1
|
Wang F, Li Y, Shen H, Martinez-Feduchi P, Ji X, Teng P, Krishnakumar S, Hu J, Chen L, Feng Y, Yao B. Identification of pathological pathways centered on circRNA dysregulation in association with irreversible progression of Alzheimer's disease. Genome Med 2024; 16:129. [PMID: 39529134 PMCID: PMC11552301 DOI: 10.1186/s13073-024-01404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are highly stable regulators, often accumulated in mammalian brains and thought to serve as "memory molecules" that govern the long process of aging. Mounting evidence demonstrated circRNA dysregulation in the brains of Alzheimer's disease (AD) patients. However, whether and how circRNA dysregulation underlies AD progression remains unexplored. METHODS We combined Poly(A)-tailing/RNase R digestion experimental approach with CARP, our published computational framework using pseudo-reference alignment for more sensitive and accurate circRNA detection to identify genome-wide circRNA dysregulation and their downstream pathways in the 5xFAD mouse cerebral cortex between 5 and 7 months of age, a critical window marks the transition from reversible to irreversible pathogenic progression. Dysregulated circRNAs and pathways associated with disease progression in 5xFAD cortex were systematically compared with circRNAs affected in postmortem subcortical areas of a large human AD cohort. A top-ranked circRNA conserved and commonly affected in AD patients and 5xFAD mice was depleted in cultured cells to examine AD-relevant molecular and cellular changes. RESULTS We discovered genome-wide circRNA alterations specifically in 5xFAD cortex associated with AD progression, many of which are commonly dysregulated in the subcortical areas of AD patients. Among these circRNAs, circGigyf2 is highly conserved and showed the highest net reduction specifically in the 7-month 5xFAD cortex. CircGIGYF2 level in AD patients' cortices negatively correlated with dementia severity. Mechanistically, we found multiple AD-affected splicing factors that are essential for circGigyf2 biogenesis. Functionally, we identified and experimentally validated the conserved roles of circGigyf2 in sponging AD-relevant miRNAs and AD-associated RNA binding proteins (RBPs), including the cleavage and polyadenylation factor 6 (CPSF6). Moreover, circGigyf2 downregulation in AD promoted silencing activities of its sponged miRNAs and enhanced polyadenylation site processing efficiency of CPSF6 targets. Furthermore, circGigyf2 depletion in a mouse neuronal cell line dysregulated circGigyf2-miRNA and circGigyf2-CPSF6 axes and potentiated apoptotic responses upon insults, which strongly support the causative roles of circGigyf2 deficiency in AD neurodegeneration. CONCLUSIONS Together, our results unveiled brain circRNAs associated with irreversible disease progression in an AD mouse model that is also affected in AD patients and identified novel molecular mechanisms underlying the dysregulation of conserved circRNA pathways contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Huifeng Shen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paula Martinez-Feduchi
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xingyu Ji
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Peng Teng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Siddharth Krishnakumar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Li Chen
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Pio T, Hill EJ, Kebede N, Andersen J, Sloan SA. Neuron-Astrocyte Interactions: A Human Perspective. ADVANCES IN NEUROBIOLOGY 2024; 39:69-93. [PMID: 39190072 DOI: 10.1007/978-3-031-64839-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Collapse
Affiliation(s)
- Taylor Pio
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jimena Andersen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
4
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
5
|
Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, Cialowicz K, Carroll TS, Darnell RB. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife 2021; 10:e71892. [PMID: 34939924 PMCID: PMC8820740 DOI: 10.7554/elife.71892] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.
Collapse
Affiliation(s)
- Caryn R Hale
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kevin Mora
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Paula Cutrim
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Katarzyna Cialowicz
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
6
|
Park E, Lau AG, Arendt KL, Chen L. FMRP Interacts with RARα in Synaptic Retinoic Acid Signaling and Homeostatic Synaptic Plasticity. Int J Mol Sci 2021; 22:ijms22126579. [PMID: 34205274 PMCID: PMC8235556 DOI: 10.3390/ijms22126579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
The fragile X syndrome (FXS) is an X-chromosome-linked neurodevelopmental disorder with severe intellectual disability caused by inactivation of the fragile X mental retardation 1 (FMR1) gene and subsequent loss of the fragile X mental retardation protein (FMRP). Among the various types of abnormal synaptic function and synaptic plasticity phenotypes reported in FXS animal models, defective synaptic retinoic acid (RA) signaling and subsequent defective homeostatic plasticity have emerged as a major synaptic dysfunction. However, the mechanism underlying the defective synaptic RA signaling in the absence of FMRP is unknown. Here, we show that RARα, the RA receptor critically involved in synaptic RA signaling, directly interacts with FMRP. This interaction is enhanced in the presence of RA. Blocking the interaction between FMRP and RARα with a small peptide corresponding to the critical binding site in RARα abolishes RA-induced increases in excitatory synaptic transmission, recapitulating the phenotype seen in the Fmr1 knockout mouse. Taken together, these data suggest that not only are functional FMRP and RARα necessary for RA-dependent homeostatic synaptic plasticity, but that the interaction between these two proteins is essential for proper transcription-independent RA signaling. Our results may provide further mechanistic understanding into FXS synaptic pathophysiology.
Collapse
|
7
|
Corradi E, Baudet ML. In the Right Place at the Right Time: miRNAs as Key Regulators in Developing Axons. Int J Mol Sci 2020; 21:ijms21228726. [PMID: 33218218 PMCID: PMC7699167 DOI: 10.3390/ijms21228726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
During neuronal circuit formation, axons progressively develop into a presynaptic compartment aided by extracellular signals. Axons display a remarkably high degree of autonomy supported in part by a local translation machinery that permits the subcellular production of proteins required for their development. Here, we review the latest findings showing that microRNAs (miRNAs) are critical regulators of this machinery, orchestrating the spatiotemporal regulation of local translation in response to cues. We first survey the current efforts toward unraveling the axonal miRNA repertoire through miRNA profiling, and we reveal the presence of a putative axonal miRNA signature. We also provide an overview of the molecular underpinnings of miRNA action. Our review of the available experimental evidence delineates two broad paradigms: cue-induced relief of miRNA-mediated inhibition, leading to bursts of protein translation, and cue-induced miRNA activation, which results in reduced protein production. Overall, this review highlights how a decade of intense investigation has led to a new appreciation of miRNAs as key elements of the local translation regulatory network controlling axon development.
Collapse
|
8
|
Goering R, Hudish LI, Guzman BB, Raj N, Bassell GJ, Russ HA, Dominguez D, Taliaferro JM. FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. eLife 2020; 9:e52621. [PMID: 32510328 PMCID: PMC7279889 DOI: 10.7554/elife.52621] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
The sorting of RNA molecules to subcellular locations facilitates the activity of spatially restricted processes. We have analyzed subcellular transcriptomes of FMRP-null mouse neuronal cells to identify transcripts that depend on FMRP for efficient transport to neurites. We found that these transcripts contain an enrichment of G-quadruplex sequences in their 3' UTRs, suggesting that FMRP recognizes them to promote RNA localization. We observed similar results in neurons derived from Fragile X Syndrome patients. We identified the RGG domain of FMRP as important for binding G-quadruplexes and the transport of G-quadruplex-containing transcripts. Finally, we found that the translation and localization targets of FMRP were distinct and that an FMRP mutant that is unable to bind ribosomes still promoted localization of G-quadruplex-containing messages. This suggests that these two regulatory modes of FMRP may be functionally separated. These results provide a framework for the elucidation of similar mechanisms governed by other RNA-binding proteins.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Laura I Hudish
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nisha Raj
- Departments of Cell Biology and Neurology, Emory University School of MedicineAtlantaGeorgia
| | - Gary J Bassell
- Departments of Cell Biology and Neurology, Emory University School of MedicineAtlantaGeorgia
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusBoulderUnited States
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusBoulderUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusBoulderUnited States
| |
Collapse
|
9
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
10
|
Lee S. Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain. Bull Math Biol 2018; 80:583-597. [PMID: 29344759 DOI: 10.1007/s11538-018-0390-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author's knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author's previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.
Collapse
Affiliation(s)
- Seunggyu Lee
- National Institute for Mathematical Sciences, Daejeon, 34047, Republic of Korea.
| |
Collapse
|
11
|
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol 2017; 14:568-586. [PMID: 27726526 PMCID: PMC5449092 DOI: 10.1080/15476286.2016.1244588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Collapse
Affiliation(s)
- Indulekha P. Sudhakaran
- National Center for Biological Sciences, TIFR, Bangalore, India
- Manipal University, Manipal, India
| | - Mani Ramaswami
- National Center for Biological Sciences, TIFR, Bangalore, India
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Donlin-Asp PG, Fallini C, Campos J, Chou CC, Merritt ME, Phan HC, Bassell GJ, Rossoll W. The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Rep 2017; 18:1660-1673. [PMID: 28199839 PMCID: PMC5492976 DOI: 10.1016/j.celrep.2017.01.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival of motor neuron (SMN) protein. SMN is part of a multiprotein complex that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN has also been found to associate with mRNA-binding proteins, but the nature of this association was unknown. Here, we have employed a combination of biochemical and advanced imaging methods to demonstrate that SMN promotes the molecular interaction between IMP1 protein and the 3' UTR zipcode region of β-actin mRNA, leading to assembly of messenger ribonucleoprotein (mRNP) complexes that associate with the cytoskeleton to facilitate trafficking. We have identified defects in mRNP assembly in cells and tissues from SMA disease models and patients that depend on the SMN Tudor domain and explain the observed deficiency in mRNA localization and local translation, providing insight into SMA pathogenesis as a ribonucleoprotein (RNP)-assembly disorder.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ching-Chieh Chou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Megan E Merritt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Han C Phan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratory of Translational Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Dynamic mRNA Transport and Local Translation in Radial Glial Progenitors of the Developing Brain. Curr Biol 2016; 26:3383-3392. [PMID: 27916527 DOI: 10.1016/j.cub.2016.10.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/22/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022]
Abstract
In the developing brain, neurons are produced from neural stem cells termed radial glia [1, 2]. Radial glial progenitors span the neuroepithelium, extending long basal processes to form endfeet hundreds of micrometers away from the soma. Basal structures influence neuronal migration, tissue integrity, and proliferation [3-7]. Yet, despite the significance of these distal structures, their cell biology remains poorly characterized, impeding our understanding of how basal processes and endfeet influence neurogenesis. Here we use live imaging of embryonic brain tissue to visualize, for the first time, rapid mRNA transport in radial glia, revealing that the basal process is a highway for directed molecular transport. RNA- and mRNA-binding proteins, including the syndromic autism protein FMRP, move in basal processes at velocities consistent with microtubule-based transport, accumulating in endfeet. We develop an ex vivo tissue preparation to mechanically isolate radial glia endfeet from the soma, and we use photoconvertible proteins to demonstrate that mRNA is locally translated. Using RNA immunoprecipitation and microarray analyses of endfeet, we discover FMRP-bound transcripts, which encode signaling and cytoskeletal regulators, including many implicated in autism and neurogenesis. We show FMRP controls transport and localization of one target, Kif26a. These discoveries reveal a rich, regulated local transcriptome in radial glia, far from the soma, and establish a tractable mammalian model for studying mRNA transport and local translation in vivo. We conclude that cytoskeletal and signaling events at endfeet may be controlled through translation of specific mRNAs transported from the soma, exposing new mechanistic layers within stem cells of the developing brain.
Collapse
|
14
|
Zfrp8 forms a complex with fragile-X mental retardation protein and regulates its localization and function. Dev Biol 2016; 410:202-212. [PMID: 26772998 DOI: 10.1016/j.ydbio.2015.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 11/13/2015] [Accepted: 12/09/2015] [Indexed: 11/21/2022]
Abstract
Fragile-X syndrome is the most commonly inherited cause of autism and mental disabilities. The Fmr1 (Fragile-X Mental Retardation 1) gene is essential in humans and Drosophila for the maintenance of neural stem cells, and Fmr1 loss results in neurological and reproductive developmental defects in humans and flies. FMRP (Fragile-X Mental Retardation Protein) is a nucleo-cytoplasmic shuttling protein, involved in mRNA silencing and translational repression. Both Zfrp8 and Fmr1 have essential functions in the Drosophila ovary. In this study, we identified FMRP, Nufip (Nuclear Fragile-X Mental Retardation Protein-interacting Protein) and Tral (Trailer Hitch) as components of a Zfrp8 protein complex. We show that Zfrp8 is required in the nucleus, and controls localization of FMRP in the cytoplasm. In addition, we demonstrate that Zfrp8 genetically interacts with Fmr1 and tral in an antagonistic manner. Zfrp8 and FMRP both control heterochromatin packaging, also in opposite ways. We propose that Zfrp8 functions as a chaperone, controlling protein complexes involved in RNA processing in the nucleus.
Collapse
|
15
|
Wang B, Pan L, Wei M, Wang Q, Liu WW, Wang N, Jiang XY, Zhang X, Bao L. FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1. Cell Rep 2015; 13:2794-807. [DOI: 10.1016/j.celrep.2015.11.057] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/04/2023] Open
|
16
|
Doll CA, Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8:30. [PMID: 24570656 PMCID: PMC3916725 DOI: 10.3389/fncel.2014.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA ; Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
17
|
Lindsay AJ, McCaffrey MW. Myosin Va is required for the transport of fragile X mental retardation protein (FMRP) granules. Biol Cell 2014; 106:57-71. [PMID: 24175909 DOI: 10.1111/boc.201200076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Fragile X mental retardation protein (FMRP) is a selective RNA binding protein that functions as a translational inhibitor. It also plays a role in directing the transport of a subset of mRNAs to their site of translation and several recent reports have implicated microtubule motor proteins in the transport of FMRP-messenger ribonucleoprotein (mRNP) granules in neurons. Earlier work reported the association of the actin-based motor protein myosin Va with FMRP granules. RESULTS Here, we follow up on this finding and confirm that myosin Va does in fact associate with FMRP and is required for its correct intracellular localisation. FMRP is concentrated in the perinuclear region of myosin Va-null mouse melanoma cells which contrasts starkly with the evenly distributed punctate pattern observed in wild-type cells. Similarly, overexpression of a dominant-negative mutant of myosin Va results in the accumulation of FMRP in large aggregate-like structures. FRAP experiments demonstrate that FMRP is largely immobile in the absence of myosin Va. CONCLUSIONS Combining these data, we propose a model in which myosin Va and kinesin play key roles in the assembly and subsequent transport of FMRP granules along microtubules to the periphery of the cell. Myosin Va captures the complex onto peripheral actin structures and mediates the local delivery of the FMRP granule to the site of mRNA translation.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
18
|
FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proc Natl Acad Sci U S A 2013; 111:E99-E108. [PMID: 24344294 DOI: 10.1073/pnas.1309543111] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) and Ataxin-2 (Atx2) are triplet expansion disease- and stress granule-associated proteins implicated in neuronal translational control and microRNA function. We show that Drosophila FMRP (dFMR1) is required for long-term olfactory habituation (LTH), a phenomenon dependent on Atx2-dependent potentiation of inhibitory transmission from local interneurons (LNs) to projection neurons (PNs) in the antennal lobe. dFMR1 is also required for LTH-associated depression of odor-evoked calcium transients in PNs. Strong transdominant genetic interactions among dFMR1, atx2, the deadbox helicase me31B, and argonaute1 (ago1) mutants, as well as coimmunoprecitation of dFMR1 with Atx2, indicate that dFMR1 and Atx2 function together in a microRNA-dependent process necessary for LTH. Consistently, PN or LN knockdown of dFMR1, Atx2, Me31B, or the miRNA-pathway protein GW182 increases expression of a Ca2+/calmodulin-dependent protein kinase II (CaMKII) translational reporter. Moreover, brain immunoprecipitates of dFMR1 and Atx2 proteins include CaMKII mRNA, indicating respective physical interactions with this mRNA. Because CaMKII is necessary for LTH, these data indicate that fragile X mental retardation protein and Atx2 act via at least one common target RNA for memory-associated long-term synaptic plasticity. The observed requirement in LNs and PNs supports an emerging view that both presynaptic and postsynaptic translation are necessary for long-term synaptic plasticity. However, whereas Atx2 is necessary for the integrity of dendritic and somatic Me31B-containing particles, dFmr1 is not. Together, these data indicate that dFmr1 and Atx2 function in long-term but not short-term memory, regulating translation of at least some common presynaptic and postsynaptic target mRNAs in the same cells.
Collapse
|
19
|
Long JB, Van Vactor D. Embryonic and larval neural connectivity: progressive changes in synapse form and function at the neuromuscular junction mediated by cytoskeletal regulation. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:747-65. [PMID: 24123935 DOI: 10.1002/wdev.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During development, precise formation of millions of synaptic connections is critical for the formation of a functional nervous system. Synaptogenesis is a complex multistep process in which axons follow gradients of secreted and cell surface guidance cues to reach their target area, at which point they must accurately distinguish their specific target. Upon target recognition, the axonal growth cone undergoes rapid growth and morphological changes, ultimately forming a functional synapse that continues to remodel during activity-dependent plasticity. Significant evidence suggests that the underlying actin and microtubule (MT) cytoskeletons are key effectors throughout synaptogenesis downstream of numerous receptors and signaling pathways. An increasing number of cytoskeletal-associated proteins have been shown to influence actin and MT stability and dynamics and many of these regulators have been implicated during synaptic morphogenesis using both mammalian and invertebrate model systems. In this review, we present an overview of the role cytoskeletal regulators play during the formation of the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Jennifer B Long
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
20
|
Abstract
Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably paused polyribosomes. Remarkably, we show that metabotropic glutamate receptor activation allows the synthesis of proteins that lead to a functional long-term depression phenotype even when translation initiation has been greatly reduced. Thus, neurons evolved a unique mechanism to swiftly translate synaptic mRNAs into functional protein upon synaptic signaling using stalled polyribosomes to bypass the rate-limiting step of translation initiation. Because dysregulated plasticity is implicated in neurodevelopmental and psychiatric disorders such as fragile X syndrome, this work uncovers a unique translational target for therapies.
Collapse
|
21
|
Cook D, Nuro E, Murai KK. Increasing our understanding of human cognition through the study of Fragile X Syndrome. Dev Neurobiol 2013; 74:147-77. [PMID: 23723176 PMCID: PMC4216185 DOI: 10.1002/dneu.22096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
22
|
Politte LC, McDougle CJ. Phase II and III drugs for the treatment of fragile X syndrome. Expert Opin Orphan Drugs 2012. [DOI: 10.1517/21678707.2013.750240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Wang T, Bray SM, Warren ST. New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 2012; 22:256-63. [PMID: 22382129 DOI: 10.1016/j.gde.2012.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/06/2012] [Accepted: 02/03/2012] [Indexed: 01/03/2023]
Abstract
Fragile X syndrome (FXS) is a trinucleotide repeat disorder caused by a CGG repeat expansion in FMR1, and loss of its protein product FMRP. Recent studies have provided increased support for the role of FMRP in translational repression via ribosomal stalling and the microRNA pathway. In neurons, particular focus has been placed on identifying the signaling pathways such as PI3K and mTOR downstream of group 1 metabotropic glutamate receptors (mGluR1/5) that regulate FMRP. New evidence also suggests that loss of FMRP causes presynaptic dysfunction and abnormal adult neurogenesis. In addition, studies on FXS stem cells especially induced pluripotent stem (iPS) cells and new sequencing efforts hold out promise for deeper understanding of the silencing process and mutation spectrum of FMR1.
Collapse
Affiliation(s)
- Tao Wang
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
24
|
Bartoli KM, Jakovljevic J, Woolford JL, Saunders WS. Kinesin molecular motor Eg5 functions during polypeptide synthesis. Mol Biol Cell 2011; 22:3420-30. [PMID: 21795388 PMCID: PMC3172266 DOI: 10.1091/mbc.e11-03-0211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The microtubule motor Eg5 is well known for its functions during mitosis. It is shown that during interphase, Eg5 associates with ribosomes and is required for efficient protein synthesis. The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation.
Collapse
Affiliation(s)
- Kristen M Bartoli
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
25
|
Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl Acad Sci U S A 2011; 108:10337-42. [PMID: 21652774 DOI: 10.1073/pnas.1104928108] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA), caused by the deletion of the SMN1 gene, is the leading genetic cause of infant mortality. SMN protein is present at high levels in both axons and growth cones, and loss of its function disrupts axonal extension and pathfinding. SMN is known to associate with the RNA-binding protein hnRNP-R, and together they are responsible for the transport and/or local translation of β-actin mRNA in the growth cones of motor neurons. However, the full complement of SMN-interacting proteins in neurons remains unknown. Here we used mass spectrometry to identify HuD as a novel neuronal SMN-interacting partner. HuD is a neuron-specific RNA-binding protein that interacts with mRNAs, including candidate plasticity-related gene 15 (cpg15). We show that SMN and HuD form a complex in spinal motor axons, and that both interact with cpg15 mRNA in neurons. CPG15 is highly expressed in the developing ventral spinal cord and can promote motor axon branching and neuromuscular synapse formation, suggesting a crucial role in the development of motor axons and neuromuscular junctions. Cpg15 mRNA previously has been shown to localize into axonal processes. Here we show that SMN deficiency reduces cpg15 mRNA levels in neurons, and, more importantly, cpg15 overexpression partially rescues the SMN-deficiency phenotype in zebrafish. Our results provide insight into the function of SMN protein in axons and also identify potential targets for the study of mechanisms that lead to the SMA pathology and related neuromuscular diseases.
Collapse
|
26
|
Abstract
While a distinct minicolumnar phenotype seems to be an underlying factor in a significant portion of cases of autism, great attention is being paid not only to genetics but to epigenetic factors which may lead to development of the conditions. Here we discuss the indivisible role the molecular environment plays in cellular function, particularly the pivotal position which the transcription factor and adhesion molecule, β-catenin, occupies in cellular growth. In addition, the learning environment is not only integral to postnatal plasticity, but the prenatal environment plays a vital role during corticogenesis, neuritogenesis, and synaptogenesis as well. To illustrate these points in the case of autism, we review important findings in genetics studies (e.g., PTEN, TSC1/2, FMRP, MeCP2, Neurexin-Neuroligin) and known epigenetic factors (e.g., valproic acid, estrogen, immune system, ultrasound) which may predispose towards the minicolumnar and connectivity patterns seen in the conditions, showing how one-gene mutational syndromes and exposure to certain CNS teratogens may ultimately lead to comparable phenotypes. This in turn may shed greater light on how environment and complex genetics combinatorially give rise to a heterogenetic group of conditions such as autism.
Collapse
Affiliation(s)
- Emily L. Williams
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Manuel F. Casanova
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Levenga J, Hayashi S, de Vrij FMS, Koekkoek SK, van der Linde HC, Nieuwenhuizen I, Song C, Buijsen RAM, Pop AS, Gomezmancilla B, Nelson DL, Willemsen R, Gasparini F, Oostra BA. AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol Dis 2011; 42:311-7. [PMID: 21316452 DOI: 10.1016/j.nbd.2011.01.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 01/13/2011] [Accepted: 01/28/2011] [Indexed: 11/29/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited intellectual disability, is caused by a lack of FMRP, which is the product of the Fmr1 gene. FMRP is an RNA-binding protein and a component of RNA-granules found in the dendrites of neurons. At the synapse, FMRP is involved in regulation of translation of specific target mRNAs upon stimulation of mGluR5 receptors. In this study, we test the effects of a new mGluR5 antagonist (AFQ056) on the prepulse inhibition of startle response in mice. We show that Fmr1 KO mice have a deficit in inhibition of the startle response after a prepulse and that AFQ056 can rescue this phenotype. We also studied the effect of AFQ056 on cultured Fmr1 KO hippocampal neurons; untreated neurons showed elongated spines and treatment resulted in shortened spines. These results suggest that AFQ056 might be a potent mGluR5 antagonist to rescue various aspects of the fragile X phenotype.
Collapse
Affiliation(s)
- Josien Levenga
- Department of Clinical Genetics, Erasmus MC, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Beerman RW, Jongens TA. A non-canonical start codon in the Drosophila fragile X gene yields two functional isoforms. Neuroscience 2011; 181:48-66. [PMID: 21333716 DOI: 10.1016/j.neuroscience.2011.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome is caused by the loss of expression of the fragile X mental retardation protein (FMRP). As a RNA binding protein, FMRP functions in translational regulation, localization, and stability of its neuronal target transcripts. The Drosophila homologue, dFMR1, is well conserved in sequence and function with respect to human FMRP. Although dFMR1 is known to express two main isoforms, the mechanism behind production of the second, more slowly migrating isoform has remained elusive. Furthermore, it remains unknown whether the two isoforms may also contribute differentially to dFMR1 function. We have found that this second dFMR1 isoform is generated through an alternative translational start site in the dfmr1 5'UTR. This 5'UTR coding sequence is well conserved in the melanogaster group. Translation of the predominant, smaller form of dFMR1 (dFMR1-S(N)) begins at a canonical start codon (ATG), whereas translation of the minor, larger form (dFMR1-L(N)) begins upstream at a non-canonical start codon (CTG). To assess the contribution of the N-terminal extension toward dFMR1 activity, we generated transgenic flies that exclusively express either dFMR1-S(N) or dFMR1-L(N). Expression analyses throughout development revealed that dFMR1-S(N) is required for normal dFMR1-L(N) expression levels in adult brains. In situ expression analyses showed that either dFMR1-S(N) or dFMR1-L(N) is individually sufficient for proper dFMR1 localization in the nervous system. Functional studies demonstrated that both dFMR1-S(N) and dFMR1-L(N) can function independently to rescue dfmr1 null defects in synaptogenesis and axon guidance. Thus, dfmr1 encodes two functional isoforms with respect to expression and activity throughout neuronal development.
Collapse
Affiliation(s)
- R W Beerman
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
29
|
Soden ME, Chen L. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J Neurosci 2010; 30:16910-21. [PMID: 21159962 PMCID: PMC3073636 DOI: 10.1523/jneurosci.3660-10.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Homeostatic synaptic plasticity adjusts the strength of synapses during global changes in neural activity, thereby stabilizing the overall activity of neural networks. Suppression of synaptic activity increases synaptic strength by inducing synthesis of retinoic acid (RA), which activates postsynaptic synthesis of AMPA-type glutamate receptors (AMPARs) in dendrites and promotes synaptic insertion of newly synthesized AMPARs. Here, we show that fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates dendritic protein synthesis, is essential for increases in synaptic strength induced by RA or by blockade of neural activity in the mouse hippocampus. Although activity-dependent RA synthesis is maintained in Fmr1 knock-out neurons, RA-dependent dendritic translation of GluR1-type AMPA receptors is impaired. Intriguingly, FMRP is only required for the form of homeostatic plasticity that is dependent on both RA signaling and local protein synthesis. Postsynaptic expression of wild-type or mutant FMRP(I304N) in knock-out neurons reduced the total, surface, and synaptic levels of AMPARs, implying a role for FMRP in regulating AMPAR abundance. Expression of FMRP lacking the RGG box RNA-binding domain had no effect on AMPAR levels. Importantly, postsynaptic expression of wild-type FMRP, but not FMRP(I304N) or FMRPΔRGG, restored synaptic scaling when expressed in knock-out neurons. Together, these findings identify an unanticipated role for FMRP in regulating homeostatic synaptic plasticity downstream of RA. Our results raise the possibility that at least some of the symptoms of fragile X syndrome reflect impaired homeostatic plasticity and impaired RA signaling.
Collapse
Affiliation(s)
| | - Lu Chen
- Helen Wills Neuroscience Institute and
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
30
|
Abstract
Interest in the mechanisms of subcellular localization of mRNAs and the effects of localized translation has increased over the last decade. Polarized eukaryotic cells transport mRNA-protein complexes to subcellular sites, where translation of the mRNAs can be regulated by physiological stimuli. The long distances separating distal neuronal processes from their cell body have made neurons a useful model system for dissecting mechanisms of mRNA trafficking. Both the dendritic and axonal processes of neurons have been shown to have protein synthetic capacity and the diversity of mRNAs discovered in these processes continues to increase. Localized translation of mRNAs requires a co-ordinated effort by the cell body to target both mRNAs and necessary translational machinery into distal sites, as well as temporal control of individual mRNA translation. In addition to altering protein composition locally at the site of translation, some of the proteins generated in injured nerves retrogradely signal to the cell body, providing both temporal and spatial information on events occurring at distant subcellular sites.
Collapse
Affiliation(s)
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute, Rehovot, Israel
| | - Jeffery L. Twiss
- Department of Biological Science, University of Delaware, Newark, Delaware USA
- Department of Biology, Drexel University, Philadelphia, Pennsylvania USA
| |
Collapse
|
31
|
Yao A, Jin S, Li X, Liu Z, Ma X, Tang J, Zhang YQ. Drosophila FMRP regulates microtubule network formation and axonal transport of mitochondria. Hum Mol Genet 2010; 20:51-63. [PMID: 20935173 DOI: 10.1093/hmg/ddq431] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein FMRP. The RNA-binding FMRP represses translation of the microtubule (MT)-associated protein 1B (MAP1B) during synaptogenesis in the brain of the neonatal mouse. However, the effect of FMRP on MTs remains unclear. Mounting evidence shows that the structure and the function of FMRP are well conserved across species from Drosophila to human. From a genetic screen, we identified spastin as a dominant suppressor of rough eye caused by dfmr1 over-expression. spastin encodes an MT-severing protein, and its mutations cause neurodegenerative hereditary spastic paraplegia. Epistatic and biochemical analyses revealed that dfmr1 acts upstream of or in parallel with spastin in multiple processes, including synapse development, locomotive behaviour and MT network formation. Immunostaining showed that both loss- and gain-of-function mutations of dfmr1 result in an apparently altered MT network. Western analysis revealed that the levels of α-tubulin and acetylated MTs remained normal in dfmr1 mutants, but increased significantly when dfmr1 was over-expressed. To examine the consequence of the aberrant MTs in dfmr1 mutants, we analysed the MT-dependent mitochondrial transport and found that the number of mitochondria and the flux of mitochondrial transport are negatively regulated by dfmr1. These results demonstrate that dFMRP plays a crucial role in controlling MT formation and mitochondrial transport. Thus, defective MTs and abnormal mitochondrial transport might account for, at least partially, the pathogenesis of fragile X mental retardation.
Collapse
Affiliation(s)
- Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kao DI, Aldridge GM, Weiler IJ, Greenough WT. Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A 2010; 107:15601-6. [PMID: 20713728 PMCID: PMC2932564 DOI: 10.1073/pnas.1010564107] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome is caused by the absence of functional fragile X mental retardation protein (FMRP), an RNA binding protein. The molecular mechanism of aberrant protein synthesis in fmr1 KO mice is closely associated with the role of FMRP in mRNA transport, delivery, and local protein synthesis. We show that GFP-labeled Fmr1 and CaMKIIalpha mRNAs undergo decelerated motion at 0-40 min after group I mGluR stimulation, and later recover at 40-60 min. Then we investigate targeting of mRNAs associated with FMRP after neuronal stimulation. We find that FMRP is synthesized closely adjacent to stimulated mGluR5 receptors. Moreover, in WT neurons, CaMKIIalpha mRNA can be delivered and translated in dendritic spines within 10 min in response to group I mGluR stimulation, whereas KO neurons fail to show this response. These data suggest that FMRP can mediate spatial mRNA delivery for local protein synthesis in response to synaptic stimulation.
Collapse
MESH Headings
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Dendrites/metabolism
- Fragile X Mental Retardation Protein/genetics
- Fragile X Mental Retardation Protein/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hippocampus/cytology
- In Situ Hybridization, Fluorescence
- Kinetics
- Methoxyhydroxyphenylglycol/analogs & derivatives
- Methoxyhydroxyphenylglycol/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Protein Binding
- Protein Biosynthesis
- RNA Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Time Factors
Collapse
Affiliation(s)
- Der-I Kao
- Department of Cell and Developmental Biology
- Beckman Institute
| | | | | | - William T. Greenough
- Department of Cell and Developmental Biology
- Beckman Institute
- Neuroscience Program, and
- Departments of Psychology and Psychiatry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
33
|
Distinct 3'UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci U S A 2010; 107:15945-50. [PMID: 20733072 DOI: 10.1073/pnas.1002929107] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Expression of the brain-derived neurotrophic factor (BDNF) is under tight regulation to accommodate its intricate roles in controlling brain function. Transcription of BDNF initiates from multiple promoters in response to distinct stimulation cues. However, regardless which promoter is used, all BDNF transcripts are processed at two alternative polyadenylation sites, generating two pools of mRNAs that carry either a long or a short 3'UTR, both encoding the same BDNF protein. Whether and how the two distinct 3'UTRs may differentially regulate BDNF translation in response to neuronal activity changes is an intriguing and challenging question. We report here that the long BDNF 3'UTR is a bona fide cis-acting translation suppressor at rest whereas the short 3'UTR mediates active translation to maintain basal levels of BDNF protein production. Upon neuronal activation, the long BDNF 3'UTR, but not the short 3'UTR, imparts rapid and robust activation of translation from a reporter. Importantly, the endogenous long 3'UTR BDNF mRNA specifically undergoes markedly enhanced polyribosome association in the hippocampus in response to pilocarpine induced-seizure before transcriptional up-regulation of BDNF. Furthermore, BDNF protein level is quickly increased in the hippocampus upon seizure-induced neuronal activation, accompanied by a robust activation of the tropomyosin-related receptor tyrosine kinase B. These observations reveal a mechanism for activity-dependent control of BDNF translation and tropomyosin-related receptor tyrosine kinase B signaling in brain neurons.
Collapse
|
34
|
Le Quesne JPC, Spriggs KA, Bushell M, Willis AE. Dysregulation of protein synthesis and disease. J Pathol 2010; 220:140-51. [PMID: 19827082 DOI: 10.1002/path.2627] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regulation of protein synthesis plays as important a role as transcriptional control in the control of gene expression. Once thought solely to act globally, translational control has now been shown to be able to control the expression of most genes specifically. Dysregulation of this process is associated with a range of pathological conditions, notably cancer and several neurological disorders, and can occur in many ways. These include alterations in the expression of canonical initiation factors, mutations in regulatory mRNA sequence elements in 5' and 3' untranslated regions (UTRs), such as upstream open reading frames (uORFs), internal ribosome entry segments (IRESs) and micro-RNA (miR) target sites, and the altered expression of trans-acting protein factors that bind to and regulate these elements. Translational control is increasingly open for study in both fresh and fixed tissue, and this rapidly developing field is yielding useful diagnostic and prognostic tools that will hopefully provide new targets for effective treatments.
Collapse
Affiliation(s)
- John P C Le Quesne
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | |
Collapse
|
35
|
Musnier A, Blanchot B, Reiter E, Crépieux P. GPCR signalling to the translation machinery. Cell Signal 2009; 22:707-16. [PMID: 19887105 DOI: 10.1016/j.cellsig.2009.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and beta-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a "GPCR signature" impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.
Collapse
Affiliation(s)
- Astrid Musnier
- BIOS group, INRA, UMR, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | |
Collapse
|
36
|
Abstract
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading genetic cause of autism. There is increasing evidence in both FXS and other forms of autism that alterations in synapse number, structure, and function are associated and contribute to these prevalent diseases. FXS is caused by loss of function of the Fmr1 gene, which encodes the RNA binding protein, fragile X mental retardation protein (FMRP). Therefore, FXS is a tractable model to understand synaptic dysfunction in cognitive disorders. FMRP is present at synapses where it associates with mRNA and polyribosomes. Accumulating evidence finds roles for FMRP in synapse development, elimination, and plasticity. Here, the authors review the synaptic changes observed in FXS and try to relate these changes to what is known about the molecular function of FMRP. Recent advances in the understanding of the molecular and synaptic function of FMRP, as well as the consequences of its loss, have led to the development of novel therapeutic strategies for FXS.
Collapse
Affiliation(s)
- Brad E Pfeiffer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9011, USA
| | | |
Collapse
|
37
|
Levenga J, Buijsen RA, Rifé M, Moine H, Nelson DL, Oostra BA, Willemsen R, de Vrij FM. Ultrastructural analysis of the functional domains in FMRP using primary hippocampal mouse neurons. Neurobiol Dis 2009; 35:241-50. [PMID: 19464371 PMCID: PMC2757577 DOI: 10.1016/j.nbd.2009.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/16/2009] [Accepted: 05/10/2009] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome is caused by lack of the protein FMRP. FMRP mediates mRNA binding, dendritic mRNA transport and translational control at spines. We examined the role of functional domains of FMRP in neuronal RNA-granule formation and dendritic transport using different FMRP variants, including the mutant FMRP_I304N and the splice-variant FMRP_Iso12. Both variants are absent from dendritic RNA-granules in Fmr1 knockout neurons. Co-transfection experiments showed that wild-type FMRP recruits both FMRP variants into dendritic RNA-granules. Co-transfection of FXR2, an FMRP homologue, also resulted in redistribution of both variants into dendritic RNA-granules. Furthermore, the capacity of the variants to transport their mRNAs and the mRNA localization of an FMR1 construct containing silent point-mutations affecting only the G-quartet-structure were investigated. In conclusion, we show that wild-type FMRP and FXR2P are able to recruit FMRP variants into RNA-granules and that the G-quartet-structure in FMR1 mRNA is not essential for its incorporation in RNA-granules.
Collapse
Affiliation(s)
- Josien Levenga
- CBG Department of Clinical Genetics, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Ronald A.M. Buijsen
- CBG Department of Clinical Genetics, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Maria Rifé
- CBG Department of Clinical Genetics, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Herve Moine
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U596, CNRS UMR7104, Université Louis Pasteur, Collège de France, Illkirch, F-67400 France
| | - David L. Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ben A. Oostra
- CBG Department of Clinical Genetics, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Rob Willemsen
- CBG Department of Clinical Genetics, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Femke M.S. de Vrij
- CBG Department of Clinical Genetics, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Epstein AM, Bauer CR, Ho A, Bosco G, Zarnescu DC. Drosophila Fragile X protein controls cellular proliferation by regulating cbl levels in the ovary. Dev Biol 2009; 330:83-92. [PMID: 19306863 DOI: 10.1016/j.ydbio.2009.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/09/2009] [Accepted: 03/13/2009] [Indexed: 12/01/2022]
Abstract
FMRP is an RNA binding protein linked to the most common form of inherited mental retardation, Fragile X syndrome (FraX). In addition to severe cognitive deficits, FraX etiology includes postpubescent macroorchidism, which is thought to result from overproliferation. Using a Drosophila FraX model, we show that FMRP controls germline proliferation during oogenesis. dFmr1 null ovaries contain egg chambers with both fewer and supranumerary germ cells. The mutant germaria contain a significantly increased number of cyclin E and PhosphoHistone H3 positive cells, suggesting that loss of FMRP leads to defects in cell cycle progression. BrdU incorporation and flow cytometry data suggest that, in addition to proliferation, germline endoreplication and ploidy are also affected by the loss of FMRP during ovary development. Here we report that FMRP controls the levels of cbl mRNA in the ovary and that reducing cbl gene dosage by half rescues the dFmr1 oogenesis phenotypes. These data support a model whereby FMRP controls germline proliferation by regulating the expression of cbl in the developing ovary.
Collapse
Affiliation(s)
- Andrew M Epstein
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
39
|
Gatto CL, Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol Neurobiol 2009; 39:107-29. [PMID: 19214804 DOI: 10.1007/s12035-009-8057-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/22/2009] [Indexed: 02/06/2023]
Abstract
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
40
|
Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome. Neurobiol Dis 2009; 33:250-9. [DOI: 10.1016/j.nbd.2008.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 09/23/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022] Open
|
41
|
Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 2008; 60:201-14. [PMID: 18957214 DOI: 10.1016/j.neuron.2008.10.004] [Citation(s) in RCA: 818] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fragile X syndrome is the most common inherited form of cognitive deficiency in humans and perhaps the best-understood single cause of autism. A trinucleotide repeat expansion, inactivating the X-linked FMR1 gene, leads to the absence of the fragile X mental retardation protein. FMRP is a selective RNA-binding protein that regulates the local translation of a subset of mRNAs at synapses in response to activation of Gp1 metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the absence of FMRP, excess and dysregulated mRNA translation leads to altered synaptic function and loss of protein synthesis-dependent plasticity. Recent evidence indicates the role of FMRP in regulated mRNA transport in dendrites. New studies also suggest a possible local function of FMRP in axons that may be important for guidance, synaptic development, and formation of neural circuits. The understanding of FMRP function at synapses has led to rationale therapeutic approaches.
Collapse
Affiliation(s)
- Gary J Bassell
- Department of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
42
|
de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, Oostra BA, Willemsen R. Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 2008; 31:127-32. [PMID: 18571098 PMCID: PMC2481236 DOI: 10.1016/j.nbd.2008.04.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/01/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022] Open
Abstract
Lack of fragile X mental retardation protein (FMRP) causes Fragile X Syndrome, the most common form of inherited mental retardation. FMRP is an RNA-binding protein and is a component of messenger ribonucleoprotein complexes, associated with brain polyribosomes, including dendritic polysomes. FMRP is therefore thought to be involved in translational control of specific mRNAs at synaptic sites. In mice lacking FMRP, protein synthesis-dependent synaptic plasticity is altered and structural malformations of dendritic protrusions occur. One hypothesized cause of the disease mechanism is based on exaggerated group I mGluR receptor activation. In this study, we examined the effect of the mGluR5 antagonist MPEP on Fragile X related behavior in Fmr1 KO mice. Our results demonstrate a clear defect in prepulse inhibition of startle in Fmr1 KO mice, that could be rescued by MPEP. Moreover, we show for the first time a structural rescue of Fragile X related protrusion morphology with two independent mGluR5 antagonists.
Collapse
Affiliation(s)
- Femke M.S. de Vrij
- Department of Clinical Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Josien Levenga
- Department of Clinical Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Sebastiaan K. Koekkoek
- Department of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - David L. Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Ronesi JA, Huber KM. Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci Signal 2008; 1:pe6. [PMID: 18272470 DOI: 10.1126/stke.15pe6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fragile X syndrome (FXS) mental retardation is caused by loss-of-function mutations in an RNA-binding protein, fragile X mental retardation protein (FMRP). Previous studies in patients or animal models of FXS have identified alterations in dendritic spine structure, as well as synaptic plasticity induced by metabotropic glutamate receptors (mGluRs). The translation of multiple messenger RNA (mRNA) targets of FMRP is regulated by mGluRs at synapses. Here, we incorporate data from several studies into a working model of how FMRP regulates mGluR-stimulated protein synthesis and, in turn, regulates protein synthesis-dependent synaptic plasticity. Understanding the complex functions of FMRP at the synapse will lead to a better understanding of the neurobiological underpinnings of mental retardation.
Collapse
Affiliation(s)
- Jennifer A Ronesi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|