1
|
Blengini CS, Tang S, Mendola RJ, Garrisi GJ, Swain JE, Schindler K. AURKA controls oocyte spindle assembly checkpoint and chromosome alignment by HEC1 phosphorylation. Life Sci Alliance 2025; 8:e202403146. [PMID: 40328643 PMCID: PMC12056248 DOI: 10.26508/lsa.202403146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Shuang Tang
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert J Mendola
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | - G John Garrisi
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | | | - Karen Schindler
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
2
|
Langeoire A, Kem-Seng A, Cladière D, Wassmann K, Buffin E. Prolonged metaphase II arrest weakens Aurora B/C-dependent error correction in mouse oocytes. Curr Biol 2025; 35:2019-2031.e4. [PMID: 40215962 DOI: 10.1016/j.cub.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/10/2025] [Accepted: 03/14/2025] [Indexed: 05/08/2025]
Abstract
Chromosome segregation during meiosis is highly error-prone in mammalian oocytes. The mechanisms controlling chromosome attachments and the spindle assembly checkpoint (SAC) have been extensively studied in meiosis I, but our knowledge of these mechanisms during meiosis II is rather limited. Although mammalian oocytes arrest in metaphase II for an extended period awaiting fertilization, some misattached chromosomes may persist. This suggests that the mechanism correcting misattachments is not fully functional during the arrest. In this study, we investigated whether low inter-kinetochore tension, which characterizes incorrect attachments, can be detected by Aurora B/C-dependent error correction in meiosis II. We found that low tension, induced by low dose of STLC in early metaphase II, does indeed mediate microtubule detachment by Aurora B/C and, consequently, anaphase II delay through SAC activation. Surprisingly, we also found that, during prolonged metaphase II arrest, Aurora B/C activity is no longer sufficient to detach low-tension attachments, correlating with high accumulation of PP2A at kinetochores. As a result, the SAC is not activated, and sister chromatids segregate in anaphase II without delay even in the presence of low tension. Hence, during the prolonged metaphase II arrest to await fertilization, oocytes become unable to discriminate between correct and incorrect attachments and may allow errors to persist.
Collapse
Affiliation(s)
- Antoine Langeoire
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France
| | - Alison Kem-Seng
- Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France
| | - Damien Cladière
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France
| | - Katja Wassmann
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France.
| | - Eulalie Buffin
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France.
| |
Collapse
|
3
|
Verma A, Bharatiya P, Jaitak A, Nigam V, Monga V. Advances in the design, discovery, and optimization of aurora kinase inhibitors as anticancer agents. Expert Opin Drug Discov 2025; 20:475-497. [PMID: 40094219 DOI: 10.1080/17460441.2025.2481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Aurora kinases (AKs) play key roles during carcinogenesis and show a close relationship with many cellular effects including mitotic entry, spindle assembly and chromosomal alignment biorientation. Indeed, elevated levels of AKs have been reported in several different tumor types, leading research scientists to investigate ways that we can target AKs for the purpose of developing new anticancer therapeutics. AREA COVERED This review examines the design, discovery, and development of Aurora kinase inhibitors (AKIs) as anticancer agents and delineates their roles in cancer progression or development. Various databases like PubMed, Scopus, Google scholar, SciFinder were used to search the relevant information. This article provides a comprehensive overview of recent advances in the medicinal chemistry of AKIs including the candidates under clinical development and list of patents filed. In addition, their mechanistic findings, SARs, and in silico studies have also been discussed to offer prospects in this field. EXPERT OPINION The integration of artificial intelligence and computational approaches is poised to accelerate the development of AKIs as anticancer agents. However, the associated challenges currently hindering its impact in drug development must be overcome before drugs can successfully translate from early drug development into clinical practice.
Collapse
Affiliation(s)
- Anubhav Verma
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradhuman Bharatiya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
4
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
5
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. Proc Natl Acad Sci U S A 2024; 121:e2414963121. [PMID: 39475646 PMCID: PMC11551467 DOI: 10.1073/pnas.2414963121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
The female reproductive lifespan is highly dependent on egg quality, especially the presence of a normal number of chromosomes in an egg, known as euploidy. Mistakes in meiosis leading to egg aneuploidy are frequent in humans. Yet, knowledge of the precise genetic landscape that causes egg aneuploidy in women is limited, as phenotypic data on the frequency of human egg aneuploidy are difficult to obtain and therefore absent in public genetic datasets. Here, we identify genetic determinants of reproductive aging via egg aneuploidy in women using a biobank of individual maternal exomes linked with maternal age and embryonic aneuploidy data. Using the exome data, we identified 404 genes bearing variants enriched in individuals with pathologically elevated egg aneuploidy rates. Analysis of the gene ontology and protein-protein interaction network implicated genes encoding the kinesin protein family in egg aneuploidy. We interrogate the causal relationship of the human variants within candidate kinesin genes via experimental perturbations and demonstrate that motor domain variants increase aneuploidy in mouse oocytes. Finally, using a knock-in mouse model, we validate that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings reveal additional functional mechanisms of reproductive aging and shed light on how genetic variation underlies individual heterogeneity in the female reproductive lifespan, which might be leveraged to predict reproductive longevity. Together, these results lay the groundwork for the noninvasive biomarkers for egg quality, a first step toward personalized fertility medicine.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Katarzyna M. Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Mansour Aboelenain
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura35516, Egypt
| | - Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Iva Dundović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb1000, Croatia
| | - Kruno Vukušić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb1000, Croatia
| | - Jason Liu
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | | | - Min Xu
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | | | - Xin Tao
- Juno Genetics US, Basking Ridge, NJ07920
| | - Iva M. Tolić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb1000, Croatia
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
6
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.04.24309950. [PMID: 39006445 PMCID: PMC11245073 DOI: 10.1101/2024.07.04.24309950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The female reproductive lifespan depends on egg quality, particularly euploidy. Mistakes in meiosis leading to egg aneuploidy are common, but the genetic landscape causing this is not well understood due to limited phenotypic data. We identify genetic determinants of reproductive aging via egg aneuploidy using a biobank of maternal exomes linked with maternal age and embryonic aneuploidy data. We found 404 genes with variants enriched in individuals with high egg aneuploidy rates and implicate kinesin protein family genes in aneuploidy risk. Experimental perturbations showed that motor domain variants in these genes increase aneuploidy in mouse oocytes. A knock-in mouse model validated that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings suggest potential non-invasive biomarkers for egg quality, aiding personalized fertility medicine. One sentence summary The study identifies novel genetic determinants of reproductive aging linked to egg aneuploidy by analyzing maternal exomes and demonstrates that variants in kinesin genes, specifically KIF18A , contribute to increased aneuploidy and accelerated reproductive aging, offering potential for personalized fertility medicine.
Collapse
|
7
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
8
|
Redouane S, Charoute H, Harmak H, Malki A, Barakat A, Rouba H. Computational study of the potential impact of AURKC missense SNPs on AURKC-INCENP interaction and their correlation to macrozoospermia. J Biomol Struct Dyn 2023; 41:9503-9522. [PMID: 36326488 DOI: 10.1080/07391102.2022.2142846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Aurora Kinase C (AURKC) is considered an important element in Chromosome Passenger Complex (CPC), its interaction with Inner Centromere Protein (INCENP) plays a critical role in the establishment and the recruitment of a stable CPC during spermatogenesis. Genetic variations of AURKC gene are susceptible to impact AURKC-INCENP interaction, which may affect CPC stability and predispose male subjects to macrozoospermia. In this study, we systematically applied computational approaches using different bioinformatic tools to predict the effect of missense SNPs reported on AURKC gene, we selected the deleterious ones and we introduced their corresponding amino acid substitutions on AURKC protein structure. Then we did a protein-protein docking between AURKC variants and INCENP followed by a structural assessment of each resulting complex using PRODIGY server, Yassara view, Ligplot + and we choose the complexes of the most impactful variants for molecular dynamics (MD) simulation study. Seventeen missense SNPs of AURKC were identified as deleterious between all reported ones. All of them were located on relatively conserved positions on AURKC protein according to Consurf server. Only the four missense SNPs; E91K, D166V, D221Y and G235V were ranked as the most impactful ones and were chosen for MD simulation. D221Y and G235V were responsible for the most remarkable changes on AURKC-INCENP structural stability, therefore, they were selected as the most deleterious ones. Experimental studies are recommended to test the actual effect of these two variants and their actual impact on the morphology of sperm cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Salaheddine Redouane
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houda Harmak
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
9
|
Ju J, Pan Z, Zhang K, Ji Y, Liu J, Sun S. Mcrs1 regulates G2/M transition and spindle assembly during mouse oocyte meiosis. EMBO Rep 2023; 24:e56273. [PMID: 36951681 PMCID: PMC10157313 DOI: 10.15252/embr.202256273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
10
|
Swamy P M G, Abbas N, Dhiwar PS, Singh E, Ghara A, Das A. Discovery of potential Aurora-A kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies. J Biomol Struct Dyn 2023; 41:125-146. [PMID: 34809538 DOI: 10.1080/07391102.2021.2004236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Aurora-kinase family comprises of cell cycle-regulated serine/threonine kinases playing a vital role during mitosis. Aurora-A kinase is involved in multiple mitotic events in cell cycle and is a major regulator of centrosome function during mitosis. Aurora-A is overexpressed in breast, lung, colon, ovarian, glial, and pancreatic cancer. Hence, Aurora-A kinase is a promising target in cancer therapy. In our current study, a four-point 3D QSAR pharmacophore model has been generated using substituted pyrimidine class of Aurora-A kinase inhibitors. It had a fixed cost value 88.7429. The model mapped well to the external test set comprising of clinically active molecules, with a correlation coefficient r = 0.99. From the mapping, it was found that the hydrophobic features (HY) of a molecule play an important role for Aurora-A kinase inhibitory activity, whereas the ring aromatic feature provides geometric constraint for spatial alignment of different functional group. The hypothesis, with one hydrogen bond acceptor, two ring aromatic features, and one hydrophobic feature, was selected to screen miniMaybridge database. The screened ligands were filtered on the basis of activity, shape, and drug likeliness. This led to the identification of five top hits. These identified potential leads were further subjected to docking with the ATP-binding site of Aurora-A kinase. The molecular dynamic simulation studies of top lead molecules having diverse scaffolds endorsed that the identified molecules had distinctive ability to inhibit Aurora-A kinase. Thus, this study may facilitate the medicinal chemists to design promising ligands with various scaffolds to inhibit Aurora-A kinase. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gurubasavaraja Swamy P M
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Nahid Abbas
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Prasad Sanjay Dhiwar
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Arka Das
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| |
Collapse
|
11
|
Lodde V, Garcia Barros R, Terzaghi L, Franciosi F, Luciano AM. Insights on the Role of PGRMC1 in Mitotic and Meiotic Cell Division. Cancers (Basel) 2022; 14:cancers14235755. [PMID: 36497237 PMCID: PMC9736406 DOI: 10.3390/cancers14235755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosome missegregation and cytokinesis defects have been recognized as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division is particularly appealing. Nevertheless, more than ten years after the preliminary observation that PGRMC1 changes its localization dynamically during meiotic and mitotic cell division, this field of research has remained a niche and needs to be fully explored. To encourage research in this fascinating field, in this review, we will recap the current knowledge on PGRMC1 function during mitotic and meiotic cell division, critically highlighting the strengths and limitations of the experimental approaches used so far. We will focus on known interacting partners as well as new putative associated proteins that have recently arisen in the literature and that might support current as well as new hypotheses of a role for PGRMC1 in specific spindle subcompartments, such as the centrosome, kinetochores, and the midzone/midbody.
Collapse
|
12
|
Beniwal M, Jain N, Jain S, Aggarwal N. Design, synthesis, anticancer evaluation and docking studies of novel 2-(1-isonicotinoyl-3-phenyl-1H-pyrazol-4-yl)-3-phenylthiazolidin-4-one derivatives as Aurora-A kinase inhibitors. BMC Chem 2022; 16:61. [PMID: 35978438 PMCID: PMC9382805 DOI: 10.1186/s13065-022-00852-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Aurora-A kinase is associated with the Aurora kinase family which has been considered a striking anticancer target for the treatment of human cancers. OBJECTIVE To design, synthesize, anticancer evaluation, and docking studies of novel 2-(1-isonicotinoyl-3-phenyl-1H-pyrazol-4-yl)-3-phenylthiazolidin-4-one derivatives as Aurora-A Kinase inhibitors. METHOD A total of 21 Pyrazole derivatives P (1-21) were synthesized by using the Vilsmeier Haack reagent which was characterized by FT-IR, 1H NMR, 13C NMR, and Mass spectroscopy. The synthesized derivatives were evaluated for their potential in vitro anticancer activity by MTT assay and Aurora-A kinase inhibition assay. RESULTS The cytotoxicity assay (MTT assay) showed that compound P-6 exhibited potent cytotoxicity (IC50 = 0.37-0.44 μM) against two cancer (HCT 116 and MCF-7) cell lines, which were comparable to the standard compound, VX-680. Compound P-6 also showed inhibition of Aurora-A kinase with an IC50 value of 0.11 ± 0.03 µM. A Docking study was done to compound P-6 and P-20 into the active site of Aurora A kinase, in order to get the probable binding model for further study. CONCLUSION A series of 21 novel pyrazole derivatives P(1-21) were designed, synthesized, in vitro anticancer evaluation, and docking studies for Aurora A kinase inhibition. The results established that P-6 is a prospective aspirant for the development of anticancer agents targeting Aurora-A kinase.
Collapse
Affiliation(s)
- Meenu Beniwal
- Department of Pharmaceutical Education & Research, Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur Kalan, Sonepat, Haryana, 131301, India
| | - Neelam Jain
- Department of Pharmaceutical Education & Research, Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur Kalan, Sonepat, Haryana, 131301, India
| | - Sandeep Jain
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Navidha Aggarwal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India. .,MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
13
|
Kratka C, Drutovic D, Blengini CS, Schindler K. Using ZINC08918027 inhibitor to determine Aurora kinase-chromosomal passenger complex isoforms in mouse oocytes. BMC Res Notes 2022; 15:96. [PMID: 35255953 PMCID: PMC8900367 DOI: 10.1186/s13104-022-05987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Miscarriages affect 10% of women aged 25–29, and 53% of women over 45. The primary cause of miscarriage is aneuploidy that originated in eggs. The Aurora kinase family has three members that regulate chromosome segregation. Therefore, distinguishing the roles of these isoforms is important to understand aneuploidy etiology. In meiosis, Aurora kinase A (AURKA) localizes to spindle poles, where it binds TPX2. Aurora kinase C (AURKC) localizes on chromosomes, where it replaces AURKB as the primary AURK in the chromosomal passenger complex (CPC) via INCENP binding. Although AURKA compensates for CPC function in oocytes lacking AURKB/C, it is unknown whether AURKA binds INCENP in wild type mouse oocytes. ZINC08918027 (ZC) is an inhibitor that prevents the interaction between AURKB and INCENP in mitotic cells. We hypothesized that ZC would block CPC function of any AURK isoform. Results ZC treatment caused defects in meiotic progression and spindle building. By Western blotting and immunofluorescence, we observed that activated AURKA and AURKC levels in ZC-treated oocytes decreased compared to controls. These results suggest there is a population of AURKA-CPC in mouse oocytes. These data together suggest that INCENP-dependent AURKA and AURKC activities are needed for spindle bipolarity and meiotic progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05987-4.
Collapse
|
14
|
Bejar JF, DiSanza Z, Quartuccio SM. The oncogenic role of meiosis-specific Aurora kinase C in mitotic cells. Exp Cell Res 2021; 407:112803. [PMID: 34461108 DOI: 10.1016/j.yexcr.2021.112803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Aberrant expression of meiosis-specific genes in cancer has recently emerged as a driver of some cancer formation. Aurora kinase C (AURKC) is a member of the Aurora kinase family of proteins known to regulate chromosome segregation during cell divisions. AURKC is normally expressed in meiotic cells; however, elevated levels of AURKC mRNA and protein are frequently measured in cancer cells. To understand the function of AURKC in cancer cells, expression was induced in noncancerous, human retina pigmented epithelial cells. While AURKC expression did not alter cell proliferation over 72 h, it did increase cell migration and anchorage independent growth in soft agar suggesting an oncogenic role in mitotically dividing cells. To evaluate AURKC as a potential therapeutic target, a frameshift mutation in the gene was introduced in U2OS osteosarcoma cells using CRISPR-Cas9 technology resulting in a premature stop codon. Cancer cells lacking AURKC displayed no change in cell proliferation over 72 h but did migrate less and formed fewer colonies in soft agar. Whole transcriptome sequencing analysis uncovered over 400 differentially expressed genes in U2OS cells with and without AURKC. GO analysis revealed alterations in proteinaceous extracellular matrix genes including COL1A1. These data indicate that therapeutics targeting AURKC could decrease cancer cell metastasis and disease progression. Because AURKC is transcriptionally silenced in normal mitotic cells, its disruption could specifically target cancer cells limiting the toxic side effects associated with current therapeutics.
Collapse
Affiliation(s)
- Justin F Bejar
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Zachary DiSanza
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Suzanne M Quartuccio
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
15
|
Lester WC, Johnson T, Hale B, Serra N, Elgart B, Wang R, Geyer CB, Sperry AO. Aurora a kinase (AURKA) is required for male germline maintenance and regulates sperm motility in the mouse. Biol Reprod 2021; 105:1603-1616. [PMID: 34518881 DOI: 10.1093/biolre/ioab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/12/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aurora A kinase (AURKA) is an important regulator of cell division and is required for assembly of the mitotic spindle. We recently reported the unusual finding that this mitotic kinase is also found on the sperm flagellum. To determine its requirement in spermatogenesis, we generated conditional knockout animals with deletion of the Aurka gene in either spermatogonia or spermatocytes to assess its role in mitotic and postmitotic cells, respectively. Deletion of Aurka in spermatogonia resulted in disappearance of all developing germ cells in the testis, as expected given its vital role in mitotic cell division. Deletion of Aurka in spermatocytes reduced testis size, sperm count, and fertility, indicating disruption of meiosis or an effect on spermiogenesis in developing mice. Interestingly, deletion of Aurka in spermatocytes increased apoptosis in spermatocytes along with an increase in the percentage of sperm with abnormal morphology. Despite the increase in abnormal sperm, sperm from spermatocyte Aurka knockout mice displayed increased progressive motility. In addition, sperm lysate prepared from Aurka knockout animals had decreased protein phosphatase 1 (PP1) activity. Together, our results show that AURKA plays multiple roles in spermatogenesis, from mitotic divisions of spermatogonia to sperm morphology and motility.
Collapse
Affiliation(s)
- William C Lester
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Taylor Johnson
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ben Hale
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Nicholas Serra
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Brian Elgart
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Rong Wang
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ann O Sperry
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| |
Collapse
|
16
|
Damaskos C, Garmpis N, Garmpi A, Nikolettos K, Sarantis P, Georgakopoulou VE, Nonni A, Schizas D, Antoniou EA, Karamouzis MV, Nikolettos N, Kontzoglou K, Patsouras A, Voutyritsa E, Syllaios A, Koustas E, Trakas N, Dimitroulis D. Investigational Drug Treatments for Triple-Negative Breast Cancer. J Pers Med 2021; 11:652. [PMID: 34357119 PMCID: PMC8303312 DOI: 10.3390/jpm11070652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) and accounts for 10-20% of cases. Due to the lack of expression of several receptors, hormone therapy is largely ineffective for treatment purposes. Nevertheless, TNBC often responds very well to chemotherapy, which constitutes the most often recommended treatment. New beneficial targeted therapies are important to be investigated in order to achieve enhanced outcomes in patients with TNBC. This review will focus on recent therapeutic innovations for TNBC, focusing on various inhibitors such as phosphoinositide 3-kinase (PI3K) pathway inhibitors, poly-ADP-ribosyl polymerase (PARP) inhibitors, aurora kinase inhibitors, histone deacetylase inhibitors (HDACIs), and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Nikolettos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.); (E.K.)
| | | | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (A.S.)
| | - Efstathios A. Antoniou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.); (E.K.)
| | - Nikos Nikolettos
- Obstetric-Gynecologic Clinic, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Konstantinos Kontzoglou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Patsouras
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
| | - Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (K.N.); (E.A.A.); (K.K.); (A.P.); (E.V.)
| | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (A.S.)
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.); (E.K.)
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece;
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
17
|
Machado CB, DA Silva EL, Dias Nogueira BM, DA Silva JBS, DE Moraes Filho MO, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. The Relevance of Aurora Kinase Inhibition in Hematological Malignancies. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:111-126. [PMID: 35399305 DOI: 10.21873/cdp.10016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
Aurora kinases are a family of serine/threonine protein kinases that play a central role in eukaryotic cell division. Overexpression of aurora kinases in cancer and their role as major regulators of the cell cycle quickly inspired the idea that their inhibition might be a potential pathway when treating oncologic patients. Over the past couple of decades, the search for designing and testing of molecules capable of inhibiting aurora activities fueled many pre-clinical and clinical studies. In this study, data from the past 10 years of in vitro and in vivo investigations, as well as clinical trials, utilizing aurora kinase inhibitors as therapeutics for hematological malignancies were compiled and discussed, aiming to highlight potential uses of these inhibitors as a novel monotherapy model or alongside conventional chemotherapies. While there is still much to be elucidated, it is clear that these kinases play a key role in oncogenesis, and their manageable toxicity and potentially synergistic effects still render them a focus of interest for future investigations in combinatorial clinical trials.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Emerson Lucena DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jean Breno Silveira DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico DE Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
18
|
Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER, McCoy RC, Xing J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat Diagn 2021; 41:620-630. [PMID: 33860956 PMCID: PMC8237340 DOI: 10.1002/pd.5927] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022]
Abstract
The gain or loss of a chromosome-or aneuploidy-acts as one of the major triggers for infertility and pregnancy loss in humans. These chromosomal abnormalities affect more than 40% of eggs in women at both ends of the age spectrum, that is, young girls as well as women of advancing maternal age. Recent studies in human oocytes and embryos using genomics, cytogenetics, and in silico modeling all provide new insight into the rates and potential genetic and cellular factors associated with aneuploidy at varying stages of development. Here, we review recent studies that are shedding light on potential molecular mechanisms of chromosome missegregation in oocytes and embryos across the entire female reproductive life span.
Collapse
Affiliation(s)
- Lena Wartosch
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Karen Schindler
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Melina Schuh
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Jennifer R. Gruhn
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Eva R. Hoffmann
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Rajiv C. McCoy
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jinchuan Xing
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
19
|
Antitumor activity of a novel Aurora A/B kinases inhibitor TY-011 against gastric cancer by inducing DNA damage. Anticancer Drugs 2021; 31:440-451. [PMID: 32187025 DOI: 10.1097/cad.0000000000000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TY-011, a novel Aurora A/B kinases inhibitor, was found in our previous study to exhibit prominent inhibitory effects on growth of gastric cancer, both in vitro and in vivo. To clarify the mechanisms of TY-011 in inhibiting proliferation of gastric cancer cells, the effects of TY-011 on mitosis, cell cycle, apoptosis and cellular DNA were checked in the present study. Our results showed that TY-011 treatment induced aberrant mitosis, G2/M phase arrest and apoptosis. Importantly, TY-011 induced evident DNA damage in MGC-803 and MKN-45 human gastric cancer cells, which was further characterized as DNA double-strand break. Furthermore, cells treated with TY-011 appeared to generate multiple spindle fibers emanating from several spindle poles, leading to poly-merotelic kinetochore. These results suggested that TY-011 induced abnormal microtubule-kinetochores attachment and thus DNA damage, apoptosis and finally inhibition of cell proliferation of human gastric cancer cells.
Collapse
|
20
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
21
|
Hamza L, Gaitch N, Sallem A, Boucekkine N, Girodon E, Oumeziane A, Attal N, Wolf JP, Bienvenu T. Two frequent loss-of-function mutations in Aurora Kinase C gene in Algerian infertile men with macrozoospermia. Andrologia 2020; 52:e13868. [PMID: 33118205 DOI: 10.1111/and.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022] Open
Abstract
Macrozoospermia is associated with severe male infertility. To date, the only gene implicated in this phenotype is the Aurora Kinase C gene. We report in this work the genetic screening of AURKC mutations in 34 patients with macrozoospermia among 3,536 Algerian infertile men. Nineteen patients (56%) were homozygotes for the c.144delC mutation, eight (23.52%) homozygotes for the c.744C>G (p.Y248*) mutation and two (5.88%) compound heterozygotes. No AURKC mutation was identified in five patients (14.7%). Interestingly and although it is generally accepted that nearly all positive mutated AURKC patients have close to 100% large-head spermatozoa, our results showed that 11 patients with AURKC mutations (32.35%) had large-headed spermatozoa lower than 70% (7 with c.144delC and 4 with p.Y248*), and no mutation was found in 2 patients who had >70% of macrocephalic spermatozoa. Twenty ICSI attempts were performed before genetic screening resulting in 39 embryos but no pregnancy was obtained. The sequencing of AURKC exons 3 and 6 is appropriate as a first-line genetic exploration in these patients to avoid unsuccessful ICSI attempts. A percentage of large head spermatozoa beyond 25% and a percentage of multiflagellar spermatozoa beyond 10% are predictive of a positive mutation diagnosis.
Collapse
Affiliation(s)
- Loubna Hamza
- Faculté des Sciences Biologiques, Université de Science et de Technologie Houari Boumediane (USTHB), Bab Ezzouar, Algeria.,Centre d'Assistance Médicale à la Procréation Tiziri, Alger, Algeria
| | - Natacha Gaitch
- Assistance Publique - Hôpitaux de Paris, Site Cochin, Laboratoire de Génétique et Biologie Moléculaires, Groupe Universitaire Paris Centre, Paris, France
| | - Amira Sallem
- Assistance Publique - Hôpitaux de Paris, Site Cochin, Service d'Histologie, Embryologie, Biologie de la Reproduction - CECOS, Groupe Universitaire Paris Centre, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire d'Histologie-Embryologie et de Cytogénétique (LR18ES40), Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisie
| | - Nadjia Boucekkine
- Centre d'Assistance Médicale à la Procréation Tiziri, Alger, Algeria
| | - Emmanuelle Girodon
- Assistance Publique - Hôpitaux de Paris, Site Cochin, Laboratoire de Génétique et Biologie Moléculaires, Groupe Universitaire Paris Centre, Paris, France
| | - Amina Oumeziane
- Centre d'Assistance Médicale à la Procréation Tiziri, Alger, Algeria
| | - Nabila Attal
- Institut Pasteur d'Algérie ; service d'Immunologie, Dely Ibrahim, Alger, Algeria
| | - Jean Philippe Wolf
- Assistance Publique - Hôpitaux de Paris, Site Cochin, Service d'Histologie, Embryologie, Biologie de la Reproduction - CECOS, Groupe Universitaire Paris Centre, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,CNRS, UMR8104, Paris, France
| | - Thierry Bienvenu
- Assistance Publique - Hôpitaux de Paris, Site Cochin, Laboratoire de Génétique et Biologie Moléculaires, Groupe Universitaire Paris Centre, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,CNRS, UMR8104, Paris, France
| |
Collapse
|
22
|
Establishing correct kinetochore-microtubule attachments in mitosis and meiosis. Essays Biochem 2020; 64:277-287. [PMID: 32406497 DOI: 10.1042/ebc20190072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Faithful chromosome segregation in mitosis and meiosis requires that chromosomes properly attach to spindle microtubules. Initial kinetochore-microtubule attachments are often incorrect and rely on error correction mechanisms to release improper attachments, allowing the formation of new attachments. Aurora B kinase and, in mammalian germ cells, Aurora C kinase function as the enzymatic component of the Chromosomal Passenger Complex (CPC), which localizes to the inner centromere/kinetochore and phosphorylates kinetochore proteins for microtubule release during error correction. In this review, we discuss recent findings of the molecular pathways that regulate the chromosomal localization of Aurora B and C kinases in human cell lines, mice, fission yeast, and budding yeast. We also discuss differences in the importance of localization pathways between mitosis and meiosis.
Collapse
|
23
|
Zhang C, Zhao L, Leng L, Zhou Q, Zhang S, Gong F, Xie P, Lin G. CDCA8 regulates meiotic spindle assembly and chromosome segregation during human oocyte meiosis. Gene 2020; 741:144495. [DOI: 10.1016/j.gene.2020.144495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
|
24
|
Wood FL, Shepherd S, Hayes A, Liu M, Grira K, Mok Y, Atrash B, Faisal A, Bavetsias V, Linardopoulos S, Blagg J, Raynaud FI. Metabolism of the dual FLT-3/Aurora kinase inhibitor CCT241736 in preclinical and human in vitro models: Implication for the choice of toxicology species. Eur J Pharm Sci 2019; 139:104899. [PMID: 30953752 PMCID: PMC6892276 DOI: 10.1016/j.ejps.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/26/2019] [Accepted: 04/02/2019] [Indexed: 02/02/2023]
Abstract
CCT241736 is a dual fms-like tyrosine kinase 3 (FLT3)/Aurora kinase inhibitor in development for the treatment of acute myeloid leukaemia. The successful development of any new drug relies on adequate safety testing including preclinical toxicology studies. Selection of an appropriate preclinical species requires a thorough understanding of the compound's metabolic clearance and pathways, as well as other pharmacokinetic and pharmacodynamic considerations. In addition, elucidation of the metabolising enzymes in human facilitates improved clinical prediction based on population pharmacokinetics and can inform drug-drug interaction studies. Intrinsic clearance (CLint) determination and metabolite profiling of CCT241736 in human and four preclinical species (dog, minipig, rat and mouse) was undertaken in cryopreserved hepatocytes and liver microsomes. Recombinant human cytochrome P450 bactosomes (rCYP) were utilised to provide reaction phenotyping data and support prediction of metabolic pathways. CCT241736 exhibited low CLint in both hepatocytes and liver microsomes of human, dog, minipig and rat, but considerably higher CLint in mouse. CYP3A4 and CYP3A5 were identified as the major enzymes responsible for biotransformation of CCT241736 in human, exclusively forming five out of seven metabolites. Minipig showed greatest similarity to human with regard to both overall metabolic profile and abundance of specific metabolites relative to parent compound, and is therefore proposed as the most appropriate toxicological species. The greatest disparity was observed between human and dog. Based on metabolic profile, either mouse or rat is a suitable rodent species for toxicology studies.
Collapse
Affiliation(s)
- Francesca L Wood
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Sam Shepherd
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Manjuan Liu
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Katia Grira
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Yi Mok
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Butrus Atrash
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Amir Faisal
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Vassilios Bavetsias
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Spiros Linardopoulos
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Florence I Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
25
|
Structural mechanism of synergistic activation of Aurora kinase B/C by phosphorylated INCENP. Nat Commun 2019; 10:3166. [PMID: 31320618 PMCID: PMC6639382 DOI: 10.1038/s41467-019-11085-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Aurora kinases B and C (AURKB/AURKC) are activated by binding to the C-terminal domain of INCENP. Full activation requires phosphorylation of two serine residues of INCENP that are conserved through evolution, although the mechanism of this activation has not been explained. Here we present crystal structures of the fully active complex of AURKC bound to INCENP, consisting of phosphorylated, activated, AURKC and INCENP phosphorylated on its TSS motif, revealing the structural and biochemical mechanism of synergistic activation of AURKC:INCENP. The structures show that TSS motif phosphorylation stabilises the kinase activation loop of AURKC. The TSS motif phosphorylations alter the substrate-binding surface consistent with a mechanism of altered kinase substrate selectivity and stabilisation of the protein complex against unfolding. We also analyse the binding of the most specific available AURKB inhibitor, BRD-7880, and demonstrate that the well-known Aurora kinase inhibitor VX-680 disrupts binding of the phosphorylated INCENP TSS motif.
Collapse
|
26
|
Cheng Z, Liu F, Tian H, Xu Z, Chai X, Luo D, Wang Y. Impairing the maintenance of germinative cells in Echinococcus multilocularis by targeting Aurora kinase. PLoS Negl Trop Dis 2019; 13:e0007425. [PMID: 31095613 PMCID: PMC6541280 DOI: 10.1371/journal.pntd.0007425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/29/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Background The tumor-like growth of the metacestode larvae of the tapeworm E. multilocularis causes human alveolar echinococcosis, a severe disease mainly affecting the liver. The germinative cells, a population of adult stem cells, are crucial for the larval growth and development of the parasite within the hosts. Maintenance of the germinative cell pools relies on their abilities of extensive proliferation and self-renewal, which requires accurate control of the cell division cycle. Targeting regulators of the cell division progression may impair germinative cell populations, leading to impeded parasite growth. Methodology/Principal findings In this study, we describe the characterization of EmAURKA and EmAURKB, which display significant similarity to the members of Aurora kinases that are essential mitotic kinases and play key roles in cell division. Our data suggest that EmAURKA and EmAURKB are actively expressed in the germinative cells of E. multilocularis. Treatment with low concentrations of MLN8237, a dual inhibitor of Aurora A and B, resulted in chromosomal defects in the germinative cells during mitosis, while higher concentrations of MLN8237 caused a failure in cytokinesis of the germinative cells, leading to multinucleated cells. Inhibition of the activities of Aurora kinases eventually resulted in depletion of the germinative cell populations in E. multilocularis, which in turn caused larval growth inhibition of the parasite. Conclusions/Significance Our data demonstrate the vital roles of Aurora kinases in the regulation of mitotic progression and maintenance of the germinative cells in E. multilocularis, and suggest Aurora kinases as promising druggable targets for the development of novel chemotherapeutics against human alveolar echinococcosis. Alveolar echinococcosis (AE), caused by infection with the metacestode larvae of the tapeworm E. multilocularis, is a lethal disease in humans. A population of adult stem cells, called germinative cells, drive the cancer-like growth of the parasite within their host and are considered responsible for disease recurrence after therapy termination. Nevertheless, benzimidazoles, the current drugs of choice against AE, show limited effects on killing these cells. Here, we describe EmAURKA and EmAURKB, two Aurora kinase members that play essential roles in regulating E. multilocularis germinative cell mitosis, as promising drug targets for eliminating the population of germinative cells. We show that targeting E. multilocularis Aurora kinases by small molecular inhibitor MLN8237 causes severe mitotic defects and eventually impairs the viability of germinative cells, leading to larval growth inhibition of the parasite in vitro. Our study suggests that targeting mitosis by MLN8237 or related compounds offers possibilities for germinative cell killing and we hope this will help in exploring novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
- Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoli Chai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
27
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
28
|
Lane S, Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol Life Sci 2019; 76:1135-1150. [PMID: 30564841 PMCID: PMC6513798 DOI: 10.1007/s00018-018-2986-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.
Collapse
Affiliation(s)
- Simon Lane
- Department of Chemistry and the Institute for Life Sciences, University of Southampton, Building 85, Highfield Campus, Southampton, SO171BJ, UK
| | - Liisa Kauppi
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
29
|
Wei Z, Greaney J, Zhou C, A Homer H. Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nat Commun 2018; 9:4029. [PMID: 30279413 PMCID: PMC6168559 DOI: 10.1038/s41467-018-06510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Female meiotic divisions are extremely asymmetric, producing large oocytes and small polar bodies (PBs). In mouse oocytes, the spindle relocates to the cortex before anaphase of meiosis I (MI). It is presumed that by displacing the future midzone, pre-anaphase spindle repositioning alone ensures asymmetry. But how subsequent anaphase events might contribute to asymmetric PB extrusion (PBE) is unknown. Here, we find that inactivation of cyclin-dependent kinase 1 (Cdk1) induces anaphase and simultaneously triggers cytoplasmic formin-mediated F-actin polymerisation that propels the spindle into the cortex causing it to protrude while anaphase progresses. Significantly, if post-anaphase-onset spindle migration fails, protrusion and asymmetry are severely threatened even with intact pre-anaphase migration. Conversely, post-anaphase migration can completely compensate for failed pre-anaphase migration. These data identify a cell-cycle-triggered phase of spindle displacement occurring after anaphase-onset, which, by inducing protrusion, is necessary for extreme asymmetry in mouse oocytes and uncover a pathway for maximising unequal division.
Collapse
Affiliation(s)
- Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
30
|
DeLuca JG. Aurora A Kinase Function at Kinetochores. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:91-99. [PMID: 29700233 DOI: 10.1101/sqb.2017.82.034991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most important regulatory aspects of chromosome segregation is the ability of kinetochores to precisely control their attachment strength to spindle microtubules. Central to this regulation is Aurora B, a mitotic kinase that phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the kinetochore protein Ndc80/Hec1, which is a component of the NDC80 complex, the primary force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, it is becoming clear that this kinase is not solely responsible for phosphorylating Hec1 and other kinetochore substrates to facilitate microtubule turnover. In particular, there is growing evidence that Aurora A kinase, whose activities at spindle poles have been extensively described, has additional roles at kinetochores in regulating the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| |
Collapse
|
31
|
Balboula AZ, Blengini CS, Gentilello AS, Takahashi M, Schindler K. Maternal RNA regulates Aurora C kinase during mouse oocyte maturation in a translation-independent fashion. Biol Reprod 2018; 96:1197-1209. [PMID: 28575288 DOI: 10.1093/biolre/iox047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
During oocyte meiotic maturation, Aurora kinase C (AURKC) is required to accomplish many critical functions including destabilizing erroneous kinetochore-microtubule (K-MT)attachments and regulating bipolar spindle assembly. How localized activity of AURKC is regulated in mammalian oocytes, however, is not fully understood. Female gametes from many species, including mouse, contain stores of maternal transcripts that are required for downstream developmental events. We show here that depletion of maternal RNA in mouse oocytes resulted in impaired meiotic progression, increased incidence of chromosome misalignment and abnormal spindle formation at metaphase I (Met I), and cytokinesis defects. Importantly, depletion of maternal RNA perturbed the localization and activity of AURKC within the chromosomal passenger complex (CPC). These perturbations were not observed when translation was inhibited by cycloheximide (CHX) treatment. These results demonstrate a translation-independent function of maternal RNA to regulate AURKC-CPC function in mouse oocytes.
Collapse
Affiliation(s)
- Ahmed Z Balboula
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Department of Animal Science, Graduate school of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Cecilia S Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Amanda S Gentilello
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Masashi Takahashi
- Department of Animal Science, Graduate school of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
32
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
33
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
34
|
Bury L, Coelho PA, Simeone A, Ferries S, Eyers CE, Eyers PA, Zernicka-Goetz M, Glover DM. Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J Cell Biol 2017; 216:3571-3590. [PMID: 28972102 PMCID: PMC5674873 DOI: 10.1083/jcb.201606077] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/27/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
Establishing the bipolar spindle in mammalian oocytes after their prolonged arrest is crucial for meiotic fidelity and subsequent development. In contrast to somatic cells, the first meiotic spindle assembles in the absence of centriole-containing centrosomes. Ran-GTP can promote microtubule nucleation near chromatin, but additional unidentified factors are postulated for the activity of multiple acentriolar microtubule organizing centers in the oocyte. We now demonstrate that partially overlapping, nonredundant functions of Aurora A and Plk4 kinases contribute to initiate acentriolar meiosis I spindle formation. Loss of microtubule nucleation after simultaneous chemical inhibition of both kinases can be significantly rescued by drug-resistant Aurora A alone. Drug-resistant Plk4 can enhance Aurora A-mediated rescue, and, accordingly, Plk4 can phosphorylate and potentiate the activity of Aurora A in vitro. Both kinases function distinctly from Ran, which amplifies microtubule growth. We conclude that Aurora A and Plk4 are rate-limiting factors contributing to microtubule growth as the acentriolar oocyte resumes meiosis.
Collapse
Affiliation(s)
- Leah Bury
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Paula A Coelho
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, England, UK
| | - Claire E Eyers
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, England, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
35
|
Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget 2017; 8:23937-23954. [PMID: 28147341 PMCID: PMC5410356 DOI: 10.18632/oncotarget.14893] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.
Collapse
Affiliation(s)
- Anqun Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Keyu Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Laili Chu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Rui Zhang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Jing Yang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China.,Department of Oncology, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
36
|
Li W, Wang P, Zhang B, Zhang J, Ming J, Xie W, Na J. Differential regulation of H3S10 phosphorylation, mitosis progression and cell fate by Aurora Kinase B and C in mouse preimplantation embryos. Protein Cell 2017; 8:662-674. [PMID: 28434146 PMCID: PMC5563281 DOI: 10.1007/s13238-017-0407-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Coordination of cell division and cell fate is crucial for the successful development of mammalian early embryos. Aurora kinases are evolutionarily conserved serine/threonine kinases and key regulators of mitosis. Aurora kinase B (AurkB) is ubiquitously expressed while Aurora kinase C (AurkC) is specifically expressed in gametes and preimplantation embryos. We found that increasing AurkC level in one blastomere of the 2-cell embryo accelerated cell division and decreasing AurkC level slowed down mitosis. Changing AurkB level had the opposite effect. The kinase domains of AurkB and AurkC were responsible for their different ability to phosphorylate Histone H3 Serine 10 (H3S10P) and regulate metaphase timing. Using an Oct4-photoactivatable GFP fusion protein (Oct4-paGFP) and fluorescence decay after photoactivation assay, we found that AurkB overexpression reduced Oct4 retention in the nucleus. Finally, we show that blastomeres with higher AurkC level elevated pluripotency gene expression, which were inclined to enter the inner cell mass lineage and subsequently contributed to the embryo proper. Collectively, our results are the first demonstration that the activity of mitotic kinases can influence cell fate decisions in mammalian preimplantation embryos and have important implications to assisted reproduction.
Collapse
Affiliation(s)
- Wenzhi Li
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
37
|
Nguyen AL, Schindler K. Specialize and Divide (Twice): Functions of Three Aurora Kinase Homologs in Mammalian Oocyte Meiotic Maturation. Trends Genet 2017; 33:349-363. [PMID: 28359584 DOI: 10.1016/j.tig.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/18/2022]
Abstract
The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
38
|
Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 2016; 91:217-232. [PMID: 27779748 DOI: 10.1111/cge.12905] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Infertility, defined by the inability of conceiving a child after 1 year is estimated to concern approximately 50 million couples worldwide. As the male gamete is readily accessible and can be studied by a simple spermogram it is easier to subcategorize male than female infertility. Subjects with a specific sperm phenotype are more likely to have a common origin thus facilitating the search for causal factors. Male infertility is believed to be often multifactorial and caused by both genetic and extrinsic factors, but severe cases of male infertility are likely to have a predominant genetic etiology. Patients presenting with a monomorphic teratozoospermia such as globozoospermia or macrospermia with more than 85% of the spermatozoa presenting this specific abnormality have been analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm anomalies such as severe alteration of sperm motility, in particular multiple morphological anomalies of the sperm flagella (MMAF) or sperm unability to fertilize the oocyte (oocyte activation failure syndrome) has also enable the identification of new infertility genes. Here we review the recent works describing the identification and characterization of gene defects having a direct qualitative effect on sperm morphology or function.
Collapse
Affiliation(s)
- P F Ray
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Biochimie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
| | - A Toure
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | - C Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - C Coutton
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
39
|
Radford SJ, Nguyen AL, Schindler K, McKim KS. The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma 2016; 126:351-364. [PMID: 27837282 DOI: 10.1007/s00412-016-0618-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.
Collapse
Affiliation(s)
- Sarah J Radford
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | | | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kim S McKim
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
40
|
Cicenas J. The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2016; 142:1995-2012. [PMID: 26932147 DOI: 10.1007/s00432-016-2136-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed).
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet, 1211, Geneva 4, Switzerland.
- MAP Kinase Resource, Melchiorstrasse 9, 3027, Bern, Switzerland.
- Proteomics Centre, Vilnius University Institute of Biochemistry, 08662, Vilnius, Lithuania.
| |
Collapse
|
41
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Mesic A, Rogar M, Hudler P, Juvan R, Komel R. Association of the AURKA and AURKC gene polymorphisms with an increased risk of gastric cancer. IUBMB Life 2016; 68:634-44. [PMID: 27270838 DOI: 10.1002/iub.1521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/18/2016] [Indexed: 12/19/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in mitotic checkpoint genes can contribute to susceptibility of human cancer, including gastric cancer (GC). We aimed to investigate the effects of Aurora kinase A (AURKA), Aurora kinase B (AURKB), and Aurora kinase C (AURKC) gene polymorphisms on GC risk in Slovenian population. We genotyped four SNPs in AURKA (rs2273535 and rs1047972), AURKB (rs2241909), and AURKC (rs758099) in a total of 128 GC patients and 372 healthy controls using TaqMan allelic discrimination assays to evaluate their effects on GC risk. Our results showed that genotype frequencies between cases and controls were significantly different for rs1047972 and rs758099 (P < 0.05). Our study demonstrated that AURKA rs1047972 TT and (CC + CT) genotypes were significantly associated with an increased risk of gastric cancer. Our results additionally revealed that AURKC rs758099 TT and (CC + CT) genotypes were also associated with increased GC risk. In stratified analysis, genotypes TT and (CC + CT) of AURKA rs1047972 SNP were associated with increased risk of both, intestinal and diffuse, types of GC. In addition, AURKC rs758099 TT and (CC + CT) genotypes were positively associated with increased intestinal type GC risk, but not with an increased diffuse type GC risk. Based on these results, we can conclude that AURKA rs1047972 and AURKC rs758099 polymorphisms could affect the risk of GC development. Further larger studies are needed to confirm these findings. © 2016 IUBMB Life, 68(8):634-644, 2016.
Collapse
Affiliation(s)
- Aner Mesic
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Marija Rogar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Juvan
- Clinical Department for Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
43
|
Terzaghi L, Tessaro I, Raucci F, Merico V, Mazzini G, Garagna S, Zuccotti M, Franciosi F, Lodde V. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis. Cell Cycle 2016; 15:2019-32. [PMID: 27260975 DOI: 10.1080/15384101.2016.1192731] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.
Collapse
Affiliation(s)
- L Terzaghi
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - I Tessaro
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - F Raucci
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - V Merico
- b Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," University of Pavia , Pavia , Italy
| | - G Mazzini
- c Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche , Pavia , Italy
| | - S Garagna
- b Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," University of Pavia , Pavia , Italy
| | - M Zuccotti
- d Sezione di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche , Biotecnologiche e Traslazionali (S.Bi.Bi.T.), University of Parma , Italy
| | - F Franciosi
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - V Lodde
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| |
Collapse
|
44
|
Fellmeth JE, Ghanaim EM, Schindler K. Characterization of macrozoospermia-associated AURKC mutations in a mammalian meiotic system. Hum Mol Genet 2016; 25:2698-2711. [PMID: 27106102 DOI: 10.1093/hmg/ddw128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Aneuploidy is the leading genetic abnormality that leads to miscarriage, and it is caused by a failure of accurate chromosome segregation during gametogenesis or early embryonic divisions. Aurora kinase C (AURKC) is essential for formation of euploid sperm in humans because mutations in AURKC are correlated with macrozoospermia and these sperm are tetraploid. These mutations are currently the most frequent mutations that cause macrozoospermia and result from an inability to complete meiosis I (MI). Three of these mutations AURKC c.144delC (AURKC p.L49Wfs22), AURKC c.686G > A (AURKC p.C229Y) and AURKC c.744C > G (AURKC p.Y248*) occur in the coding region of the gene and are the focus of this study. By expressing these alleles in oocytes isolated from Aurkc-/- mice, we show that the mutations have different effects on AURKC function during MI. AURKC p.L49Wfs22 is a loss-of-function mutant that perturbs localization of the chromosomal passenger complex (CPC), AURKC p.C229Y is a hypomorph that cannot fully support cell-cycle progression, and AURKC p.Y248* fails to localize and function with the CPC to support chromosome segregation yet retains catalytic activity in the cytoplasm. Finally, we show that these variants of AURKC cause meiotic failure and polyploidy due to a failure in AURKC-CPC function that results in metaphase chromosome misalignment. This study is the first to assess the function of mutant alleles of AURKC that affect human fertility in a mammalian meiotic system.
Collapse
Affiliation(s)
| | - Elena M Ghanaim
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
45
|
Bavetsias V, Linardopoulos S. Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol 2015; 5:278. [PMID: 26734566 PMCID: PMC4685048 DOI: 10.3389/fonc.2015.00278] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022] Open
Abstract
The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions.
Collapse
Affiliation(s)
- Vassilios Bavetsias
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK
| | - Spiros Linardopoulos
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| |
Collapse
|
46
|
de Groot CO, Hsia JE, Anzola JV, Motamedi A, Yoon M, Wong YL, Jenkins D, Lee HJ, Martinez MB, Davis RL, Gahman TC, Desai A, Shiau AK. A Cell Biologist's Field Guide to Aurora Kinase Inhibitors. Front Oncol 2015; 5:285. [PMID: 26732741 PMCID: PMC4685510 DOI: 10.3389/fonc.2015.00285] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023] Open
Abstract
Aurora kinases are essential for cell division and are frequently misregulated in human cancers. Based on their potential as cancer therapeutics, a plethora of small molecule Aurora kinase inhibitors have been developed, with a subset having been adopted as tools in cell biology. Here, we fill a gap in the characterization of Aurora kinase inhibitors by using biochemical and cell-based assays to systematically profile a panel of 10 commercially available compounds with reported selectivity for Aurora A (MLN8054, MLN8237, MK-5108, MK-8745, Genentech Aurora Inhibitor 1), Aurora B (Hesperadin, ZM447439, AZD1152-HQPA, GSK1070916), or Aurora A/B (VX-680). We quantify the in vitro effect of each inhibitor on the activity of Aurora A alone, as well as Aurora A and Aurora B bound to fragments of their activators, TPX2 and INCENP, respectively. We also report kinome profiling results for a subset of these compounds to highlight potential off-target effects. In a cellular context, we demonstrate that immunofluorescence-based detection of LATS2 and histone H3 phospho-epitopes provides a facile and reliable means to assess potency and specificity of Aurora A versus Aurora B inhibition, and that G2 duration measured in a live imaging assay is a specific readout of Aurora A activity. Our analysis also highlights variation between HeLa, U2OS, and hTERT-RPE1 cells that impacts selective Aurora A inhibition. For Aurora B, all four tested compounds exhibit excellent selectivity and do not significantly inhibit Aurora A at effective doses. For Aurora A, MK-5108 and MK-8745 are significantly more selective than the commonly used inhibitors MLN8054 and MLN8237. A crystal structure of an Aurora A/MK-5108 complex that we determined suggests the chemical basis for this higher specificity. Taken together, our quantitative biochemical and cell-based analyses indicate that AZD1152-HQPA and MK-8745 are the best current tools for selectively inhibiting Aurora B and Aurora A, respectively. However, MK-8745 is not nearly as ideal as AZD1152-HQPA in that it requires high concentrations to achieve full inhibition in a cellular context, indicating a need for more potent Aurora A-selective inhibitors. We conclude with a set of “good practice” guidelines for the use of Aurora inhibitors in cell biology experiments.
Collapse
Affiliation(s)
- Christian O de Groot
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Judy E Hsia
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - John V Anzola
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Amir Motamedi
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Michelle Yoon
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Yao Liang Wong
- Laboratory of Chromosome Biology, Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - David Jenkins
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Hyun J Lee
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Mallory B Martinez
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Robert L Davis
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| | - Arshad Desai
- Laboratory of Chromosome Biology, Ludwig Institute for Cancer Research, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research , La Jolla, CA , USA
| |
Collapse
|
47
|
Wang Q, Wei H, Du J, Cao Y, Zhang N, Liu X, Liu X, Chen D, Ma W. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis. Cell Cycle 2015; 15:213-24. [PMID: 26636626 DOI: 10.1080/15384101.2015.1121330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.
Collapse
Affiliation(s)
- Qian Wang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Haojie Wei
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Juan Du
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Yan Cao
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Nana Zhang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyun Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyu Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Dandan Chen
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Wei Ma
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| |
Collapse
|
48
|
Woo Seo D, Yeop You S, Chung WJ, Cho DH, Kim JS, Su Oh J. Zwint-1 is required for spindle assembly checkpoint function and kinetochore-microtubule attachment during oocyte meiosis. Sci Rep 2015; 5:15431. [PMID: 26486467 PMCID: PMC4614028 DOI: 10.1038/srep15431] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
The key step for faithful chromosome segregation during meiosis is kinetochore assembly. Defects in this process result in aneuploidy, leading to miscarriages, infertility and various birth defects. However, the roles of kinetochores in homologous chromosome segregation during meiosis are ill-defined. Here we found that Zwint-1 is required for homologous chromosome segregation during meiosis. Knockdown of Zwint-1 accelerated the first meiosis by abrogating the kinetochore recruitment of Mad2, leading to chromosome misalignment and a high incidence of aneuploidy. Although Zwint-1 knockdown did not affect Aurora C kinase activity, the meiotic defects following Zwint-1 knockdown were similar to those observed with ZM447439 treatment. Importantly, the chromosome misalignment following Aurora C kinase inhibition was not restored after removing the inhibitor in Zwint-1-knockdown oocytes, whereas the defect was rescued after the inhibitor washout in the control oocytes. These results suggest that Aurora C kinase-mediated correction of erroneous kinetochore-microtubule attachment is primarily regulated by Zwint-1. Our results provide the first evidence that Zwint-1 is required to correct erroneous kinetochore-microtubule attachment and regulate spindle checkpoint function during meiosis.
Collapse
Affiliation(s)
- Dong Woo Seo
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Seung Yeop You
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Woo-Jae Chung
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Dong-Hyung Cho
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| |
Collapse
|
49
|
Gavriilidis P, Giakoustidis A, Giakoustidis D. Aurora Kinases and Potential Medical Applications of Aurora Kinase Inhibitors: A Review. J Clin Med Res 2015; 7:742-51. [PMID: 26345296 PMCID: PMC4554212 DOI: 10.14740/jocmr2295w] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/17/2022] Open
Abstract
Aurora kinases (AKs) represent a novel group of serine/threonine kinases. They were originally described in 1995 by David Glover in the course of studies of mutant alleles characterized with unusual spindle pole configuration in Drosophila melanogaster. Thus far, three AKs A, B, and C have been discovered in human healthy and neoplastic cells. Each one locates in different subcellular locations and they are all nuclear proteins. AKs are playing an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. Any inactivation of them can have catastrophic consequences on mitotic events of spindle formation, alignment of centrosomes and cytokinesis, resulting in apoptosis. Overexpression of AKs has been detected in diverse solid and hematological cancers and has been linked with a dismal prognosis. After discovery and identification of the first aurora kinase inhibitor (AKI) ZM447439 as a potential drug for targeted therapy in cancer treatment, approximately 30 AKIs have been introduced in cancer treatment.
Collapse
Affiliation(s)
- Paschalis Gavriilidis
- Department of Surgical Oncology, Theageneio Anticancer Hospital, Thessaloniki, Greece
| | - Alexandros Giakoustidis
- Department of Transplantation Surgery, Hippokrateion University Hospital, Thessaloniki, Greece
| | - Dimitrios Giakoustidis
- Department of Transplantation Surgery, Hippokrateion University Hospital, Thessaloniki, Greece
| |
Collapse
|
50
|
Quartuccio SM, Schindler K. Functions of Aurora kinase C in meiosis and cancer. Front Cell Dev Biol 2015; 3:50. [PMID: 26347867 PMCID: PMC4542505 DOI: 10.3389/fcell.2015.00050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/04/2015] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome encodes three Aurora kinase protein family members: A, B, and C. While Aurora kinase A (AURKA) and B (AURKB) are found in cells throughout the body, significant protein levels of Aurora kinase C (AURKC) are limited to cells that undergo meiosis (sperm and oocyte). Despite its discovery nearly 20 years ago, we know little about the function of AURKC compared to that of the other 2 Aurora kinases. This lack of understanding can be attributed to the high sequence homology between AURKB and AURKC preventing the use of standard approaches to understand non-overlapping and meiosis I (MI)-specific functions of the two kinases. Recent evidence has revealed distinct functions of AURKC in meiosis and may aid in our understanding of why chromosome segregation during MI often goes awry in oocytes. Many cancers aberrantly express AURKC, but because we do not fully understand AURKC function in its normal cellular context, it is difficult to predict the biological significance of this expression on the disease. Here, we consolidate and update what is known about AURKC signaling in meiotic cells to better understand why it has oncogenic potential.
Collapse
Affiliation(s)
- Suzanne M Quartuccio
- Department of Genetics, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| |
Collapse
|