1
|
Turan MG, Kantarci H, Cevik S, Kaplan OI. ARL13B regulates juxtaposed cilia-cilia elongation in BBSome dependent manner in Caenorhabditis elegans. iScience 2025; 28:111791. [PMID: 39925426 PMCID: PMC11804779 DOI: 10.1016/j.isci.2025.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/30/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The interaction of cilia with various cellular compartments, such as axons, has emerged as a new form of cellular communication. Cilia often extend in proximity to cilia from neighboring cells. However, the mechanisms driving this process termed juxtaposed cilia-cilia elongation (JCE) remain unclear. We use fluorescence-based visualization to study the mechanisms of coordinated cilia elongation in sensory neurons of Caenorhabditis elegans. Conducting a selective gene-based screening strategy reveals that ARL-13/ARL13B and MKS-5/RPGRIP1L are essential for JCE. We demonstrate that ARL-13 modulates JCE independently of cilia length. Loss of NPHP-2/inversin along with HDAC-6 enhances the cilia misdirection phenotype of arl-13 mutants, while disruption of the BBSome complex, but not microtubule components, partially suppresses the JCE defects in arl-13 mutants. We further show changes in the phospholipid compositions in arl-13 mutants. We suggest that ARL-13 contributes to JCE, in part, through the modulation of the ciliary membrane.
Collapse
Affiliation(s)
- Merve Gül Turan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
- Department of Bioengineering, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hanife Kantarci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I. Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
2
|
Caenen-Braz C, Bouzhir L, Dupuis-Williams P. New functions of B9D2 in tight junctions and epithelial polarity. Sci Rep 2024; 14:25293. [PMID: 39455645 PMCID: PMC11512030 DOI: 10.1038/s41598-024-75577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Ciliopathies are a diverse group of disorders resulting from abnormalities in the development or function of multiple organs. While significant research has clarified the role of the primary cilium in transducing numerous signalling pathways, elucidating causes of neuronal and skeletal development disorders, the origins of other ciliopathy-related conditions, such as hepatic fibrocystic diseases, remain elusive. Additionally, attempts to correlate specific ciliary proteins with distinct phenotypes have been largely unsuccessful due to the variable and overlapping symptoms of ciliopathies. This study aims to elucidate the extraciliary roles of the protein B9D2 in the development of biliary dysgenesis, a condition present in Meckel-Gruber and Joubert syndromes caused by mutations in this protein. Traditionally, B9D2 is known for its role at the transition zone of the primary cilium in the transduction of signalling pathways notably Wingless and Hedgehog. Our work demonstrates that before ciliogenesis occurs, B9D2 is crucial for the maturation and maintenance of tight junctions ensuring epithelial barrier tightness and appropriate biliary lumen formation. This study provides new insights into the mechanisms underlying biliary dysgenesis in hepatic ciliopathies, suggesting that further exploration of the non-ciliary functions of proteins involved in ciliopathies could lead to a better understanding and treatment of these complex disorders.
Collapse
Affiliation(s)
- Chloe Caenen-Braz
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Latifa Bouzhir
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France.
- ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
3
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
5
|
Wang J, Thomas HR, Thompson RG, Waldrep SC, Fogerty J, Song P, Li Z, Ma Y, Santra P, Hoover JD, Yeo NC, Drummond IA, Yoder BK, Amack JD, Perkins B, Parant JM. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech 2022; 15:dmm049568. [PMID: 36533556 PMCID: PMC9844136 DOI: 10.1242/dmm.049568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yongjie Ma
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Peu Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jonathan D. Hoover
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Iain A. Drummond
- Davis Center for Aging and Regeneration, Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
7
|
Hazime KS, Zhou Z, Joachimiak E, Bulgakova NA, Wloga D, Malicki JJ. STORM imaging reveals the spatial arrangement of transition zone components and IFT particles at the ciliary base in Tetrahymena. Sci Rep 2021; 11:7899. [PMID: 33846423 PMCID: PMC8041816 DOI: 10.1038/s41598-021-86909-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet–Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.
Collapse
Affiliation(s)
- Khodor S Hazime
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Zhu Zhou
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Natalia A Bulgakova
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Jarema J Malicki
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
8
|
Lange KI, Tsiropoulou S, Kucharska K, Blacque OE. Interpreting the pathogenicity of Joubert syndrome missense variants in Caenorhabditis elegans. Dis Model Mech 2021; 14:dmm.046631. [PMID: 33234550 PMCID: PMC7859701 DOI: 10.1242/dmm.046631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
Ciliopathies are inherited disorders caused by defects in motile and non-motile (primary) cilia. Ciliopathy syndromes and associated gene variants are often highly pleiotropic and represent exemplars for interrogating genotype-phenotype correlations. Towards understanding disease mechanisms in the context of ciliopathy mutations, we have used a leading model organism for cilia and ciliopathy research, Caenorhabditis elegans, together with gene editing, to characterise two missense variants (P74S and G155S) in mksr-2/B9D2 associated with Joubert syndrome (JBTS). B9D2 functions within the Meckel syndrome (MKS) module at the ciliary base transition zone (TZ) compartment and regulates the molecular composition and sensory/signalling functions of the cilium. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm that both variant alleles are pathogenic in worms. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that compound heterozygous worms phenocopy worms homozygous for P74S. The P74S and G155S alleles also reveal evidence of a very close functional association between the B9D2-associated B9 complex and MKS-2/TMEM216. Together, these data establish C. elegans as a model for interpreting JBTS mutations and provide further insight into MKS module organisation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Katarzyna Kucharska
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Okazaki M, Kobayashi T, Chiba S, Takei R, Liang L, Nakayama K, Katoh Y. Formation of the B9-domain protein complex MKS1-B9D2-B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Mol Biol Cell 2020; 31:2259-2268. [PMID: 32726168 PMCID: PMC7550698 DOI: 10.1091/mbc.e20-03-0208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/20/2023] Open
Abstract
Cilia are plasma membrane protrusions that act as cellular antennae and propellers in eukaryotes. To achieve their sensory and motile functions, cilia maintain protein and lipid compositions that are distinct from those of the cell body. The transition zone (TZ) is a specialized region located at the ciliary base, which functions as a barrier separating the interior and exterior of cilia. The TZ comprises a number of transmembrane and soluble proteins. Meckel syndrome (MKS)1, B9 domain (B9D)1/MKS9, and B9D2/MKS10 are soluble TZ proteins that are encoded by causative genes of MKS and have a B9D in common. We here demonstrate the interaction mode of these B9D proteins to be MKS1-B9D2-B9D1 and demonstrate their interdependent localization to the TZ. Phenotypic analyses of MKS1-knockout (KO) and B9D2-KO cells show that the B9D proteins are involved in, although not essential for, normal cilia biogenesis. Rescue experiments of these KO cells show that formation of the B9D protein complex is crucial for creating a diffusion barrier for ciliary membrane proteins.
Collapse
Affiliation(s)
- Misato Okazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Ryota Takei
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Luxiaoxue Liang
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Ciliary Genes in Renal Cystic Diseases. Cells 2020; 9:cells9040907. [PMID: 32276433 PMCID: PMC7226761 DOI: 10.3390/cells9040907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer.
Collapse
|
11
|
Cebul ER, McLachlan IG, Heiman MG. Dendrites with specialized glial attachments develop by retrograde extension using SAX-7 and GRDN-1. Development 2020; 147:dev.180448. [PMID: 31988188 DOI: 10.1242/dev.180448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Dendrites develop elaborate morphologies in concert with surrounding glia, but the molecules that coordinate dendrite and glial morphogenesis are mostly unknown. C. elegans offers a powerful model for identifying such factors. Previous work in this system examined dendrites and glia that develop within epithelia, similar to mammalian sense organs. Here, we focus on the neurons BAG and URX, which are not part of an epithelium but instead form membranous attachments to a single glial cell at the nose, reminiscent of dendrite-glia contacts in the mammalian brain. We show that these dendrites develop by retrograde extension, in which the nascent dendrite endings anchor to the presumptive nose and then extend by stretching during embryo elongation. Using forward genetic screens, we find that dendrite development requires the adhesion protein SAX-7/L1CAM and the cytoplasmic protein GRDN-1/CCDC88C to anchor dendrite endings at the nose. SAX-7 acts in neurons and glia, while GRDN-1 acts in glia to non-autonomously promote dendrite extension. Thus, this work shows how glial factors can help to shape dendrites, and identifies a novel molecular mechanism for dendrite growth by retrograde extension.
Collapse
Affiliation(s)
- Elizabeth R Cebul
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Ian G McLachlan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
13
|
Sherpa RT, Pala R, Mohieldin AM, Nauli SM. Measurement of cytoplasmic and cilioplasmic calcium in a single living cell. Methods Cell Biol 2019; 153:25-42. [PMID: 31395382 DOI: 10.1016/bs.mcb.2019.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cellular signaling represents an evolution of biological systems to sense external stimuli and communicate extracellular microenvironment to the intracellular compartments. The processes underlying molecular signaling have been widely studied due to their important cellular functions. There are numerous techniques available to quantitate the different molecules involved in cellular processes. Among them, calcium is a ubiquitous signaling molecule involved in many biological pathways. Over time the methods to measure intracellular calcium have advanced to better understand its role as a second messenger. In this chapter, we introduce a method to study a single cilium, a mechanosensor that elicits a calcium signaling cascade. To successfully observe the calcium changes in this thin cylindrical-like projection from the cell surface, we utilize a genetically encoded sensor with a high spatial and temporal resolution. In addition, the probe must be localized to the ciliary compartment in order to observe the intraciliary calcium signaling dynamics. To this end, a cilium targeting genetically encoded indicator is used to observe calcium fluxes in both cytoplasm and cilioplasm.
Collapse
Affiliation(s)
- Rinzhin T Sherpa
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Chapman University, Irvine, CA, United States
| | - Rajasekharreddy Pala
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Chapman University, Irvine, CA, United States
| | - Ashraf M Mohieldin
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Chapman University, Irvine, CA, United States
| | - Surya M Nauli
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Chapman University, Irvine, CA, United States; Department of Medicine, University of California Irvine, Irvine, CA, United States.
| |
Collapse
|
14
|
Stawicki TM, Linbo T, Hernandez L, Parkinson L, Bellefeuille D, Rubel EW, Raible DW. The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biol Open 2019; 8:bio.038745. [PMID: 30578252 PMCID: PMC6361216 DOI: 10.1242/bio.038745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sensory hair cells are susceptible to numerous insults, including certain therapeutic medications like aminoglycoside antibiotics, and hearing and balance disorders are often a dose-limiting side effect of these medications. We show that mutations in multiple genes in both the retrograde intraflagellar transport (IFT) motor and adaptor complexes lead to resistance to aminoglycoside-induced hair cell death. These mutations also lead to defects in the entry of both aminoglycosides and the vital dye FM1-43 into hair cells, both processes that depend on hair cell mechanotransduction activity. However, the trafficking of proteins important for mechanotransduction activity is not altered by these mutations. Our data suggest that both retrograde IFT motor and adaptor complex genes are playing a role in aminoglycoside toxicity through affecting aminoglycoside uptake into hair cells. Summary: Here we show that both retrograde intraflagellar transport motor proteins and IFT-A adaptor molecules play a role in aminoglycoside-induced hair cell death, seemingly through regulating aminoglycoside uptake.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA .,Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Liana Hernandez
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Lauren Parkinson
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | | | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Piasecki BP, Sasani TA, Lessenger AT, Huth N, Farrell S. MAPK-15 is a ciliary protein required for PKD-2 localization and male mating behavior in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2017; 74:390-402. [PMID: 28745435 DOI: 10.1002/cm.21387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
Cilia are conserved cellular structures that facilitate sensory-based processes, including those required for neuronal and kidney functions. Here, we show that the human mitogen activated kinase-15 (MAPK-15) ortholog in Caenorhabditis elegans encodes a ciliary protein. A strain harboring a mutation in the catalytic site of the kinase domain results in ciliary-specific defects in tail neurons of both hermaphrodite and male worms, manifesting in dye uptake, dendrite extension, and male mating behavior defects. Transgenic-fusion constructs for two mapk-15 isoforms (A and C) with full-length kinase domains were generated. Expression of either the A- or C-specific isoform rescues the dye-filling and male-mating defective phenotypes, confirming the ciliary function of mapk-15. Expression of mapk-15 occurs in many ciliated-sensory neurons of the head and tail in hermaphrodite and male worms. Localization of MAPK-15 isoforms A and C occurs in the cell body, dendritic processes, and cilia. A C. elegans ortholog of polycystin-2, a protein that when defective in mammals results in autosomal dominant polycystic kidney disease, is mislocalized in the male ray neurons of mapk-15 mutant worms. Expression of the mapk-15 gene by the pkd-2 promoter partially rescues the male-mating defects observed in mapk-15 mutant animals. Expression of mapk-15 is DAF-19/RFX dependent in some CSNs and DAF-19/RFX independent in others. Collectively, these data suggest that MAPK-15 functions upstream of PKD-2 localization to modulate ciliary sensory functions.
Collapse
Affiliation(s)
| | - Thomas A Sasani
- Department of Biology, Lawrence University, Appleton, Wisconsin.,Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | | | - Nicholas Huth
- Department of Biology, Lawrence University, Appleton, Wisconsin
| | - Shane Farrell
- Department of Biology, Lawrence University, Appleton, Wisconsin
| |
Collapse
|
16
|
Takao D, Wang L, Boss A, Verhey KJ. Protein Interaction Analysis Provides a Map of the Spatial and Temporal Organization of the Ciliary Gating Zone. Curr Biol 2017; 27:2296-2306.e3. [PMID: 28736169 DOI: 10.1016/j.cub.2017.06.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022]
Abstract
The motility and signaling functions of the primary cilium require a unique protein and lipid composition that is determined by gating mechanisms localized at the base of the cilium. Several protein complexes localize to the gating zone and may regulate ciliary protein composition; however, the mechanisms of ciliary gating and the dynamics of the gating components are largely unknown. Here, we used the BiFC (bimolecular fluorescence complementation) assay and report for the first time on the protein-protein interactions that occur between ciliary gating components and transiting cargoes during ciliary entry. We find that the nucleoporin Nup62 and the C termini of the nephronophthisis (NPHP) proteins NPHP4 and NPHP5 interact with the axoneme-associated kinesin-2 motor KIF17 and thus spatially map to the inner region of the ciliary gating zone. Nup62 and NPHP4 exhibit rapid turnover at the transition zone and thus define dynamic components of the gate. We find that B9D1, AHI1, and the N termini of NPHP4 and NPHP5 interact with the transmembrane protein SSTR3 and thus spatially map to the outer region of the ciliary gating zone. B9D1, AHI1, and NPHP5 exhibit little to no turnover at the transition zone and thus define components of a stable gating structure. These data provide the first comprehensive map of the molecular orientations of gating zone components along the inner-to-outer axis of the ciliary gating zone. These results advance our understanding of the functional roles of gating zone components in regulating ciliary protein composition.
Collapse
Affiliation(s)
- Daisuke Takao
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Liang Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, China
| | - Allison Boss
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Ganner A, Neumann-Haefelin E. Genetic kidney diseases: Caenorhabditis elegans as model system. Cell Tissue Res 2017; 369:105-118. [PMID: 28484847 DOI: 10.1007/s00441-017-2622-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Despite its apparent simplicity, the nematode Caenorhabditis elegans has a high rating as a model in molecular and developmental biology and biomedical research. C. elegans has no excretory system comparable with the mammalian kidney but many of the genes and molecular pathways involved in human kidney diseases are conserved in C. elegans. The plethora of genetic, molecular and imaging tools available in C. elegans has enabled major discoveries in renal research and advanced our understanding of the pathogenesis of genetic kidney diseases. In particular, studies in C. elegans have pioneered the fundamental role of cilia for cystic kidney diseases. In addition, proteins of the glomerular filtration barrier and podocytes are critical for cell recognition, assembly of functional neuronal circuits, mechanosensation and signal transduction in C. elegans. C. elegans has also proved tremendously valuable for aging research and the Von Hippel-Lindau tumor suppressor gene has been shown to modulate lifespan in the nematode. Further, studies of the excretory canal, membrane transport and ion channel function in C. elegans have provided insights into mechanisms of tubulogenesis and cellular homeostasis. This review recounts the way that C. elegans can be used to investigate various aspects of genetic and molecular nephrology. This model system opens up an exciting and new area of study of renal development and diseases.
Collapse
Affiliation(s)
- Athina Ganner
- Department of Nephrology, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Nephrology, Medical Center, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| |
Collapse
|
18
|
Gonçalves J, Pelletier L. The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Mol Cells 2017; 40:243-253. [PMID: 28401750 PMCID: PMC5424270 DOI: 10.14348/molcells.2017.0054] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8,
Canada
| |
Collapse
|
19
|
Garcia-Gonzalo FR, Reiter JF. Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028134. [PMID: 27770015 DOI: 10.1101/cshperspect.a028134] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cilia are plasma membrane protrusions that act as cellular propellers or antennae. To perform these functions, cilia must maintain a composition distinct from those of the contiguous cytosol and plasma membrane. The specialized composition of the cilium depends on the ciliary gate, the region at the ciliary base separating the cilium from the rest of the cell. The ciliary gate's main structural features are electron dense struts connecting microtubules to the adjacent membrane. These structures include the transition fibers, which connect the distal basal body to the base of the ciliary membrane, and the Y-links, which connect the proximal axoneme and ciliary membrane within the transition zone. Both transition fibers and Y-links form early during ciliogenesis and play key roles in ciliary assembly and trafficking. Accordingly, many human ciliopathies are caused by mutations that perturb ciliary gate function.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
20
|
Pratt MB, Titlow JS, Davis I, Barker AR, Dawe HR, Raff JW, Roque H. Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults. J Cell Sci 2016; 129:3732-3743. [PMID: 27577095 PMCID: PMC5087661 DOI: 10.1242/jcs.194621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/19/2016] [Indexed: 01/05/2023] Open
Abstract
Cilia are conserved organelles that have important motility, sensory and signalling roles. The transition zone (TZ) at the base of the cilium is crucial for cilia function, and defects in several TZ proteins are associated with human congenital ciliopathies such as nephronophthisis (NPHP) and Meckel-Gruber syndrome (MKS). In several species, MKS and NPHP proteins form separate complexes that cooperate with Cep290 to assemble the TZ, but flies seem to lack core components of the NPHP module. We show that MKS proteins in flies are spatially separated from Cep290 at the TZ, and that flies mutant for individual MKS genes fail to recruit other MKS proteins to the TZ, whereas Cep290 seems to be recruited normally. Although there are abnormalities in microtubule and membrane organisation in developing MKS mutant cilia, these defects are less apparent in adults, where sensory cilia and sperm flagella seem to function quite normally. Thus, localising MKS proteins to the cilium or flagellum is not essential for viability or fertility in flies.
Collapse
Affiliation(s)
- Metta B Pratt
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Joshua S Titlow
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Amy R Barker
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jordan W Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Helio Roque
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
21
|
Wei Q, Zhang Y, Schouteden C, Zhang Y, Zhang Q, Dong J, Wonesch V, Ling K, Dammermann A, Hu J. The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate. Nat Commun 2016; 7:12437. [PMID: 27534274 PMCID: PMC4992140 DOI: 10.1038/ncomms12437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
Transition fibres (TFs), together with the transition zone (TZ), are basal ciliary structures thought to be crucial for cilium biogenesis and function by acting as a ciliary gate to regulate selective protein entry and exit. Here we demonstrate that the centriolar and basal body protein HYLS-1, the C. elegans orthologue of hydrolethalus syndrome protein 1, is required for TF formation, TZ organization and ciliary gating. Loss of HYLS-1 compromises the docking and entry of intraflagellar transport (IFT) particles, ciliary gating for both membrane and soluble proteins, and axoneme assembly. Additional depletion of the TF component DYF-19 in hyls-1 mutants further exacerbates TZ anomalies and completely abrogates ciliogenesis. Our data support an important role for HYLS-1 and TFs in establishment of the ciliary gate and underline the importance of selective protein entry for cilia assembly.
Collapse
Affiliation(s)
- Qing Wei
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Clementine Schouteden
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), University of Vienna, A-1030 Vienna, Austria
| | - Yuxia Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jinhong Dong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Veronika Wonesch
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), University of Vienna, A-1030 Vienna, Austria
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Alexander Dammermann
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), University of Vienna, A-1030 Vienna, Austria
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA.,Mayo Translational PKD Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
22
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Li C, Jensen VL, Park K, Kennedy J, Garcia-Gonzalo FR, Romani M, De Mori R, Bruel AL, Gaillard D, Doray B, Lopez E, Rivière JB, Faivre L, Thauvin-Robinet C, Reiter JF, Blacque OE, Valente EM, Leroux MR. MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biol 2016; 14:e1002416. [PMID: 26982032 PMCID: PMC4794247 DOI: 10.1371/journal.pbio.1002416] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/24/2016] [Indexed: 11/19/2022] Open
Abstract
Cilia have a unique diffusion barrier (“gate”) within their proximal region, termed transition zone (TZ), that compartmentalises signalling proteins within the organelle. The TZ is known to harbour two functional modules/complexes (Meckel syndrome [MKS] and Nephronophthisis [NPHP]) defined by genetic interaction, interdependent protein localisation (hierarchy), and proteomic studies. However, the composition and molecular organisation of these modules and their links to human ciliary disease are not completely understood. Here, we reveal Caenorhabditis elegans CEP-290 (mammalian Cep290/Mks4/Nphp6 orthologue) as a central assembly factor that is specific for established MKS module components and depends on the coiled coil region of MKS-5 (Rpgrip1L/Rpgrip1) for TZ localisation. Consistent with a critical role in ciliary gate function, CEP-290 prevents inappropriate entry of membrane-associated proteins into cilia and keeps ARL-13 (Arl13b) from leaking out of cilia via the TZ. We identify a novel MKS module component, TMEM-218 (Tmem218), that requires CEP-290 and other MKS module components for TZ localisation and functions together with the NPHP module to facilitate ciliogenesis. We show that TZ localisation of TMEM-138 (Tmem138) and CDKL-1 (Cdkl1/Cdkl2/Cdkl3/Cdlk4 related), not previously linked to a specific TZ module, similarly depends on CEP-290; surprisingly, neither TMEM-138 or CDKL-1 exhibit interdependent localisation or genetic interactions with core MKS or NPHP module components, suggesting they are part of a distinct, CEP-290-associated module. Lastly, we show that families presenting with Oral-Facial-Digital syndrome type 6 (OFD6) have likely pathogenic mutations in CEP-290-dependent TZ proteins, namely Tmem17, Tmem138, and Tmem231. Notably, patient fibroblasts harbouring mutated Tmem17, a protein not yet ciliopathy-associated, display ciliogenesis defects. Together, our findings expand the repertoire of MKS module-associated proteins—including the previously uncharacterised mammalian Tmem80—and suggest an MKS-5 and CEP-290-dependent assembly pathway for building a functional TZ. The transition zone is a barrier structure required to maintain the dynamic composition and functional integrity of the cilium. This study describes the pathway by which the transition zone is assembled during cilium formation. The primary cilium is a structure found in most animal cell types. Much like an antenna, it is responsible for sensing extracellular signals, including light and small molecules, and conveying this information to the receiving cell and respective tissue or organ. At the base of the cilium is the transition zone (TZ), which acts as a “gate” to regulate the entry and exit of ciliary proteins required for signal transduction. Here, we use the nematode Caenorhabditis elegans as a model system to dissect how different proteins within the TZ assemble to form a functional barrier. We find that the TZ protein MKS-5 (Rpgrip1/Rpgrip1L orthologue) forms the foundation for two different assembly pathways involving two distinct modules: Nephronophthisis (NPHP) and Meckel syndrome (MKS). We show that at the base of the MKS module is CEP-290, another TZ protein that assembles MKS module proteins, including a novel TZ protein we identify as TMEM-218. CEP-290 also helps assemble a potentially separate submodule containing TMEM-138 and CDKL-1. Notably, we provide evidence that the MKS module protein TMEM-17 facilitates cilium formation and is disrupted in the human disorder (ciliopathy) Oral-Facial-Digital Syndrome type 6 (OFD6). Together, our findings provide essential insights into the assembly pathway of the ciliary TZ and suggest further connections between the transition zone and human health.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Victor L. Jensen
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julie Kennedy
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Francesc R. Garcia-Gonzalo
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Marta Romani
- Neurogenetics Unit, Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Roberta De Mori
- Neurogenetics Unit, Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ange-Line Bruel
- EA4271 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université Fédérale Bourgogne Franche-Comté, Dijon, France
| | | | - Bérénice Doray
- Service de Génétique clinique, CHRU Strasbourg, Strasbourg, France
| | - Estelle Lopez
- EA4271 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université Fédérale Bourgogne Franche-Comté, Dijon, France
| | - Jean-Baptiste Rivière
- EA4271 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université Fédérale Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique moléculaire, Plateau Technique de Biologie, CHU Dijon, Dijon, France
| | - Laurence Faivre
- EA4271 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université Fédérale Bourgogne Franche-Comté, Dijon, France
- Centre de Génétique, FHU-TRANSLAD, Hôpital d’Enfants, CHU Dijon, Dijon, France
| | - Christel Thauvin-Robinet
- EA4271 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Université Fédérale Bourgogne Franche-Comté, Dijon, France
- Centre de Génétique, FHU-TRANSLAD, Hôpital d’Enfants, CHU Dijon, Dijon, France
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Oliver E. Blacque
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Enza Maria Valente
- Neurogenetics Unit, Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
24
|
Masyukova SV, Landis DE, Henke SJ, Williams CL, Pieczynski JN, Roszczynialski KN, Covington JE, Malarkey EB, Yoder BK. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4. PLoS Genet 2016; 12:e1005841. [PMID: 26863025 PMCID: PMC4749664 DOI: 10.1371/journal.pgen.1005841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/12/2016] [Indexed: 12/04/2022] Open
Abstract
Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit, NPHP-4 influences localization and function of a distal ciliary kinesin. Moreover, data suggest human OSM-3 homolog (Kif17) could act as a modifying locus affecting disease penetrance or expressivity in NPHP patients. Nephronophthisis (NPHP) is a genetically heterogeneous ciliopathy that has minimal genotype-phenotype correlation. The cause of this variation is not known, but could result from additional mutations in the patients’ backgrounds capable of modifying the phenotype. To identify candidate NPHP modifying loci, we conducted an enhancer mutagenesis screen using C. elegans nphp-4(tm925) mutants. Mutations in ten loci were obtained that severely exacerbated the cilia defects in the nphp-4(tm925) mutants, but importantly, had minimal defects in the absence of the nphp-4 mutation. Here we identified four of these loci, each encoding a cilia protein. Three mutations are in known ciliopathy genes, mks-1, mks-2 and mks-5. The fourth allele is a missense (S316F) mutation in OSM-3, a kinesin required for distal cilia assembly and is the sole kinesin responsible for intraflagellar transport along the cilia distal segment in C. elegans. The osm-3(yhw66) mutation affects a putative phosphorylation site that is important for OSM-3 localization, movement, and function, largely in an nphp-4 dependent manner. These data establish a genetic interaction between osm-3 and nphp-4 that regulates kinesin activity and localization and raises the possibility that mutations in Kif17, the mammalian homolog of osm-3, may influence the phenotypes in human NPHP patients.
Collapse
Affiliation(s)
- Svetlana V. Masyukova
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Dawn E. Landis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Scott J. Henke
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Corey L. Williams
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jay N. Pieczynski
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Kelly N. Roszczynialski
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Jannese E. Covington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Erik B. Malarkey
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sanders AAWM, de Vrieze E, Alazami AM, Alzahrani F, Malarkey EB, Sorusch N, Tebbe L, Kuhns S, van Dam TJP, Alhashem A, Tabarki B, Lu Q, Lambacher NJ, Kennedy JE, Bowie RV, Hetterschijt L, van Beersum S, van Reeuwijk J, Boldt K, Kremer H, Kesterson RA, Monies D, Abouelhoda M, Roepman R, Huynen MH, Ueffing M, Russell RB, Wolfrum U, Yoder BK, van Wijk E, Alkuraya FS, Blacque OE. KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol 2015; 16:293. [PMID: 26714646 PMCID: PMC4699358 DOI: 10.1186/s13059-015-0858-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. RESULTS Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556 (-/-) null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions. CONCLUSIONS We have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.
Collapse
Affiliation(s)
- Anna A W M Sanders
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Erik B Malarkey
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, AL, 35294, USA
| | - Nasrin Sorusch
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122, Mainz, Germany
| | - Lars Tebbe
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122, Mainz, Germany
| | - Stefanie Kuhns
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Teunis J P van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Qianhao Lu
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69118, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Nils J Lambacher
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Julie E Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rachel V Bowie
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sylvia van Beersum
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Jeroen van Reeuwijk
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Karsten Boldt
- Institute for Ophthalmic Research and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University, Tuebingen, Germany
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham Medical School, Birmingham, AL, 35294, USA
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ronald Roepman
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Martijn H Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marius Ueffing
- Institute for Ophthalmic Research and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University, Tuebingen, Germany
| | - Rob B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69118, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122, Mainz, Germany
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, AL, 35294, USA
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol 2015; 18:122-31. [PMID: 26595381 DOI: 10.1038/ncb3273] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023]
Abstract
The transition zone (TZ) ciliary subcompartment is thought to control cilium composition and signalling by facilitating a protein diffusion barrier at the ciliary base. TZ defects cause ciliopathies such as Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP) and Joubert syndrome (JBTS). However, the molecular composition and mechanisms underpinning TZ organization and barrier regulation are poorly understood. To uncover candidate TZ genes, we employed bioinformatics (coexpression and co-evolution) and identified TMEM107 as a TZ protein mutated in oral-facial-digital syndrome and JBTS patients. Mechanistic studies in Caenorhabditis elegans showed that TMEM-107 controls ciliary composition and functions redundantly with NPHP-4 to regulate cilium integrity, TZ docking and assembly of membrane to microtubule Y-link connectors. Furthermore, nematode TMEM-107 occupies an intermediate layer of the TZ-localized MKS module by organizing recruitment of the ciliopathy proteins MKS-1, TMEM-231 (JBTS20) and JBTS-14 (TMEM237). Finally, MKS module membrane proteins are immobile and super-resolution microscopy in worms and mammalian cells reveals periodic localizations within the TZ. This work expands the MKS module of ciliopathy-causing TZ proteins associated with diffusion barrier formation and provides insight into TZ subdomain architecture.
Collapse
|
27
|
Yee LE, Garcia-Gonzalo FR, Bowie RV, Li C, Kennedy JK, Ashrafi K, Blacque OE, Leroux MR, Reiter JF. Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling. PLoS Genet 2015; 11:e1005627. [PMID: 26540106 PMCID: PMC4635004 DOI: 10.1371/journal.pgen.1005627] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
Mutations in genes encoding cilia proteins cause human ciliopathies, diverse disorders affecting many tissues. Individual genes can be linked to ciliopathies with dramatically different phenotypes, suggesting that genetic modifiers may participate in their pathogenesis. The ciliary transition zone contains two protein complexes affected in the ciliopathies Meckel syndrome (MKS) and nephronophthisis (NPHP). The BBSome is a third protein complex, affected in the ciliopathy Bardet-Biedl syndrome (BBS). We tested whether mutations in MKS, NPHP and BBS complex genes modify the phenotypic consequences of one another in both C. elegans and mice. To this end, we identified TCTN-1, the C. elegans ortholog of vertebrate MKS complex components called Tectonics, as an evolutionarily conserved transition zone protein. Neither disruption of TCTN-1 alone or together with MKS complex components abrogated ciliary structure in C. elegans. In contrast, disruption of TCTN-1 together with either of two NPHP complex components, NPHP-1 or NPHP-4, compromised ciliary structure. Similarly, disruption of an NPHP complex component and the BBS complex component BBS-5 individually did not compromise ciliary structure, but together did. As in nematodes, disrupting two components of the mouse MKS complex did not cause additive phenotypes compared to single mutants. However, disrupting both Tctn1 and either Nphp1 or Nphp4 exacerbated defects in ciliogenesis and cilia-associated developmental signaling, as did disrupting both Tctn1 and the BBSome component Bbs1. Thus, we demonstrate that ciliary complexes act in parallel to support ciliary function and suggest that human ciliopathy phenotypes are altered by genetic interactions between different ciliary biochemical complexes. Ciliopathies, diseases arising from defects in the functions of primary cilia, have many different manifestations and vary dramatically in severity. How genetics influence ciliopathy phenotypes is poorly understood. Building off of our increasing knowledge of how different biochemical complexes contribute to ciliary function, we investigated how ciliopathy-associated genes interact to support ciliogenesis. Using a combination of nematode and mouse genetics, we found that genes encoding components of different biochemical complexes interact, whereas genes encoding different components within a single complex do not. These results revealed overlapping ciliary functions of biochemically distinct proteins complexes such as the BBSome, the transition zone MKS complex and the transition zone NPHP complex. This work indicates the genetic interactions that may alter the phenotypic consequences of human ciliopathy mutations.
Collapse
Affiliation(s)
- Laura E. Yee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Francesc R. Garcia-Gonzalo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Rachel V. Bowie
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julie K. Kennedy
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Oliver E. Blacque
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jensen VL, Li C, Bowie RV, Clarke L, Mohan S, Blacque OE, Leroux MR. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J 2015; 34:2537-56. [PMID: 26392567 PMCID: PMC4609185 DOI: 10.15252/embj.201488044] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 01/09/2023] Open
Abstract
Cilia are thought to harbour a membrane diffusion barrier within their transition zone (TZ) that compartmentalises signalling proteins. How this "ciliary gate" assembles and functions remains largely unknown. Contrary to current models, we present evidence that Caenorhabditis elegans MKS-5 (orthologue of mammalian Mks5/Rpgrip1L/Nphp8 and Rpgrip1) may not be a simple structural scaffold for anchoring > 10 different proteins at the TZ, but instead, functions as an assembly factor. This activity is needed to form TZ ultrastructure, which comprises Y-shaped axoneme-to-membrane connectors. Coiled-coil and C2 domains within MKS-5 enable TZ localisation and functional interactions with two TZ modules, consisting of Meckel syndrome (MKS) and nephronophthisis (NPHP) proteins. Discrete roles for these modules at basal body-associated transition fibres and TZ explain their redundant functions in making essential membrane connections and thus sealing the ciliary compartment. Furthermore, MKS-5 establishes a ciliary zone of exclusion (CIZE) at the TZ that confines signalling proteins, including GPCRs and NPHP-2/inversin, to distal ciliary subdomains. The TZ/CIZE, potentially acting as a lipid gate, limits the abundance of the phosphoinositide PIP2 within cilia and is required for cell signalling. Together, our findings suggest a new model for Mks5/Rpgrip1L in TZ assembly and function that is essential for establishing the ciliary signalling compartment.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel V Bowie
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lara Clarke
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Swetha Mohan
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
29
|
Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone. Sci Rep 2015; 5:14096. [PMID: 26365165 PMCID: PMC4568515 DOI: 10.1038/srep14096] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022] Open
Abstract
The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.
Collapse
|
30
|
Schouteden C, Serwas D, Palfy M, Dammermann A. The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J Cell Biol 2015; 210:35-44. [PMID: 26124290 PMCID: PMC4493997 DOI: 10.1083/jcb.201501013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 12/24/2022] Open
Abstract
C. elegans transition zone structures are dispensable for axoneme assembly but are required for cell–matrix interactions during neurite extension, revealing an unexpected role for the transition zone in cell adhesion. Cilia are cellular projections that perform sensory and motile functions. A key ciliary subdomain is the transition zone, which lies between basal body and axoneme. Previous work in Caenorhabditis elegans identified two ciliopathy-associated protein complexes or modules that direct assembly of transition zone Y-links. Here, we identify C. elegans CEP290 as a component of a third module required to form an inner scaffolding structure called the central cylinder. Co-inhibition of all three modules completely disrupted transition zone structure. Surprisingly, axoneme assembly was only mildly perturbed. However, dendrite extension by retrograde migration was strongly impaired, revealing an unexpected role for the transition zone in cell adhesion.
Collapse
Affiliation(s)
- Clementine Schouteden
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Daniel Serwas
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Mate Palfy
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| |
Collapse
|
31
|
Sanders AAWM, Kennedy J, Blacque OE. Image analysis of Caenorhabditis elegans ciliary transition zone structure, ultrastructure, molecular composition, and function. Methods Cell Biol 2015; 127:323-47. [PMID: 25837399 DOI: 10.1016/bs.mcb.2015.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transition zone (TZ) at the ciliary base has emerged as an important regulator of the composition and functions of cilia, which are microtubule-based structures extending from the surfaces of most eukaryotic cells, serving motility, chemo-/mechano-/photosensation and developmental signaling roles. Possessing distinct ultrastructural features such as microtubule-membrane spanning Y-links, the ∼0.2-1.0-μm long TZ is thought to act as a gated cytosolic (size dependent) and membrane diffusion barrier that drives ciliary compartmentalization by preventing unregulated protein exchange between the cilium and the rest of the cell. Multiple proteins associated with ciliary diseases (ciliopathies) such as Meckel-Gruber syndrome (MKS) and nephronophthisis are specifically found in the TZ, and work from a number of model systems, including Chlamydomonas reinharditii, Caenorhabditis elegans and the mouse indicates TZ-gating and associated ciliogenic functions for a number of these proteins. Here we present a suite of assays for probing the structure, function, and molecular composition of the C. elegans TZ, with emphasis on TZ ultrastructure, diffusion barrier kinetics, MKS module assembly hierarchy, and TZ-dependent behaviors.
Collapse
Affiliation(s)
- Anna A W M Sanders
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Julie Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
32
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
33
|
Basiri ML, Ha A, Chadha A, Clark NM, Polyanovsky A, Cook B, Avidor-Reiss T. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr Biol 2014; 24:2622-31. [PMID: 25447994 DOI: 10.1016/j.cub.2014.09.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND In most cells, the cilium is formed within a compartment separated from the cytoplasm. Entry into the ciliary compartment is regulated by a specialized gate located at the base of the cilium in a region known as the transition zone. The transition zone is closely associated with multiple structures of the ciliary base, including the centriole, axoneme, and ciliary membrane. However, the contribution of these structures to the ciliary gate remains unclear. RESULTS Here we report that, in Drosophila spermatids, a conserved module of transition zone proteins mutated in Meckel-Gruber syndrome (MKS), including Cep290, Mks1, B9d1, and B9d2, comprise a ciliary gate that continuously migrates away from the centriole to compartmentalize the growing axoneme tip. We show that Cep290 is essential for transition zone composition, compartmentalization of the axoneme tip, and axoneme integrity and find that MKS proteins also delimit a centriole-independent compartment in mouse spermatids. CONCLUSIONS Our findings demonstrate that the ciliary gate can migrate away from the base of the cilium, thereby functioning independently of the centriole and of a static interaction with the axoneme to compartmentalize the site of axoneme assembly.
Collapse
Affiliation(s)
- Marcus L Basiri
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Andrew Ha
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Abhishek Chadha
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicole M Clark
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA
| | - Andrey Polyanovsky
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Prospekt Toreza, 44, 194223 St. Petersburg, Russia
| | - Boaz Cook
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 3050 W. Towerview Boulevard, Toledo, OH 43606, USA.
| |
Collapse
|
34
|
Awata J, Takada S, Standley C, Lechtreck KF, Bellvé KD, Pazour GJ, Fogarty KE, Witman GB. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 2014; 127:4714-27. [PMID: 25150219 DOI: 10.1242/jcs.155275] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saeko Takada
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clive Standley
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl D Bellvé
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun 2014; 4:2750. [PMID: 24231678 PMCID: PMC3856926 DOI: 10.1038/ncomms3750] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
Sensory organelle cilia have critical roles in mammalian embryonic development and tissue homeostasis. Intraflagellar transport (IFT) machinery is required for the assembly and maintenance of cilia. Yet, how this large complex passes through the size-dependent barrier at the ciliary base remains enigmatic. Here we report that FBF1, a highly conserved transition fibre protein, is required for the ciliary import of assembled IFT particles at the ciliary base. We cloned dyf-19, the Caenorhabditis elegans homologue of human FBF1, in a whole-genome screen for ciliogenesis mutants. DYF-19 localizes specifically to transition fibres and interacts directly with the IFT-B component DYF-11/IFT54. Although not a structural component of transition fibres, DYF-19 is required for the transit of assembled IFT particles through the ciliary base. Furthermore, we found that human FBF1 shares conserved localization and function with its worm counterpart. We conclude that FBF1 is a key functional transition fibre component that actively facilitates the ciliary entry of assembled IFT machinery.
Collapse
Affiliation(s)
- Qing Wei
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
37
|
Blacque OE, Sanders AAWM. Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 2014; 10:126-37. [PMID: 24732235 DOI: 10.4161/org.28830] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease.
Collapse
Affiliation(s)
- Oliver E Blacque
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Anna A W M Sanders
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| |
Collapse
|
38
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
39
|
Abstract
Joubert syndrome is a congenital cerebellar ataxia with autosomal recessive or X-linked inheritance, the diagnostic hallmark of which is a unique cerebellar and brainstem malformation recognisable on brain imaging-the so-called molar tooth sign. Neurological signs are present from the neonatal period and include hypotonia progressing to ataxia, global developmental delay, ocular motor apraxia, and breathing dysregulation. These signs are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton, and liver. 21 causative genes have been identified so far, all of which encode for proteins of the primary cilium or its apparatus. The primary cilium is a subcellular organelle that has key roles in development and in many cellular functions, making Joubert syndrome part of the expanding family of ciliopathies. Notable clinical and genetic overlap exists between distinct ciliopathies, which can co-occur even within families. Such variability is probably explained by an oligogenic model of inheritance, in which the interplay of mutations, rare variants, and polymorphisms at distinct loci modulate the expressivity of the ciliary phenotype.
Collapse
|
40
|
Olivier-Mason A, Wojtyniak M, Bowie RV, Nechipurenko IV, Blacque OE, Sengupta P. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans. Development 2013; 140:1560-72. [PMID: 23482491 DOI: 10.1242/dev.086249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.
Collapse
Affiliation(s)
- Anique Olivier-Mason
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
41
|
Tiwari S, Hudson S, Gattone VH, Miller C, Chernoff EAG, Belecky-Adams TL. Meckelin 3 is necessary for photoreceptor outer segment development in rat Meckel syndrome. PLoS One 2013; 8:e59306. [PMID: 23516626 PMCID: PMC3596335 DOI: 10.1371/journal.pone.0059306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 02/15/2013] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes.
Collapse
Affiliation(s)
- Sarika Tiwari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Scott Hudson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Vincent H. Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Caroline Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ellen A. G. Chernoff
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Teri L. Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
Wheway G, Abdelhamed Z, Natarajan S, Toomes C, Inglehearn C, Johnson CA. Aberrant Wnt signalling and cellular over-proliferation in a novel mouse model of Meckel-Gruber syndrome. Dev Biol 2013; 377:55-66. [PMID: 23454480 DOI: 10.1016/j.ydbio.2013.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022]
Abstract
Meckel-Gruber syndrome (MKS) is an embryonic lethal ciliopathy resulting from mutations in genes encoding proteins localising to the primary cilium. Mutations in the basal body protein MKS1 account for 7% of cases of MKS. The condition affects the development of multiple organs, including brain, kidney and skeleton. Here we present a novel Mks1(tm1a(EUCOMM)Wtsi) knockout mouse which accurately recapitulates the human condition, consistently developing pre-axial polydactyly, complex posterior fossa defects (including the Dandy-Walker malformation), and renal cystic dysplasia. TOPFlash Wnt reporter assays in mouse embryonic fibroblasts (MEFs) showed general de-regulated high levels of canonical Wnt/β-catenin signalling in Mks1(-/-) cells. In addition to these signalling defects, we also observed ectopic high proliferation in the brain and kidney of mutant animals at mid- to late-gestation. The specific role of Mks1 in regulating cell proliferation was confirmed in Mks1 siRNA knockdown experiments which showed increased levels of proliferation after knockdown, an effect not seen after knockdown of other ciliopathy genes. We suggest that this is a result of the de-regulation of multiple signalling pathways (Wnt, mTOR and Hh) in the absence of functional Mks1. This novel model system offers insights into the role of MKS1 in Wnt signalling and proliferation, and the impact of deregulation of these processes on brain and kidney development in MKS, as well as expanding our understanding of the role of Mks1 in multiple signalling pathways.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, Beckett Street, The University of Leeds, Leeds, LS9 7 TF, UK
| | | | | | | | | | | |
Collapse
|
43
|
Leightner AC, Hommerding CJ, Peng Y, Salisbury JL, Gainullin VG, Czarnecki PG, Sussman CR, Harris PC. The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet 2013; 22:2024-40. [PMID: 23393159 DOI: 10.1093/hmg/ddt054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meckel syndrome (MKS) is a lethal disorder associated with renal cystic disease, encephalocele, ductal plate malformation and polydactyly. MKS is genetically heterogeneous and part of a growing list of syndromes called ciliopathies, disorders resulting from defective cilia. TMEM67 mutation (MKS3) is a major cause of MKS and the related ciliopathy Joubert syndrome, although the complete etiology of the disease is not well understood. To further investigate MKS3, we analyzed phenotypes in the Tmem67 null mouse (bpck) and in zebrafish tmem67 morphants. Phenotypes similar to those in human MKS and other ciliopathy models were observed, with additional eye, skeletal and inner ear abnormalities characterized in the bpck mouse. The observed disorganized stereociliary bundles in the bpck inner ear and the convergent extension defects in zebrafish morphants are similar to those found in planar cell polarity (PCP) mutants, a pathway suggested to be defective in ciliopathies. However, analysis of classical vertebrate PCP readouts in the bpck mouse and ciliary organization analysis in tmem67 morphants did not support a global loss of planar polarity. Canonical Wnt signaling was upregulated in cyst linings and isolated fibroblasts from the bpck mouse, but was unchanged in the retina and cochlea tissue, suggesting that increased Wnt signaling may only be linked to MKS3 phenotypes associated with elevated proliferation. Together, these data suggest that defective cilia loading, but not a global loss of ciliogenesis, basal body docking or PCP signaling leads to dysfunctional cilia in MKS3 tissues.
Collapse
Affiliation(s)
- Amanda C Leightner
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Garcia-Gonzalo FR, Reiter JF. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. ACTA ACUST UNITED AC 2012; 197:697-709. [PMID: 22689651 PMCID: PMC3373398 DOI: 10.1083/jcb.201111146] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
45
|
Burghoorn J, Piasecki BP, Crona F, Phirke P, Jeppsson KE, Swoboda P. The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Dev Biol 2012; 368:415-26. [PMID: 22683808 DOI: 10.1016/j.ydbio.2012.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/23/2012] [Accepted: 05/25/2012] [Indexed: 11/26/2022]
Abstract
At the core of the primary transcriptional network regulating ciliary gene expression in Caenorhabditis elegans sensory neurons is the RFX/DAF-19 transcription factor, which binds and thereby positively regulates 13-15 bp X-box promoter motifs found in the cis-regulatory regions of many ciliary genes. However, the variable expression of direct RFX-target genes in various sets of ciliated sensory neurons (CSNs) occurs through as of yet uncharacterized mechanisms. In this study the cis-regulatory regions of 41 direct RFX-target genes are compared using in vivo genetic analyses and computational comparisons of orthologous nematode sequences. We find that neither the proximity to the translational start site nor the exact sequence composition of the X-box promoter motif of the respective ciliary gene can explain the variation in expression patterns observed among different direct RFX-target genes. Instead, a novel enhancer element appears to co-regulate ciliary genes in a DAF-19 dependent manner. This cytosine- and thymidine-rich sequence, the C-box, was found in the cis-regulatory regions in close proximity to the respective X-box motif for 84% of the most broadly expressed direct RFX-target genes sampled in this study. Molecular characterization confirmed that these 8-11 bp C-box sequences act as strong enhancer elements for direct RFX-target genes. An artificial promoter containing only an X-box promoter motif and two of the C-box enhancer elements was able to drive strong expression of a GFP reporter construct in many C. elegans CSNs. These data provide a much-improved understanding of how direct RFX-target genes are differentially regulated in C. elegans and will provide a molecular model for uncovering the transcriptional network mediating ciliary gene expression in animals.
Collapse
Affiliation(s)
- Jan Burghoorn
- Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, Hälsovägen 7, S-141 83 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Gate D, Danielpour M, Levy R, Breunig JJ, Town T. Basic biology and mechanisms of neural ciliogenesis and the B9 family. Mol Neurobiol 2012; 45:564-70. [PMID: 22644387 DOI: 10.1007/s12035-012-8276-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 11/28/2022]
Abstract
Although the discovery of cilia is one of the earliest in cell biology, the past two decades have witnessed an explosion of new insight into these enigmatic organelles. While long believed to be vestigial, cilia have recently moved into the spotlight as key players in multiple cellular processes, including brain development and homeostasis. This review focuses on the rapidly expanding basic biology of neural cilia, with special emphasis on the newly emerging B9 family of proteins. In particular, recent findings have identified a critical role for the B9 complex in a network of protein interactions that take place at the ciliary transition zone (TZ). We describe the essential role of these protein complexes in signaling cascades that require primary (nonmotile) cilia, including the sonic hedgehog pathway. Loss or dysfunction of ciliary trafficking and TZ function are linked to a number of neurologic diseases, which we propose to classify as neural ciliopathies. When taken together, the studies reviewed herein point to critical roles played by neural cilia, both in normal physiology and in disease.
Collapse
Affiliation(s)
- David Gate
- Department of Biomedical Sciences and Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
47
|
Czarnecki PG, Shah JV. The ciliary transition zone: from morphology and molecules to medicine. Trends Cell Biol 2012; 22:201-10. [PMID: 22401885 DOI: 10.1016/j.tcb.2012.02.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Abstract
Researchers from various disciplines, including cell and developmental biology, genetics and molecular medicine, have revealed an exceptional diversity of cellular functions that are mediated by cilia-dependent mechanisms. Recent studies have directed our attention to proteins that localize to the ciliary transition zone (TZ), a small evolutionarily conserved subcompartment that is situated between the basal body (BB) and the more distal ciliary axoneme. These reports shed light on the roles of TZ proteins in ciliogenesis, ciliary protein homeostasis and specification of ciliary signaling, and pave the way for understanding their contribution to human ciliopathies. In this review, we describe the interplay of multimeric protein complexes at the TZ, integrating morphological, genetic and proteomic data towards an account of TZ function in ciliary physiology.
Collapse
Affiliation(s)
- Peter G Czarnecki
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
48
|
Warburton-Pitt SRF, Jauregui AR, Li C, Wang J, Leroux MR, Barr MM. Ciliogenesis in Caenorhabditis elegans requires genetic interactions between ciliary middle segment localized NPHP-2 (inversin) and transition zone-associated proteins. J Cell Sci 2012; 125:2592-603. [PMID: 22393243 DOI: 10.1242/jcs.095539] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cystic kidney diseases nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) share an underlying etiology of dysfunctional cilia. Patients diagnosed with NPHP type II have mutations in the gene INVS (also known as NPHP2), which encodes inversin, a cilia localizing protein. Here, we show that the C. elegans inversin ortholog, NPHP-2, localizes to the middle segment of sensory cilia and that nphp-2 is partially redundant with nphp-1 and nphp-4 (orthologs of human NPHP1 and NPHP4, respectively) for cilia placement within the head and tail sensilla. nphp-2 also genetically interacts with MKS ciliopathy gene orthologs, including mks-1, mks-3, mks-6, mksr-1 and mksr-2, in a sensilla-dependent manner to control cilia formation and placement. However, nphp-2 is not required for correct localization of the NPHP- and MKS-encoded ciliary transition zone proteins or for intraflagellar transport (IFT). We conclude that INVS/NPHP2 is conserved in C. elegans and that nphp-2 plays an important role in C. elegans cilia by acting as a modifier of the NPHP and MKS pathways to control cilia formation and development.
Collapse
|
49
|
A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 2011; 14:61-72. [PMID: 22179047 DOI: 10.1038/ncb2410] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Using RNAi screening, proteomics, cell biological and mouse genetics approaches, we have identified a complex of nine proteins, seven of which are disrupted in human ciliopathies. A transmembrane component, TMEM231, localizes to the basal body before and independently of intraflagellar transport in a Septin 2 (Sept2)-regulated fashion. The localizations of TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A (coiled-coil and C2 domain-containing protein 2A) at the transition zone are dependent on one another and on Sept2. Disruption of the complex in vitro causes a reduction in cilia formation and a loss of signalling receptors from the remaining cilia. Mouse knockouts of B9D1 and TMEM231 have identical defects in Sonic hedgehog (Shh) signalling and ciliogenesis. Strikingly, disruption of the complex increases the rate of diffusion into the ciliary membrane and the amount of plasma-membrane protein in the cilia. The complex that we have described is essential for normal cilia function and acts as a diffusion barrier to maintain the cilia membrane as a compartmentalized signalling organelle.
Collapse
|
50
|
Avasthi P, Marshall WF. Stages of ciliogenesis and regulation of ciliary length. Differentiation 2011; 83:S30-42. [PMID: 22178116 DOI: 10.1016/j.diff.2011.11.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.
Collapse
Affiliation(s)
- Prachee Avasthi
- Department of Biochemistry & Biophysics, University of California GH-N372F Genentech Hall, Box 2200, UCSF, 600 16th St. San Francisco, CA 94158, USA
| | | |
Collapse
|