. Here, we review the most recent advances, organized by organellar location, that establish the importance of these components in trafficking steps. Ultimately, we conclude that Ca2+ regulates an expanding series of distinct mechanistic steps. Furthermore, the involvement of Ca2+ in trafficking is complex. For example, in some cases, the same Ca2+ effectors regulate surprisingly distinct trafficking steps, or even the same trafficking step with opposing influences, through binding to different target proteins.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
6
|
Shao D, Smith DL, Kabbage M, Roth MG. Effectors of Plant Necrotrophic Fungi. FRONTIERS IN PLANT SCIENCE 2021; 12:687713. [PMID: 34149788 PMCID: PMC8213389 DOI: 10.3389/fpls.2021.687713] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 05/20/2023]
Abstract
Plant diseases caused by necrotrophic fungal pathogens result in large economic losses in field crop production worldwide. Effectors are important players of plant-pathogen interaction and deployed by pathogens to facilitate plant colonization and nutrient acquisition. Compared to biotrophic and hemibiotrophic fungal pathogens, effector biology is poorly understood for necrotrophic fungal pathogens. Recent bioinformatics advances have accelerated the prediction and discovery of effectors from necrotrophic fungi, and their functional context is currently being clarified. In this review we examine effectors utilized by necrotrophic fungi and hemibiotrophic fungi in the latter stages of disease development, including plant cell death manipulation. We define "effectors" as secreted proteins and other molecules that affect plant physiology in ways that contribute to disease establishment and progression. Studying and understanding the mechanisms of necrotrophic effectors is critical for identifying avenues of genetic intervention that could lead to improved resistance to these pathogens in plants.
Collapse
Affiliation(s)
| | | | | | - Mitchell G. Roth
- Department of Plant Pathology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
7
|
Ruiz-Lara A, Fierro F, Carrasco U, Oria J, Tomasini A. Proteomic analysis of the response of Rhizopus oryzae ENHE to pentachlorophenol: Understanding the mechanisms for tolerance and degradation of this toxic compound. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ward KE, Sengupta R, Ropa JP, Amiar S, Stahelin RV. The Cytosolic Phospholipase A 2α N-terminal C2 Domain Binds and Oligomerizes on Membranes with Positive Curvature. Biomolecules 2020; 10:biom10040647. [PMID: 32331436 PMCID: PMC7226022 DOI: 10.3390/biom10040647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023] Open
Abstract
Group IV phospholipase A2α (cPLA2α) regulates the production of prostaglandins and leukotrienes via the formation of arachidonic acid from membrane phospholipids. The targeting and membrane binding of cPLA2α to the Golgi involves the N-terminal C2 domain, whereas the catalytic domain produces arachidonic acid. Although most studies of cPLA2α concern its catalytic activity, it is also linked to homeostatic processes involving the generation of vesicles that traffic material from the Golgi to the plasma membrane. Here we investigated how membrane curvature influences the homeostatic role of cPLA2α in vesicular trafficking. The cPLA2α C2 domain is known to induce changes in positive membrane curvature, a process which is dependent on cPLA2α membrane penetration. We showed that cPLA2α undergoes C2 domain-dependent oligomerization on membranes in vitro and in cells. We found that the association of the cPLA2α C2 domain with membranes is limited to membranes with positive curvature, and enhanced C2 domain oligomerization was observed on vesicles ~50 nm in diameter. We demonstrated that the cPLA2α C2 domain localizes to cholesterol enriched Golgi-derived vesicles independently of cPLA2α catalytic activity. Moreover, we demonstrate the C2 domain selectively localizes to lipid droplets whereas the full-length enzyme to a much lesser extent. Our results therefore provide novel insight into the molecular forces that mediate C2 domain-dependent membrane localization in vitro and in cells.
Collapse
Affiliation(s)
- Katherine E. Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA; (K.E.W.); (J.P.R.)
| | - Ranjan Sengupta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
| | - James P. Ropa
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA; (K.E.W.); (J.P.R.)
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +01-765-494-4152
| |
Collapse
|
9
|
Torres M, Rosselló CA, Fernández-García P, Lladó V, Kakhlon O, Escribá PV. The Implications for Cells of the Lipid Switches Driven by Protein-Membrane Interactions and the Development of Membrane Lipid Therapy. Int J Mol Sci 2020; 21:ijms21072322. [PMID: 32230887 PMCID: PMC7177374 DOI: 10.3390/ijms21072322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The cell membrane contains a variety of receptors that interact with signaling molecules. However, agonist-receptor interactions not always activate a signaling cascade. Amphitropic membrane proteins are required for signal propagation upon ligand-induced receptor activation. These proteins localize to the plasma membrane or internal compartments; however, they are only activated by ligand-receptor complexes when both come into physical contact in membranes. These interactions enable signal propagation. Thus, signals may not propagate into the cell if peripheral proteins do not co-localize with receptors even in the presence of messengers. As the translocation of an amphitropic protein greatly depends on the membrane's lipid composition, regulation of the lipid bilayer emerges as a novel therapeutic strategy. Some of the signals controlled by proteins non-permanently bound to membranes produce dramatic changes in the cell's physiology. Indeed, changes in membrane lipids induce translocation of dozens of peripheral signaling proteins from or to the plasma membrane, which controls how cells behave. We called these changes "lipid switches", as they alter the cell's status (e.g., proliferation, differentiation, death, etc.) in response to the modulation of membrane lipids. Indeed, this discovery enables therapeutic interventions that modify the bilayer's lipids, an approach known as membrane-lipid therapy (MLT) or melitherapy.
Collapse
Affiliation(s)
- Manuel Torres
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Department of R&D, Laminar Pharmaceuticals SL. ParcBit, Ed. Naorte B, E-07121 Palma, Spain
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, 91120 Jerusalem, Israel;
| | - Pablo Vicente Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma, Spain; (M.T.); (C.A.R.); (P.F.-G.); (V.L.)
- Correspondence:
| |
Collapse
|
10
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
11
|
Wu X, Walker CL, Lu Q, Wu W, Eddelman DB, Parish JM, Xu XM. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA 2 Activation. Mol Neurobiol 2016; 54:6885-6895. [PMID: 27771900 DOI: 10.1007/s12035-016-0187-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A2 (cPLA2), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA2. Inhibition of RhoA, Rho kinase and cPLA2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA2. The immunofluorescence staining showed that ROCK1 or ROCK2, two isoforms of Rho kinase, was co-localized with cPLA2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK1 or ROCK2 bonded directly with cPLA2 and phospho-cPLA2. When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA2 activation.
Collapse
Affiliation(s)
- Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qingbo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel B Eddelman
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonathan M Parish
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Yun B, Leslie CC. Cellular Assays for Evaluating Calcium-Dependent Translocation of cPLA 2α to Membrane. Methods Enzymol 2016; 583:71-99. [PMID: 28063500 DOI: 10.1016/bs.mie.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The group IVA phospholipase A2, commonly called cytosolic phospholipase A2α (cPLA2α), is a widely expressed enzyme that hydrolyzes membrane phospholipid to produce arachidonic acid and lysophospholipids, which are precursors for a number of bioactive lipid mediators. Arachidonic acid is metabolized through the cyclooxygenase and lipoxygenase pathways for production of prostaglandins and leukotrienes that regulate normal physiological processes and contribute to disease pathogenesis. cPLA2α is composed of an N-terminal C2 domain and a C-terminal catalytic domain that contains the Ser-Asp catalytic dyad. The catalytic domain contains phosphorylation sites and basic residues that regulate the catalytic activity of cPLA2α. In response to cell stimulation, cPLA2α is rapidly activated by posttranslational mechanisms including increases in intracellular calcium and phosphorylation by mitogen-activated protein kinases. In resting cells, cPLA2α is localized in the cytosol but translocates to membrane including the Golgi, endoplasmic reticulum, and the peri-nuclear membrane in response to increases in intracellular calcium. Calcium binds to the C2 domain, which promotes the interaction of cPLA2α with membrane through hydrophobic interactions. In this chapter, we describe assays used to study the calcium-dependent translocation of cPLA2α to membrane, a regulatory step necessary for access to phospholipid and release of arachidonic acid.
Collapse
Affiliation(s)
- B Yun
- National Jewish Health, Denver, CO, United States
| | - C C Leslie
- National Jewish Health, Denver, CO, United States; University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
13
|
Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex. Inflammopharmacology 2016; 24:87-95. [PMID: 26886372 DOI: 10.1007/s10787-016-0261-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/04/2016] [Indexed: 01/23/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.
Collapse
|
14
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
15
|
The step further to understand the role of cytosolic phospholipase A2 alpha and group X secretory phospholipase A2 in allergic inflammation: pilot study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670814. [PMID: 25247183 PMCID: PMC4163415 DOI: 10.1155/2014/670814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
Allergens, viral, and bacterial infections are responsible for asthma exacerbations that occur with progression of airway inflammation. cPLA2α and sPLA2X are responsible for delivery of arachidonic acid for production of eicosanoids—one of the key mediators of airway inflammation. However, cPLA2α and sPLA2X role in allergic inflammation has not been fully elucidated. The aim of this study was to analyze the influence of rDer p1 and rFel d1 and lipopolysaccharide (LPS) on cPLA2α expression and sPLA2X secretion in PBMC of asthmatics and in A549 cell line. PBMC isolated from 14 subjects, as well as A549 cells, were stimulated with rDer p1, rFel d1, and LPS. Immunoblotting technique was used to study the changes in cPLA2α protein expression and ELISA was used to analyze the release of sPLA2X. PBMC of asthmatics released more sPLA2X than those from healthy controls in the steady state. rDer p1 induced more sPLA2X secretion than cPLA2α protein expression. rFel d1 caused decrease in cPLA2α relative expression in PBMC of asthmatics and in A549 cells. Summarizing, Der p1 and Fel d1 involve phospholipase A2 enzymes in their action. sPLA2X seems to be one of important PLA2 isoform in allergic inflammation, especially caused by house dust mite allergens.
Collapse
|
16
|
Signaling through C2 domains: more than one lipid target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1536-47. [PMID: 24440424 DOI: 10.1016/j.bbamem.2014.01.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023]
Abstract
C2 domains are membrane-binding modules that share a common overall fold: a single compact Greek-key motif organized as an eight-stranded anti-parallel β-sandwich consisting of a pair of four-stranded β-sheets. A myriad of studies have demonstrated that in spite of sharing the common structural β-sandwich core, slight variations in the residues located in the interconnecting loops confer C2 domains with functional abilities to respond to different Ca(2+) concentrations and lipids, and to signal through protein-protein interactions as well. This review summarizes the main structural and functional findings on Ca(2+) and lipid interactions by C2 domains, including the discovery of the phosphoinositide-binding site located in the β3-β4 strands. The wide variety of functions, together with the different Ca(2+) and lipid affinities of these domains, converts this superfamily into a crucial player in many functions in the cell and more to be discovered. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
17
|
Capestrano M, Mariggio S, Perinetti G, Egorova AV, Iacobacci S, Santoro M, Di Pentima A, Iurisci C, Egorov MV, Di Tullio G, Buccione R, Luini A, Polishchuk RS. Cytosolic phospholipase A₂ε drives recycling through the clathrin-independent endocytic route. J Cell Sci 2014; 127:977-93. [PMID: 24413173 DOI: 10.1242/jcs.136598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.
Collapse
|
18
|
Graber ZT, Gericke A, Kooijman EE. Phosphatidylinositol-4,5-bisphosphate ionization in the presence of cholesterol, calcium or magnesium ions. Chem Phys Lipids 2013; 182:62-72. [PMID: 24309195 DOI: 10.1016/j.chemphyslip.2013.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) is an important signaling lipid and plays a crucial role in a wide variety of cellular processes by interacting with protein targets and localizing proteins at the plasma membrane. These interactions are strongly influenced by the lateral distribution of PI(4,5)P2 as well as its ionization state. The characterization of the PI(4,5)P2 ionization state provides important information about how PI(4,5)P2 interacts with other membrane resident or associated chemical species. In this study we have used solid-state MAS (31)P NMR to investigate the interactions of PI(4,5)P2 with potential cluster promoting agents, divalent cations and cholesterol. Both Ca(2+) and cholesterol were found previously to promote formation of local PI(4,5)P2 clusters in vitro. The NMR approach allows us to probe independently the ionization state of PI(4,5)P2 two phosphomonoester groups. We investigated mixed phosphatidylcholine (PC)/PI(4,5)P2 multilamellar vesicles in the presence of micro and millimolar concentrations of Ca(2+) and Mg(2+). We found that both cations lead to an increased downfield chemical shift of the PI(4,5)P2 phosphomonoester peaks, indicating an increased ionization in the presence of the divalent cations. Ca(2+) has a much larger effect on PI(4,5)P2 as compared to Mg(2+) at similar concentrations. Physiological concentrations of Ca(2+) are significantly lower than those found for Mg(2+) and the comparison of the PI(4,5)P2 ionization in the presence of Ca(2+) and Mg(2+) at physiological concentrations resulted in similar charges of the phosphomonoester groups for both cations. PI(4,5)P2 was also examined with vesicles containing cholesterol since cholesterol has been shown to promote PI(4,5)P2 clustering. In the presence of 40 mol% cholesterol, the PI(4,5)P2 phosphomonoester (31)P NMR peaks shifted slightly downfield, indicating a small increase in charge. Previously published data suggest that PI(4,5)P2 is capable of forming an intra- and intermolecular hydrogen bond network, which leads to a reduction of the charge at the phosphomonoester groups through dissipation of the charge across the bilayer/water interface. We hypothesize that cholesterol participates in this intermolecular hydrogen bond network, resulting in a stabilization of PI(4,5)P2 enriched domains due an increased spacing between the PI(4,5)P2 headgroup. We also examined the cumulative effects of cholesterol combined with the divalent cations, phosphatidylethanolamine (PE), and phosphatidylinositol (PI), separately. The combination of cholesterol and divalent cations results in an additive effect on PI(4,5)P2 ionization, while the effect of cholesterol on PI(4,5)P2 ionization is reduced in the presence of PE or PI.
Collapse
Affiliation(s)
- Zachary T Graber
- Kent State University, Department of Chemistry and Biochemistry, PO Box 5190, Kent, OH 44242, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, 100 Institute Road, Worcester, MA 01605, USA
| | - Edgar E Kooijman
- Kent State University, Department of Biological Sciences, PO Box 5190, Kent, OH 44242, USA.
| |
Collapse
|
19
|
Ward KE, Bhardwaj N, Vora M, Chalfant CE, Lu H, Stahelin RV. The molecular basis of ceramide-1-phosphate recognition by C2 domains. J Lipid Res 2013; 54:636-648. [PMID: 23277511 PMCID: PMC3617939 DOI: 10.1194/jlr.m031088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/29/2012] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A₂ (cPLA₂α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain β-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA₂α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg⁵⁹, Arg⁶¹, and His⁶² (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN
| | - Nitin Bhardwaj
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Mohsin Vora
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| | - Charles E Chalfant
- Department of Biochemistry, Medical College of Virginia Campus, Virginia Commonwealth University, the Massey Cancer Center, and Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Mike and Josie Harper Center for Cancer Research, University of Notre Dame, Notre Dame, IN; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN
| |
Collapse
|
20
|
C2-di-ethyl-ceramide-1-phosphate as an inhibitor of group IVA cytosolic phospholipase A2. Eur J Pharmacol 2012; 697:144-51. [DOI: 10.1016/j.ejphar.2012.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 11/18/2022]
|
21
|
Bair AM, Turman MV, Vaine CA, Panettieri RA, Soberman RJ. The nuclear membrane leukotriene synthetic complex is a signal integrator and transducer. Mol Biol Cell 2012; 23:4456-64. [PMID: 23015755 PMCID: PMC3496618 DOI: 10.1091/mbc.e12-06-0489] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leukotrienes are bioactive signaling molecules derived from arachidonic acid that initiate and amplify innate immunity. A single structure, the leukotriene synthetic complex, on the nuclear membrane of neutrophils integrates and transduces extracellular signals to generate the chemotactic lipid LTB4. Leukotrienes (LTs) are lipid-signaling molecules derived from arachidonic acid (AA) that initiate and amplify inflammation. To initiate LT formation, the 5-lipoxygenase (5-LO) enzyme translocates to nuclear membranes, where it associates with its scaffold protein, 5-lipoxygenase–activating protein (FLAP), to form the core of the multiprotein LT synthetic complex. FLAP is considered to function by binding free AA and facilitating its use as a substrate by 5-LO to form the initial LT, LTA4. We used a combination of fluorescence lifetime imaging microscopy, cell biology, and biochemistry to identify discrete AA-dependent and AA-independent steps that occur on nuclear membranes to control the assembly of the LT synthetic complex in polymorphonuclear leukocytes. The association of AA with FLAP changes the configuration of the scaffold protein, enhances recruitment of membrane-associated 5-LO to form complexes with FLAP, and controls the closeness of this association. Granulocyte monocyte colony–stimulating factor provides a second AA-independent signal that controls the closeness of 5-LO and FLAP within complexes but not the number of complexes that are assembled. Our results demonstrate that the LT synthetic complex is a signal integrator that transduces extracellular signals to modulate the interaction of 5-LO and FLAP.
Collapse
Affiliation(s)
- Angela M Bair
- Renal Unit, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
22
|
Brandt DS, Coffman MD, Falke JJ, Knight JD. Hydrophobic contributions to the membrane docking of synaptotagmin 7 C2A domain: mechanistic contrast between isoforms 1 and 7. Biochemistry 2012; 51:7654-64. [PMID: 22966849 DOI: 10.1021/bi3007115] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synaptotagmin (Syt) triggers Ca(2+)-dependent membrane fusion via its tandem C2 domains, C2A and C2B. The 17 known human isoforms are active in different secretory cell types, including neurons (Syt1 and others) and pancreatic β cells (Syt7 and others). Here, quantitative fluorescence measurements reveal notable differences in the membrane docking mechanisms of Syt1 C2A and Syt7 C2A to vesicles comprised of physiological lipid mixtures. In agreement with previous studies, the Ca(2+) sensitivity of membrane binding is much higher for Syt7 C2A. We report here for the first time that this increased sensitivity is due to the slower target membrane dissociation of Syt7 C2A. Association and dissociation rate constants for Syt7 C2A are found to be ~2-fold and ~60-fold slower than Syt1 C2A, respectively. Furthermore, the membrane dissociation of Syt7 C2A but not Syt1 C2A is slowed by Na(2)SO(4) and trehalose, solutes that enhance the hydrophobic effect. Overall, the simplest model consistent with these findings proposes that Syt7 C2A first docks electrostatically to the target membrane surface and then inserts into the bilayer via a slow hydrophobic mechanism. In contrast, the membrane docking of Syt1 C2A is known to be predominantly electrostatic. Thus, these two highly homologous domains exhibit distinct mechanisms of membrane binding correlated with their known differences in function.
Collapse
Affiliation(s)
- Devin S Brandt
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
23
|
Barth BM, Gustafson SJ, Hankins JL, Kaiser JM, Haakenson JK, Kester M, Kuhn TB. Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cell Signal 2012; 24:1126-33. [PMID: 22230689 PMCID: PMC3338860 DOI: 10.1016/j.cellsig.2011.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/21/2011] [Indexed: 01/01/2023]
Abstract
A persistent inflammatory reaction is a hallmark of chronic and acute pathologies in the central nervous system (CNS) and greatly exacerbates neuronal degeneration. The proinflammatory cytokine tumor necrosis factor alpha (TNFα) plays a pivotal role in the initiation and progression of inflammatory processes provoking oxidative stress, eicosanoid biosynthesis, and the production of bioactive lipids. We established in neuronal cells that TNFα exposure dramatically increased Mg(2+)-dependent neutral sphingomyelinase (nSMase) activity thus generating the bioactive lipid mediator ceramide essential for subsequent NADPH oxidase (NOX) activation and oxidative stress. Since many of the pleiotropic effects of ceramide are attributable to its metabolites, we examined whether ceramide kinase (CerK), converting ceramide to ceramide-1-phosphate, is implicated both in NOX activation and enhanced eicosanoid production in neuronal cells. In the present study, we demonstrated that TNFα exposure of human SH-SY5Y neuroblastoma caused a profound increase in CerK activity. Depleting CerK activity using either siRNA or pharmacology completely negated NOX activation and eicosanoid biosynthesis yet, more importantly, rescued neuronal viability in the presence of TNFα. These findings provided evidence for a critical function of ceramide-1-phospate and thus CerK activity in directly linking sphingolipid metabolism to oxidative stress. This vital role of CerK in CNS inflammation could provide a novel therapeutic approach to intervene with the adverse consequences of a progressive CNS inflammation.
Collapse
Affiliation(s)
- Brian M. Barth
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, 900 Yukon Drive, Fairbanks, AK 99775
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Sally J. Gustafson
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, 900 Yukon Drive, Fairbanks, AK 99775
| | - Jody L. Hankins
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - James M. Kaiser
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Jeremy K. Haakenson
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Mark Kester
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Thomas B. Kuhn
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, 900 Yukon Drive, Fairbanks, AK 99775
| |
Collapse
|
24
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
25
|
Bechler ME, de Figueiredo P, Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 2011; 22:116-24. [PMID: 22130221 DOI: 10.1016/j.tcb.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022]
Abstract
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
26
|
Lee JCM, Simonyi A, Sun AY, Sun GY. Phospholipases A2 and neural membrane dynamics: implications for Alzheimer's disease. J Neurochem 2011; 116:813-9. [PMID: 21214562 DOI: 10.1111/j.1471-4159.2010.07033.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are essential enzymes in cells. They are not only responsible for maintaining the structural organization of cell membranes, but also play a pivotal role in the regulation of cell functions. Activation of PLA(2) s results in the release of fatty acids and lysophospholipids, products that are lipid mediators and compounds capable of altering membrane microdomains and physical properties. Although not fully understood, recent studies have linked aberrant PLA(2) activity to oxidative signaling pathways involving NADPH oxidase that underlie the pathophysiology of a number of neurodegenerative diseases. In this paper, we review studies describing the involvement of cytosolic PLA(2) in oxidative signaling pathways leading to neuronal impairment and activation of glial cell inflammatory responses. In addition, this review also includes information on the role of cytosolic PLA(2) and exogenous secretory PLA(2) on membrane physical properties, dynamics, and membrane proteins. Unraveling the mechanisms that regulate specific types of PLA(2)s and their effects on membrane dynamics are important prerequisites towards understanding their roles in the pathophysiology of Alzheimer's disease, and in the development of novel therapeutics to retard progression of the disease.
Collapse
Affiliation(s)
- James C-M Lee
- Biological Engineering Department, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
27
|
Tiwari K, Paliyath G. Cloning, expression and functional characterization of the C2 domain from tomato phospholipase Dα. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:18-32. [PMID: 21115356 DOI: 10.1016/j.plaphy.2010.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 05/28/2023]
Abstract
C2 domains exist as highly conserved N-terminal or C-terminal calcium- and lipid-binding motifs comprising nearly 130 amino acids, responsible for recruiting proteins to the membrane during signal transduction. In this study, the sequence corresponding to the N-terminal 164 amino acids of a full length cDNA of phospholipase Dα from tomato fruit was cloned in pET28(b) vector and expressed in E. coli as a His-tagged protein. Recombinant C2 domain showed micromolar affinity towards Ca(++) with a maximum of 2 high affinity binding sites. Interaction of C2 domain with synthetic unilamellar vesicles, evaluated by protein- lipid fluorescence resonance energy transfer, showed maximum affinity towards phosphatidic acid, and virtually no binding with phosphatidylcholine. The binding towards phosphoinositides was reduced with increasing degree of phosphorylation. Acid- and chaotropic salt- titrations indicated an electrostatic, rather than a hydrophobic mode of interaction between C2 domain and the phospholipid vesicles. Conformational analyses of the recombinant C2 domain showed a much longer calcium binding loop region, a far less electropositive phosphoinositide-binding region, unique calcium binding pockets with high electro-negativity, and other features that are distinct from the typical C2 domains of phospholipase A2 and Protein kinase C α, signifying the uniqueness of Phospholipase Dα in fruit developmental events.
Collapse
Affiliation(s)
- Krishnaraj Tiwari
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
28
|
Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SSC. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 2010; 3:ra34. [PMID: 20442417 DOI: 10.1126/scisignal.2000796] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellular functions require specific protein-protein interactions that are often mediated by modular domains that use binding pockets to engage particular sequence motifs in their partners. Yet, how different members of a domain family select for distinct sequence motifs is not fully understood. The human genome encodes 120 Src homology 2 (SH2) domains (in 110 proteins), which mediate protein-protein interactions by binding to proteins with diverse phosphotyrosine (pTyr)-containing sequences. The structure of the SH2 domain of BRDG1 bound to a peptide revealed a binding pocket that was blocked by a loop residue in most other SH2 domains. Analysis of 63 SH2 domain structures suggested that the SH2 domains contain three binding pockets, which exhibit selectivity for the three positions after the pTyr in a peptide, and that SH2 domain loops defined the accessibility and shape of these pockets. Despite sequence variability in the loops, we identified conserved structural features in the loops of SH2 domains responsible for controlling access to these surface pockets. We engineered new loops in an SH2 domain that altered specificity as predicted. Thus, selective blockage of binding subsites or pockets by surface loops provides a molecular basis by which the diverse modes of ligand recognition by the SH2 domain may have evolved and provides a framework for engineering SH2 domains and designing SH2-specific inhibitors.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leslie CC, Gangelhoff TA, Gelb MH. Localization and function of cytosolic phospholipase A2alpha at the Golgi. Biochimie 2010; 92:620-6. [PMID: 20226226 DOI: 10.1016/j.biochi.2010.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/04/2010] [Indexed: 11/17/2022]
Abstract
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha, Group IVA phospholipase A(2)) is a central mediator of arachidonate release from cellular phospholipids for the biosynthesis of eicosanoids. cPLA(2)alpha translocates to intracellular membranes including the Golgi in response to a rise in intracellular calcium level. The enzyme's calcium-dependent phospholipid-binding C2 domain provides the targeting specificity for cPLA(2)alpha translocation to the Golgi. However, other features of cPLA(2)alpha regulation are incompletely understood such as the role of phosphorylation of serine residues in the catalytic domain and the function of basic residues in the cPLA(2)alpha C2 and catalytic domains that are proposed to interact with anionic phospholipids in the membrane to which cPLA(2)alpha is targeted. Increasing evidence strongly suggests that cPLA(2)alpha plays a role in regulating Golgi structure, tubule formation and intra-Golgi transport. For example, recent data suggests that cPLA(2)alpha regulates the transport of tight junction and adherens junction proteins through the Golgi to cell-cell contacts in confluent endothelial cells. However, there are now examples where data based on knockdown using siRNA or pharmacological inhibition of enzymatic activity of cPLA(2)alpha affects fundamental cellular processes yet these phenotypes are not observed in cells from cPLA(2)alpha deficient mice. These results suggest that in some cases there may be compensation for the lack of cPLA(2)alpha. Thus, there is continued need for studies employing highly specific cPLA(2)alpha antagonists in addition to genetic deletion of cPLA(2)alpha in mice.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| | | | | |
Collapse
|
30
|
Shaping tubular carriers for intracellular membrane transport. FEBS Lett 2009; 583:3847-56. [DOI: 10.1016/j.febslet.2009.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/22/2022]
|
31
|
Tokue SI, Sasaki M, Nakahata N. Thromboxane A2-induced signal transduction is negatively regulated by KIAA1005 that directly interacts with thromboxane A2 receptor. Prostaglandins Other Lipid Mediat 2009; 89:8-15. [DOI: 10.1016/j.prostaglandins.2009.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 01/29/2009] [Accepted: 02/03/2009] [Indexed: 11/28/2022]
|
32
|
Lee CB, Kim S, McClure B. A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. PLANT PHYSIOLOGY 2009; 149:791-802. [PMID: 19098095 PMCID: PMC2633847 DOI: 10.1104/pp.108.127936] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 12/18/2008] [Indexed: 05/21/2023]
Abstract
As pollen tubes grow toward the ovary, they are in constant contact with the pistil extracellular matrix (ECM). ECM components are taken up during growth, and some pistil molecules exert their effect inside the pollen tube. For instance, the Nicotiana alata 120-kD glycoprotein (120K) is an abundant arabinogalactan protein that is taken up from the ECM; it has been detected in association with pollen tube vacuoles, but the transport pathway between these compartments is unknown. We recently identified a pollen C2 domain-containing protein (NaPCCP) that binds to the carboxyl-terminal domain of 120K. As C2 domain proteins mediate protein-lipid interactions, NaPCCP could function in intracellular transport of 120K in pollen tubes. Here, we describe binding studies showing that the NaPCCP C2 domain is functional and that binding is specific for phosphatidylinositol 3-phosphate. Subcellular fractionation, immunolocalization, and live imaging results show that NaPCCP is associated with the plasma membrane and internal pollen tube vesicles. Colocalization between an NaPCCPgreen fluorescent protein fusion and internalized FM4-64 suggest an association with the endosomal system. NaPCCP localization is altered in pollen tubes rejected by the self-incompatibility mechanism, but our hypothesis is that it has a general function in the transport of endocytic cargo rather than a specific function in self-incompatibility. NaPCCP represents a bifunctional protein with both phosphatidylinositol 3-phosphate- and arabinogalactan protein-binding domains. Therefore, it could function in the transport of pistil ECM proteins in the pollen tube endomembrane system.
Collapse
Affiliation(s)
- Christopher B Lee
- Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
33
|
Wang X, Li Q, Niu X, Chen H, Xu L, Qi C. Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2613-20. [PMID: 19436047 PMCID: PMC2692008 DOI: 10.1093/jxb/erp104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sspg1d, one of endopolygalacturonases, is an important fungal effector secreted by the necrotrophic fungus Sclerotinia sclerotiorum during early infection. Using sspg1d as bait, a small C2 domain protein (designated as IPG-1) was identified by yeast two-hybrid screening of a canola cDNA library. Deletion analysis confirmed that the C-terminus of IPG-1 is responsible for its interaction with sspg1d in the yeast two-hybrid assay. The sspg1d/IPG-1 interaction was further confirmed in plant cells by a biomolecular fluorescence complementation (BiFC) assay. A transient expression assay showed that the IPG-1-GFP fusion protein was targeted to the plasma membrane and nucleus in onion epidermal cells. Following treatment with a Ca(2+) ionophore, it was distributed throughout the cytosol. Real-time PCR assay demonstrated that IPG-1 was highly induced by Sclerotinia sclerotiorum in canola leaves and stems. Southern blot analysis indicated the presence of about five homologues of IPG-1 in the canola genome. Two additional members of the IPG-1gene family were isolated by RT-PCR. Their sequence similarity with IPG-1 is as high as 95%. However, they did not interact with sspg1d in the yeast two-hybrid assay. Possible roles of IPG-1 and its association with sspg1d in the defence signalling pathway were discussed.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- The State Key Laboratory of Crop Genetics & Germplasm enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Academy of Jiangsu Agricultural Sciences, Nanjing 210014, China
- To whom correspondence should be addressed. E-mail: ,
| | - Qian Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Niu
- The State Key Laboratory of Crop Genetics & Germplasm enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Langlai Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunkou Qi
- Academy of Jiangsu Agricultural Sciences, Nanjing 210014, China
- To whom correspondence should be addressed. E-mail: ,
| |
Collapse
|
34
|
Wooten RE, Willingham MC, Daniel LW, Leslie CC, Rogers LC, Sergeant S, O'Flaherty JT. Novel translocation responses of cytosolic phospholipase A2alpha fluorescent proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1544-50. [PMID: 18406359 DOI: 10.1016/j.bbamcr.2008.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 12/13/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2)alpha responds to the rise in cytosolic Ca2+ ([Ca2+]i) attending cell stimulation by moving to intracellular membranes, releasing arachidonic acid (AA) from these membranes, and thereby initiating the synthesis of various lipid mediators. Under some conditions, however, cPLA2alpha translocation occurs without any corresponding changes in [Ca2+]i. The signal for such responses has not been identified. Using confocal microscopy to track fluorescent proteins fused to cPLA2alpha or cPLA2alpha's C2 domain, we find that AA mimics Ca2+ ionophores in stimulating cPLA(2)alpha translocations to the perinuclear ER and to a novel site, the lipid body. Unlike the ionophores, AA acted independently of [Ca2+](i) rises and did not translocate the proteins to the Golgi. AA's action did not involve its metabolism to eicosanoids or acylation into cellular lipids. Receptor agonists also stimulated translocations targeting lipid bodies. We propose that AA is a signal for Ca2+-independent cPLA2alpha translocation and that lipid bodies are common targets of cPLA2alpha and contributors to stimulus-induced lipid mediator synthesis.
Collapse
Affiliation(s)
- Rhonda E Wooten
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Submitochondrial localization of associated mu-calpain and calpastatin. Arch Biochem Biophys 2007; 470:176-86. [PMID: 18082616 DOI: 10.1016/j.abb.2007.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 12/20/2022]
Abstract
Recently, we have reported the presence of calpain-calpastatin system in mitochondria of bovine pulmonary smooth muscle [P. Kar, T. Chakraborti, S. Roy, R. Choudhury, S. Chakraborti, Arch. Biochem. Biophys. 466 (2007) 290-299]. Herein, we report its localization in the mitochondria. Immunoblot, immunoelectron microscopy and casein zymographic studies suggest that mu-calpain and calpastatin are present in the inner mitochondrial membrane; but not in the outer mitochondrial membrane or in the inter membrane space or in the matrix of the mitochondria. Co-immunoprecipitation studies suggest that mu-calpain-calpastatin is associated in the inner mitochondrial membrane. Additionally, the proteinase K and sodium carbonate treatments of the mitoplasts revealed that mu-calpain is integrally and calpastatin is peripherally embedded to the outer surface of inner mitochondrial membrane. These studies indicate that an association between mu-calpain and calpastatin occurs in the inner membrane towards the inter membrane space of the mitochondria, which provides better insight about the protease regulation towards initiation of apoptotic processes mediated by mitochondria.
Collapse
|
36
|
Samanta K, Kar P, Ghosh B, Chakraborti T, Chakraborti S. Localization of m-calpain and calpastatin and studies of their association in pulmonary smooth muscle endoplasmic reticulum. Biochim Biophys Acta Gen Subj 2007; 1770:1297-307. [PMID: 17656025 DOI: 10.1016/j.bbagen.2007.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/18/2007] [Accepted: 06/22/2007] [Indexed: 11/25/2022]
Abstract
Calpain and calpastatin have been demonstrated to play many physiological roles in a variety of systems. It, therefore, appears important to study their localization and association in different suborganelles. Using immunoblot studies, we have identified 80 kDa m-calpain in both lumen and membrane of ER isolated from bovine pulmonary artery smooth muscle. Treatment of the ER with Na(2)CO(3) and proteinase K demonstrated that 80 kDa catalytic subunit and 28 kDa regulatory subunit (Rs) of m-calpain, and the 110-kDa and 70-kDa calpastatin (Cs) forms are localized in the cytosolic side of the ER membrane. Coimmunoprecipitation studies revealed that m-calpain is associated with calpastatin in the cytosolic face of the ER membrane. We have also identified m-calpain activity both in the ER membrane and lumen by casein-zymography. The casein-zymogram has also been utilized to demonstrate differential pattern of the effects of reversible and irreversible cysteine protease inhibitors on m-calpain activity. Thus, a potential site of Cs regulation of m-calpain activity is created by positioning Cs, 80 kDa and 28 kDa m-calpain in the cytosolic face of ER membrane. However, such is not the case for the 80-kDa m-calpain found within the lumen of the ER because of the conspicuous absence of 28 kDa Rs of m-calpain and Cs in this locale.
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | | | |
Collapse
|
37
|
Grise F, Taib N, Monterrat C, Lagrée V, Lang J. Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine beta-cells. Biochem J 2007; 403:483-92. [PMID: 17263688 PMCID: PMC1876385 DOI: 10.1042/bj20061182] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synaptotagmins form a family of calcium-sensor proteins implicated in exocytosis, and these vesicular transmembrane proteins are endowed with two cytosolic calcium-binding C2 domains, C2A and C2B. Whereas the isoforms syt1 and syt2 have been studied in detail, less is known about syt9, the calcium sensor involved in endocrine secretion such as insulin release from large dense core vesicles in pancreatic beta-cells. Using cell-based assays to closely mimic physiological conditions, we observed SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor)-independent translocation of syt9C2AB to the plasma membrane at calcium levels corresponding to endocrine exocytosis, followed by internalization to endosomes. The use of point mutants and truncations revealed that initial translocation required only the C2A domain, whereas the C2B domain ensured partial pre-binding of syt9C2AB to the membrane and post-stimulatory localization to endosomes. In contrast with the known properties of neuronal and neuroendocrine syt1 or syt2, the C2B domain of syt9 did not undergo calcium-dependent membrane binding despite a high degree of structural homology as observed through molecular modelling. The present study demonstrates distinct intracellular properties of syt9 with different roles for each C2 domain in endocrine cells.
Collapse
Affiliation(s)
- Florence Grise
- *Jeune Equipe 2390, Institut Européen de Chimie et Biologie, Université de Bordeaux 1, 2 Av. Robert Escarpit, F-33607 Pessac, France
| | - Nada Taib
- †UMR 5144 CNRS Mobios, Institut Européen de Chimie et Biologie, Université de Bordeaux 1, 2 Av. Robert Escarpit, F-33607 Pessac, France
| | - Carole Monterrat
- *Jeune Equipe 2390, Institut Européen de Chimie et Biologie, Université de Bordeaux 1, 2 Av. Robert Escarpit, F-33607 Pessac, France
| | - Valérie Lagrée
- *Jeune Equipe 2390, Institut Européen de Chimie et Biologie, Université de Bordeaux 1, 2 Av. Robert Escarpit, F-33607 Pessac, France
| | - Jochen Lang
- *Jeune Equipe 2390, Institut Européen de Chimie et Biologie, Université de Bordeaux 1, 2 Av. Robert Escarpit, F-33607 Pessac, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Corbin JA, Evans JH, Landgraf KE, Falke JJ. Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry 2007; 46:4322-36. [PMID: 17367165 PMCID: PMC2896972 DOI: 10.1021/bi062140c] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C2 domain is a ubiquitous, conserved protein signaling motif widely found in eukaryotic signaling proteins. Although considerable functional diversity exists, most C2 domains are activated by Ca2+ binding and then dock to a specific cellular membrane. The C2 domains of protein kinase Calpha (PKCalpha) and cytosolic phospholipase A2alpha (cPLA2alpha), for example, are known to dock to different membrane surfaces during an intracellular Ca2+ signal. Ca2+ activation targets the PKCalpha C2 domain to the plasma membrane and the cPLA2alpha C2 domain to the internal membranes, with no detectable spatial overlap. It is crucial to determine how such targeting specificity is achieved at physiological bulk Ca2+ concentrations that during a typical signaling event rarely exceed 1 muM. For the isolated PKCalpha C2 domain in the presence of physiological Ca2+ levels, the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) are together sufficient to recruit the PKCalpha C2 domain to a lipid mixture mimicking the plasma membrane inner leaflet. For the cPLA2alpha C2 domain, the target lipid phosphatidylcholine (PC) appears to be sufficient to drive membrane targeting to an internal membrane mimic at physiological Ca2+ levels, although the results do not rule out a second, unknown target molecule. Stopped-flow kinetic studies provide additional information about the fundamental molecular events that occur during Ca2+-activated membrane docking. In principle, C2 domain-directed intracellular targeting, which requires coincidence detection of multiple signals (Ca2+ and one or more target lipids), can exhibit two different mechanisms: messenger-activated target affinity (MATA) and target-activated messenger affinity (TAMA). The C2 domains studied here both utilize the TAMA mechanism, in which the C2 domain Ca2+ affinity is too low to be activated by physiological Ca2+ signals in most regions of the cell. Only when the C2 domain nears its target membrane, which provides a high local concentration of target lipid, is the effective Ca2+ affinity increased by the coupled binding equilibrium to a level that enables substantial Ca2+ activation and target docking. Overall, the findings emphasize the importance of using physiological ligand concentrations in targeting studies because super-physiological concentrations can drive docking interactions even when an important targeting molecule is missing.
Collapse
Affiliation(s)
| | | | | | - Joseph J. Falke
- To whom correspondence should be addressed. Tel: 303-492-3597. Fax: 303-492-5894.
| |
Collapse
|
39
|
Garcia-Marcos M, Pochet S, Marino A, Dehaye JP. P2X7 and phospholipid signalling: The search of the “missing link” in epithelial cells. Cell Signal 2006; 18:2098-104. [PMID: 16815675 DOI: 10.1016/j.cellsig.2006.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 05/11/2006] [Indexed: 11/22/2022]
Abstract
The purinergic receptor P2X(7) is widely expressed in epithelial cells. This receptor shares in common with the other P2X receptors the ability to form a non-selective cation channel. On the other hand, the COOH terminus of P2X(7) seems to allow this receptor to couple to a spectrum of downstream effectors responsible for the regulation of cell death and pore formation among other functions. However, the coupling of P2X(7) to these downstream effectors, as well as the identity of possible adapters directly interacting with the receptor, remains poorly understood. Here we review the ability of P2X(7) to activate phospholipid signalling pathways in epithelial cells and propose this step as a possible link between the receptor and other downstream effectors. The P2X(7) ability to control the cellular levels of several lipid messengers (PA, AA, DAG, ceramide, etc.) through the modulation of phospholipases (C, A(2), D) and neutral sphingomyelinase is described. These pathways are sometimes regulated independently of the channel function of the receptor. Recent data concerning P2X(7) localization in lipid rafts is also discussed in relation to the coupling to these pathways and dissociation from channel function.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad del Pais Vasco, Barrio Sarriena S/N, Leioa, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
40
|
Mariggiò S, Bavec A, Natale E, Zizza P, Salmona M, Corda D, Di Girolamo M. Galpha13 mediates activation of the cytosolic phospholipase A2alpha through fine regulation of ERK phosphorylation. Cell Signal 2006; 18:2200-8. [PMID: 16806823 DOI: 10.1016/j.cellsig.2006.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 05/09/2006] [Indexed: 11/20/2022]
Abstract
Heterotrimeric GTP-binding (G) proteins transduce hormone-induced signals to their effector enzymes, which include several phospholipases. In particular, the G(o)/G(i) and G(q) protein families have been shown to couple signaling to phospholipase A(2) (PLA(2)), phospholipase C, and phospholipase D, while the G(12)/G(13) family has been linked to the activation of small GTPases of the Rho family, and hence, to phospholipase D activation. Here, we demonstrate that in CHO cells, the G(12)/G(13) family is also able to activate cPLA(2)alpha, through the activation of RhoA and, subsequently, ERK1/2. Hormone-induced arachidonic acid release increased as a consequence of Galpha(13) overexpression, and was inhibited through inhibition of Galpha(13) signaling. The Galpha(13)-mediated cPLA(2)alpha activation was inhibited by pharmacological blockade of ERK1/2 with either U0126 or PD98059, and by RhoA inactivation with C3 toxin or a dominant-negative RhoA (N19RhoA), and was stimulated by the serine-threonine phosphatase inhibitor calyculin A. Our data thus identify a pathway of cPLA(2)alpha regulation that is initiated by thrombin and purinergic receptor activation, and that signals through Galpha(13), RhoA and ERK1/2, with the involvement of a calyculin-sensitive phosphatase.
Collapse
Affiliation(s)
- Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Hood JL, Brooks WH, Roszman TL. Subcellular mobility of the calpain/calpastatin network: an organelle transient. Bioessays 2006; 28:850-9. [PMID: 16927317 DOI: 10.1002/bies.20440] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Calpain (Cp) is a calcium (Ca(2+))-dependent cysteine protease. Activation of the major isoforms of Cp, CpI and CpII, are required for a number of important cellular processes including adherence, shape change and migration. The current concept that cytoplasmic Cp locates and associates with its regulatory subunit (Rs) and substrates as well as translocates throughout the cell via random diffusion is not compatible with the spatial and temporal constraints of cellular metabolism. The novel finding that Cp and Rs function relies upon tenacious hydrophobic interactions with organelle membranes offers a unifying explanation for the paradoxical and puzzling features of Cp activation and regulation such as how nM concentrations of intracellular Ca(2+) can activate Cp molecules requiring muM to mM concentrations of Ca(2+) for in vitro activation, and how this protease can spatially and temporally locate specific substrates and translocate throughout the cell. We hypothesize that Cp and its regulatory moieties associate with organelles to facilitate the activation of this protease resulting in the cleavage of substrates and aid in its translocation throughout the cell.
Collapse
Affiliation(s)
- Joshua L Hood
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | |
Collapse
|
42
|
Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. THE NEW PHYTOLOGIST 2006; 170:261-73. [PMID: 16608452 DOI: 10.1111/j.1469-8137.2006.01663.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
By comparing cDNA populations derived from chromium-stressed primary leaves of barley (Hordeum vulgare L.) with controls, differentially expressed cDNA fragments could be identified. The deduced amino acid sequence of one of these cDNAs [named 'C2 domain 1' (HvC2d1)] exhibits a motif that is similar to the known C2 domain and a nuclear localization signal (NLS). Expression of this member of a novel class of plant C2 domain-like proteins was studied using real-time PCR, and subcellular localization was investigated using green fluorescent protein (GFP) fusion constructs. Calcium binding was analysed using a (45)Ca(2+) overlay assay. HvC2d1 was transiently induced after exposure to different heavy metals and its mRNA accumulated during the phase of leaf senescence. HvC2d1 expression responded to changes in calcium levels caused by the calcium ionophore A23187 and to treatment with methylviologen resulting in the production of reactive oxygen species (ROS). Using overexpressed and purified HvC2d1, the binding of calcium could be confirmed. Chimeric HvC2d1-GFP protein was localized in onion epidermal cells at the plasma membrane, cytoplasm and the nucleus. After addition of calcium ionophore A23187 green fluorescence was only visible in the nucleus. The data suggest a calcium-dependent translocation of HvC2d1 to the nucleus. A possible role of HvC2d1 in stress- and development-dependent signalling in the nucleus is discussed.
Collapse
Affiliation(s)
- Akli Ouelhadj
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | | | | |
Collapse
|
43
|
Monterrat C, Boal F, Grise F, Hémar A, Lang J. Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:73-81. [PMID: 16386321 DOI: 10.1016/j.bbamcr.2005.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 11/12/2005] [Accepted: 11/14/2005] [Indexed: 11/23/2022]
Abstract
Synaptotagmins (syt) form a large family of transmembrane proteins and some of its isoforms are known to regulate calcium-induced membrane fusion during vesicular traffic. In view of the reported implication of the isoform syt8 in exocytosis we investigated the expression, localisation and calcium-sensitivity of syt8 in secretory cells. An immunopurified antipeptide antibody was generated which is directed against a C-terminal sequence and devoid of crossreactivity towards syt1 to 12. Subcellular fractionation and immunocytochemistry revealed two forms of synaptotagmin 8 (50 and 40 kDa). Whereas the 40-kDa was present in the cytosol in brain, in PC12 and in clonal beta-cells, the 50-kDa form was localised in very typical clusters and partially colocalised with the SNARE protein Vti1a. Moreover, in primary hippocampal neurons syt8 was only found within the soma. Amplification of syt8 by RT-PCR indicated that the observed protein variants were not generated by alternative splicing of the 6th exon and are most likely linked to variations in the N-terminal region. In contrast to the established calcium sensor syt2, endogenous cytosolic syt8 and transiently expressed syt8-C2AB-eGFP did not translocate upon a raise in cytosolic calcium in living cells. Syt8 is therefore not a calcium sensor in exocytotic membrane fusion in endocrine cells.
Collapse
Affiliation(s)
- Carole Monterrat
- Institut Européen de Chimie et Biologie, Pôle Biologie Cellulaire et Moléculaire, JE 2390, 33607 Pessac/Bordeaux, France
| | | | | | | | | |
Collapse
|
44
|
Hite RD, Seeds MC, Jacinto RB, Grier BL, Waite BM, Bass DA. Lysophospholipid and fatty acid inhibition of pulmonary surfactant: non-enzymatic models of phospholipase A2 surfactant hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:14-21. [PMID: 16376294 DOI: 10.1016/j.bbamem.2005.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/24/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.
Collapse
Affiliation(s)
- R Duncan Hite
- Department of Internal Medicine, Section on Pulmonary and Critical Care, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
45
|
You H, Woo CH, Choi EY, Cho SH, Yoo Y, Kim JH. Roles of Rac and p38 kinase in the activation of cytosolic phospholipase A2 in response to PMA. Biochem J 2005; 388:527-35. [PMID: 15689183 PMCID: PMC1138960 DOI: 10.1042/bj20041614] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The roles of Rac and p38 kinase in the activation of cPLA2 (cytosolic PLA2) in Rat-2 fibroblasts were investigated. In the present study, we found that PMA activates cPLA2 by a Rac-p38 kinase-dependent pathway. Consistent with this, Rac, if activated, was shown to stimulate cPLA2 in a p38 kinase-dependent manner. In another experiment to understand the signalling mechanism by which the Rac-p38 kinase cascade mediates cPLA2 activation in response to PMA, we observed that PMA-induced cPLA2 translocation to the perinuclear region is completely inhibited by the expression of Rac1N17 or treatment with SB203580 (inhibitor of p38 kinase), suggesting that Rac-p38 kinase cascade acts in this instance by mediating the translocation of cPLA2. The mediatory role of p38 kinase in cPLA2 activation was further demonstrated after a treatment with anisomycin, a very effective activator of p38 kinase. Consistent with the mediatory role of p38 kinase in stimulating cPLA2, anisomycin induced the translocation and activation of cPLA2 in a p38 kinase-dependent manner.
Collapse
Affiliation(s)
- Hye Jin You
- *Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Chang-Hoon Woo
- †School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, South Korea
| | - Eun-Young Choi
- †School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, South Korea
| | - Sung-Hoon Cho
- †School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, South Korea
| | - Yung Joon Yoo
- *Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Jae-Hong Kim
- †School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, South Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Evans JH, Murray D, Leslie CC, Falke JJ. Specific translocation of protein kinase Calpha to the plasma membrane requires both Ca2+ and PIP2 recognition by its C2 domain. Mol Biol Cell 2005; 17:56-66. [PMID: 16236797 PMCID: PMC1345646 DOI: 10.1091/mbc.e05-06-0499] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The C2 domain of protein kinase Calpha (PKCalpha) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCalpha and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCalpha Ca2+-binding loops (CBLs) and PIP2 binding site (beta-strands 3-4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCalpha C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on beta-strands 3-4, which bind to plasma membrane PIP2.
Collapse
Affiliation(s)
- John H Evans
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, CO 80309-0215, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Research in the past decade has revealed that many cytosolic proteins are recruited to different cellular membranes to form protein-protein and lipid-protein interactions during cell signaling and membrane trafficking. Membrane recruitment of these peripheral proteins is mediated by a growing number of modular membrane-targeting domains, including C1, C2, PH, FYVE, PX, ENTH, ANTH, BAR, FERM, and tubby domains, that recognize specific lipid molecules in the membranes. Structural studies of these membrane-targeting domains demonstrate how they specifically recognize their cognate lipid ligands. However, the mechanisms by which these domains and their host proteins are recruited to and interact with various cell membranes are only beginning to unravel with recent computational studies, in vitro membrane binding studies using model membranes, and cellular translocation studies using fluorescent protein-tagged proteins. This review summarizes the recent progress in our understanding of how the kinetics and energetics of membrane-protein interactions are regulated during the cellular membrane targeting and activation of peripheral proteins.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
48
|
Fatima S, Yaghini FA, Pavicevic Z, Kalyankrishna S, Jafari N, Luong E, Estes A, Malik KU. Intact actin filaments are required for cytosolic phospholipase A2 translocation but not for its activation by norepinephrine in vascular smooth muscle cells. J Pharmacol Exp Ther 2005; 313:1017-26. [PMID: 15705737 DOI: 10.1124/jpet.104.081992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) is activated and translocated to the nuclear envelope by various vasoactive agents, including norepinephrine (NE), and releases arachidonic acid (AA) from tissue phospholipids. We previously demonstrated that NE-induced cPLA(2) translocation to the nuclear envelope is mediated via its phosphorylation by calcium/calmodulin-dependent kinase-II in rabbit vascular smooth muscle cells (VSMCs). Cytoskeletal structures actin and microtubule filaments have been implicated in the trafficking of proteins to various cellular sites. This study was conducted to investigate the contribution of actin and microtubule filaments to cPLA(2) translocation to the nuclear envelope and its activation by NE in rabbit VSMCs. NE (10 microM) caused cPLA(2) translocation to the nuclear envelope as determined by immunofluorescence. Cytochalasin D (CD; 0.5 microM) and latrunculin A (LA; 0.5 microM) that disrupted actin filaments, blocked cPLA(2) translocation elicited by NE. On the other hand, disruption of microtubule filaments by 10 microM colchicine did not block NE-induced cPLA(2) translocation to the nuclear envelope. CD and LA did not inhibit NE-induced increase in cytosolic calcium and cPLA(2) activity, determined from the hydrolysis of l-1-[(14)C]arachidonyl phosphatidylcholine and release of AA. Coimmunoprecipitation studies showed an association of actin with cPLA(2), which was not altered by CD or LA. Far-Western analysis showed that cPLA(2) interacts directly with actin. Our data suggest that NE-induced cPLA(2) translocation to the nuclear envelope requires an intact actin but not microtubule filaments and that cPLA(2) phosphorylation and activation and AA release are independent of its translocation to the nuclear envelope in rabbit VSMCs.
Collapse
Affiliation(s)
- Soghra Fatima
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pavoine C, Defer N. The cardiac beta2-adrenergic signalling a new role for the cPLA2. Cell Signal 2005; 17:141-52. [PMID: 15494206 DOI: 10.1016/j.cellsig.2004.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/01/2004] [Accepted: 09/01/2004] [Indexed: 01/08/2023]
Abstract
The cardiac actions of catecholamines have long been attributed to the predominant beta(1)-AR subtype that couples to the classical Gs/AC/cAMP pathway. Recent research clearly indicates that cardiac beta(2)-ARs play a functional role in healthy heart and assume increasing importance in failing and aged heart. beta(2)-ARs are primarily coupled to an atypical compartmentalized cAMP pathway, regulated by phosphorylation and/or oligomerization of beta(2)-ARs, and under the control of additional beta(2)-AR/Gi-coupled lipidic pathways, the impact of which seems to vary depending on the animal species, the developmental and pathophysiological state. This review focuses, more especially, on one of the last identified beta(2)-AR/Gi pathway, namely the cPLA(2).
Collapse
MESH Headings
- Animals
- Arachidonic Acid/metabolism
- Cardiotonic Agents/pharmacology
- Caveolae/metabolism
- Caveolae/physiology
- Cyclic AMP/metabolism
- Dimerization
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- GTP-Binding Protein alpha Subunits, Gs/physiology
- Group IV Phospholipases A2
- Heart/drug effects
- Heart/physiology
- Humans
- Isoenzymes/chemistry
- Isoenzymes/physiology
- Models, Cardiovascular
- Myocardium/enzymology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Phospholipases A/chemistry
- Phospholipases A/physiology
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Signal Transduction/physiology
- Species Specificity
- Ventricular Dysfunction/metabolism
- Ventricular Dysfunction/physiopathology
Collapse
|
50
|
Grewal S, Herbert SP, Ponnambalam S, Walker JH. Cytosolic phospholipase A2-alpha and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926 endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J 2005; 272:1278-90. [PMID: 15720401 DOI: 10.1111/j.1742-4658.2005.04565.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytosolic phospholipase A2-alpha (cPLA2-alpha) is a calcium-activated enzyme that plays an important role in agonist-induced arachidonic acid release. In endothelial cells, free arachidonic acid can be converted subsequently into prostacyclin, a potent vasodilator and inhibitor of platelet activation, through the action of cyclooxygenase (COX) enzymes. Here we study the relocation of cPLA2-alpha in human EA.hy.926 endothelial cells following stimulation with the calcium-mobilizing agonist, A23187. Relocation of cPLA2-alpha was seen to be highly cell specific, and in EA.hy.926 cells occurred primarily to intracellular structures resembling the endoplasmic reticulum (ER) and Golgi. In addition, relocation to both the inner and outer surfaces of the nuclear membrane was observed. Colocalization studies with markers for these subcellular organelles, however, showed colocalization of cPLA2-alpha with nuclear membrane markers but not with ER or Golgi markers, suggesting that the relocation of cPLA2-alpha occurs to sites that are separate from these organelles. Colocalization with annexin V was also observed at the nuclear envelope, however, little overlap with staining patterns for the potential cPLA2-alpha interacting proteins, annexin I, vimentin, p11 or actin, was seen in this cell type. In contrast, cPLA2-alpha was seen to partially colocalize specifically with the COX-2 isoform at the ER-resembling structures, but not with COX-1. These studies suggest that cPLA2-alpha and COX-2 may function together at a distinct and novel compartment for eicosanoid signalling.
Collapse
Affiliation(s)
- Seema Grewal
- School of Biochemistry and Microbiology, University of Leeds, UK
| | | | | | | |
Collapse
|