1
|
Fung SYS, Xǔ XJ, Wu M. Nonlinear dynamics in phosphoinositide metabolism. Curr Opin Cell Biol 2024; 88:102373. [PMID: 38797149 PMCID: PMC11186694 DOI: 10.1016/j.ceb.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Phosphoinositides broadly impact membrane dynamics, signal transduction and cellular physiology. The orchestration of signaling complexity by this seemingly simple metabolic pathway remains an open question. It is increasingly evident that comprehending the complexity of the phosphoinositides metabolic network requires a systems view based on nonlinear dynamics, where the products of metabolism can either positively or negatively modulate enzymatic function. These feedback and feedforward loops may be paradoxical, leading to counterintuitive effects. In this review, we introduce the framework of nonlinear dynamics, emphasizing distinct dynamical regimes such as the excitable state, oscillations, and mixed-mode oscillations-all of which have been experimentally observed in phosphoinositide metabolisms. We delve into how these dynamical behaviors arise from one or multiple network motifs, including positive and negative feedback loops, coherent and incoherent feedforward loops. We explore the current understanding of the molecular circuits responsible for these behaviors. While mapping these circuits presents both conceptual and experimental challenges, redefining cellular behavior based on dynamical state, lipid fluxes, time delay, and network topology is likely essential for a comprehensive understanding of this fundamental metabolic network.
Collapse
Affiliation(s)
- Suet Yin Sarah Fung
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA
| | - X J Xǔ
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| |
Collapse
|
2
|
Jiang P, Jing Y, Zhao S, Lan C, Yang L, Dai X, Luo L, Cai S, Zhu Y, Miller H, Lai J, Zhang X, Zhao X, Wu Y, Yang J, Zhang W, Guan F, Zhong B, Umehara H, Lei J, Dong L, Liu C. Expression of USP25 associates with fibrosis, inflammation and metabolism changes in IgG4-related disease. Nat Commun 2024; 15:2627. [PMID: 38521787 PMCID: PMC10960850 DOI: 10.1038/s41467-024-45977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1β inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.
Collapse
Affiliation(s)
- Panpan Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Siyu Zhao
- Department Immunology, School of Medicine, Yangtze University, Jingzhou, 434000, China
| | - Caini Lan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xin Dai
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Li Luo
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yingzi Zhu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Juan Lai
- GeneMind Biosciences Company Limited, Shenzhen, 518001, China
| | - Xin Zhang
- GeneMind Biosciences Company Limited, Shenzhen, 518001, China
| | - Xiaochao Zhao
- GeneMind Biosciences Company Limited, Shenzhen, 518001, China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Jingzhi Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, 250063, PR China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, 100730, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hisanori Umehara
- Department of Medicine, Nagahama City Hospital, Nagahama, 949-1701, Japan
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Asao K, Sonoda K, Kawaguchi SI, Kawazoe Y. 3-Amino-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carbonitrile: A fluorescent molecule that induces differentiation in PC12 cells. Bioorg Med Chem 2024; 101:117637. [PMID: 38368633 DOI: 10.1016/j.bmc.2024.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.
Collapse
Affiliation(s)
- Kazuya Asao
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan
| | - Kento Sonoda
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan.
| | - Yoshinori Kawazoe
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan.
| |
Collapse
|
4
|
Rai B, Naylor PE, Siqueiros-Sanchez M, Wintermark M, Raman MM, Jo B, Reiss AL, Green T. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities. Transl Psychiatry 2023; 13:245. [PMID: 37407569 DOI: 10.1038/s41398-023-02504-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
The RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: (1) How Ras-MAPK activating variants of PTPN11/SOS1 protein-coding genes affect brain anatomy. (2) The relationship between PTPN11 gene expression levels and brain anatomy, and (3) The relevance of subcortical anatomy to attention and memory skills affected in the RASopathies. We collected structural brain MRI and cognitive-behavioral data from 40 pre-pubertal children with Noonan syndrome (NS), caused by PTPN11 (n = 30) or SOS1 (n = 10) variants (age 8.53 ± 2.15, 25 females), and compared them to 40 age- and sex-matched typically developing controls (9.24 ± 1.62, 27 females). We identified widespread effects of NS on cortical and subcortical volumes and on determinants of cortical gray matter volume, surface area (SA), and cortical thickness (CT). In NS, we observed smaller volumes of bilateral striatum, precentral gyri, and primary visual area (d's < -0.8), and extensive effects on SA (d's > |0.8|) and CT (d's > |0.5|) relative to controls. Further, SA effects were associated with increasing PTPN11 gene expression, most prominently in the temporal lobe. Lastly, PTPN11 variants disrupted normative relationships between the striatum and inhibition functioning. We provide evidence for the effects of Ras-MAPK pathogenic variants on striatal and cortical anatomy as well as links between PTPN11 gene expression and cortical SA increases, and striatal volume and inhibition skills. These findings provide essential translational information on the Ras-MAPK pathway's effect on human brain development and function.
Collapse
Affiliation(s)
- Bhavana Rai
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Paige E Naylor
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Monica Siqueiros-Sanchez
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Center, Houston, TX, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Booil Jo
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Radiology and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Rai B, Naylor P, Sanchez MS, Wintermark M, Raman M, Jo B, Reiss A, Green T. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities. RESEARCH SQUARE 2023:rs.3.rs-2580911. [PMID: 36865206 PMCID: PMC9980214 DOI: 10.21203/rs.3.rs-2580911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: 1. How Ras-MAPK activating variants of PTPN11 / SOS1 protein-coding genes affect brain anatomy. 2. The relationship between PTPN11 gene expression levels and brain anatomy, and 3. The relevance of subcortical anatomy to attention and memory skills affected in the RASopathies. We collected structural brain MRI and cognitive-behavioral data from 40 pre-pubertal children with Noonan syndrome (NS), caused by PTPN11 ( n = 30) or SOS1 ( n = 10) variants (age 8.53 ± 2.15, 25 females), and compared them to 40 age- and sex-matched typically developing controls (9.24 ± 1.62, 27 females). We identified widespread effects of NS on cortical and subcortical volumes and on determinants of cortical gray matter volume, surface area (SA) and cortical thickness (CT). In NS, we observed smaller volumes of bilateral striatum, precentral gyri, and primary visual area ( d 's<-0.8), and extensive effects on SA ( d 's>|0.8|) and CT ( d 's>|0.5|) relative to controls. Further, SA effects were associated with increasing PTPN11 gene expression, most prominently in the temporal lobe. Lastly, PTPN11 variants disrupted normative relationships between the striatum and inhibition functioning. We provide evidence for effects of Ras-MAPK pathogenic variants on striatal and cortical anatomy as well as links between PTPN11 gene expression and cortical SA increases, and striatal volume and inhibition skills. These findings provide essential translational information on the Ras-MAPK pathway's effect on human brain development and function.
Collapse
|
7
|
Schäfer I, Bauch J, Wegrzyn D, Roll L, van Leeuwen S, Jarocki A, Faissner A. The guanine nucleotide exchange factor Vav3 intervenes in the migration pathway of oligodendrocyte precursor cells on tenascin-C. Front Cell Dev Biol 2022; 10:1042403. [PMID: 36531963 PMCID: PMC9748482 DOI: 10.3389/fcell.2022.1042403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 10/22/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are the exclusive source of myelination in the central nervous system (CNS). Prior to myelination, OPCs migrate to target areas and mature into myelinating oligodendrocytes. This process is underpinned by drastic changes of the cytoskeleton and partially driven by pathways involving small GTPases of the Rho subfamily. In general, the myelination process requires migration, proliferation and differentiation of OPCs. Presently, these processes are only partially understood. In this study, we analyzed the impact of the guanine nucleotide exchange factor (GEF) Vav3 on the migration behavior of OPCs. Vav3 is known to regulate RhoA, Rac1 and RhoG activity and is therefore a promising candidate with regard to a regulatory role concerning the rearrangement of the cytoskeleton. Our study focused on the Vav3 knockout mouse and revealed an enhanced migration capacity of Vav3 -/- OPCs on the extracellular matrix (ECM) glycoprotein tenascin-C (TnC). The migration behavior of individual OPCs on further ECM molecules such as laminin-1 (Ln1), laminin-2 (Ln2) and tenascin-R (TnR) was not affected by the elimination of Vav3. The migration process was further investigated with regard to intracellular signal transmission by pharmacological blockade of downstream pathways of specific Rho GTPases. Our data suggest that activation of RhoA GTPase signaling compromises migration, as inhibition of RhoA-signaling promoted migration behavior. This study provides novel insights into the control of OPC migration, which could be useful for further understanding of the complex differentiation and myelination process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Park HG, Kim YD, Cho E, Lu TY, Yao CK, Lee J, Lee S. Vav independently regulates synaptic growth and plasticity through distinct actin-based processes. J Cell Biol 2022; 221:213401. [PMID: 35976098 PMCID: PMC9388202 DOI: 10.1083/jcb.202203048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Modulation of presynaptic actin dynamics is fundamental to synaptic growth and functional plasticity; yet the underlying molecular and cellular mechanisms remain largely unknown. At Drosophila NMJs, the presynaptic Rac1-SCAR pathway mediates BMP-induced receptor macropinocytosis to inhibit BMP growth signaling. Here, we show that the Rho-type GEF Vav acts upstream of Rac1 to inhibit synaptic growth through macropinocytosis. We also present evidence that Vav-Rac1-SCAR signaling has additional roles in tetanus-induced synaptic plasticity. Presynaptic inactivation of Vav signaling pathway components, but not regulators of macropinocytosis, impairs post-tetanic potentiation (PTP) and enhances synaptic depression depending on external Ca2+ concentration. Interfering with the Vav-Rac1-SCAR pathway also impairs mobilization of reserve pool (RP) vesicles required for tetanus-induced synaptic plasticity. Finally, treatment with an F-actin–stabilizing drug completely restores RP mobilization and plasticity defects in Vav mutants. We propose that actin-regulatory Vav-Rac1-SCAR signaling independently regulates structural and functional presynaptic plasticity by driving macropinocytosis and RP mobilization, respectively.
Collapse
Affiliation(s)
- Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Eunsang Cho
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Ting-Yi Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jihye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Xiong ZL, Wang Y, Zhou C, Ma XL, Jiang XW, Yu WH. Based on proteomics to explore the mechanism of mecobalamin promoting the repair of injured peripheral nerves. Can J Physiol Pharmacol 2022; 100:562-572. [PMID: 35413215 DOI: 10.1139/cjpp-2021-0692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mecobalamin is commonly used in the adjuvant intervention of various peripheral nerve injuries. Actin cytoskeleton plays a role in regeneration of myelin and axon. Therefore, the purpose of this study was to explore the possibility of mecobalamin regulating actin cytoskeleton in repairing nerve injury. In this study, a crush injury on the right sciatic nerve of two group of rats (12 in each group) was established. The control group was only given normal saline (i.g.), and the intervention group was given Mecobalamin 1mg/kg (i.g.). The rats were sacrificed on 28th day and the injured nerves were collected for proteomics. The result shows that regulation of actin cytoskeleton pathway changed significantly. The expression of protein Vav1 was verified by western blot and immunofluorescence. In the intervention group, the nerve fiber structure was complete, the axons were dense and symmetrical, the myelin sheath was compact and uniform in thickness, The positive rate of myelin basic protein (MBP) and βⅢ-Tubulin was higher than that in the control group. The findings of the study show that mecobalamin regulates the actin cytoskeleton in the repair of nerve damage and up-regulates vav1 in the regulation of actin cytoskeleton pathway.
Collapse
Affiliation(s)
- Zong-Liang Xiong
- Northeast Agricultural University, 12430, College of Veterinary Medicine, Harbin, Harbin, China;
| | - Yao Wang
- Northeast Agricultural University, 12430, College of Veterinary Medicine, Harbin, Harbin, China;
| | - Chong Zhou
- Northeast Agricultural University, 12430, Harbin, Harbin, China;
| | - Xiang-Lin Ma
- Northeast Agricultural University, 12430, College of Veterinary Medicine, Harbin, Harbin, China;
| | - Xiao-Wen Jiang
- Northeast Agricultural University, 12430, College of Veterinary Medicine, Harbin, Harbin, China;
| | - Wen-Hui Yu
- Northeast Agricultural University, 12430, College of Veterinary Medicine, Harbin, Harbin, China;
| |
Collapse
|
10
|
Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome? Viruses 2022; 14:v14020386. [PMID: 35215978 PMCID: PMC8874935 DOI: 10.3390/v14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.
Collapse
|
11
|
Wegrzyn D, Zokol J, Faissner A. Vav3-Deficient Astrocytes Enhance the Dendritic Development of Hippocampal Neurons in an Indirect Co-culture System. Front Cell Neurosci 2022; 15:817277. [PMID: 35237130 PMCID: PMC8882586 DOI: 10.3389/fncel.2021.817277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Vav proteins belong to the class of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) on their target proteins. Here, especially the members of the small GTPase family, Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) can be brought into an activated state by the catalytic activity of Vav-GEFs. In the central nervous system (CNS) of rodents Vav3 shows the strongest expression pattern in comparison to Vav2 and Vav1, which is restricted to the hematopoietic system. Several studies revealed an important role of Vav3 for the elongation and branching of neurites. However, little is known about the function of Vav3 for other cell types of the CNS, like astrocytes. Therefore, the following study analyzed the effects of a Vav3 knockout on several astrocytic parameters as well as the influence of Vav3-deficient astrocytes on the dendritic development of cultured neurons. For this purpose, an indirect co-culture system of native hippocampal neurons and Vav3-deficient cortical astrocytes was used. Interestingly, neurons cultured in an indirect contact with Vav3-deficient astrocytes showed a significant increase in the dendritic complexity and length after 12 and 17 days in vitro (DIV). Furthermore, Vav3-deficient astrocytes showed an enhanced regeneration in the scratch wound heal assay as well as an altered profile of released cytokines with a complete lack of CXCL11, reduced levels of IL-6 and an increased release of CCL5. Based on these observations, we suppose that Vav3 plays an important role for the development of dendrites by regulating the expression and the release of neurotrophic factors and cytokines in astrocytes.
Collapse
|
12
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
13
|
Rens EG, Edelstein-Keshet L. Cellular Tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. Phys Biol 2021; 18. [PMID: 34544056 DOI: 10.1088/1478-3975/ac2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The small GTPases Rac and Rho are known to regulate eukaryotic cell shape, promoting front protrusion (Rac) or rear retraction (Rho) of the cell edge. Such cell deformation changes the contact and adhesion of cell to the extracellular matrix (ECM), while ECM signaling through integrin receptors also affects GTPase activity. We develop and investigate a model for this three-way feedback loop in 1D and 2D spatial domains, as well as in a fully deforming 2D cell shapes with detailed adhesion-bond biophysics. The model consists of reaction-diffusion equations solved numerically with open-source software, Morpheus, and with custom-built cellular Potts model simulations. We find a variety of patterns and cell behaviors, including persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction. We show that the observed spatial patterns depend on the cell shape, and vice versa.
Collapse
Affiliation(s)
- Elisabeth G Rens
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
14
|
Tsou YS, Wang CY, Chang MY, Hsu TI, Wu MT, Wu YH, Tsai WL, Chuang JY, Kao TJ. Vav2 is required for Netrin-1 receptor-class-specific spinal motor axon guidance. Dev Dyn 2021; 251:444-458. [PMID: 34374463 DOI: 10.1002/dvdy.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.
Collapse
Affiliation(s)
- Yi-Syue Tsou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ting Wu
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan.,Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan
| | - Yi-Hsin Wu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ling Tsai
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Wang Q, Gong L, Mao S, Yao C, Liu M, Wang Y, Yang J, Yu B, Chen G, Gu X. Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Exp Neurol 2021; 343:113788. [PMID: 34147481 DOI: 10.1016/j.expneurol.2021.113788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/03/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Increasing the intrinsic regeneration potential of neurons is the key to promote axon regeneration and repair of nerve injury. Therefore, identifying the molecular switches that respond to nerve injury may play critical role in improving intrinsic regeneration ability. The mechanisms by which injury unlocks the intrinsic axonal growth competence of mature neurons are not well understood. The present study identified the key regulatory genes after sciatic nerve crush injury by RNA sequencing (RNA-Seq) and found that the hub gene Vav1 was highly expressed at both early response and regenerative stages of sciatic nerve injury. Furthermore, Vav1 was required for axon regeneration of dorsal root ganglia (DRG) neurons and functional recovery. Krüppel-like factor 2 (Klf2) was induced by retrograde Ca2+ signaling from injured axons and could directly promote Vav1 transcription in adult DRG neurons. The increased Vav1 then promoted axon regeneration by activating Rac1 GTPase independent of its tyrosine phosphorylation. Collectively, these findings break through previous limited cognition of Vav1, and first reveal a crucial role of Vav1 as a molecular switch in response to axonal injury for promoting axon regeneration, which might further serve as a novel molecular therapeutic target for clinical nerve injury repair.
Collapse
Affiliation(s)
- Qihui Wang
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingwen Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guiquan Chen
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China.
| | - Xiaosong Gu
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Yang L, Ozawa T, Dong H, Zhang X. Optogenetic Control of Phosphatidylinositol (3,4,5)‐Triphosphate Production by
Light‐Sensitive
Cryptochrome Proteins on the Plasma Membrane. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University Shenzhen Guangdong 518060 China
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Haifeng Dong
- School of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen Guangdong 518060 China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen Guangdong 518060 China
| |
Collapse
|
17
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
18
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
19
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
20
|
Wegrzyn D, Wegrzyn C, Tedford K, Fischer KD, Faissner A. Deletion of the Nucleotide Exchange Factor Vav3 Enhances Axonal Complexity and Synapse Formation but Tampers Activity of Hippocampal Neuronal Networks In Vitro. Int J Mol Sci 2020; 21:ijms21030856. [PMID: 32013053 PMCID: PMC7037001 DOI: 10.3390/ijms21030856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Vav proteins activate GTPases of the RhoA subfamily that regulate the cytoskeleton and are involved in adhesion, migration, differentiation, polarity and the cell cycle. While the importance of RhoA GTPases for neuronal morphology is undisputed, their regulation is less well understood. In this perspective, we studied the consequences of the deletion of Vav2, Vav3 and Vav2 and 3 (Vav2-/-, Vav3-/-, Vav2-/-/3-/-) for the development of embryonic hippocampal neurons in vitro. Using an indirect co-culture system of hippocampal neurons with primary wild-type (WT) cortical astrocytes, we analysed axonal and dendritic parameters, structural synapse numbers and the spontaneous network activity via immunocytochemistry and multielectrode array analysis (MEA). Here, we observed a higher process complexity in Vav3-/-, but not in Vav2-/- neurons after three and five days in vitro (DIV). Furthermore, an enhanced synapse formation was observed in Vav3-/- after 14 days in culture. Remarkably, Vav2-/-/3-/- double knockout neurons did not display synergistic effects. Interestingly, these differences were transient and compensated after a cultivation period of 21 days. Network analysis revealed a diminished number of spontaneously occurring action potentials in Vav3-/- neurons after 21 DIV. Based on these results, it appears that Vav3 participates in key events of neuronal differentiation.
Collapse
Affiliation(s)
- David Wegrzyn
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitaetsstr. 150, Ruhr-University, D-44801 Bochum, Germany; (D.W.); (C.W.)
| | - Christine Wegrzyn
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitaetsstr. 150, Ruhr-University, D-44801 Bochum, Germany; (D.W.); (C.W.)
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, OVGU University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany; (K.T.); (K.-D.F.)
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, OVGU University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany; (K.T.); (K.-D.F.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitaetsstr. 150, Ruhr-University, D-44801 Bochum, Germany; (D.W.); (C.W.)
- Correspondence: ; Tel.: +49-234-3223851
| |
Collapse
|
21
|
Kim YE, Baek ST. Neurodevelopmental Aspects of RASopathies. Mol Cells 2019; 42:441-447. [PMID: 31250618 PMCID: PMC6602148 DOI: 10.14348/molcells.2019.0037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
RAS gene mutations are frequently found in one third of human cancers. Affecting approximately 1 in 1,000 newborns, germline and somatic gain-of-function mutations in the components of RAS/mitogen-activated protein kinase (RAS/MAPK) pathway has been shown to cause developmental disorders, known as RASopathies. Since RAS-MAPK pathway plays essential roles in proliferation, differentiation and migration involving developmental processes, individuals with RASopathies show abnormalities in various organ systems including central nervous system. The frequently seen neurological defects are developmental delay, macrocephaly, seizures, neurocognitive deficits, and structural malformations. Some of the defects stemmed from dysregulation of molecular and cellular processes affecting early neurodevelopmental processes. In this review, we will discuss the implications of RAS-MAPK pathway components in neurodevelopmental processes and pathogenesis of RASopathies.
Collapse
Affiliation(s)
- Ye Eun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| | - Seung Tae Baek
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| |
Collapse
|
22
|
Morishita S, Wada N, Fukuda M, Nakamura T. Rab5 activation on macropinosomes requires ALS2, and subsequent Rab5 inactivation through ALS2 detachment requires active Rab7. FEBS Lett 2018; 593:230-241. [PMID: 30485418 DOI: 10.1002/1873-3468.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022]
Abstract
Macropinocytosis is a nonspecific bulk uptake of extracellular fluid. During endosome maturation, the Rab5-to-Rab7 switch machinery executes the conversion from early to late endosomes. However, how the Rab switch works during macropinosome maturation remains unclear. Here, we elucidate the Rab switch machinery in macropinosome maturation using Förster resonance energy transfer imaging. Rab5 is activated and concurrently recruited to macropinosomes during ruffle closure. ALS2 depletion abolishes transient Rab5 activation on macropinosomes, while ALS2 is recruited to macropinosomes simultaneously with Rab5 activation. Thus, we conclude ALS2 activates Rab5 on macropinosomes. The absence of active Rab7 prolongs ALS2 presence and Rab5 activation on macropinosomes, indicating that active Rab7 is necessary for Rab5 inactivation through ALS2 dissociation and plays key roles in the Rab switch on macropinosomes.
Collapse
Affiliation(s)
- So Morishita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
23
|
Ulc A, Zeug A, Bauch J, van Leeuwen S, Kuhlmann T, ffrench-Constant C, Ponimaskin E, Faissner A. The guanine nucleotide exchange factor Vav3 modulates oligodendrocyte precursor differentiation and supports remyelination in white matter lesions. Glia 2018; 67:376-392. [DOI: 10.1002/glia.23548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Ulc
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Andre Zeug
- Cellular Neurophysiology, Centre for Physiology; Hannover Medical School; Hannover Germany
| | - Juliane Bauch
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Simon van Leeuwen
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology; University Hospital Münster; Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Centre for Physiology; Hannover Medical School; Hannover Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
24
|
de Beco S, Vaidžiulytė K, Manzi J, Dalier F, di Federico F, Cornilleau G, Dahan M, Coppey M. Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nat Commun 2018; 9:4816. [PMID: 30446664 PMCID: PMC6240110 DOI: 10.1038/s41467-018-07286-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
During cell migration, Rho GTPases spontaneously form spatial gradients that define the front and back of cells. At the front, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Here we report, using a combination of optogenetics and micropatterning, that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by transport mechanisms. Cdc42 simply follows the distribution of Guanine nucleotide Exchange Factors, whereas Rac1 shaping requires the activity of a GTPase-Activating Protein, β2-chimaerin, which is sharply localized at the tip of the cell through feedbacks from Cdc42 and Rac1. Functionally, the spatial extent of Rho GTPases gradients governs cell migration, a sharp Cdc42 gradient maximizes directionality while an extended Rac1 gradient controls the speed. A steep gradient of Cdc42 is at the front of migrating cells, whereas the active Rac1 gradient is graded. Here the authors show that Cdc42 gradients follow the distribution of GEFs and govern direction of migration, while Rac1 gradients require the activity of the GAP β2-chimaerin and control cell speed.
Collapse
Affiliation(s)
- S de Beco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - K Vaidžiulytė
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - J Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - F Dalier
- PASTEUR, Département de chimie, École normale supérieure, CNRS UMR 8640, PSL Research University, Sorbonne Université, 75005, Paris, France
| | - F di Federico
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - G Cornilleau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - M Dahan
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - M Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
25
|
Nalbant P, Dehmelt L. Exploratory cell dynamics: a sense of touch for cells? Biol Chem 2018; 399:809-819. [DOI: 10.1515/hsz-2017-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Abstract
Cells need to process multifaceted external cues to steer their dynamic behavior. To efficiently perform this task, cells implement several exploratory mechanisms to actively sample their environment. In particular, cells can use exploratory actin-based cell protrusions and contractions to engage and squeeze the environment and to actively probe its chemical and mechanical properties. Multiple excitable signal networks were identified that can generate local activity pulses to control these exploratory processes. Such excitable signal networks offer particularly efficient mechanisms to process chemical or mechanical signals to steer dynamic cell behavior, such as directional migration, tissue morphogenesis and cell fate decisions.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology , Center for Medical Biotechnology , University of Duisburg-Essen, Universitätsstrasse 2 , D-45141 Essen , Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Faculty of Chemistry and Chemical Biology , Otto-Hahn-Str. 4a , D-44227 Dortmund , Germany
| |
Collapse
|
26
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
27
|
Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M. Propagating Wave of ERK Activation Orients Collective Cell Migration. Dev Cell 2017; 43:305-317.e5. [PMID: 29112851 DOI: 10.1016/j.devcel.2017.10.016] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/06/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
Abstract
The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, Faculty of Life Science, Sokendai (Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yohei Kondo
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, Faculty of Life Science, Sokendai (Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8787, Japan; Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Honda Naoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Integrated Systems Biology Laboratory, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Reina E Itoh
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Establishing Neuronal Polarity with Environmental and Intrinsic Mechanisms. Neuron 2017; 96:638-650. [DOI: 10.1016/j.neuron.2017.10.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
|
29
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
30
|
Ulc A, Gottschling C, Schäfer I, Wegrzyn D, van Leeuwen S, Luft V, Reinhard J, Faissner A. Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity. Biol Chem 2017; 398:663-675. [DOI: 10.1515/hsz-2016-0275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.
Collapse
|
31
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
32
|
Irie T, Kawakami T, Sato K, Usami M. Sub-toxic concentrations of nano-ZnO and nano-TiO 2 suppress neurite outgrowth in differentiated PC12 cells. J Toxicol Sci 2017; 42:723-729. [DOI: 10.2131/jts.42.723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tomohiko Irie
- Division of Pharmacology, National Institute of Health Sciences
| | - Tsuyoshi Kawakami
- Division of Environmental Chemistry, National Institute of Health Sciences
| | - Kaoru Sato
- Division of Pharmacology, National Institute of Health Sciences
| | - Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences
| |
Collapse
|
33
|
Singh R. Central role of PI3K-SYK interaction in fibrinogen-induced lamellipodia and filopodia formation in platelets. FEBS Open Bio 2016; 6:1285-1296. [PMID: 28255536 PMCID: PMC5324771 DOI: 10.1002/2211-5463.12149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Abstract
The WAVE complex‐1, a complex of WAVE, Abi1, NAP1, PIR121, HSPC300, RacGTP and Arp2/3 proteins, and WASP complex‐1, a complex of WASP, Cdc42, PIP2, and Arp2/3 proteins, are involved in lamellipodia and filopodia formation, respectively. It is known that the two complexes have opposite dynamics. Furthermore, Rac has two guanine nucleotide exchange factors, Vav and Sos, whose role in activating Rac is not well understood. In this work, by the construction of signaling network, analysis, and mathematical modeling, I show that Sos generates a pulse of WAVE complex‐1, decreasing the response time of WAVE complex‐1 formation upon the stimulation of platelets by fibrinogen. Furthermore, I also show that the dynamics of WAVE and WASP complexes depends on PI3K–SYK interaction. In the absence of this interaction, the WAVE complex‐1 does not form and the WASP complex‐1 remains at the initial, sustained level. Thus, I show the significance of the two protein/protein complexes: Sos and PI3K–SYK interaction, in fibrinogen‐induced lamellipodia and filopodia formation in platelets.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering Indian Institute of Technology Kanpur India
| |
Collapse
|
34
|
Fernández-Monreal M, Sánchez-Castillo C, Esteban JA. APPL1 gates long-term potentiation through its plekstrin homology domain. J Cell Sci 2016; 129:2793-803. [PMID: 27257087 DOI: 10.1242/jcs.183475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023] Open
Abstract
Hippocampal synaptic plasticity involves both membrane trafficking events and intracellular signaling, but how these are coordinated is far from clear. The endosomal transport of glutamate receptors in and out of the postsynaptic membrane responds to multiple signaling cascades triggered by synaptic activity. In this work, we have identified adaptor protein containing a plekstrin homology domain, phosphotyrosine-binding domain and leucine zipper motif 1 (APPL1) as a crucial element linking trafficking and signaling during synaptic plasticity. We show that APPL1 knockdown specifically impairs PI3K-dependent forms of synaptic plasticity, such as long-term potentiation (LTP) and metabotropic-glutamate-receptor-dependent long-term depression (mGluR-LTD). Indeed, we demonstrate that APPL1 is required for the activation of the phosphatidylinositol triphosphate (PIP3) pathway in response to LTP induction. This requirement can be bypassed by membrane localization of PI3K and is related to phosphoinositide binding. Interestingly, inhibitors of PDK1 (also known as PDPK1) and Akt have no effect on LTP expression. Therefore, we conclude that APPL1 gates PI3K activation at the plasma membrane upon LTP induction, which is then relayed by downstream PIP3 effectors that are different from PDK1 and Akt.
Collapse
Affiliation(s)
- Mónica Fernández-Monreal
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28049, Spain
| | - Carla Sánchez-Castillo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28049, Spain
| | - José A Esteban
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28049, Spain
| |
Collapse
|
35
|
Oda Y, Nakashima S, Nakamura S, Yano M, Akiyama M, Imai K, Kimura T, Nakata A, Tani M, Matsuda H. New potent accelerator of neurite outgrowth from Lawsonia inermis flower under non-fasting condition. J Nat Med 2016; 70:384-90. [DOI: 10.1007/s11418-016-0974-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
36
|
Distinct predictive performance of Rac1 and Cdc42 in cell migration. Sci Rep 2015; 5:17527. [PMID: 26634649 PMCID: PMC4669460 DOI: 10.1038/srep17527] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/30/2015] [Indexed: 11/12/2022] Open
Abstract
We propose a new computation-based approach for elucidating how signaling molecules are decoded in cell migration. In this approach, we performed FRET time-lapse imaging of Rac1 and Cdc42, members of Rho GTPases which are responsible for cell motility, and quantitatively identified the response functions that describe the conversion from the molecular activities to the morphological changes. Based on the identified response functions, we clarified the profiles of how the morphology spatiotemporally changes in response to local and transient activation of Rac1 and Cdc42, and found that Rac1 and Cdc42 activation triggers laterally propagating membrane protrusion. The response functions were also endowed with property of differentiator, which is beneficial for maintaining sensitivity under adaptation to the mean level of input. Using the response function, we could predict the morphological change from molecular activity, and its predictive performance provides a new quantitative measure of how much the Rho GTPases participate in the cell migration. Interestingly, we discovered distinct predictive performance of Rac1 and Cdc42 depending on the migration modes, indicating that Rac1 and Cdc42 contribute to persistent and random migration, respectively. Thus, our proposed predictive approach enabled us to uncover the hidden information processing rules of Rho GTPases in the cell migration.
Collapse
|
37
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
38
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|
39
|
Brachet A, Norwood S, Brouwers JF, Palomer E, Helms JB, Dotti CG, Esteban JA. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. ACTA ACUST UNITED AC 2015; 208:791-806. [PMID: 25753037 PMCID: PMC4362467 DOI: 10.1083/jcb.201407122] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol acts as a sensor of NMDA receptor activation and as a trigger of downstream signaling by engaging small GTPase activation and AMPA receptor synaptic delivery during long-term potentiation. Neurotransmitter receptor trafficking during synaptic plasticity requires the concerted action of multiple signaling pathways and the protein transport machinery. However, little is known about the contribution of lipid metabolism during these processes. In this paper, we addressed the question of the role of cholesterol in synaptic changes during long-term potentiation (LTP). We found that N-methyl-d-aspartate–type glutamate receptor (NMDAR) activation during LTP induction leads to a rapid and sustained loss or redistribution of intracellular cholesterol in the neuron. A reduction in cholesterol, in turn, leads to the activation of Cdc42 and the mobilization of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors (AMPARs) from Rab11-recycling endosomes into the synaptic membrane, leading to synaptic potentiation. This process is accompanied by an increase of NMDAR function and an enhancement of LTP. These results imply that cholesterol acts as a sensor of NMDAR activation and as a trigger of downstream signaling to engage small GTPase (guanosine triphosphatase) activation and AMPAR synaptic delivery during LTP.
Collapse
Affiliation(s)
- Anna Brachet
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Stephanie Norwood
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, Netherlands
| | - Ernest Palomer
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, Netherlands
| | - Carlos G Dotti
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José A Esteban
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
40
|
The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina. Cell Tissue Res 2014; 359:423-440. [PMID: 25501893 DOI: 10.1007/s00441-014-2050-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.
Collapse
|
41
|
Arendt KL, Benoist M, Lario A, Draffin JE, Muñoz M, Esteban JA. PTEN counteracts PIP3 upregulation in spines during NMDA-receptor-dependent long-term depression. J Cell Sci 2014; 127:5253-60. [PMID: 25335889 DOI: 10.1242/jcs.156554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) and PTEN have been shown to participate in synaptic plasticity during long-term potentiation (LTP) and long-term depression (LTD), respectively. Nevertheless, the dynamics of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) and the regulation of its synthesis and degradation at synaptic compartments is far from clear. Here, we have used fluorescence resonance energy transfer (FRET) imaging to monitor changes in PIP3 levels in dendritic spines from CA1 hippocampal neurons under basal conditions and upon induction of NMDA receptor (NMDAR)-dependent LTD and LTP. We found that PIP3 undergoes constant turnover in dendritic spines. Contrary to expectations, both LTD and LTP induction trigger an increase in PIP3 synthesis, which requires NMDARs and PI3K activity. Using biochemical methods, the upregulation of PIP3 levels during LTP was estimated to be twofold. However, in the case of LTD, PTEN activity counteracts the increase in PIP3 synthesis, resulting in no net change in PIP3 levels. Therefore, both LTP and LTD signaling converge towards PIP3 upregulation, but PTEN acts as an LTD-selective switch that determines the outcome of PIP3 accumulation.
Collapse
Affiliation(s)
- Kristin L Arendt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Marion Benoist
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - Argentina Lario
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - Jonathan E Draffin
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - María Muñoz
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - José A Esteban
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| |
Collapse
|
42
|
Wan YJ, Yang Y, Leng QL, Lan B, Jia HY, Liu YH, Zhang CZ, Cao Y. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell Signal 2014; 26:2202-9. [PMID: 24880064 DOI: 10.1016/j.cellsig.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 01/06/2023]
Abstract
Vav proteins are guanine nucleotide exchange factors (GEFs) that activate a group of small G proteins (GTPases). Vav1 is predominantly expressed in hematopoietic cells, whereas Vav2 and Vav3 are ubiquitously distributed in almost all human tissues. All three Vav proteins contain conserved structural motifs and associate with a variety of cellular activities including proliferation, migration, and survival. Previous observation with Jurkat leukemia T cells showed that Vav1 possessed anti-apoptotic activity by enhancing Bcl-2 transcription. However the mechanism has not been unveiled. Here, we explored the effectors of Vav1 in promoting Bcl-2 expression in Jurkat cells and revealed that Rac2-Akt was specifically evoked by the expression of Vav1, but not Vav2 or Vav3. Although all three Vav isoforms existed in Jurkat cells, Rac2 was distinguishably activated by Vav1 and that led to enhanced Bcl-2 expression and cell survival. Akt was modulated downstream of Vav1-Rac2, and the activation of Akt was indispensable in the enhanced transcription of Bcl-2. Intriguingly, neither Vav2 nor Vav3 was able to activate Rac2-Akt pathway as determined by gene silencing approach. Our data illustrated a unique role of Vav1 in T leukemia survival by selectively triggering Rac2-Akt axis and elevating the expression of anti-apoptotic Bcl-2.
Collapse
Affiliation(s)
- Ya-Juan Wan
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Yin Yang
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Qian-Li Leng
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Bei Lan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Hui-Yan Jia
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Yao-Hui Liu
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Cui-Zhu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Youjia Cao
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China.
| |
Collapse
|
43
|
Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 2014; 359:267-78. [PMID: 25080065 DOI: 10.1007/s00441-014-1955-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
The formation of a neurite, the basis for axons and dendrites, begins with the concerted accumulation and organization of actin and microtubules. Whereas much is known about the proteins that play a role in these processes, because they perform similar functions in axon branching and filopodia formation, much remains to be discovered concerning the interaction of these individual cytoskeletal regulators during neurite formation. Here, we review the literature regarding various models of filopodial formation and the way in which proteins that control actin organization and polymerization induce neurite formation. Although several different regulators of actin polymerization are involved in neurite initiation, redundancy occurs between these regulators, as the effects of the loss of a single regulator can be mitigated by the addition of neurite-promoting substrates and proteins. Similar to actin dynamics, both microtubule stabilizing and destabilizing proteins play a role in neurite initiation. Furthermore, interactions between the actin and microtubule cytoskeleton are required for neurite formation. Several lines of evidence indicate that the interactions between these two components of the cytoskeleton are needed for force generation and for the localization of microtubules at sites of nascent neurites. The general theme that emerges is the existence of several central regulatory pathways on which extracellular cues converge to control and organize both actin and microtubules to induce the formation of neurites.
Collapse
|
44
|
SIRT1 Regulates Lamellipodium Extension and Migration of Melanoma Cells. J Invest Dermatol 2014; 134:1693-1700. [DOI: 10.1038/jid.2014.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023]
|
45
|
Ménard L, Parker PJ, Kermorgant S. Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nat Commun 2014; 5:3907. [PMID: 24835487 DOI: 10.1038/ncomms4907] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/17/2014] [Indexed: 01/16/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are increasingly recognized as having the capacity to signal post-internalization. Signalling outputs and/or duration, and subsequent cellular outcome, are thought to be distinct when emanating from endosomes compared with those from the plasma membrane. Here we show, in invasive, basal-like human breast cell models, that different mechanisms are engaged by the RTK c-Met in two different endosomes to control the actin cytoskeleton via the key migratory signal output Rac1. Despite an acute activation of Rac1 from peripheral endosomes (PEs), c-Met needs to traffic to a perinuclear endosome (PNE) to sustain Rac1 signalling, trigger optimal membrane ruffling, cell migration and invasion. Unexpectedly, in the PNE but not in the PE, PI3K and the Rac-GEF Vav2 are required. Thus we describe a novel endosomal signalling mechanism whereby one signal output, Rac1, is stimulated through distinct pathways by the same RTK depending on which endosome it is localized to in the cell.
Collapse
Affiliation(s)
- Ludovic Ménard
- 1] Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK [2] Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Peter J Parker
- 1] Protein Phosphorylation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK [2] Division of Cancer Studies, King's College School of Medicine, Guy's Hospital, Thomas Street, London SE1 9RT, UK
| | - Stéphanie Kermorgant
- Centre for Tumour Biology, Barts Cancer Institute-a Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
46
|
Lee S, Park H, Kyung T, Kim NY, Kim S, Kim J, Heo WD. Reversible protein inactivation by optogenetic trapping in cells. Nat Methods 2014; 11:633-6. [DOI: 10.1038/nmeth.2940] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/28/2014] [Indexed: 12/24/2022]
|
47
|
Johnsson AKE, Dai Y, Nobis M, Baker MJ, McGhee EJ, Walker S, Schwarz JP, Kadir S, Morton JP, Myant KB, Huels DJ, Segonds-Pichon A, Sansom OJ, Anderson KI, Timpson P, Welch HCE. The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Rep 2014; 6:1153-1164. [PMID: 24630994 PMCID: PMC3988842 DOI: 10.1016/j.celrep.2014.02.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/05/2014] [Accepted: 02/15/2014] [Indexed: 01/19/2023] Open
Abstract
The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.
Collapse
Affiliation(s)
- Anna-Karin E Johnsson
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Yanfeng Dai
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Max Nobis
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Martin J Baker
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ewan J McGhee
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Simon Walker
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Juliane P Schwarz
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Shereen Kadir
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kevin B Myant
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David J Huels
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Anne Segonds-Pichon
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia.
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
48
|
Nakamura T, Yasuda S, Nagai H, Koinuma S, Morishita S, Goto A, Kinashi T, Wada N. Longest neurite-specific activation of Rap1B in hippocampal neurons contributes to polarity formation through RalA and Nore1A in addition to PI3-kinase. Genes Cells 2013; 18:1020-31. [DOI: 10.1111/gtc.12097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/13/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences; Tokyo University of Science; Noda Chiba 278-0022 Japan
| | - Sayaka Yasuda
- Division of Biosignaling, Research Institute for Biomedical Sciences; Tokyo University of Science; Noda Chiba 278-0022 Japan
| | - Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences; Tokyo University of Science; Noda Chiba 278-0022 Japan
| | - Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences; Tokyo University of Science; Noda Chiba 278-0022 Japan
| | - So Morishita
- Division of Biosignaling, Research Institute for Biomedical Sciences; Tokyo University of Science; Noda Chiba 278-0022 Japan
- Department of Applied Biological Science; Tokyo University of Science; Noda Chiba 278-8510 Japan
| | - Akihiro Goto
- Laboratory of Bioimaging and Cell Signaling; Graduate School of Biostudies; Kyoto University; Kyoto 606-8501 Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics; Kansai Medical University; Osaka 573-1010 Japan
| | - Naoyuki Wada
- Department of Applied Biological Science; Tokyo University of Science; Noda Chiba 278-8510 Japan
| |
Collapse
|
49
|
Abstract
Shootin1 has been ascribed a role in regulating polarization of primary hippocampal neurons. To better understand the possible role of Shootin1 in the developing brain, we identified a member of the kinesin superfamily, KIF20B, as a novel Shootin1 interacting protein and a potential mediator of Shootin1 interaction with microtubules. KIF20B/Shootin1 binding was mapped to a 57 aa KIF20B sequence, which was used as a dominant-negative fragment. Direct interaction between that peptide (MBD) and Shootin1 was confirmed by surface plasmon resonance-based technology and the affinity was determined in the 10⁻⁷ m range. The proteins are expressed in the developing brain and formed a complex in vivo based on coimmunoprecipitation experiments and coimmunostaining in primary neurons. In primary hippocampal neurons Kif20b knockdown reduced Shootin1 mobilization to the developing axon, as evidenced by immunostaining and fluorescence recovery after photobleaching analysis, suggesting that Shootin1 is a novel KIF20B cargo. shRNA targeting of Shootin1 reduced PIP3 accumulation in the growth cone, as did Kif20b shRNA. In the developing mouse brain, Kif20b knockdown or expression of the KIF20B minimal binding domain inhibited neuronal migration, and in vivo migration assays suggested that Shootin1/Kif20b acts in the same genetic pathway. Time-lapse imaging of multipolar cells in the subventricular zone revealed that downregulating levels of either Shootin1 or Kif20b hindered the transition from multipolar to bipolar cells. Collectively, our data demonstrate the importance of the Shootin1/KIF20B interaction to the dynamic process of pyramidal neuronal polarization and migration.
Collapse
|
50
|
Ando K, Fukuhara S, Moriya T, Obara Y, Nakahata N, Mochizuki N. Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organization. ACTA ACUST UNITED AC 2013; 202:901-16. [PMID: 24019534 PMCID: PMC3776352 DOI: 10.1083/jcb.201301115] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase-related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell-cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell-cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho-ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42-MRCK pathway and suppression of the Rho-ROCK pathway.
Collapse
Affiliation(s)
- Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|