1
|
Patel NM, Ripoll L, Peach CJ, Ma N, Blythe EE, Vaidehi N, Bunnett NW, von Zastrow M, Sivaramakrishnan S. Myosin VI drives arrestin-independent internalization and signaling of GPCRs. Nat Commun 2024; 15:10636. [PMID: 39638791 PMCID: PMC11621365 DOI: 10.1038/s41467-024-55053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
G protein-coupled receptor (GPCR) endocytosis is canonically associated with β-arrestins. Here, we delineate a β-arrestin-independent endocytic pathway driven by the cytoskeletal motor, myosin VI. Myosin VI engages GIPC, an adaptor protein that binds a PDZ sequence motif present at the C-terminus of several GPCRs. Using the D2 dopamine receptor (D2R) as a prototype, we find that myosin VI regulates receptor endocytosis, spatiotemporal localization, and signaling. We find that access to the D2R C-tail for myosin VI-driven internalization is controlled by an interaction between the C-tail and the third intracellular loop of the receptor. Agonist efficacy, co-factors, and GIPC expression modulate this interaction to tune agonist trafficking. Myosin VI is differentially regulated by distinct GPCR C-tails, suggesting a mechanism to shape spatiotemporal signaling profiles in different ligand and physiological contexts. Our biophysical and structural insights may advance orthogonal therapeutic strategies for targeting GPCRs through cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Nishaben M Patel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe J Peach
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- School of Life Sciences, Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK
| | - Ning Ma
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Emily E Blythe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Kang M, Su Z. Increased expression of GIPC2 in colon adenocarcinoma is associated with a favorable prognosis and high levels of immune cell infiltration. Oncol Rep 2023; 49:66. [PMID: 36799193 PMCID: PMC9996678 DOI: 10.3892/or.2023.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/08/2022] [Indexed: 02/17/2023] Open
Abstract
Gα‑interacting protein C‑terminus PDZ‑domain‑containing family member 2 (GIPC2) serves an important role in the development of digestive tract tumors; however, its role in colon adenocarcinoma (COAD) has yet to be elucidated. In the present study, data were retrieved from The Cancer Genome Atlas database to investigate the association between GIPC2 expression and prognosis, as well as the levels of tumor‑infiltrating immune cells. Immunohistochemical analysis was subsequently performed on 22 pairs of COAD and adjacent normal colon tissues, which were collected during surgery, to verify GIPC2 protein expression. The results showed that the positive rate in the normal intestinal mucosa group (18/22, 81.82%) was significantly higher than that in the COAD group (3/22, 13.64%, χ2=20.497, P<0.001). Gene set enrichment analysis was used to predict the signaling pathways regulated by GIPC2 in COAD, whereas the CIBERSORT algorithm was used to analyze the association between GIPC2 expression and immune cell infiltration. The expression levels of GIPC2 were revealed to be significantly downregulated in COAD compared with in normal colon tissues (P<0.05). Notably, the overall survival (P=0.004), disease‑specific survival (P=0.003) and progression‑free interval (P=0.011) rates of the group with high GIPC2 expression were higher compared with those in the group with low GIPC2 expression. In addition, the results of the regression analysis suggested that GIPC2 was an independent prognostic factor for COAD (P=0.007). The expression levels of GIPC2 were significantly associated with tumor stage, lymph node status and lymphatic invasion, and GIPC2 expression was enriched in 'cell cycle checkpoints', 'DNA replication' and 'mitosis‑associated signaling pathways'. In addition, a positive association was observed between high GIPC2 expression and levels of infiltrating immune cells. Moreover, the expression of immune checkpoint‑associated genes was significantly higher in the group with low GIPC2 expression. Taken together, the findings of the present study demonstrated that high expression levels of GIPC2 were associated with a favorable prognosis and increased infiltration of immune cells in COAD; therefore, GIPC2 may serve as a biomarker to assess prognosis and the level of immune cell infiltration in patients with COAD.
Collapse
Affiliation(s)
- Min Kang
- Department of Pathology, People's Hospital of Tongling City, Tongling, Anhui 244000, P.R. China
| | - Zhaoran Su
- Department of Gastrointestinal Surgery, People's Hospital of Tongling City, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
3
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
4
|
Fu Y, Lorrai I, Zorman B, Mercatelli D, Shankula C, Marquez Gaytan J, Lefebvre C, de Guglielmo G, Kim HR, Sumazin P, Giorgi FM, Repunte-Canonigo V, Sanna PP. Escalated (Dependent) Oxycodone Self-Administration Is Associated with Cognitive Impairment and Transcriptional Evidence of Neurodegeneration in Human Immunodeficiency Virus (HIV) Transgenic Rats. Viruses 2022; 14:669. [PMID: 35458399 PMCID: PMC9030762 DOI: 10.3390/v14040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Substance use disorder is associated with accelerated disease progression in people with human immunodeficiency virus (HIV; PWH). Problem opioid use, including high-dose opioid therapy, prescription drug misuse, and opioid abuse, is high and increasing in the PWH population. Oxycodone is a broadly prescribed opioid in both the general population and PWH. Here, we allowed HIV transgenic (Tg) rats and wildtype (WT) littermates to intravenously self-administer oxycodone under short-access (ShA) conditions, which led to moderate, stable, "recreational"-like levels of drug intake, or under long-access (LgA) conditions, which led to escalated (dependent) drug intake. HIV Tg rats with histories of oxycodone self-administration under LgA conditions exhibited significant impairment in memory performance in the novel object recognition (NOR) paradigm. RNA-sequencing expression profiling of the medial prefrontal cortex (mPFC) in HIV Tg rats that self-administered oxycodone under ShA conditions exhibited greater transcriptional evidence of inflammation than WT rats that self-administered oxycodone under the same conditions. HIV Tg rats that self-administered oxycodone under LgA conditions exhibited transcriptional evidence of an increase in neuronal injury and neurodegeneration compared with WT rats under the same conditions. Gene expression analysis indicated that glucocorticoid-dependent adaptations contributed to the gene expression effects of oxycodone self-administration. Overall, the present results indicate that a history of opioid intake promotes neuroinflammation and glucocorticoid dysregulation, and excessive opioid intake is associated with neurotoxicity and cognitive impairment in HIV Tg rats.
Collapse
Affiliation(s)
- Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Chase Shankula
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Jorge Marquez Gaytan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- 92160 Antony, France
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Hyunjae Ryan Kim
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| |
Collapse
|
5
|
Liu Y, Wang Y, Yang J, Xu T, Tan C, Zhang P, Liu Q, Chen Y. G-alpha interacting protein interacting protein, C terminus 1 regulates epileptogenesis by increasing the expression of metabotropic glutamate receptor 7. CNS Neurosci Ther 2021; 28:126-138. [PMID: 34676980 PMCID: PMC8673704 DOI: 10.1111/cns.13746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Aims It has been reported that the G‐alpha interacting protein (GAIP) interacting protein, C terminus 1 (GIPC1/GIPC) engages in vesicular trafficking, receptor transport and expression, and endocytosis. However, its role in epilepsy is unclear. Therefore, in this study, we aimed to explore the role of GIPC1 in epilepsy and its possible underlying mechanism. Methods The expression patterns of GIPC1 in patients with temporal lobe epilepsy (TLE) and in mice with kainic acid (KA)‐induced epilepsy were detected. Behavioral video monitoring and hippocampal local field potential (LFP) recordings were carried out to determine the role of GIPC1 in epileptogenesis after overexpression of GIPC1. Coimmunoprecipitation (Co‐IP) assay and high‐resolution immunofluorescence staining were conducted to investigate the relationship between GIPC1 and metabotropic glutamate receptor 7 (mGluR7). In addition, the expression of mGluR7 after overexpression of GIPC1 was measured, and behavioral video monitoring and LFP recordings after antagonism of mGluR7 were performed to explore the possible mechanism mediated by GIPC1. Results GIPC1 was downregulated in the brain tissues of patients with TLE and mice with KA‐induced epilepsy. After overexpression of GIPC1, prolonged latency period, decreased epileptic seizures and reduced seizure severity in behavioral analyses, and fewer and shorter abnormal brain discharges in LFP recordings of KA‐induced epileptic mice were observed. The result of the Co‐IP assay showed the interaction between GIPC1 and mGluR7, and the high‐resolution immunofluorescence staining also showed the colocalization of these two proteins. Additionally, along with GIPC1 overexpression, the total and cell membrane expression levels of mGluR7 were also increased. And after antagonism of mGluR7, increased epileptic seizures and aggravated seizure severity in behavioral analyses and more and longer abnormal brain discharges in LFP recordings were observed. Conclusion GIPC1 regulates epileptogenesis by interacting with mGluR7 and increasing its expression.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Juan Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.,Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qiankun Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| |
Collapse
|
6
|
Domain Analysis and Motif Matcher (DAMM): A Program to Predict Selectivity Determinants in Monosiga brevicollis PDZ Domains Using Human PDZ Data. Molecules 2021; 26:molecules26196034. [PMID: 34641578 PMCID: PMC8512817 DOI: 10.3390/molecules26196034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.
Collapse
|
7
|
Ahmed T, Mythreye K, Lee NY. Strength and duration of GIPC-dependent signaling networks as determinants in cancer. Neoplasia 2021; 23:181-188. [PMID: 33360508 PMCID: PMC7773760 DOI: 10.1016/j.neo.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/25/2022]
Abstract
GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging GIPC-targeted cancer therapies.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nam Y Lee
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
8
|
Gao M, Mackley IGP, Mesbahi-Vasey S, Bamonte HA, Struyvenberg SA, Landolt L, Pederson NJ, Williams LI, Bahl CD, Brooks L, Amacher JF. Structural characterization and computational analysis of PDZ domains in Monosiga brevicollis. Protein Sci 2020; 29:2226-2244. [PMID: 32914530 DOI: 10.1002/pro.3947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
Identification of the molecular networks that facilitated the evolution of multicellular animals from their unicellular ancestors is a fundamental problem in evolutionary cellular biology. Choanoflagellates are recognized as the closest extant nonmetazoan ancestors to animals. These unicellular eukaryotes can adopt a multicellular-like "rosette" state. Therefore, they are compelling models for the study of early multicellularity. Comparative studies revealed that a number of putative human orthologs are present in choanoflagellate genomes, suggesting that a subset of these genes were necessary for the emergence of multicellularity. However, previous work is largely based on sequence alignments alone, which does not confirm structural nor functional similarity. Here, we focus on the PDZ domain, a peptide-binding domain which plays critical roles in myriad cellular signaling networks and which underwent a gene family expansion in metazoan lineages. Using a customized sequence similarity search algorithm, we identified 178 PDZ domains in the Monosiga brevicollis proteome. This includes 11 previously unidentified sequences, which we analyzed using Rosetta and homology modeling. To assess conservation of protein structure, we solved high-resolution crystal structures of representative M. brevicollis PDZ domains that are homologous to human Dlg1 PDZ2, Dlg1 PDZ3, GIPC, and SHANK1 PDZ domains. To assess functional conservation, we calculated binding affinities for mbGIPC, mbSHANK1, mbSNX27, and mbDLG-3 PDZ domains from M. brevicollis. Overall, we find that peptide selectivity is generally conserved between these two disparate organisms, with one possible exception, mbDLG-3. Overall, our results provide novel insight into signaling pathways in a choanoflagellate model of primitive multicellularity.
Collapse
Affiliation(s)
- Melody Gao
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Iain G P Mackley
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Samaneh Mesbahi-Vasey
- Institute for Protein Innovation, Boston, Massachusetts, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Haley A Bamonte
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Sarah A Struyvenberg
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Louisa Landolt
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Nick J Pederson
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Lucy I Williams
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| | - Christopher D Bahl
- Institute for Protein Innovation, Boston, Massachusetts, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
9
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
10
|
Huang C, Yang X, Zeng B, Zeng L, Gong X, Zhou C, Xia J, Lian B, Qin Y, Yang L, Liu L, Xie P. Proteomic analysis of olfactory bulb suggests CACNA1E as a promoter of CREB signaling in microbiota-induced depression. J Proteomics 2019; 194:132-147. [DOI: 10.1016/j.jprot.2018.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
|
11
|
Dopamine Receptor Subtypes Differentially Regulate Autophagy. Int J Mol Sci 2018; 19:ijms19051540. [PMID: 29786666 PMCID: PMC5983733 DOI: 10.3390/ijms19051540] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023] Open
Abstract
Some dopamine receptor subtypes were reported to participate in autophagy regulation, but their exact functions and mechanisms are still unclear. Here we found that dopamine receptors D2 and D3 (D2-like family) are positive regulators of autophagy, while dopamine receptors D1 and D5 (D1-like family) are negative regulators. Furthermore, dopamine and ammonia, the two reported endogenous ligands of dopamine receptors, both can induce dopamine receptor internalization and degradation. In addition, we found that AKT (protein kinase B)-mTOR (mechanistic target of rapamycin) and AMPK (AMP-activated protein kinase) pathways are involved in DRD3 (dopamine receptor D3) regulated autophagy. Moreover, autophagy machinery perturbation inhibited DRD3 degradation and increased DRD3 oligomer. Therefore, our study investigated the functions and mechanisms of dopamine receptors in autophagy regulation, which not only provides insights into better understanding of some dopamine receptor-related neurodegeneration diseases, but also sheds light on their potential treatment in combination with autophagy or mTOR pathway modulations.
Collapse
|
12
|
Luessen DJ, Sun H, McGinnis MM, McCool BA, Chen R. Chronic intermittent ethanol exposure selectively alters the expression of Gα subunit isoforms and RGS subtypes in rat prefrontal cortex. Brain Res 2017; 1672:106-112. [PMID: 28736108 DOI: 10.1016/j.brainres.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Chronic alcohol exposure induces pronounced changes in GPCR-mediated G-protein signaling. Recent microarray and RNA-seq analyses suggest associations between alcohol abuse and the expression of genes involved in G-protein signaling. The activity of G-proteins (e.g. Gαi/o and Gαq) is negatively modulated by regulator of G-protein signaling (RGS) proteins which are implicated in drugs of abuse including alcohol. The present study used 7days of chronic intermittent ethanol exposure followed by 24h withdrawal (CIE) to investigate changes in mRNA and protein levels of G-protein subunit isoforms and RGS protein subtypes in rat prefrontal cortex, a region associated with cognitive deficit attributed to excessive alcohol drinking. We found that this ethanol paradigm induced differential expression of Gα subunits and RGS subtypes. For example, there were increased mRNA and protein levels of Gαi1/3 subunits and no changes in the expression of Gαs and Gαq subunits in ethanol-treated animals. Moreover, CIE increased the mRNA but not the protein levels of Gαo. Additionally, a modest increase in Gαi2 mRNA level by CIE was accompanied by a pronounced increase in its protein level. Interestingly, we found that CIE increased mRNA and protein levels of RGS2, RGS4, RGS7 and RGS19 but had no effect on the expression of RGS5, RGS6, RGS8, RGS12 or RGS17. Changes in the expression of Gα subunits and RGS subtypes could contribute to the functional alterations of certain GPCRs following chronic ethanol exposure. The present study suggests that RGS proteins may be potential new targets for intervention of alcohol abuse via modification of Gα-mediated GPCR function.
Collapse
Affiliation(s)
- D J Luessen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - H Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - M M McGinnis
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - B A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - R Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
13
|
A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 2017; 12:54. [PMID: 28697798 PMCID: PMC5505151 DOI: 10.1186/s13024-017-0193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. METHODS Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. RESULTS Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. CONCLUSIONS Our study shows for the first time that LRRK2 activates the WNT/PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.
Collapse
|
14
|
Abstract
Dendritic release of dopamine activates dopamine D2 autoreceptors, which are inhibitory G protein-coupled receptors (GPCRs), to decrease the excitability of dopamine neurons. This study used tagged D2 receptors to identify the localization and distribution of these receptors in living midbrain dopamine neurons. GFP-tagged D2 receptors were found to be unevenly clustered on the soma and dendrites of dopamine neurons within the substantia nigra pars compacta (SNc). Physiological signaling and desensitization of the tagged receptors were not different from wild type receptors. Unexpectedly, upon desensitization the tagged D2 receptors were not internalized. When tagged D2 receptors were expressed in locus coeruleus neurons, a desensitizing protocol induced significant internalization. Likewise, when tagged µ-opioid receptors were expressed in dopamine neurons they too were internalized. The distribution and lack of agonist-induced internalization of D2 receptors on dopamine neurons indicate a purposefully regulated localization of these receptors.
Collapse
|
15
|
Hayes MP, Roman DL. Regulator of G Protein Signaling 17 as a Negative Modulator of GPCR Signaling in Multiple Human Cancers. AAPS JOURNAL 2016; 18:550-9. [PMID: 26928451 DOI: 10.1208/s12248-016-9894-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling networks by terminating signals produced by active Gα subunits. RGS17, a member of the RZ subfamily of RGS proteins, is typically only expressed in appreciable amounts in the human central nervous system, but previous works have shown that RGS17 expression is selectively upregulated in a number of malignancies, including lung, breast, prostate, and hepatocellular carcinoma. In addition, this upregulation of RGS17 is associated with a more aggressive cancer phenotype, as increased proliferation, migration, and invasion are observed. Conversely, decreased RGS17 expression diminishes the response of ovarian cancer cells to agents commonly used during chemotherapy. These somewhat contradictory roles of RGS17 in cancer highlight the need for selective, high-affinity inhibitors of RGS17 to use as chemical probes to further the understanding of RGS17 biology. Based on current evidence, these compounds could potentially have clinical utility as novel chemotherapeutics in the treatment of lung, prostate, breast, and liver cancers. Recent advances in screening technologies to identify potential inhibitors coupled with increasing knowledge of the structural requirements of RGS-Gα protein-protein interaction inhibitors make the future of drug discovery efforts targeting RGS17 promising. This review highlights recent findings related to RGS17 as both a canonical and atypical RGS protein, its role in various human disease states, and offers insights on small molecule inhibition of RGS17.
Collapse
Affiliation(s)
- Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, USA
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, USA. .,Cancer Signaling and Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,, 115 S. Grand Avenue, S327 PHAR, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
16
|
Gerber KJ, Squires KE, Hepler JR. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol 2016; 89:273-86. [PMID: 26655302 PMCID: PMC4727123 DOI: 10.1124/mol.115.102210] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Kyle J Gerber
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - Katherine E Squires
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
17
|
Sun H, Calipari ES, Beveridge TJR, Jones SR, Chen R. The brain gene expression profile of dopamine D2/D3 receptors and associated signaling proteins following amphetamine self-administration. Neuroscience 2015; 307:253-61. [PMID: 26321241 DOI: 10.1016/j.neuroscience.2015.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 08/22/2015] [Indexed: 01/11/2023]
Abstract
Persistent neuroadaptations following chronic psychostimulant exposure include reduced striatal dopamine D2 receptor (D2R) levels. The signaling of D2Rs is initiated by Gαi/o proteins and terminated by regulator of G protein signaling (RGS) proteins. The purpose of this study is to examine the association of the drug taking behavior and gene expression profile of D2/D3Rs, and their associated signaling proteins in the ventral tegmental area (VTA) and nucleus accumbens (NAc) using a rodent model of amphetamine (AMPH) self-administration. Rats were allowed to self-administer AMPH (0.187 mg/kg/infusion for a maximum of 40 injections in 6h daily sessions) for 5 days during which rats showed an escalated rate of AMPH intake across days. AMPH self-administration induced profound brain region-dependent alterations of the targeted genes. There was a positive correlation of the messenger ribonucleic acid (mRNA) levels of RGS10 between the VTA and the NAc in the control animals, which was abolished by AMPH self-administration. AMPH self-administration also produced a negative correlation of the mRNA levels of RGS7 and RGS19 between the two brain regions, which was not present in the control group. Furthermore, AMPH taking behavior was associated with changes in certain gene expression levels. The mRNA levels of RGS2 and RGS4 in both the VTA and NAc were positively correlated with the rate of AMPH intake. Additionally, the rate of AMPH intake was also positively correlated with RGS10 and negatively correlated with RGS17 and the short form of D2Rs mRNA level in the VTA. Although there were significant changes in the mRNA levels of RGS7 and RGS8 in the NAc, none of these measures were correlated with the rate of AMPH intake. The present study suggested that short-term AMPH self-administration produced pronounced changes in the VTA that were more associated with AMPH taking behavior than changes in the NAc.
Collapse
Affiliation(s)
- H Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - E S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - T J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - S R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - R Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
18
|
Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats. Mol Psychiatry 2015; 20:951-8. [PMID: 25155879 DOI: 10.1038/mp.2014.92] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
Gpr88, an orphan G-protein-coupled receptor, is highly and almost exclusively expressed in the medium spiny projection neurons of the striatum, and may thus participate in the control of motor functions and cognitive processing that are impaired in neuropsychiatric disorders such as Parkinson's disease or schizophrenia (SZ). This study investigated the relevance of Gpr88 to SZ-associated behavior by knocking down Gpr88 gene expression in the ventral striatum (nucleus accumbens) in a neurodevelopmental rat model of SZ, generated by neonatal treatment with phencyclidine (PCP). In this model, we compared the effects of the local inactivation in the adult animal of the expression of Gpr88 and of Drd2, a gene strongly implicated in the etiology of SZ and coding for the dopamine receptor type 2 (D2). To inactivate specifically Gpr88 and D2 expression, we used the lentiviral vector-mediated microRNA silencing strategy. The neonatal PCP treatment induced in the adult rat hyperlocomotion in response to amphetamine (Amph) and social novelty discrimination (SND) deficits. The inactivation of D2 did not modify the locomotor response to Amph or the cognitive deficits induced by PCP, whereas the silencing of Gpr88 inhibited the Amph-induced hyperlocomotion and reduced the impairment of SND elicited by neonatal exposure to PCP. These observations suggest a role for Gpr88 in the regulation of cognitive and motor functions, and support its relevance to the pathophysiology and treatment of SZ and other disorders involving dysfunction of the accumbens-striatal complex.
Collapse
|
19
|
La Torre A, Hoshino A, Cavanaugh C, Ware CB, Reh TA. The GIPC1-Akt1 Pathway Is Required for the Specification of the Eye Field in Mouse Embryonic Stem Cells. Stem Cells 2015; 33:2674-85. [PMID: 26013465 DOI: 10.1002/stem.2062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
Abstract
During early patterning of the neural plate, a single region of the embryonic forebrain, the eye field, becomes competent for eye development. The hallmark of eye field specification is the expression of the eye field transcription factors (EFTFs). Experiments in fish, amphibians, birds, and mammals have demonstrated largely conserved roles for the EFTFs. Although some of the key signaling events that direct the synchronized expression of these factors to the eye field have been elucidated in fish and frogs, it has been more difficult to study these mechanisms in mammalian embryos. In this study, we have used two different methods for directed differentiation of mouse embryonic stem cells (mESCs) to generate eye field cells and retina in vitro to test for a role of the PDZ domain-containing protein GIPC1 in the specification of the mammalian eye primordia. We find that the overexpression of a dominant-negative form of GIPC1 (dnGIPC1), as well as the downregulation of endogenous GIPC1, is sufficient to inhibit the development of eye field cells from mESCs. GIPC1 interacts directly with IGFR and participates in Akt1 activation, and pharmacological inhibition of Akt1 phosphorylation mimics the dnGIPC1 phenotype. Our data, together with previous studies in Xenopus, support the hypothesis that the GIPC1-PI3K-Akt1 pathway plays a key role in eye field specification in vertebrates.
Collapse
Affiliation(s)
- Anna La Torre
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, USA
| | - Akina Hoshino
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Christopher Cavanaugh
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Carol B Ware
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas A Reh
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
21
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
22
|
Chak K, Kolodkin AL. Function of the Drosophila receptor guanylyl cyclase Gyc76C in PlexA-mediated motor axon guidance. Development 2014; 141:136-47. [PMID: 24284209 PMCID: PMC3865755 DOI: 10.1242/dev.095968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
The second messengers cAMP and cGMP modulate attraction and repulsion mediated by neuronal guidance cues. We find that the Drosophila receptor guanylyl cyclase Gyc76C genetically interacts with Semaphorin 1a (Sema-1a) and physically associates with the Sema-1a receptor plexin A (PlexA). PlexA regulates Gyc76C catalytic activity in vitro, and each distinct Gyc76C protein domain is crucial for regulating Gyc76C activity in vitro and motor axon guidance in vivo. The cytosolic protein dGIPC interacts with Gyc76C and facilitates Sema-1a-PlexA/Gyc76C-mediated motor axon guidance. These findings provide an in vivo link between semaphorin-mediated repulsive axon guidance and alteration of intracellular neuronal cGMP levels.
Collapse
Affiliation(s)
- Kayam Chak
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Jean-Alphonse F, Bowersox S, Chen S, Beard G, Puthenveedu MA, Hanyaloglu AC. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. J Biol Chem 2013; 289:3960-77. [PMID: 24375413 PMCID: PMC3924264 DOI: 10.1074/jbc.m113.526350] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.
Collapse
Affiliation(s)
- Frederic Jean-Alphonse
- From the Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom and
| | | | | | | | | | | |
Collapse
|
24
|
Katoh M. Functional proteomics, human genetics and cancer biology of GIPC family members. Exp Mol Med 2013; 45:e26. [PMID: 23743496 PMCID: PMC3701287 DOI: 10.1038/emm.2013.49] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022] Open
Abstract
GIPC1, GIPC2 and GIPC3 consist of GIPC homology 1 (GH1) domain, PDZ domain and GH2 domain. The regions around the GH1 and GH2 domains of GIPC1 are involved in dimerization and interaction with myosin VI (MYO6), respectively. The PDZ domain of GIPC1 is involved in interactions with transmembrane proteins [IGF1R, NTRK1, ADRB1, DRD2, TGFβR3 (transforming growth factorβ receptor type III), SDC4, SEMA4C, LRP1, NRP1, GLUT1, integrin α5 and VANGL2], cytosolic signaling regulators (APPL1 and RGS19) and viral proteins (HBc and HPV-18 E6). GIPC1 is an adaptor protein with dimerizing ability that loads PDZ ligands as cargoes for MYO6-dependent endosomal trafficking. GIPC1 is required for cell-surface expression of IGF1R and TGFβR3. GIPC1 is also required for integrin recycling during cell migration, angiogenesis and cytokinesis. On early endosomes, GIPC1 assembles receptor tyrosine kinases (RTKs) and APPL1 for activation of PI3K-AKT signaling, and G protein-coupled receptors (GPCRs) and RGS19 for attenuation of inhibitory Gα signaling. GIPC1 upregulation in breast, ovarian and pancreatic cancers promotes tumor proliferation and invasion, whereas GIPC1 downregulation in cervical cancer with human papillomavirus type 18 infection leads to resistance to cytostatic transforming growth factorβ signaling. GIPC2 is downregulated in acute lymphocytic leukemia owing to epigenetic silencing, while Gipc2 is upregulated in estrogen-induced mammary tumors. Somatic mutations of GIPC2 occur in malignant melanoma, and colorectal and ovarian cancers. Germ-line mutations of the GIPC3 or MYO6 gene cause nonsyndromic hearing loss. As GIPC proteins are involved in trafficking, signaling and recycling of RTKs, GPCRs, integrins and other transmembrane proteins, dysregulation of GIPCs results in human pathologies, such as cancer and hereditary deafness.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Centre, Tokyo, Japan.
| |
Collapse
|
25
|
Wang Q, Traynor JR. Modulation of μ-opioid receptor signaling by RGS19 in SH-SY5Y cells. Mol Pharmacol 2013; 83:512-20. [PMID: 23197645 PMCID: PMC3558815 DOI: 10.1124/mol.112.081992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/29/2012] [Indexed: 02/03/2023] Open
Abstract
Regulator of G-protein signaling protein 19 (RGS19), also known as Gα-interacting protein (GAIP), acts as a GTPase accelerating protein for Gαz as well as Gαi/o subunits. Interactions with GAIP-interacting protein N-terminus and GAIP-interacting protein C-terminus (GIPC) link RGS19 to a variety of intracellular proteins. Here we show that RGS19 is abundantly expressed in human neuroblastoma SH-SY5Y cells that also express µ- and δ- opioid receptors (MORs and DORs, respectively) and nociceptin receptors (NOPRs). Lentiviral delivery of short hairpin RNA specifically targeted to RGS19 reduced RGS19 protein levels by 69%, with a similar reduction in GIPC. In RGS19-depleted cells, there was an increase in the ability of MOR (morphine) but not of DOR [(4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80)] or NOPR (nociceptin) agonists to inhibit forskolin-stimulated adenylyl cyclase and increase mitogen-activated protein kinase (MAPK) activity. Overnight treatment with either MOR [D-Ala, N-Me-Phe, Gly-ol(5)-enkephalin (DAMGO) or morphine] or DOR (D-Pen(5)-enkephalin or SNC80) agonists increased RGS19 and GIPC protein levels in a time- and concentration-dependent manner. The MOR-induced increase in RGS19 protein was prevented by pretreatment with pertussis toxin or the opioid antagonist naloxone. Protein kinase C (PKC) activation alone increased the level of RGS19 and inhibitors of PKC 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile and mitogen-activated protein kinase kinase 1 2-(2-amino-3-methoxyphenyl)-4H-chromen-4-one, but not protein kinase A (H89), completely blocked DAMGO-induced RGS19 protein accumulation. The findings show that RGS19 and GIPC are jointly regulated, that RGS19 is a GTPase accelerating protein for MOR with selectivity over DOR and NOPR, and that chronic MOR or DOR agonist treatment increases RGS19 levels by a PKC and the MAPK pathway-dependent mechanism.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Benzamides/pharmacology
- Colforsin/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- HEK293 Cells
- Humans
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Morphine/pharmacology
- Opioid Peptides/pharmacology
- PC12 Cells
- Piperazines/pharmacology
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Rats
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Nociceptin Receptor
- Nociceptin
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | |
Collapse
|
26
|
Zhang X, Bedigian AV, Wang W, Eggert US. G protein-coupled receptors participate in cytokinesis. Cytoskeleton (Hoboken) 2012; 69:810-8. [PMID: 22888021 DOI: 10.1002/cm.21055] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Cytokinesis, the last step during cell division, is a highly coordinated process that involves the relay of signals from both the outside and inside of the cell. We have a basic understanding of how cells regulate internal events, but how cells respond to extracellular cues is less explored. In a systematic RNAi screen of G protein-coupled receptors (GPCRs) and their effectors, we found that some GPCRs are involved in cytokinesis. RNAi knockdown of these GPCRs caused increased binucleated cell formation, and live cell imaging showed that most formed midbodies but failed at the abscission stage. OR2A4 (olfactory receptor, family 2, subfamily A, member 4) localized to cytokinetic structures in cells and its knockdown caused cytokinesis failure at an earlier stage, likely due to effects on the actin cytoskeleton. Identifying the downstream components that transmit GPCR signals during cytokinesis will be the next step and we show that GIPC1 (GIPC PDZ domain containing family, member 1), an adaptor protein for GPCRs, may play a part. RNAi knockdown of GIPC1 significantly increased binucleated cell formation. Understanding the molecular details of GPCRs and their interaction proteins in cytokinesis regulation will give us important clues about GPCRs signaling as well as how cells communicate with their environment during division.
Collapse
Affiliation(s)
- Xin Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
27
|
RGS19 stimulates cell proliferation by deregulating cell cycle control and enhancing Akt signaling. Cancer Lett 2011; 309:199-208. [DOI: 10.1016/j.canlet.2011.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/09/2011] [Accepted: 06/01/2011] [Indexed: 11/13/2022]
|
28
|
Sutor S, Heilmann J, Seifert R. Impact of fusion to Gα(i2) and co-expression with RGS proteins on pharmacological properties of human cannabinoid receptors CB₁R and CB₂R. ACTA ACUST UNITED AC 2011; 63:1043-55. [PMID: 21718288 DOI: 10.1111/j.2042-7158.2011.01307.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES G protein coupled receptor (GPCR)-Gα fusion proteins are often employed to investigate receptor/G protein interaction. In this study, the impact of Gα fusion proteins on pharmacology of CBRs, both mediating signals through Gα(i) proteins, were investigated. Gα(i2) was fused to the C-terminus of the CBRs or co-expressed with non-fused Gα(i2) in Sf9 cells, always together with Gβ₁γ₂. Furthermore, the impact of RGS proteins on CBR signaling in combination with the CBR fusion approach was examined, using RGS4 and RGS19 as paradigms. METHODS CBR ligands were characterized in the steady-state GTPase assay and pharmacological properties of ligands in the different test systems were correlated. KEY FINDINGS Fusion of CBRs to Gα(i2) enhanced the maximal stimulatory effects of ligands compared to the co-expression system, especially for CB₂R. RGS4, but not RGS19, behaved as a GTPase-activating protein at CBRs in the Gα(i2) co-expression and fusion system. Fusion of GPCR, most prominently CB₂R, to Gα(i2) , and co-expression with RGS4 altered the pharmacological properties of ligands. CONCLUSIONS Our data suggest that fusion of CB₂R to Gα(i2) and co-expression with RGS4 impedes with conformational changes. Moreover, our results support the concept of ligand-specific receptor conformations. Finally, this paper describes the most sensitive CBR test system currently available.
Collapse
Affiliation(s)
- Sarah Sutor
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Regensburg Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| | | | | |
Collapse
|
29
|
Björk K, Svenningsson P. Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 2011; 51:211-42. [PMID: 20887195 DOI: 10.1146/annurev-pharmtox-010510-100520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoamines and their cognate receptors are widespread in the central nervous system and are vital for normal brain function. Dysfunction in these systems underlies several psychiatric and neurological disease states, and consequently monoamines are targets of a host of pharmacotherapies. This review provides an overview on how monoamine receptors are regulated by adaptor proteins and lipid rafts with emphasis on interactions in nerve cells. Monoamine receptors have prominent intracellular loops that provide binding sites for adaptor proteins. Receptor function is further modulated by cholesterol and submembranous microdomains termed lipid rafts. These interactions determine several facets of G protein-coupled receptor (GPCR) function including trafficking, localization, and signaling. Possible roles of adaptor proteins and lipid rafts in disease states and in mediating actions of drugs and therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Karl Björk
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
30
|
Maurice P, Guillaume JL, Benleulmi-Chaachoua A, Daulat AM, Kamal M, Jockers R. GPCR-Interacting Proteins, Major Players of GPCR Function. PHARMACOLOGY OF G PROTEIN COUPLED RECEPTORS 2011; 62:349-80. [DOI: 10.1016/b978-0-12-385952-5.00001-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Current perspectives on the selective regulation of dopamine D2 and D3 receptors. Arch Pharm Res 2010; 33:1521-38. [DOI: 10.1007/s12272-010-1005-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 01/07/2023]
|
32
|
Kim J, Lee S, Ko S, Kim-Ha J. dGIPC is required for the locomotive activity and longevity in Drosophila. Biochem Biophys Res Commun 2010; 402:565-70. [PMID: 21029723 DOI: 10.1016/j.bbrc.2010.10.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 11/19/2022]
Abstract
To identify genes that function in the adult neural system, we screened pools of P element-mediated mutants and tested locomotor activity of homozygous flies. Of 1014 P element-mutagenized lines, 638 were homozygous viable. These lines were tested for climbing ability and lifespan. We isolated dGIPC, a Drosophila homolog of GIPC, that produced a 50% premature loss of locomotor activity and a 30% reduction in life span. We found that dGIPC is expressed in the central brain of adult flies, especially in glia and dopaminergic (DA) neurons. Inhibition of dGIPC expression in DA neurons significantly affected climbing ability and survival. In vertebrates, interactions between GIPC with dopamine receptors have been reported. Our findings, together with those obtained from vertebrate models, suggest that DrosophiladGIPC acts in the adult central nervous system and may be required to regulate the trafficking of dopamine receptors needed for proper functioning of dopaminergic neurons.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, 98 Kunja-Dong, Kwangjin-ku, Seoul 143-747, Republic of Korea
| | | | | | | |
Collapse
|
33
|
RGS19 enhances cell proliferation through its C-terminal PDZ motif. Cell Signal 2010; 22:1700-7. [PMID: 20599498 DOI: 10.1016/j.cellsig.2010.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/24/2010] [Indexed: 01/18/2023]
Abstract
Regulator of G protein signaling 19 (RGS19), also known as Galpha-interacting protein (GAIP), is a GTPase activating protein (GAP) for Galpha(i) subunits. Apart from its GAP function, RGS19 has been implicated in growth factor signaling through binding to GAIP-interacting protein C-terminus (GIPC) via its C-terminal PDZ-binding motif. To gain additional insight on its function, we have stably expressed RGS19 in a number of mammalian cell lines and examined its effect on cell proliferation. Interestingly, overexpression of RGS19 stimulated the growth of HEK293, PC12, Caco2, and NIH3T3 cells. This growth promoting effect was not shared by other RGS proteins including RGS4, RGS10 and RGS20. Despite its ability to stimulate cell proliferation, RGS19 failed to induce neoplastic transformation in NIH3T3 cells as determined by focus formation and soft-agar assays, and it did not induce tumor growth in athymic nude mice. Deletion mutants of RGS19 lacking the PDZ-binding motif failed to complex with GIPC and did not exhibit any growth promoting effect. Overexpression of GIPC alone in HEK293 cells stimulated cell proliferation whereas its knockdown in H1299 non-small cell lung carcinomas suppressed cell proliferation. This study demonstrates that RGS19, in addition to acting as a GAP, is able to stimulate cell proliferation in a GIPC-dependent manner.
Collapse
|
34
|
Blazer LL, Roman DL, Muxlow MR, Neubig RR. Use of flow cytometric methods to quantify protein-protein interactions. ACTA ACUST UNITED AC 2010; Chapter 13:Unit 13.11.1-15. [PMID: 20069525 DOI: 10.1002/0471142956.cy1311s51] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method is described for the quantitative analysis of protein-protein interactions using the flow cytometry protein interaction assay (FCPIA). This method is based upon immobilizing protein on a polystyrene bead, incubating these beads with a fluorescently labeled binding partner, and assessing the sample for bead-associated fluorescence in a flow cytometer. This method can be used to calculate protein-protein interaction affinities or to perform competition experiments with unlabeled binding partners or small molecules. Examples described in this protocol highlight the use of this assay in the quantification of the affinity of binding partners of the regulator of G-protein signaling protein, RGS19, in either a saturation or a competition format. An adaptation of this method that is compatible for high-throughput screening is also provided.
Collapse
Affiliation(s)
- Levi L Blazer
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
35
|
McCoy KL, Hepler JR. Regulators of G protein signaling proteins as central components of G protein-coupled receptor signaling complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:49-74. [PMID: 20374713 DOI: 10.1016/s1877-1173(09)86003-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulators of G protein signaling (RGS) proteins bind directly to G protein alpha (Gα) subunits to regulate the signaling functions of Gα and their linked G protein-coupled receptors (GPCRs). Recent studies indicate that RGS proteins also interact with GPCRs, not just G proteins, to form preferred functional pairs. Interactions between GPCRs and RGS proteins may be direct or indirect (via a linker protein) and are dictated by the receptors, rather than the linked G proteins. Emerging models suggest that GPCRs serve as platforms for assembling an overlapping and distinct constellation of signaling proteins that perform receptor-specific signaling tasks. Compelling evidence now indicates that RGS proteins are central components of these GPCR signaling complexes. This review will outline recent discoveries of GPCR/RGS pairs as well as new data in support of the idea that GPCRs serve as platforms for the formation of multiprotein signaling complexes.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, G205 Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
36
|
Terzi D, Stergiou E, King SL, Zachariou V. Regulators of G protein signaling in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:299-333. [PMID: 20374720 DOI: 10.1016/s1877-1173(09)86010-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulators of G protein signaling (RGS) comprise a diverse group of about 40 proteins which determine signaling amplitude and duration via modulation of receptor/G protein or receptor/effector coupling. Several members of the RGS family are expressed in the brain, where they have precise roles in regulation of important physiological processes. The unique functions of each RGS can be attributed to its structure, distinct pattern of expression, and regulation, and its preferential interactions with receptors, Galpha subunits and other signaling proteins. Evidence suggests dysfunction of RGS proteins is related to several neuropathological conditions. Moreover, clinical and preclinical work reveals that the efficacy and/or side effects of treatments are highly influenced by RGS activity. This article summarizes findings on RGS proteins in vulnerability to several neuropsychiatric disorders, the mechanism via which RGS proteins control neuronal responses and their potential use as drug targets.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Pharmacology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | | | |
Collapse
|
37
|
Muders MH, Vohra PK, Dutta SK, Wang E, Ikeda Y, Wang L, Udugamasooriya DG, Memic A, Rupasinghe CN, Rupashinghe CN, Baretton GB, Aust DE, Langer S, Datta K, Simons M, Spaller MR, Mukhopadhyay D. Targeting GIPC/synectin in pancreatic cancer inhibits tumor growth. Clin Cancer Res 2009; 15:4095-103. [PMID: 19509165 DOI: 10.1158/1078-0432.ccr-08-2837] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Various studies have shown the importance of the GAIP interacting protein, COOH-terminus (GIPC, also known as Synectin) as a central adaptor molecule in different signaling pathways and as an important mediator of receptor stability. GIPC/Synectin is associated with different growth-promoting receptors such as insulin-like growth factor receptor I (IGF-IR) and integrins. These interactions were mediated through its PDZ domain. GIPC/Synectin has been shown to be overexpressed in pancreatic and breast cancer. The goal of this study was to show the importance of GIPC/Synectin in pancreatic cancer growth and to evaluate a possible therapeutic strategy by using a GIPC-PDZ domain inhibitor. Furthermore, the effect of targeting GIPC on the IGF-I receptor as one of its associated receptors was tested. EXPERIMENTAL DESIGN The in vivo effects of GIPC/Synectin knockdown were studied after lentiviral transduction of luciferase-expressing pancreatic cancer cells with short hairpin RNA against GIPC/Synectin. Additionally, a GIPC-PDZ--targeting peptide was designed. This peptide was tested for its influence on pancreatic cancer growth in vitro and in vivo. RESULTS Knockdown of GIPC/Synectin led to a significant inhibition of pancreatic adenocarcinoma growth in an orthotopic mouse model. Additionally, a cell-permeable GIPC-PDZ inhibitor was able to block tumor growth significantly without showing toxicity in a mouse model. Targeting GIPC was accompanied by a significant reduction in IGF-IR expression in pancreatic cancer cells. CONCLUSIONS Our findings show that targeting GIPC/Synectin and its PDZ domain inhibits pancreatic carcinoma growth and is a potential strategy for therapeutic intervention of pancreatic cancer.
Collapse
Affiliation(s)
- Michael H Muders
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Leontiadis LJ, Papakonstantinou MP, Georgoussi Z. Regulator of G protein signaling 4 confers selectivity to specific G proteins to modulate mu- and delta-opioid receptor signaling. Cell Signal 2009; 21:1218-28. [PMID: 19324084 DOI: 10.1016/j.cellsig.2009.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/12/2009] [Accepted: 03/15/2009] [Indexed: 10/21/2022]
Abstract
In vitro studies have shown that the Regulator of G protein Signaling 4 (RGS4) interacts with the C-termini of mu- and delta-opioid receptors (mu-OR, delta-OR) (Georgoussi et al., 2006, Cell. Signal.18, 771-782). Herein we demonstrate that RGS4 associates with these receptors in living cells and forms selective complexes with Gi/Go proteins in a receptor dependent manner. This interaction occurs within the predicted fourth intracellular loop of mu, delta-ORs as part of a signaling complex consisting of the opioid receptor, activated Galpha and RGS4. RGS4 is recruited to the plasma membrane upon opioid receptor stimulation. Expression of RGS4 in HEK293 cells attenuated agonist-mediated extracellular signal regulated kinase (ERK1,2) phosphorylation for both receptors and accelerated agonist-induced internalization of the delta-OR. RGS4 lacking its N-terminal domain failed to interact with both opioid receptors and to modulate opioid receptor signaling. Our findings demonstrate that RGS4 plays a key role in G protein coupling selectivity and signaling of the mu- and delta-OmicronRs.
Collapse
Affiliation(s)
- Leonidas J Leontiadis
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Center for Scientific Research Demokritos, Ag. Paraskevi-Attikis, Athens, Greece
| | | | | |
Collapse
|
39
|
Karakoula A, Tovey SC, Brighton PJ, Willars GB. Lack of receptor-selective effects of either RGS2, RGS3 or RGS4 on muscarinic M3- and gonadotropin-releasing hormone receptor-mediated signalling through G alpha q/11. Eur J Pharmacol 2008; 587:16-24. [PMID: 18457830 DOI: 10.1016/j.ejphar.2008.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/26/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
Termination of signalling by G-protein-coupled receptors requires inactivation of the G alpha-subunits of heterotrimeric G-proteins and the re-association of G alpha- and G betagamma-subunits. Inactivation of G alpha-subunits is achieved by the hydrolysis of bound GTP by an intrinsic GTPase activity, which is considerably enhanced by GTPase activating proteins. Regulators of G-protein signalling (RGS) proteins are a large family of GTPase activating proteins, many of which have structures indicating roles beyond GTPase activating protein activity and suggesting that the identity of the RGS protein recruited may also be critical to other aspects of signalling. There is some evidence of selective effects of RGS proteins against different G-protein-coupled receptors coupling to the same signalling pathways and growing evidence of physical interactions between RGS proteins and G-protein-coupled receptors. However, it is unclear as to how common such interactions are and the circumstances under which they are functionally relevant. Here we have examined potential selectivity of RGS2, 3 and 4 against signalling mediated by G alpha q/11-coupled muscarinic M3 receptors and gonadotropin-releasing hormone in an immortalised mouse pituitary cell line. Despite major structural differences between these two receptor types and agonist-dependent phosphorylation of the muscarinic M3- but not gonadotropin-releasing hormone receptor, signalling by both receptors was similarly inhibited by expression of either RGS2 or RGS3, whereas RGS4 has little effect. Thus, at least in these circumstances, RGS protein-dependent inhibition of signalling is not influenced by the nature of the G-protein-coupled receptor through which the signalling is mediated.
Collapse
Affiliation(s)
- Aikaterini Karakoula
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | |
Collapse
|
40
|
Guillaume JL, Daulat AM, Maurice P, Levoye A, Migaud M, Brydon L, Malpaux B, Borg-Capra C, Jockers R. The PDZ protein mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J Biol Chem 2008; 283:16762-71. [PMID: 18378672 DOI: 10.1074/jbc.m802069200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular signaling events are often organized around PDZ (PSD-95/Drosophila Disc large/ZO-1 homology) domain-containing scaffolding proteins. The ubiquitously expressed multi-PDZ protein MUPP1, which is composed of 13 PDZ domains, has been shown to interact with multiple viral and cellular proteins and to play important roles in receptor targeting and trafficking. In this study, we show that MUPP1 binds to the G protein-coupled MT(1) melatonin receptor and directly regulates its G(i)-dependent signal transduction. Structural determinants involved in this interaction are the PDZ10 domain of MUPP1 and the valine of the canonical class III PDZ domain binding motif DSV of the MT(1) carboxyl terminus. This high affinity interaction (K(d) approximately 4 nm), which is independent of MT(1) activation, occurs in the ovine pars tuberalis of the pituitary expressing both proteins endogenously. Although the disruption of the MT(1)/MUPP1 interaction has no effect on the subcellular localization, trafficking, or degradation of MT(1), it destabilizes the interaction between MT(1) and G(i) and abolishes G(i)-mediated signaling of MT(1). Our findings highlight a previously unappreciated role of PDZ proteins in promoting G protein coupling to receptors.
Collapse
Affiliation(s)
- Jean-Luc Guillaume
- Institut Cochin, Department of Cell Biology, Université Paris Descartes, CNRS (UMR8104), Paris 75014, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 2008; 585:278-91. [PMID: 18410914 DOI: 10.1016/j.ejphar.2008.02.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization processes and GPCR up- and downregulation. GPCR function can also be regulated by several proteins that directly interact with the receptor and thereby modulate receptor activity. An additional mechanism by which receptor signalling is regulated involves an emerging class of proteins, the so-called regulators of G protein signalling (RGS). In this review we will describe some of these control mechanisms in more detail with some specific examples in the cardiovascular system. In addition, we will provide an overview on RGS proteins and the involvement of RGS proteins in cardiovascular function.
Collapse
Affiliation(s)
- Mariëlle C Hendriks-Balk
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Abstract
The NMDA receptor is an important component of excitatory synapses in the CNS. In addition to its synaptic localization, the NMDA receptor is also present at extrasynaptic sites where it may have functions distinct from those at the synapse. Little is known about how the number, composition, and localization of extrasynaptic receptors are regulated. We identified a novel NMDA receptor-interacting protein, GIPC (GAIP-interacting protein, C terminus), that associates with surface as well as internalized NMDA receptors when expressed in heterologous cells. In neurons, GIPC colocalizes with a population of NMDA receptors on the cell surface, and changes in GIPC expression alter the number of surface receptors. GIPC is mainly excluded from the synapse, and changes in GIPC expression do not change the total number of synaptic receptors. Our results suggest that GIPC may be preferentially associated with extrasynaptic NMDA receptors and may play a role in the organization and trafficking of this population of receptors.
Collapse
|
43
|
Ferguson SSG. Phosphorylation-independent attenuation of GPCR signalling. Trends Pharmacol Sci 2007; 28:173-9. [PMID: 17350109 DOI: 10.1016/j.tips.2007.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/02/2007] [Accepted: 02/21/2007] [Indexed: 02/03/2023]
Abstract
The uncoupling of G-protein-coupled receptors (GPCRs) from their cognate heterotrimeric G proteins provides an essential physiological 'feedback' mechanism that protects against both acute and chronic overstimulation of receptors. The primary mechanism by which GPCR activity is regulated is the feedback phosphorylation of activated GPCRs by kinases that are dependent on second messengers, GPCR kinases (GRKs) and arrestins. It has recently become apparent, however, that GRK2-mediated regulation of GPCR responsiveness also involves a phosphorylation-independent component that requires both heterotrimeric G-protein alpha-subunit interactions and GPCR binding. Moreover, in addition to GRK2, a growing number of GPCR-interacting proteins might contribute to the phosphorylation-independent G-protein uncoupling of GPCRs. Here, new information about the mechanisms underlying this phosphorylation-independent regulation of receptor and G-protein coupling is reviewed.
Collapse
Affiliation(s)
- Stephen S G Ferguson
- J. Allyn Centre for Cell Biology, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8, Canada.
| |
Collapse
|
44
|
Xie GX, Palmer PP. How regulators of G protein signaling achieve selective regulation. J Mol Biol 2006; 366:349-65. [PMID: 17173929 PMCID: PMC1805491 DOI: 10.1016/j.jmb.2006.11.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 11/30/2022]
Abstract
The regulators of G protein signaling (RGS) are a family of cellular proteins that play an essential regulatory role in G protein-mediated signal transduction. There are multiple RGS subfamilies consisting of over 20 different RGS proteins. They are basically the guanosine triphosphatase (GTPase)-accelerating proteins that specifically interact with G protein alpha subunits. RGS proteins display remarkable selectivity and specificity in their regulation of receptors, ion channels, and other G protein-mediated physiological events. The molecular and cellular mechanisms underlying such selectivity are complex and cooperate at many different levels. Recent research data have provided strong evidence that the spatiotemporal-specific expression of RGS proteins and their target components, as well as the specific protein-protein recognition and interaction through their characteristic structural domains and functional motifs, are determinants for RGS selectivity and specificity. Other molecular mechanisms, such as alternative splicing and scaffold proteins, also significantly contribute to RGS selectivity. To pursue a thorough understanding of the mechanisms of RGS selective regulation will be of great significance for the advancement of our knowledge of molecular and cellular signal transduction.
Collapse
Affiliation(s)
| | - Pamela Pierce Palmer
- *Corresponding author: Pamela Pierce Palmer, M.D., Ph.D., University of California, San Francisco, Department of Anesthesia and Perioperative Care, 513 Parnassus Avenue, Box 0464, Room S-455, San Francisco, California 94143, USA, Telephone: (415)476-6783, FAX: (415)502-5375, E-mail:
| |
Collapse
|
45
|
Kedlaya RH, Bhat KM, Mitchell J, Darnell SJ, Setaluri V. TRP1 interacting PDZ-domain protein GIPC forms oligomers and is localized to intracellular vesicles in human melanocytes. Arch Biochem Biophys 2006; 454:160-9. [PMID: 16962991 PMCID: PMC2877380 DOI: 10.1016/j.abb.2006.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/05/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022]
Abstract
PDZ proteins coordinate assembly of protein complexes that participate in diverse biological processes. GIPC is a multifunctional PDZ protein that interacts with several soluble and membrane proteins. Unlike most PDZ proteins, GIPC contains single PDZ domain and the mechanisms by which GIPC mediates its actions remain unclear. We investigated the possibility that in lieu of multiple PDZ domains, GIPC forms multimers. Here, we demonstrate that GIPC can bind to itself and that the PDZ domain is involved in GIPC-GIPC interaction. Gel filtration, sucrose gradient centrifugation and chemical cross-linking showed that whereas bulk of cytosolic GIPC was present as monomer, oligomers with an estimated molecular mass corresponding to GIPC homotrimer were readily detectable in the membrane fraction. Modeling of GIPC PDZ domain showed feasibility of trimerization. Immunogold electron microscopy showed that GIPC is present in clusters near vesicles. Our data suggest that oligomers of GIPC mediate its functions in melanocytes.
Collapse
Affiliation(s)
| | - Kumar M.R. Bhat
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Julie Mitchell
- Department of Mathematics and Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Steven J. Darnell
- Department of Mathematics and Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Rey A, Manen D, Rizzoli R, Caverzasio J, Ferrari SL. Proline-rich motifs in the parathyroid hormone (PTH)/PTH-related protein receptor C terminus mediate scaffolding of c-Src with beta-arrestin2 for ERK1/2 activation. J Biol Chem 2006; 281:38181-8. [PMID: 17038311 DOI: 10.1074/jbc.m606762200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Parathyroid hormone (PTH) stimulates ERK1/2 through both G-protein signaling and beta-arrestin2-mediated internalization. Beta-arrestin may serve as a scaffold for c-Src. However, the molecular mechanisms for ERK1/2 activation by PTH remain unclear. By using a targeted mutagenesis approach, we investigated the PTH/PTH-related protein receptor (PTH1R) structural determinants for ERK1/2 activation and transcriptional activity in HEK-293 cells. First, ERK1/2 activation was inhibited by PTH1R mutations that specifically abrogate G(q)-protein kinase C signaling without a decrease in cAMP-protein kinase A. Second, PTH1R C-terminal mutations and/or deletions that prevent interaction with beta-arrestin inhibited ERK1/2 activation. Similar results were obtained in HEK-293 cells co-expressing wild-type PTH1R and a dominant-negative beta-arrestin2. Third, the c-Src inhibitor PP2 and a kinase-dead c-SrcK295M mutant co-expressed with wild-type PTH1R both inhibited ERK1/2 activation. Furthermore, c-Src co-precipitated with both PTH1R and beta-arrestin2 in response to PTH. Deleting the PTH1R-proximal C terminus abolished these interactions. However, the need for receptor interaction with beta-arrestin to co-precipitate Src and activate ERK1/2 was obviated by expressing a constitutively active c-SrcY527A mutant, suggesting direct binding of activated Src to PTH1R. Subsequently, we identified and mutated to alanine four proline-rich motifs in the PTH1R distal C terminus, which resulted in loss of both c-Src and arrestin co-precipitation and significantly decreased ERK1/2 activation. These data delineate the multiple PTH1R structural determinants for ERK1/2 activation and newly identify a unique mechanism involving proline-rich motifs in the receptor C terminus for reciprocal scaffolding of c-Src and beta-arrestin2 with a class II G-protein-coupled receptor.
Collapse
Affiliation(s)
- Alexandre Rey
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital, 1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Lin DC, Quevedo C, Brewer NE, Bell A, Testa JR, Grimes ML, Miller FD, Kaplan DR. APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction. Mol Cell Biol 2006; 26:8928-41. [PMID: 17000777 PMCID: PMC1636815 DOI: 10.1128/mcb.00228-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The neurotrophin receptor TrkA plays critical roles in the nervous system by recruiting signaling molecules that activate pathways required for the growth and survival of neurons. Here, we report APPL1 as a TrkA-associated protein. APPL1 and TrkA co-immunoprecipitated in sympathetic neurons. We have identified two routes through which this association can occur. APPL1 was isolated as a binding partner for the TrkA-interacting protein GIPC1 from rat brain lysate by mass spectrometry. The PDZ domain of GIPC1 directly engaged the C-terminal sequence of APPL1. This interaction provides a means through which APPL1 may be recruited to TrkA. In addition, the APPL1 PTB domain bound to TrkA, indicating that APPL1 may associate with TrkA independently of GIPC1. Isolation of endosomal fractions by high-resolution centrifugation determined that APPL1, GIPC1, and phosphorylated TrkA are enriched in the same fractions. Reduction of APPL1 or GIPC1 protein levels suppressed nerve growth factor (NGF)-dependent MEK, extracellular signal-regulated kinase, and Akt activation and neurite outgrowth in PC12 cells. Together, these results indicate that GIPC1 and APPL1 play a role in TrkA function and suggest that a population of endosomes bearing a complex of APPL1, GIPC1, and activated TrkA may transmit NGF signals.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenoviridae/genetics
- Amino Acid Sequence
- Animals
- Animals, Newborn
- COS Cells
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- Clone Cells
- Fluorescent Antibody Technique, Direct
- Glutathione Transferase/metabolism
- Nerve Growth Factor/metabolism
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Neuropeptides/chemistry
- Neuropeptides/metabolism
- PC12 Cells
- Protein Structure, Tertiary
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Superior Cervical Ganglion/cytology
Collapse
Affiliation(s)
- Dan C Lin
- Cancer Research Program, Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ghez D, Lepelletier Y, Lambert S, Fourneau JM, Blot V, Janvier S, Arnulf B, van Endert PM, Heveker N, Pique C, Hermine O. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J Virol 2006; 80:6844-54. [PMID: 16809290 PMCID: PMC1489069 DOI: 10.1128/jvi.02719-05] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is transmitted through a viral synapse and enters target cells via interaction with the glucose transporter GLUT1. Here, we show that Neuropilin-1 (NRP1), the receptor for semaphorin-3A and VEGF-A165 and a member of the immune synapse, is also a physical and functional partner of HTLV-1 envelope (Env) proteins. HTLV-1 Env and NRP1 complexes are formed in cotransfected cells, and endogenous NRP1 contributes to the binding of HTLV-1 Env to target cells. NRP1 overexpression increases HTLV-1 Env-dependent syncytium formation. Moreover, overexpression of NRP1 increases both HTLV-1 and HTLV-2 Env-dependent infection, whereas down-regulation of endogenous NRP1 has the opposite effect. Finally, overexpressed GLUT1, NRP1, and Env form ternary complexes in transfected cells, and endogenous NRP1 and GLUT1 colocalize in membrane junctions formed between uninfected and HTLV-1-infected T cells. These data show that NRP1 is involved in HTLV-1 and HTLV-2 entry, suggesting that the HTLV receptor has a multicomponent nature.
Collapse
Affiliation(s)
- David Ghez
- CNRS UMR 8147, Université Paris V, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 161 rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu J, O'Donnell M, Gitler AD, Klein PS. Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development. Development 2006; 133:3651-60. [PMID: 16914488 DOI: 10.1242/dev.02547] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GIPC is a PDZ-domain-containing protein identified in vertebrate and invertebrate organisms through its interaction with a variety of binding partners including many membrane proteins. Despite the multiple reports identifying GIPC, its endogenous function and the physiological significance of these interactions are much less studied. We have previously identified the Xenopus GIPC homolog kermit as a frizzled 3 interacting protein that is required for frizzled 3 induction of neural crest in ectodermal explants. We identified a second Xenopus GIPC homolog, named kermit 2 (also recently described as an IGF receptor interacting protein and named XGIPC). Despite its high amino acid similarity with kermit, kermit 2/XGIPC has a distinct function in Xenopus embryos. Loss-of-function analysis indicates that kermit 2/XGIPC is specifically required for Xenopus eye development. Kermit 2/XGIPC functions downstream of IGF in eye formation and is required for maintaining IGF-induced AKT activation. A constitutively active PI3 kinase partially rescues the Kermit 2/XGIPC loss-of-function phenotype. Our results provide the first in vivo loss of function analysis of GIPC in embryonic development and also indicate that kermit 2/XGIPC is a novel component of the IGF pathway, potentially functioning through modulation of the IGF1 receptor.
Collapse
Affiliation(s)
- Jinling Wu
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Souza BR, Souza RP, Rosa DVF, Guimarães MM, Correa H, Romano-Silva MA. Dopaminergic intracellular signal integrating proteins: relevance to schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2006. [PMID: 16640119 PMCID: PMC3181764 DOI: 10.31887/dcns.2006.8.1/bsouza] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in dopaminergic function can be regulated by receptor-receptor interaction, or interaction with other proteins with dopamine receptors, and/or elements of the downstream signaling cascades. The complexity of dopaminergic signaling is far from being completely elucidated. It could, however, hold the key to the comprehension of the pathophysiology of neurological and psychiatric disorders, as well as to the identification of putative new targets for, and development of, more efficacious and selective drugs. Here, we review some of the current evidence and new ideas that are being proposed as a result, as well as future perspectives that are now being recognized.
Collapse
Affiliation(s)
- Bruno R Souza
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | | | | | | | | | | |
Collapse
|