1
|
Andreu S, Ripa I, López-Guerrero JA, Bello-Morales R. Human Coronavirus 229E Uses Clathrin-Mediated Endocytosis as a Route of Entry in Huh-7 Cells. Biomolecules 2024; 14:1232. [PMID: 39456165 PMCID: PMC11505773 DOI: 10.3390/biom14101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of "common cold" cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking advantage of host cell mechanisms such as endocytosis. Based on the role of clathrin, the process can be classified into clathrin-dependent or -independent endocytosis. This study characterizes the role of clathrin-mediated endocytosis (CME) in HCoV-229E infection of the human hepatoma cell line Huh-7. Using specific CME inhibitory drugs, we demonstrated that blocking CME significantly reduces HCoV-229E infection. Additionally, CRISPR/Cas9-mediated knockout of the µ subunit of adaptor protein complex 2 (AP-2) further corroborated the role of CME, as KOs showed over a 50% reduction in viral infection. AP-2 plays an important role in clathrin recruitment and the maturation of clathrin-coated vesicles. Our study also confirmed that in Huh-7 cells, HCoV-229E requires endosomal acidification for successful entry, as viral entry decreased when treated with lysomotropic agents. Furthermore, the colocalization of HCoV-229E with early endosome antigen 1 (EEA-1), only present in early endosomes, suggested that the virus uses an endosomal route for entry. These findings highlight, for the first time, the role of CME in HCoV-229E infection and confirm previous data of the use of the endosomal route at a low pH in the experimental cell model Huh-7. Our results provide new insights into the mechanisms of entry of HCoV-229E and provide a new basis for the development of targeted antiviral therapies.
Collapse
Affiliation(s)
- Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| |
Collapse
|
2
|
Matveichuk OV, Ciesielska A, Hromada-Judycka A, Nowak N, Ben Amor I, Traczyk G, Kwiatkowska K. Flotillins affect LPS-induced TLR4 signaling by modulating the trafficking and abundance of CD14. Cell Mol Life Sci 2024; 81:191. [PMID: 38652315 PMCID: PMC11039508 DOI: 10.1007/s00018-024-05221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.
Collapse
Affiliation(s)
- Orest V Matveichuk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ichrak Ben Amor
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Hu D, Fumoto S, Yoshikawa N, Peng J, Miyamoto H, Tanaka M, Nishida K. Diffusion coefficient of cationic liposomes during lipoplex formation determines transfection efficiency in HepG2 cells. Int J Pharm 2023; 637:122881. [PMID: 36963641 DOI: 10.1016/j.ijpharm.2023.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Cationic lipid-based lipoplexes are well-known for gene delivery. To determine the relationship between physicochemical characteristics and transfection efficiency, cationic liposomes of different sizes were prepared and incubated with plasmid DNA at different temperatures to form lipoplexes. We found that the liposome diffusion coefficient during lipoplex formation strongly correlated with the physicochemical characteristics of lipoplexes, accessibility of plasmid DNA in lipoplexes, and logarithm of gene expression per metabolic activity. Clathrin-mediated endocytosis was the major route for lipoplexes comprising 100 nm-liposomes, as reported previously. As liposome size increased, the major route shifted to lipid raft-mediated endocytosis. In addition, macropinocytosis was observed for all liposome sizes. The role of reactive oxygen species might depend on liposome size and endocytosis. Information from this study would be useful for understanding cationic lipoplex-mediated transfection.
Collapse
Affiliation(s)
- Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-Cho, Miyazaki 889-1692, Japan
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
4
|
Pneumolysin boosts the neuroinflammatory response to Streptococcus pneumoniae through enhanced endocytosis. Nat Commun 2022; 13:5032. [PMID: 36028511 PMCID: PMC9418233 DOI: 10.1038/s41467-022-32624-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.
Collapse
|
5
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
6
|
Avila H, Truong A, Tyrpak D, Lee SJ, Lei S, Li Y, Okamoto C, Hamm-Alvarez S, MacKay JA. Intracellular Dynamin Elastin-like Polypeptides Assemble into Rodlike, Spherical, and Reticular Dynasomes. Biomacromolecules 2022; 23:265-275. [PMID: 34914359 PMCID: PMC9159747 DOI: 10.1021/acs.biomac.1c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dynamin (DNM) is a family of large GTPases possessing a unique mechanical ability to "pinch" off vesicles entering cells. DNM2 is the most ubiquitously expressed member of the DNM family. We developed a novel tool based on elastin-like polypeptide (ELP) technology to quickly, precisely, and reversibly modulate the structure of DNM2. ELPs are temperature-sensitive biopolymers that self-assemble into microdomains above sharp transition temperatures. When linked together, DNM2 and a temperature-sensitive ELP fusion organize into a range of distinct temperature-dependent structures above a sharp transition temperature, which were not observed with wild-type DNM2 or a temperature-insensitive ELP fusion control. The structures comprised three different morphologies, which were prevalent at different temperature ranges. The size of these structures was influenced by an inhibitor of the DNM2 GTPase activity, dynasore; furthermore, they appear to entrap co-expressed cytosolic ELPs. Having demonstrated an unexpected diversity of morphologically distinct structures, DNM2-ELP fusions may have applications in the exploration of dynamin-dependent biology.
Collapse
Affiliation(s)
- Hugo Avila
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - Anh Truong
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - David Tyrpak
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - Shin-Jae Lee
- USC Viterbi School of Engineering, Department of Biomedical Engineering, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - Siqi Lei
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - Yaocun Li
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - Curtis Okamoto
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - Sarah Hamm-Alvarez
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089,USC Keck School of Medicine, Department of Ophthalmology, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| | - J. Andrew MacKay
- USC School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089,USC Viterbi School of Engineering, Department of Biomedical Engineering, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089,USC Keck School of Medicine, Department of Ophthalmology, University of Southern California School of Pharmacy, 1985 Zonal Ave., PSC 306A, Los Angeles, CA, 90089
| |
Collapse
|
7
|
Ivashenka A, Wunder C, Chambon V, Dransart E, Johannes L, Shafaq-Zadah M. Transcytosis of Galectin-3 in Mouse Intestine. Methods Mol Biol 2022; 2442:367-390. [PMID: 35320536 DOI: 10.1007/978-1-0716-2055-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GlycoLipid-Lectin (GL-Lect) hypothesis provides a conceptual framework to explain how endocytic pits are built in processes of clathrin-independent endocytosis. According to this hypothesis, oligomeric cellular or pathogenic lectins interact with glycosylated plasma membrane lipids in a way such as to drive the formation of tubular endocytic pits that then detach to generate clathrin-independent endocytic carriers for the cellular uptake of cellular or pathogenic products. This process operates in a complementary manner to the conventional clathrin pathway for biological function linked to cell polarity. Up to date, the premises of the GL-Lect hypothesis have been based on model membrane and cell culture experiments. It has therefore become urgent to extend its exploration to complex organisms. In the current protocol, we describe methods to study the endocytosis and transcytosis of a key driver of the GL-Lect mechanism, the cellular galectin-3, and of one of its cargoes, lactotransferrin, in enterocytes of the intact jejunum of mice. In a step-by-step manner, we present the generation of fluorescent endocytic ligands, tissue preparation for cellular uptake measurements, binding and internalization assays, tissue fixation and preparation for sectioning, light and electron microscopical observations, and quantification of data by image processing. Pitfalls are discussed to optimize the chances of success with the described methods.
Collapse
Affiliation(s)
- Alena Ivashenka
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Valerie Chambon
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| |
Collapse
|
8
|
Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. NATURE NANOTECHNOLOGY 2021; 16:266-276. [PMID: 33712737 DOI: 10.1038/s41565-021-00858-8] [Citation(s) in RCA: 704] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Endocytosis is a critical step in the process by which many therapeutic nanomedicines reach their intracellular targets. Our understanding of cellular uptake mechanisms has developed substantially in the past five years. However, these advances in cell biology have not fully translated to the nanoscience and therapeutics literature. Misconceptions surrounding the role of different endocytic pathways and how to study these pathways are hindering progress in developing improved nanoparticle therapies. Here, we summarize the latest insights into cellular uptake mechanisms and pathways. We highlight limitations of current systems to study endocytosis, particularly problems with non-specific inhibitors. We also summarize alternative genetic approaches to robustly probe these pathways and discuss the need to understand how cells endocytose particles in vivo. We hope that this critical assessment of the current methods used in studying nanoparticle uptake will guide future studies at the interface of cell biology and nanomedicine.
Collapse
Affiliation(s)
- Joshua J Rennick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia.
| | - Robert G Parton
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Brandel A, Aigal S, Lagies S, Schlimpert M, Meléndez AV, Xu M, Lehmann A, Hummel D, Fisch D, Madl J, Eierhoff T, Kammerer B, Römer W. The Gb3-enriched CD59/flotillin plasma membrane domain regulates host cell invasion by Pseudomonas aeruginosa. Cell Mol Life Sci 2021; 78:3637-3656. [PMID: 33555391 PMCID: PMC8038999 DOI: 10.1007/s00018-021-03766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.
Collapse
Affiliation(s)
- Annette Brandel
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Sahaja Aigal
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon Lagies
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Manuel Schlimpert
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Maokai Xu
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Anika Lehmann
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Daniel Hummel
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Department of Biochemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Daniel Fisch
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Josef Madl
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Faculty of Medicine, University of Freiburg, Elsässer Straße 2q, 79110, Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
| |
Collapse
|
10
|
A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. BIOLOGY 2021; 10:biology10020119. [PMID: 33557414 PMCID: PMC7914782 DOI: 10.3390/biology10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cholestasis refers to a medical condition in which the liver is not capable of secreting bile. The consequent accumulation of toxic bile components in the liver leads to liver failure. Cholestasis can be caused by mutations in genes that code for proteins involved in bile secretion. Recently mutations in other genes have been discovered in patients with cholestasis of unknown origin. Interestingly, many of these newly discovered genes code for proteins that regulate the intracellular distribution of other proteins, including those involved in bile secretion. This group of genes thus suggests the deregulated intracellular distribution of bile-secreting proteins as an important but still poorly understood mechanism that underlies cholestasis. To expedite a better understanding of this mechanism, we have reviewed these genes and their mutations and we discuss these in the context of cholestasis. Abstract Intrahepatic cholestasis is characterized by the accumulation of compounds in the serum that are normally secreted by hepatocytes into the bile. Genes associated with familial intrahepatic cholestasis (FIC) include ATP8B1 (FIC1), ABCB11 (FIC2), ABCB4 (FIC3), TJP2 (FIC4), NR1H4 (FIC5) and MYO5B (FIC6). With advanced genome sequencing methodologies, additional mutated genes are rapidly identified in patients presenting with idiopathic FIC. Notably, several of these genes, VPS33B, VIPAS39, SCYL1, and AP1S1, together with MYO5B, are functionally associated with recycling endosomes and/or the Golgi apparatus. These are components of a complex process that controls the sorting and trafficking of proteins, including those involved in bile secretion. These gene variants therefore suggest that defects in intracellular trafficking take a prominent place in FIC. Here we review these FIC-associated trafficking genes and their variants, their contribution to biliary transporter and canalicular protein trafficking, and, when perturbed, to cholestatic liver disease. Published variants for each of these genes have been summarized in table format, providing a convenient reference for those who work in the intrahepatic cholestasis field.
Collapse
|
11
|
Abstract
Flotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation. When upregulated, flotillins promote plasma membrane invagination and induce an endocytic pathway that allows the targeting of cargo proteins in the late endosomal compartment in which flotillins accumulate. These late endosomes are not degradative, and participate in the recycling and secretion of protein cargos. The cargos of this Upregulated Flotillin–Induced Trafficking (UFIT) pathway include molecules involved in signaling, adhesion, and extracellular matrix remodeling, thus favoring the acquisition of an invasive cellular behavior leading to metastasis formation. Thus, flotillin presence from the plasma membrane to the late endosomal compartment influences the activity, and even modifies the trafficking and fate of key protein cargos, favoring the development of diseases, for instance tumors. This review summarizes the current knowledge on flotillins and their role in cancer development focusing on their function in cellular membrane remodeling and vesicular trafficking regulation.
Collapse
|
12
|
Shafaq-Zadah M, Dransart E, Johannes L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr Opin Cell Biol 2020; 65:112-121. [PMID: 32688213 PMCID: PMC7588825 DOI: 10.1016/j.ceb.2020.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/29/2022]
Abstract
Several mechanisms allow for cargo internalization into cells within membrane-bound endocytic carriers. How these internalization processes couple to specific pathways of intracellular distribution remains poorly explored. Here, we review uptake reactions that are independent of the conventional clathrin machinery. We discuss how these link to retrograde trafficking from endosomes to the Golgi apparatus and exemplify biological situations in which the polarized secretion capacity of the Golgi apparatus allows for retrograde cargoes to be delivered to specialized areas of the plasma membrane, such as the leading edge of migratory cells or the immunological synapse of immune cells. We also address the evidence that allows to position apicobasal polarity of epithelial cells in this context. The underlying theme is thereby the functional coupling between specific types of endocytosis to intracellular retrograde trafficking for protein cargoes that need to be localized in a highly polarized and dynamic manner to plasmalemmal subdomains.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
13
|
Flotillins: At the Intersection of Protein S-Palmitoylation and Lipid-Mediated Signaling. Int J Mol Sci 2020; 21:ijms21072283. [PMID: 32225034 PMCID: PMC7177705 DOI: 10.3390/ijms21072283] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Flotillin-1 and flotillin-2 are ubiquitously expressed, membrane-associated proteins involved in multifarious cellular events from cell signaling, endocytosis, and protein trafficking to gene expression. They also contribute to oncogenic signaling. Flotillins bind the cytosolic leaflet of the plasma membrane and endomembranes and, upon hetero-oligomerization, serve as scaffolds facilitating the assembly of multiprotein complexes at the membrane-cytosol interface. Additional functions unique to flotillin-1 have been discovered recently. The membrane-binding of flotillins is regulated by S-palmitoylation and N-myristoylation, hydrophobic interactions involving specific regions of the polypeptide chain and, to some extent, also by their oligomerization. All these factors endow flotillins with an ability to associate with the sphingolipid/cholesterol-rich plasma membrane domains called rafts. In this review, we focus on the critical input of lipids to the regulation of the flotillin association with rafts and thereby to their functioning. In particular, we discuss how the recent developments in the field of protein S-palmitoylation have contributed to the understanding of flotillin1/2-mediated processes, including endocytosis, and of those dependent exclusively on flotillin-1. We also emphasize that flotillins affect directly or indirectly the cellular levels of lipids involved in diverse signaling cascades, including sphingosine-1-phosphate and PI(4,5)P2. The mutual relations between flotillins and distinct lipids are key to the regulation of their involvement in numerous cellular processes.
Collapse
|
14
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
15
|
Park JK, Kim KY, Sim YW, Kim YI, Kim JK, Lee C, Han J, Kim CU, Lee JE, Park S. Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder. IUCRJ 2019; 6:729-739. [PMID: 31316816 PMCID: PMC6608618 DOI: 10.1107/s2052252519007668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.
Collapse
Affiliation(s)
- Jeong Kuk Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Keon Young Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yeo Won Sim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeongran Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - J. Eugene Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
16
|
Kobayashi J, Hasegawa T, Sugeno N, Yoshida S, Akiyama T, Fujimori K, Hatakeyama H, Miki Y, Tomiyama A, Kawata Y, Fukuda M, Kawahata I, Yamakuni T, Ezura M, Kikuchi A, Baba T, Takeda A, Kanzaki M, Wakabayashi K, Okano H, Aoki M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis. FASEB J 2019; 33:10240-10256. [PMID: 31211923 DOI: 10.1096/fj.201802051r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.
Collapse
Affiliation(s)
- Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Akiyama
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Koki Fujimori
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Arata Tomiyama
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.,Department of Biomedical Sciences, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tohru Yamakuni
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Kopp B, Vignard J, Mirey G, Fessard V, Zalko D, Le Hgarat L, Audebert M. Genotoxicity and mutagenicity assessment of food contaminant mixtures present in the French diet. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:742-754. [PMID: 30230031 DOI: 10.1002/em.22214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Through diet, people are exposed simultaneously to a variety of contaminants (e.g. heavy metals, mycotoxins, pesticides) that could have combined adverse effects on human health. A previous study identified six main mixtures of food contaminants to which French adult consumers are exposed. These complex mixtures are comprised of 11 to 19 chemicals that have numerous toxic properties. In the present study, we investigated the genotoxic effects of these food contaminants, as single molecules and in mixtures that reflect their occurrence in the French diet, using the γH2AX assay in two human cell lines (HepG2, LS-174 T). Results of detailed analysis of the 49 individual contaminants (including 21 tested in this study) demonstrated a positive genotoxic response to 14 contaminants in HepG2 and 12 in LS-174 T cells. Next, our results indicated that two mixtures out of six triggered significant γH2AX induction after 24 hr of treatment, at concentrations for which individual compounds did not induce any DNA damage, suggesting more than additive interactions between chemicals. γH2AX positive mixtures were then tested for mutagenicity with the innovative in vitro PIG-A assay in HepG2 cells coupled with the soft agar colony formation assay. The two γH2AX positive mixtures led to a significant increase in the frequency of PIG-A GPI-deficient cells and in the number of colonies formed in soft agar. In conclusion, our study demonstrates that two mixtures of contaminants present in the French diet induce genotoxicity and mutagenicity, and that the combined effects of single molecules present in these mixtures are likely not additive, highlighting potential problems for hazard assessment of mixtures. Environ. Mol. Mutagen. 59:742-754, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- B Kopp
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - J Vignard
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - G Mirey
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - V Fessard
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - D Zalko
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - L Le Hgarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Toxicology of Contaminants Unit, Fougères, France
| | - M Audebert
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Liu XX, Liu WD, Wang L, Zhu B, Shi X, Peng ZX, Zhu HC, Liu XD, Zhong MZ, Xie D, Zeng MS, Ren CP. Roles of flotillins in tumors. J Zhejiang Univ Sci B 2018; 19:171-182. [PMID: 29504311 DOI: 10.1631/jzus.b1700102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification and use of molecular biomarkers have greatly improved the diagnosis and treatment of malignant tumors. However, a much deeper understanding of oncogenic proteins is needed for the benefit to cancer patients. The lipid raft marker proteins, flotillin-1 and flotillin-2, were first found in goldfish retinal ganglion cells during axon regeneration. They have since been found in a variety of cells, mainly on the inner surface of cell membranes, and not only act as a skeleton to provide a platform for protein-protein interactions, but also are involved in signal transduction, nerve regeneration, endocytosis, and lymphocyte activation. Previous studies have shown that flotillins are closely associated with tumor development, invasion, and metastasis. In this article, we review the functions of flotillins in relevant cell processes, their underlying mechanisms of action in a variety of tumors, and their potential applications to tumor molecular diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Xu-Xu Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Wei-Dong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Xiao Shi
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Zi-Xuan Peng
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - He-Cheng Zhu
- Changsha Kexin Cancer Hospital, Changsha 410205, China
| | - Xing-Dong Liu
- Changsha Kexin Cancer Hospital, Changsha 410205, China
| | - Mei-Zuo Zhong
- Changsha Kexin Cancer Hospital, Changsha 410205, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Cai-Ping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Central South University, Changsha 410078, China
| |
Collapse
|
19
|
Planchon D, Rios Morris E, Genest M, Comunale F, Vacher S, Bièche I, Denisov EV, Tashireva LA, Perelmuter VM, Linder S, Chavrier P, Bodin S, Gauthier-Rouvière C. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins. J Cell Sci 2018; 131:jcs.218925. [PMID: 30111578 DOI: 10.1242/jcs.218925] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.
Collapse
Affiliation(s)
- Damien Planchon
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Eduardo Rios Morris
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Mallory Genest
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Franck Comunale
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Tomsk State University, Tomsk 634050, Russia
| | - Lubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Philippe Chavrier
- Cell Dynamics and Compartmentalization Unit, Institut Curie, 75005 Paris, France
| | - Stéphane Bodin
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
20
|
Compeer EB, Kraus F, Ecker M, Redpath G, Amiezer M, Rother N, Nicovich PR, Kapoor-Kaushik N, Deng Q, Samson GPB, Yang Z, Lou J, Carnell M, Vartoukian H, Gaus K, Rossy J. A mobile endocytic network connects clathrin-independent receptor endocytosis to recycling and promotes T cell activation. Nat Commun 2018; 9:1597. [PMID: 29686427 PMCID: PMC5913236 DOI: 10.1038/s41467-018-04088-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/03/2018] [Indexed: 01/17/2023] Open
Abstract
Endocytosis of surface receptors and their polarized recycling back to the plasma membrane are central to many cellular processes, such as cell migration, cytokinesis, basolateral polarity of epithelial cells and T cell activation. Little is known about the mechanisms that control the organization of recycling endosomes and how they connect to receptor endocytosis. Here, we follow the endocytic journey of the T cell receptor (TCR), from internalization at the plasma membrane to recycling back to the immunological synapse. We show that TCR triggering leads to its rapid uptake through a clathrin-independent pathway. Immediately after internalization, TCR is incorporated into a mobile and long-lived endocytic network demarked by the membrane-organizing proteins flotillins. Although flotillins are not required for TCR internalization, they are necessary for its recycling to the immunological synapse. We further show that flotillins are essential for T cell activation, supporting TCR nanoscale organization and signaling.
Collapse
Affiliation(s)
- Ewoud B Compeer
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Felix Kraus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
- Department of Biochemistry and Molecular Biology, Monash University, 23 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Gregory Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Mayan Amiezer
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
- The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Nils Rother
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
- Department of Nephrology, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Philip R Nicovich
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Natasha Kapoor-Kaushik
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Qiji Deng
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Guerric P B Samson
- Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Zhengmin Yang
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Haig Vartoukian
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia
| | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, High St Gate 9, Sydney, NSW, 2052, Australia.
- Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland.
| |
Collapse
|
21
|
Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget 2018; 8:26896-26910. [PMID: 28460472 PMCID: PMC5432305 DOI: 10.18632/oncotarget.15849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus.
Collapse
|
22
|
Xu R, Song X, Su P, Pang Y, Li Q. Identification and characterization of the lamprey Flotillin-1 gene with a role in cell adhesion. FISH & SHELLFISH IMMUNOLOGY 2017; 71:286-294. [PMID: 28687359 DOI: 10.1016/j.fsi.2017.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Flotillin-1 is a kind of localize into specific cholesterol rich microdomains in cellular membranes and highly conserved lipid rafts marker protein widely distributed in animals and plants. It provides a platform for the reaction of many proteins in signal transduction, as scaffolding plays an important role in transmembrane signaling and cell adhesion. Here, Flotillin-1 protein from lamprey was identified and characterized (designated as L-Flotillin-1). After a partial cDNA sequence of L-Flotillin-1 was identified in a lamprey supraneural body cDNA library, the full-length cDNA was obtained using 3'- and 5'-rapid amplification of cDNA ends (RACE). L-Flotillin-1 encodes 424 amino acids and contains a prohibitin domain and a flotillin repetitive area. The L-Flotillin-1 protein was primarily distributed in kidney, supraneural body, gill, heart, liver and intestine via real-time PCR and immunohistochemistry assays. Immunofluorescence and western blot results showed that L-Flotillin-1 was considered to be used as a marker protein of lamprey lipid rafts and exosomes. Furthermore, overexpression of pEGFP-N1-L-Flotillin-1 induced the up-regulation of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) mRNA levels. These results indicated that the L-Flotillin-1 gene encodes Flotillin-1 protein that was used as a conserved marker protein and may play an important role in cell adhesion, providing clues for understanding the universal functions of Flotillin-1 proteins in other species and suggesting that these proteins could serve as pattern recognition molecules in immunotherapy. We revealed that Flotillin-1 protein of lamprey overexpression in human cells plays a prevalent role in cell migration and provide new thought of treatment to diseases.
Collapse
Affiliation(s)
- Rong Xu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xiaoping Song
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Affilated Zhongshan Hospital, Dalian University Respiratory Medicine, Dalian 116001, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
23
|
Hu S, Musante L, Tataruch D, Xu X, Kretz O, Henry M, Meleady P, Luo H, Zou H, Jiang Y, Holthofer H. Purification and Identification of Membrane Proteins from Urinary Extracellular Vesicles using Triton X-114 Phase Partitioning. J Proteome Res 2017; 17:86-96. [PMID: 29090927 DOI: 10.1021/acs.jproteome.7b00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.
Collapse
Affiliation(s)
- Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | | | | | - Xiaomeng Xu
- Institute of Nephrology and Urology, The Third Affiliated Hospital, Southern Medical University , Guangzhou, China
| | - Oliver Kretz
- III. Medical Clinic, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | | | | | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | - Hequn Zou
- Institute of Nephrology and Urology, The Third Affiliated Hospital, Southern Medical University , Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | - Harry Holthofer
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University , Freiburg, Germany
| |
Collapse
|
24
|
Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL. SR-BI Mediated Transcytosis of HDL in Brain Microvascular Endothelial Cells Is Independent of Caveolin, Clathrin, and PDZK1. Front Physiol 2017; 8:841. [PMID: 29163190 PMCID: PMC5670330 DOI: 10.3389/fphys.2017.00841] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023] Open
Abstract
The vascular endothelium supplying the brain exhibits very low paracellular and transcellular permeability and is a major constituent of the blood-brain barrier. High-density lipoprotein (HDL) crosses the blood-brain barrier by transcytosis, but technical limitations have made it difficult to elucidate its regulation. Using a combination of spinning-disc confocal and total internal reflection fluorescence microscopy, we examined the uptake and transcytosis of HDL by human primary brain microvascular endothelial cell monolayers. Using these approaches, we report that HDL internalization requires dynamin but not clathrin heavy chain and that its internalization and transcytosis are saturable. Internalized HDL partially co-localized with the scavenger receptor BI (SR-BI) and knockdown of SR-BI significantly attenuated HDL internalization. However, we observed that the adaptor protein PDZK1—which is critical to HDL-SR-BI signaling in other tissues—is not required for HDL uptake in these cells. Additionally, while these cells express caveolin, the abundance of caveolae in this tissue is negligible and we find that SR-BI and caveolin do not co-fractionate. Furthermore, direct silencing of caveolin-1 had no impact on the uptake of HDL. Finally, inhibition of endothelial nitric oxide synthase increased HDL internalization while increasing nitric oxide levels had no impact. Together, these data indicate that SR-BI-mediated transcytosis in brain microvascular endothelial cells is distinct from uptake and signaling pathways described for this receptor in other cell types.
Collapse
Affiliation(s)
- Karen Y Fung
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Changsen Wang
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Steffen Nyegaard
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Centre for Human Immunology, University of Western Ontario, London, ON, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, ON, Canada
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
25
|
Roberts-Dalton HD, Cocks A, Falcon-Perez JM, Sayers EJ, Webber JP, Watson P, Clayton A, Jones AT. Fluorescence labelling of extracellular vesicles using a novel thiol-based strategy for quantitative analysis of cellular delivery and intracellular traffic. NANOSCALE 2017; 9:13693-13706. [PMID: 28880029 DOI: 10.1039/c7nr04128d] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Extracellular vesicles, including exosomes, are naturally derived nanovesicles generated in and released by numerous cell types. As extracellular entities they have the capacity to interact with neighbouring cells and distant tissues and affect physiological processes as well as being implicated in numerous diseases including tumorigenesis and neurodegeneration. They are also under intense investigation as delivery vectors for biotherapeutics. The ways in which EVs interact with recipient cells to influence cell physiology and deliver a macromolecular payload are at the early stages of exploration. A significant challenge within these studies is the ability to label EVs directly or indirectly with fluorescent probes to allow visualization without compromising functionality. Here, we present a thiol-based fluorescence labelling method allowing comprehensive analysis of the cellular uptake of prostate cancer derived EVs in live cells using confocal microscopy. Labelling of the EVs in this way did not influence their size and had no effect on their ability to induce differentiation of lung fibroblasts to myofibroblasts. For endocytosis analyses, depletion of key endocytic proteins and the use of chemical inhibitors (Dynasore, EIPA, Rottlerin and IPA-3) indicated that fluid-phase endocytosis and/or macropinocytosis was involved in EV internalisation. Over a period of six hours EVs were observed to increasingly co-localise with lysosomes, indicating a possible termination point following internalisation. Overall this method provides new opportunities for analysing the cellular dynamics of EVs as biological entities affecting cell and whole body physiology as well as investigating their potential as drug delivery vectors.
Collapse
Affiliation(s)
- H D Roberts-Dalton
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamamoto H, Umeda D, Matsumoto S, Kikuchi A. LDL switches the LRP6 internalization route from flotillin dependent to clathrin dependent in hepatic cells. J Cell Sci 2017; 130:3542-3556. [PMID: 28821575 DOI: 10.1242/jcs.202135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) was originally identified as a co-receptor of the Wnt signalling pathway and has been shown to be involved in LDL transport. In polarized hepatocytes, many apical proteins are sorted to the basolateral membrane and then internalized and transported to the apical bile canalicular membrane - a process known as transcytosis. We show that LRP6 is transcytosed to the apical membrane of polarized hepatic HepG2 cells via a flotillin-dependent manner in the absence of LDL. LRP6 formed a complex with Niemann-Pick type C1-like 1 (NPC1L1), which is localized to the bile canalicular membrane of the liver and is involved in cholesterol absorption from the bile. LRP6 was required for apical membrane localization of NPC1L1 in the absence of LDL. Clathrin-dependent LRP6 internalization occurred in the presence of LDL, which resulted in trafficking of LRP6 to the lysosome, thereby reducing apical sorting of LRP6 and NPC1L1. These results suggest that LRP6 endocytosis proceeds by two routes, depending on the presence of LDL, and that LRP6 controls the intracellular destination of NPC1L1 in hepatocytes.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Umeda
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Abstract
The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins (n = 105) were significantly enriched for components of the endolysosomal system (>60%, P < 0.001) and included many common exosome-associated proteins such as the tetraspanin CD9 and dipeptidyl peptidase 4 (DPP4) along with multiple endosomal sorting complex required for transport III (ESCRT-III)-associated proteins. Immunoprecipitation confirmed that DPP4 is displayed on the surface of eHAV produced in cell culture or present in sera from humans with acute hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.
Collapse
|
28
|
Morris EAR, Bodin S, Delaval B, Comunale F, Georget V, Costa ML, Lutfalla G, Gauthier-Rouvière C. Flotillins control zebrafish epiboly through their role in cadherin-mediated cell-cell adhesion. Biol Cell 2017; 109:210-221. [DOI: 10.1111/boc.201700001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Eduardo A. Rios Morris
- CRBM, CNRS, UMR 5237, Université de Montpellier; Equipe Labellisée Ligue contre le Cancer; Montpellier 34293 France
- MRI-CRBM Imaging facility, CNRS, UMR 5237; Université de Montpellier; Montpellier 34293 France
- Laboratório de Diferenciação Muscular e Citoesqueleto; Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21949-590 Brazil
| | - Stéphane Bodin
- CRBM, CNRS, UMR 5237, Université de Montpellier; Equipe Labellisée Ligue contre le Cancer; Montpellier 34293 France
| | - Bénédicte Delaval
- CRBM, CNRS, UMR 5237, Université de Montpellier; Equipe Labellisée Ligue contre le Cancer; Montpellier 34293 France
| | - Franck Comunale
- CRBM, CNRS, UMR 5237, Université de Montpellier; Equipe Labellisée Ligue contre le Cancer; Montpellier 34293 France
| | - Virginie Georget
- CRBM, CNRS, UMR 5237, Université de Montpellier; Equipe Labellisée Ligue contre le Cancer; Montpellier 34293 France
- MRI-CRBM Imaging facility, CNRS, UMR 5237; Université de Montpellier; Montpellier 34293 France
| | - Manoel L. Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto; Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21949-590 Brazil
| | - Georges Lutfalla
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques; Université de Montpellier II et I; CNRS, UMR 5235 Montpellier 34095 France
| | - Cécile Gauthier-Rouvière
- CRBM, CNRS, UMR 5237, Université de Montpellier; Equipe Labellisée Ligue contre le Cancer; Montpellier 34293 France
| |
Collapse
|
29
|
Luo Y, Akama T, Okayama A, Yoshihara A, Sue M, Oda K, Hayashi M, Ishido Y, Hirano H, Hiroi N, Katoh R, Suzuki K. A Novel Role for Flotillin-Containing Lipid Rafts in Negative-Feedback Regulation of Thyroid-Specific Gene Expression by Thyroglobulin. Thyroid 2016; 26:1630-1639. [PMID: 27676653 DOI: 10.1089/thy.2016.0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroglobulin (Tg) stored in thyroid follicles regulates follicular function in thyroid hormone (TH) synthesis by suppressing thyroid-specific gene expression in a concentration-dependent manner. Thus, Tg is an intrinsic negative-feedback regulator that can restrain the effect of thyrotropin (TSH) in the follicle. However, the underlying mechanisms by which Tg exerts its prominent autoregulatory effect following recognition by thyrocytes remains unclear. METHODS In order to identify potential proteins that recognize and interact with Tg, mass spectrometry was used to analyze immunoprecipitated Tg-bound proteins derived from Tg-treated rat thyroid FRTL-5 cells. RESULTS Flotillin 1 and flotillin 2, two homologs that are integral membrane proteins in lipid rafts, were identified as novel Tg-binding proteins with high confidence. Further studies revealed that flotillins physically interact with endocytosed Tg, and together these proteins redistribute from the cell membrane to cytoplasmic vesicles. Treatment with the lipid raft disrupter methyl-β-cyclodextrin abolished both the endocytosis and the negative-feedback effect of Tg on thyroid-specific gene expression. Meanwhile, siRNA-mediated knockdown of flotillin 1 or flotillin 2 also significantly inhibited Tg effects on gene expression. CONCLUSION Together these results indicate that flotillin-containing lipid rafts are essential for follicular Tg to be recognized by thyrocytes and exert its negative-feedback effects in the thyroid.
Collapse
Affiliation(s)
- Yuqian Luo
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Takeshi Akama
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Akiko Okayama
- 4 Advanced Medical Research Center, Yokohama City University , Yokohama, Japan
| | - Aya Yoshihara
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Mariko Sue
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Kenzaburo Oda
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Moyuru Hayashi
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Yuko Ishido
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hisashi Hirano
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Naoki Hiroi
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Ryohei Katoh
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Koichi Suzuki
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
30
|
Abstract
Coronaviruses (CoVs) have a remarkable potential to change tropism. This is particularly illustrated over the last 15 years by the emergence of two zoonotic CoVs, the severe acute respiratory syndrome (SARS)- and Middle East respiratory syndrome (MERS)-CoV. Due to their inherent genetic variability, it is inevitable that new cross-species transmission events of these enveloped, positive-stranded RNA viruses will occur. Research into these medical and veterinary important pathogens—sparked by the SARS and MERS outbreaks—revealed important principles of inter- and intraspecies tropism changes. The primary determinant of CoV tropism is the viral spike (S) entry protein. Trimers of the S glycoproteins on the virion surface accommodate binding to a cell surface receptor and fusion of the viral and cellular membrane. Recently, high-resolution structures of two CoV S proteins have been elucidated by single-particle cryo-electron microscopy. Using this new structural insight, we review the changes in the S protein that relate to changes in virus tropism. Different concepts underlie these tropism changes at the cellular, tissue, and host species level, including the promiscuity or adaptability of S proteins to orthologous receptors, alterations in the proteolytic cleavage activation as well as changes in the S protein metastability. A thorough understanding of the key role of the S protein in CoV entry is critical to further our understanding of virus cross-species transmission and pathogenesis and for development of intervention strategies.
Collapse
|
31
|
Emin M, Wang G, Castagna F, Rodriguez-Lopez J, Wahab R, Wang J, Adams T, Wei Y, Jelic S. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci Transl Med 2016; 8:320ra1. [PMID: 26738794 PMCID: PMC5485919 DOI: 10.1126/scitranslmed.aad0634] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during transient cessation of breathing, triples the risk for cardiovascular diseases. We used a phage display peptide library as an unbiased approach to investigate whether IH, which is specific to OSA, activates endothelial cells (ECs) in a distinctive manner. The target of a differentially bound peptide on ECs collected from OSA patients was identified as CD59, a major complement inhibitor that protects ECs from the membrane attack complex (MAC). A decreased proportion of CD59 is located on the EC surface in OSA patients compared with controls, suggesting reduced protection against complement attack. In vitro, IH promoted endothelial inflammation predominantly via augmented internalization of CD59 and consequent MAC deposition. Increased internalization of endothelial CD59 in IH appeared to be cholesterol-dependent and was reversed by statins in a CD59-dependent manner. These studies suggest that reduced complement inhibition may mediate endothelial inflammation and increase vascular risk in OSA patients.
Collapse
Affiliation(s)
- Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gang Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Francesco Castagna
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Josanna Rodriguez-Lopez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Romina Wahab
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tessa Adams
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ying Wei
- Division of Biostatistics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA,Corresponding author.
| |
Collapse
|
32
|
Hülsbusch N, Solis GP, Katanaev VL, Stuermer CAO. Reggie-1/Flotillin-2 regulates integrin trafficking and focal adhesion turnover via Rab11a. Eur J Cell Biol 2015; 94:531-45. [PMID: 26299802 DOI: 10.1016/j.ejcb.2015.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022] Open
Abstract
Reggies/flotillins are implicated in trafficking of membrane proteins to their target sites and in the regulation of the Rab11a-dependent targeted recycling of E-cadherin to adherens junctions (AJs). Here we demonstrate a function of reggies in focal adhesion (FA) formation and α5- and β1-integrin recycling to FAs. Downregulation of reggie-1 in HeLa and A431 cells by siRNA and shRNA increased the number of FAs, impaired their distribution and modified FA turnover. This was coupled to enhanced focal adhesion kinase (FAK) and Rac1 signaling and gain in plasma membrane motility. Wild type and constitutively-active (CA) Rab11a rescued the phenotype (normal number of FAs) whereas dominant-negative (DN) Rab11a mimicked the loss-of-reggie phenotype in control cells. That reggie-1 affects integrin trafficking emerged from the faster loss of internalized antibody-labeled β1-integrin in reggie-deficient cells. Moreover, live imaging using TIRF microscopy revealed vesicles containing reggie-1 and α5- or β1-integrin, trafficking close to the substrate-near membrane and making kiss-and-run contacts with FAs. Thus, reggie-1 in interaction with Rab11a controls Rac1 and FAK activation and coordinates the targeted recycling of α5- and β1-integrins to FAs to regulate FA formation and membrane dynamics.
Collapse
Affiliation(s)
- Nikola Hülsbusch
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany.
| | - Gonzalo P Solis
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
33
|
Chen F, Bo J, Ma X, Dong L, Shan Z, Cui Q, Chen H, Wang K. A New Membrane Lipid Raft Gene SpFLT-1 Facilitating the Endocytosis of Vibrio alginolyticus in the Crab Scylla paramamosain. PLoS One 2015; 10:e0133443. [PMID: 26186350 PMCID: PMC4506021 DOI: 10.1371/journal.pone.0133443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 11/23/2022] Open
Abstract
Pathogens can enter their host cells by way of endocytosis in which the membrane lipid raft gene flotillins are probably involved in the invasion process and this is an important way to cause infection. In this study, a new gene SpFLT-1 was identified in Scylla paramamosain, which shared high identity with the flotillin-1 of other species. The SpFLT-1 gene was widely distributed in tissues and showed the highest level of mRNA transcripts in the hemocytes. This gene might be a maternal gene based on the evident results that it was highly expressed in maternal ovaries and in the early developmental stages of the zygote and early embryo stage whereas it gradually decreased in zoea 1. SpFLT-1 positively responded to the challenge of Vibrio alginolyticus with a significantly increased level of mRNA expression in the hemocytes and gills at 3 hours post infection (hpi). The SpFLT-1 protein was detected densely in the same fraction layer where the Vibrio protein was most present in the hemocytes and gills at 3 hpi. Furthermore, it was found that the expression of SpFLT-1 decreased to the base level following disappearance of the Vibrio protein at 6 hpi in the gills. Silencing SpFLT-1 inhibited the endocytosis rate of V. alginolyticus but overexpression of the gene could facilitate bacterial entry into the epithelioma papulosum cyprinid cells. Our study indicated that SpFLT-1 may act as a key protein involved in the process of bacterial infection and this sheds light on clarifying the pathogenesis of pathogens infecting S. paramamosain.
Collapse
Affiliation(s)
- Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jun Bo
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
| | - Xiaowan Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Lixia Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhongguo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Qian Cui
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
- * E-mail:
| |
Collapse
|
34
|
Poupon R. Liver alkaline phosphatase: a missing link between choleresis and biliary inflammation. Hepatology 2015; 61:2080-90. [PMID: 25603770 DOI: 10.1002/hep.27715] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
Several lines of evidence show that serum alkaline phosphatase (AP) is not only a signpost of cholestasis but also a surrogate marker of the severity of primary biliary cirrhosis and primary sclerosing cholangitis. In the present opinion article, we review and discuss the putative role of liver AP in health and in cholestatic diseases. In inflammatory cholestatic conditions, loss of activity of liver AP (resulting from its relocation from canaliculi and the acidic milieu) might promote hyper-adenosine triphosphate-bilia, lipopolysaccharide overload, and subsequent exacerbation and perpetuation of inflammation. Drugs that can restore the polarity of hepatocytes and canalicular export of bile acids or act as bile alkalinity modifiers are predicted to exert anti-inflammatory effects and to benefit both primary biliary cirrhosis and primary sclerosing cholangitis. Oral administration of intestinal AP could be a valid therapeutic intervention that deserves further study under experimental conditions as well as in human diseases. Overall, the key role of the liver microenvironment that might shape the different facets of the inflammatory processes in fibrosing cholangiopathies is highlighted.
Collapse
Affiliation(s)
- Raoul Poupon
- UPMC University of Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hépatologie, Paris, France
| |
Collapse
|
35
|
Date K, Satoh A, Iida K, Ogawa H. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation. J Biol Chem 2015; 290:17439-50. [PMID: 26023238 DOI: 10.1074/jbc.m114.594937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/17/2022] Open
Abstract
α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na(+)/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104-23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption stage in the intestine.
Collapse
Affiliation(s)
- Kimie Date
- From the Graduate School of Humanities and Sciences and
| | - Ayano Satoh
- the Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kaoruko Iida
- From the Graduate School of Humanities and Sciences and
| | - Haruko Ogawa
- From the Graduate School of Humanities and Sciences and Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan and
| |
Collapse
|
36
|
Licona-Limón I, Garay-Canales CA, Muñoz-Paleta O, Ortega E. CD13 mediates phagocytosis in human monocytic cells. J Leukoc Biol 2015; 98:85-98. [PMID: 25934926 PMCID: PMC7167067 DOI: 10.1189/jlb.2a0914-458r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/06/2015] [Indexed: 11/24/2022] Open
Abstract
The myelomonocytic marker aminopeptidase N/CD13 is a novel phagocytic receptor in monocytes and macrophages. CD13 is a membrane‐bound ectopeptidase, highly expressed on monocytes, macrophages, and dendritic cells. CD13 is involved in diverse functions, including degradation of peptide mediators, cellular adhesion, migration, viral endocytosis, signaling, and positive modulation of phagocytosis mediated by FcγRs and other phagocytic receptors. In this work, we explored whether besides acting as an accessory receptor, CD13 by itself is a primary phagocytic receptor. We found that hCD13 mediates efficient phagocytosis of large particles (erythrocytes) modified so as to interact with the cell only through CD13 in human macrophages and THP‐1 monocytic cells. The extent of this phagocytosis is comparable with the phagocytosis mediated through the canonical phagocytic receptor FcγRI. Furthermore, we demonstrated that hCD13 expression in the nonphagocytic cell line HEK293 is sufficient to enable these cells to internalize particles bound through hCD13. CD13‐mediated phagocytosis is independent of other phagocytic receptors, as it occurs in the absence of FcγRs, CR3, and most phagocytic receptors. Phagocytosis through CD13 is independent of its enzymatic activity but is dependent on actin rearrangement and activation of PI3K and is partially dependent on Syk activation. Moreover, the cross‐linking of CD13 with antibodies rapidly induced pSyk in human macrophages. Finally, we observed that antibody‐mediated cross‐linking of hCD13, expressed in the murine macrophage‐like J774 cell line, induces production of ROS. These results demonstrate that CD13 is a fully competent phagocytic receptor capable of mediating internalization of large particles.
Collapse
Affiliation(s)
- Ileana Licona-Limón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Claudia A Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Ofelia Muñoz-Paleta
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| |
Collapse
|
37
|
Bodin S, Planchon D, Rios Morris E, Comunale F, Gauthier-Rouvière C. Flotillins in intercellular adhesion - from cellular physiology to human diseases. J Cell Sci 2014; 127:5139-47. [PMID: 25413346 DOI: 10.1242/jcs.159764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Flotillin 1 and 2 are ubiquitous and highly conserved proteins. They were initially discovered in 1997 as being associated with specific caveolin-independent cholesterol- and glycosphingolipid-enriched membrane microdomains and as being expressed during axon regeneration. Flotillins have a role in a large number of physiopathological processes, mainly through their function in membrane receptor clustering and in the regulation of clathrin-independent endocytosis. In this Commentary, we summarize the research performed so far on the role of flotillins in cell-cell adhesion. Recent studies have demonstrated that flotillins directly regulate the formation of cadherin complexes. Indeed, flotillin microdomains are required for the dynamic association and stabilization of cadherins at cell-cell junctions and also for cadherin signaling. Moreover, because flotillins regulate endocytosis and also the actin cytoskeleton, they could have an indirect role in the assembly and stabilization of cadherin complexes. Because it has also recently been shown that flotillins are overexpressed during neurodegenerative diseases and in human cancers, where their upregulation is associated with metastasis formation and poor prognosis, understanding to what extent flotillin upregulation participates in the development of such pathologies is thus of particular interest, as well as how, at the molecular level, it might affect cell adhesion processes.
Collapse
Affiliation(s)
- Stéphane Bodin
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Damien Planchon
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Eduardo Rios Morris
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Franck Comunale
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | - Cécile Gauthier-Rouvière
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
38
|
Diaz-Rohrer B, Levental KR, Levental I. Rafting through traffic: Membrane domains in cellular logistics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3003-3013. [PMID: 25130318 DOI: 10.1016/j.bbamem.2014.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 01/03/2023]
Abstract
The intricate and tightly regulated organization of eukaryotic cells into spatially and functionally distinct membrane-bound compartments is a defining feature of complex organisms. These compartments are defined by their lipid and protein compositions, with their limiting membrane as the functional interface to the rest of the cell. Thus, proper segregation of membrane proteins and lipids is necessary for the maintenance of organelle identity, and this segregation must be maintained despite extensive, rapid membrane exchange between compartments. Sorting processes of high efficiency and fidelity are required to avoid potentially deleterious mis-targeting and maintain cellular function. Although much molecular machinery associated with membrane traffic (i.e. membrane budding/fusion/fission) has been characterized both structurally and biochemically, the mechanistic details underlying the tightly regulated distribution of membranes between subcellular locations remain to be elucidated. This review presents evidence for the role of ordered lateral membrane domains known as lipid rafts in both biosynthetic sorting in the late secretory pathway, as well as endocytosis and recycling to/from the plasma membrane. Although such evidence is extensive and the involvement of membrane domains in sorting is definitive, specific mechanistic details for raft-dependent sorting processes remain elusive.
Collapse
Affiliation(s)
- Blanca Diaz-Rohrer
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Kandice R Levental
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Ilya Levental
- University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, USA; Cancer Prevention and Research Institute of Texas, USA.
| |
Collapse
|
39
|
Müsch A. The unique polarity phenotype of hepatocytes. Exp Cell Res 2014; 328:276-83. [PMID: 24956563 DOI: 10.1016/j.yexcr.2014.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/11/2023]
Abstract
Hepatocytes, the main epithelial cell type of the liver, function like all epithelial cells to mediate the vectorial flow of macromolecules into and out of the organ they encompass. They do so by establishing polarized surface domains and by restricting paracellular flow via their tight junctions and cell-cell adhesion. Yet, the cell and tissue organization of hepatocytes differs profoundly from that of most other epithelia, including those of the digestive and urinary tracts, the lung or the breast. The latter form monolayered tissues in which the apical domains of individual cells align around a central continuous luminal cavity that constitutes the tubules and acini characteristic of these organs. Hepatocytes, by contrast, form capillary-sized lumina with multiple neighbors resulting in a branched, tree-like bile canaliculi network that spreads across the liver parenchyme. I will discuss some of the key molecular features that distinguish the hepatocyte polarity phenotype from that of monopolar, columnar epithelia.
Collapse
Affiliation(s)
- Anne Müsch
- Albert-Einstein College of Medicine, Department of Cell & Molecular Biology, The Bronx, USA.
| |
Collapse
|
40
|
Jochim N, Gerhard R, Just I, Pich A. Time-resolved cellular effects induced by TcdA from Clostridium difficile. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1089-1100. [PMID: 24711272 DOI: 10.1002/rcm.6882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The anaerobe Clostridium difficile is a common pathogen that causes infection of the colon leading to diarrhea or pseudomembranous colitis. Its major virulence factors are toxin A (TcdA) and toxin B (TcdB), which specifically inactivate small GTPases by glucosylation leading to reorganization of the cytoskeleton and finally to cell death. In the present work a quantitative proteome analysis using the isotope-coded protein label (ICPL) approach was conducted to investigate proteome changes in the colon cell line Caco-2 after treatment with recombinant wild-type TcdA (rTcdA-wt) or a glucosyltransferase-deficient mutant TcdA (rTcdA-mut). METHODS Proteins from crude cell lysates or cellular subfractions were identified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). Two time points (5 h, 24 h) of toxin treatment were analyzed and about 4000 proteins were identified in each case. RESULTS After 5 h treatment with rTcdA-wt, 150 proteins had a significantly altered abundance; rTcdA-mut caused regulation of 50 proteins at this time point. After 24 h treatment with rTcdA-wt changes in abundance of 61 proteins were observed, but no changes in protein abundance were detected after 24 h if cells were treated with rTcdA-mut. TcdA affected several proteins involved in signaling events, cytoskeleton and cell-cell contact organization, translation, and metabolic processes. The ICPL-dependent quantification was verified by label-free targeted MS techniques based on multiple reaction monitoring (MRM) and triple quadrupole mass spectrometry. CONCLUSIONS LC/MS-based proteome analyses and the ICPL approach revealed comprehensive and reproducible proteome date and provided new insights into the cellular effects of clostridial glucosylating toxins (CGT).
Collapse
Affiliation(s)
- Nelli Jochim
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
41
|
Meister M, Zuk A, Tikkanen R. Role of dynamin and clathrin in the cellular trafficking of flotillins. FEBS J 2014; 281:2956-76. [PMID: 24809731 DOI: 10.1111/febs.12834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/03/2014] [Accepted: 05/02/2014] [Indexed: 12/11/2022]
Abstract
Flotillin-1 and flotillin-2 are highly conserved, membrane-microdomain-associated proteins that have been shown to be involved in signal transduction, membrane trafficking and cell adhesion. Upon growth factor stimulation, flotillins are tyrosine phosphorylated and become endocytosed from the plasma membrane into endosomes from which they are recycled back to the plasma membrane. Although a role for flotillin-1 in the endocytosis of certain cargo proteins has been suggested, it is not known how the growth-factor-induced endocytosis of flotillins is regulated and which endocytosis pathway is used. However, this is likely to be different from the pathway used by flotillin-dependent cargo. In this study, we have addressed the mechanistic details of flotillin trafficking during growth factor signaling. We show that dynamin-2 activity is required for the uptake of flotillins from the plasma membrane upon epidermal growth factor stimulation, and inhibition of dynamin-2 GTPase activity impairs flotillin endocytosis. Surprisingly, recycling of flotillins from endosomes to the plasma membrane appears to require both dynamin-2 and clathrin. Upon overexpression of dynamin-2 mutants or depletion of clathrin heavy chain, flotillins are permanently trapped in endosomes. These data show that clathrin and dynamin are required for the endosomal sorting of flotillins, and the study provides a mechanistic dissection of the thus far poorly characterized endosomal trafficking of flotillins.
Collapse
|
42
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
43
|
A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2044-56. [PMID: 23899605 DOI: 10.1016/j.bbadis.2013.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022]
Abstract
The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself.
Collapse
|
44
|
Galmes R, Delaunay JL, Maurice M, Aït-Slimane T. Oligomerization is required for normal endocytosis/transcytosis of a GPI-anchored protein in polarized hepatic cells. J Cell Sci 2013; 126:3409-16. [PMID: 23750006 DOI: 10.1242/jcs.126250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targeting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) in polarized epithelial cells depends on their association with detergent-resistant membrane microdomains called rafts. In MDCK cells, GPI-APs associate with rafts in the trans-Golgi network and are directly delivered to the apical membrane. It has been shown that oligomerization is required for their stabilization in rafts and their apical targeting. In hepatocytes, GPI-APs are first delivered to the basolateral membrane and secondarily reach the apical membrane by transcytosis. We investigated whether oligomerization is required for raft association and apical sorting of GPI-APs in polarized HepG2 cells, and at which step of the pathway oligomerization occurs. Model proteins were wild-type GFP-GPI and a double cysteine GFP-GPI mutant, in which GFP dimerization was impaired. Unlike wild-type GFP-GPI, which was efficiently endocytosed and transcytosed to the apical surface, the double cysteine mutant was basolaterally internalized, but massively accumulated in early endosomes, and reached the bile canaliculi with delayed kinetics. The double cysteine mutant was less resistant to Triton X-100 extraction, and formed fewer high molecular weight complexes. We conclude from these results that, in hepatocytes, oligomerization plays a key role in targeting GPI-APs to the apical membrane, by increasing their affinity for rafts and allowing their transcytosis.
Collapse
Affiliation(s)
- Romain Galmes
- INSERM, UMR_S938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
45
|
Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 2013; 21:1118-30. [PMID: 23587924 DOI: 10.1038/mt.2013.54] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted.
Collapse
|
46
|
Sorkina T, Caltagarone J, Sorkin A. Flotillins regulate membrane mobility of the dopamine transporter but are not required for its protein kinase C dependent endocytosis. Traffic 2013; 14:709-24. [PMID: 23418867 DOI: 10.1111/tra.12059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/15/2022]
Abstract
Flotillins were proposed to mediate clathrin-independent endocytosis, and recently, flotillin-1 was implicated in the protein kinase C (PKC)-triggered endocytosis of the dopamine transporter (DAT). Since endocytosis of DAT was previously shown to be clathrin-mediated, we re-examined the role of clathrin coat proteins and flotillin in DAT endocytosis using DAT tagged with the hemagglutinin epitope (HA) in the extracellular loop and a quantitative HA antibody uptake assay. Depletion of flotillin-1, flotillin-2 or both flotillins together by small interfering RNAs (siRNAs) did not inhibit PKC-dependent internalization and degradation of HA-DAT. In contrast, siRNAs to clathrin heavy chain and μ2 subunit of clathrin adaptor complex AP-2 as well as a dynamin inhibitor Dyngo-4A significantly decreased PKC-dependent endocytosis of HA-DAT. Similarly, endocytosis and degradation of DAT that is not epitope-tagged were highly sensitive to the clathrin siRNAs and dynamin inhibition but were not affected by flotillin knockdown. Very little co-localization of DAT with flotillins was observed in cells ectopically expressing DAT and in cultured mouse dopaminergic neurons. Depletion of flotillins increased diffusion rates of HA-DAT in the plasma membrane, suggesting that flotillin-organized microdomains may regulate the lateral mobility of DAT. We propose that clathrin-mediated endocytosis is the major pathway of PKC-dependent internalization of DAT, and that flotillins may modulate functional association of DAT with plasma membrane rafts rather than mediate DAT endocytosis.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
47
|
Wnt secretion and gradient formation. Int J Mol Sci 2013; 14:5130-45. [PMID: 23455472 PMCID: PMC3634490 DOI: 10.3390/ijms14035130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022] Open
Abstract
Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i) reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii) lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies.
Collapse
|
48
|
Bohdanowicz M, Grinstein S. Role of Phospholipids in Endocytosis, Phagocytosis, and Macropinocytosis. Physiol Rev 2013; 93:69-106. [DOI: 10.1152/physrev.00002.2012] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endocytosis, phagocytosis, and macropinocytosis are fundamental processes that enable cells to sample their environment, eliminate pathogens and apoptotic bodies, and regulate the expression of surface components. While a great deal of effort has been devoted over many years to understanding the proteins involved in these processes, the important contribution of phospholipids has only recently been appreciated. This review is an attempt to collate and analyze the rapidly emerging evidence documenting the role of phospholipids in clathrin-mediated endocytosis, phagocytosis, and macropinocytosis. A primer on phospholipid biosynthesis, catabolism, subcellular distribution, and transport is presented initially, for reference, together with general considerations of the effects of phospholipids on membrane curvature and charge. This is followed by a detailed analysis of the critical functions of phospholipids in the internalization processes and in the maturation of the resulting vesicles and vacuoles as they progress along the endo-lysosomal pathway.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
49
|
Kasper J, Hermanns MI, Bantz C, Utech S, Koshkina O, Maskos M, Brochhausen C, Pohl C, Fuchs S, Unger RE, Kirkpatrick CJ. Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro. Eur J Pharm Biopharm 2012. [PMID: 23183446 DOI: 10.1016/j.ejpb.2012.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug and gene delivery via nanoparticles across biological barriers such as the alveolar-capillary barrier of the lung constitutes an interesting and increasingly relevant field in nanomedicine. Nevertheless, potential hazardous effects of nanoparticles (NPs) as well as their cellular and systemic fate should be thoroughly examined. Hence, this study was designed to evaluate the effects of amorphous silica NPs (Sicastar) and (poly)organosiloxane NPs (AmOrSil) on the viability and the inflammatory response as well as on the cellular uptake mechanisms and fate in cells of the alveolar barrier. For this purpose, the alveolar epithelial cell line (NCI H441) and microvascular endothelial cell line (ISO-HAS-1) were used in an experimental set up resembling the alveolar-capillary barrier of the lung. In terms of IL-8 and sICAM Sicastar resulted in harmful effects at higher concentrations (60 μg/ml) in conventional monocultures but not in the coculture, whereas AmOrSil showed no significant effects. Immunofluorescence counterstaining of endosomal structures in NP-incubated cells showed no evidence for a clathrin- or caveolae-mediated uptake mechanism. However, NPs were enclosed in flotillin-1 and -2 marked vesicles in both cell types. Flotillins appear to play a role in cellular uptake or trafficking mechanisms of NPs and are discussed as indicators for clathrin- or caveolae-independent uptake mechanisms. In addition, we examined the transport of NPs across this in vitro model of the alveolar-capillary barrier forming a tight barrier with a transepithelial electrical resistance of 560±8 Ω cm(2). H441 in coculture with endothelial cells took up much less NPs compared to monocultures. Moreover, coculturing prevented the transport of NP from the epithelial compartment to the endothelial layer on the bottom of the filter insert. This supports the relevance of coculture models, which favour a differentiated and polarised epithelial layer as in vitro test systems for nanoparticle uptake.
Collapse
Affiliation(s)
- Jennifer Kasper
- Institute of Pathology, University Medical Centre, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|