1
|
Quarles E, Petreanu L, Narain A, Jain A, Rai A, Wang J, Oleson B, Jakob U. Cryosectioning and immunofluorescence of C. elegans reveals endogenous polyphosphate in intestinal endo-lysosomal organelles. CELL REPORTS METHODS 2024; 4:100879. [PMID: 39413779 PMCID: PMC11573743 DOI: 10.1016/j.crmeth.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Polyphosphate (polyP) is a ubiquitous polyanion present throughout the tree of life. While polyP's widely varied functions have been interrogated in single-celled organisms, little is known about the cellular distribution and function of polyP in multicellular organisms. To study polyP in metazoans, we developed the nematode Caenorhabditis elegans as a model system. We designed a high-throughput, longitudinal-orientation cryosectioning method that allowed us to scrutinize the intracellular localization of polyP in fixed C. elegans using fluorescent polyP probes and co-immunostaining targeting appropriate marker proteins. We discovered that the vast majority of polyP is localized within the endo-lysosomal compartments of the intestinal cells and is highly sensitive toward the disruption of endo-lysosomal compartment generation and food availability. This study lays the groundwork for further mechanistic research of polyPs in multicellular organisms and provides a reliable method for immunostaining hundreds of fixed worms in a single experiment.
Collapse
Affiliation(s)
- Ellen Quarles
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
| | - Lauren Petreanu
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Anjali Narain
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Aanchal Jain
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Akash Rai
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Joyful Wang
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Bryndon Oleson
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| | - Ursula Jakob
- University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Benvenuto G, Leone S, Astoricchio E, Bormke S, Jasek S, D'Aniello E, Kittelmann M, McDonald K, Hartenstein V, Baena V, Escrivà H, Bertrand S, Schierwater B, Burkhardt P, Ruiz-Trillo I, Jékely G, Ullrich-Lüter J, Lüter C, D'Aniello S, Arnone MI, Ferraro F. Evolution of the ribbon-like organization of the Golgi apparatus in animal cells. Cell Rep 2024; 43:113791. [PMID: 38428420 DOI: 10.1016/j.celrep.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.
Collapse
Affiliation(s)
- Giovanna Benvenuto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Emanuele Astoricchio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | | | - Sanja Jasek
- Living Systems Institute, University of Exeter, Exeter, UK; Heidelberg University, Centre for Organismal Studies (COS), Heidelberg, Germany
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Kent McDonald
- Electron Microscope Lab, University of California Berkeley, Berkeley, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Valentina Baena
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Héctor Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Bernd Schierwater
- Institute of Ecology and Evolution, Hannover University of Veterinary Medicine Foundation, Hannover, Germany
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK; Heidelberg University, Centre for Organismal Studies (COS), Heidelberg, Germany
| | | | | | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy.
| |
Collapse
|
3
|
Li X, Liu B, Wen Y, Wang J, Guo YR, Shi A, Lin L. Coordination of RAB-8 and RAB-11 during unconventional protein secretion. J Cell Biol 2024; 223:e202306107. [PMID: 38019180 PMCID: PMC10686230 DOI: 10.1083/jcb.202306107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Multiple physiology-pertinent transmembrane proteins reach the cell surface via the Golgi-bypassing unconventional protein secretion (UcPS) pathway. By employing C. elegans-polarized intestine epithelia, we recently have revealed that the small GTPase RAB-8/Rab8 serves as an important player in the process. Nonetheless, its function and the relevant UcPS itinerary remain poorly understood. Here, we show that deregulated RAB-8 activity resulted in impaired apical UcPS, which increased sensitivity to infection and environmental stress. We also identified the SNARE VTI-1/Vti1a/b as a new RAB-8-interacting factor involved in the apical UcPS. Besides, RAB-11/Rab11 was capable of recruiting RABI-8/Rabin8 to reduce the guanine nucleotide exchange activity of SMGL-1/GEF toward RAB-8, indicating the necessity of a finely tuned RAB-8/RAB-11 network. Populations of RAB-8- and RAB-11-positive endosomal structures containing the apical UcPS cargo moved toward the apical side. In the absence of RAB-11 or its effectors, the cargo was retained in RAB-8- and RAB-11-positive endosomes, respectively, suggesting that these endosomes are utilized as intermediate carriers for the UcPS.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusong R. Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Smeele PH, Vaccari T. Snapshots from within the cell: Novel trafficking and non trafficking functions of Snap29 during tissue morphogenesis. Semin Cell Dev Biol 2023; 133:42-52. [PMID: 35256275 DOI: 10.1016/j.semcdb.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023]
Abstract
Membrane trafficking is a core cellular process that supports diversification of cell shapes and behaviors relevant to morphogenesis during development and in adult organisms. However, how precisely trafficking components regulate specific differentiation programs is incompletely understood. Snap29 is a multifaceted Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor, involved in a wide range of trafficking and non-trafficking processes in most cells. A body of knowledge, accrued over more than two decades since its discovery, reveals that Snap29 is essential for establishing and maintaining the operation of a number of cellular events that support cell polarity and signaling. In this review, we first summarize established functions of Snap29 and then we focus on novel ones in the context of autophagy, Golgi trafficking and vesicle fusion at the plasma membrane, as well as on non-trafficking activities of Snap29. We further describe emerging evidence regarding the compartmentalisation and regulation of Snap29. Finally, we explore how the loss of distinct functions of human Snap29 may lead to the clinical manifestations of congenital disorders such as CEDNIK syndrome and how altered SNAP29 activity may contribute to the pathogenesis of cancer, viral infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Paulien H Smeele
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
5
|
Wang X, Li X, Wang J, Wang J, Hu C, Zeng J, Shi A, Lin L. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J Cell Biol 2022; 221:213235. [PMID: 35604368 PMCID: PMC9129922 DOI: 10.1083/jcb.202111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023] Open
Abstract
Unconventional protein secretion (UPS) pathways are conserved across species. However, the underlying mechanisms that regulate Golgi-bypassing UPS of integral proteins remain elusive. In this study, we show that RAB-8 and SMGL-1/NBAS are required for the UPS of integral proteins in C. elegans intestine. SMGL-1 resides in the ER-Golgi intermediate compartment and adjacent RAB-8-positive structures, and NRZ complex component CZW-1/ZW10 is required for this residency. Notably, SMGL-1 acts as a guanine nucleotide exchange factor for RAB-8, ensuring UPS of integral proteins by driving the activation of RAB-8. Furthermore, we show that Pseudomonas aeruginosa infection elevated the expression of SMGL-1 and RAB-8. Loss of SMGL-1 or RAB-8 compromised resistance to environmental colchicine, arsenite, and pathogenic bacteria. These results suggest that the SMGL-1/RAB-8-mediated UPS could integrate environmental signals to serve as a host defense response. Together, by establishing the C. elegans intestine as a multicellular model, our findings provide insights into RAB-8-dependent Golgi-bypassing UPS, especially in the context of epithelia in vivo.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junkai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Correspondence to Anbing Shi:
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Long Lin:
| |
Collapse
|
6
|
Page KM, McCormack JJ, Lopes-da-Silva M, Patella F, Harrison-Lavoie K, Burden JJ, Quah YYB, Scaglioni D, Ferraro F, Cutler DF. Structure modeling hints at a granular organization of the Golgi ribbon. BMC Biol 2022; 20:111. [PMID: 35549945 PMCID: PMC9102599 DOI: 10.1186/s12915-022-01305-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this "ribbon" architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses" whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis. RESULTS WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a "breathing" arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions. CONCLUSIONS Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells.
Collapse
Affiliation(s)
- Karen M. Page
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK
| | - Jessica J. McCormack
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Mafalda Lopes-da-Silva
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: iNOVA4Health, CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Francesca Patella
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: Kinomica, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG UK
| | - Kimberly Harrison-Lavoie
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Ying-Yi Bernadette Quah
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Dominic Scaglioni
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, BEOM, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Daniel F. Cutler
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
7
|
Wang S, Yao L, Zhang W, Cheng Z, Hu C, Liu H, Yan Y, Shi A. AP-1 Recruits SMAP-1/SMAPs to the trans-Golgi Network to Promote Sorting in Polarized Epithelia. Front Cell Dev Biol 2021; 9:774401. [PMID: 34901019 PMCID: PMC8655793 DOI: 10.3389/fcell.2021.774401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Coordinated AP-1 and clathrin coat assembly mediate secretory sorting on the trans-Golgi network (TGN) during conventional secretion. Here we found that SMAP-1/SMAPs deficiency caused the apical protein ERM-1 to accumulate on the basolateral side of the TGN. In contrast, the basolateral protein SLCF-1 appeared abnormally on the apical membrane. SMAP-1 colocalized with AP-1 on the TGN. The integrity of AP-1 is required for the subcellular presence of SMAP-1. Moreover, we found that the loss of SMAP-1 reduced clathrin-positive structures in the cytosol, suggesting that SMAP-1 has a regulatory role in clathrin assembly on the TGN. Functional experiments showed that overexpressing clathrin effectively alleviated exocytic defects due to the lack of SMAP-1, corroborating the role of SMAP-1 in promoting the assembly of clathrin on the TGN. Together, our results suggested that the AP-1 complex regulates the TGN localization of SMAP-1, promoting clathrin assembly to ensure polarized conventional secretion in C. elegans intestinal epithelia.
Collapse
Affiliation(s)
- Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longfeng Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
9
|
Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells 2021; 10:cells10030694. [PMID: 33800981 PMCID: PMC8004021 DOI: 10.3390/cells10030694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an evolutionarily conserved degradation process maintaining cell homeostasis. Induction of autophagy is triggered as a response to a broad range of cellular stress conditions, such as nutrient deprivation, protein aggregation, organelle damage and pathogen invasion. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane organelle referred to as the autophagosome with subsequent degradation of its contents upon delivery to lysosomes. Autophagy plays critical roles in development, maintenance and survival of distinct cell populations including neurons. Consequently, age-dependent decline in autophagy predisposes animals for age-related diseases including neurodegeneration and compromises healthspan and longevity. In this review, we summarize recent advances in our understanding of the role of neuronal autophagy in ageing, focusing on studies in the nematode Caenorhabditis elegans.
Collapse
|
10
|
Morelli E, Speranza EA, Pellegrino E, Beznoussenko GV, Carminati F, Garré M, Mironov AA, Onorati M, Vaccari T. Activity of the SNARE Protein SNAP29 at the Endoplasmic Reticulum and Golgi Apparatus. Front Cell Dev Biol 2021; 9:637565. [PMID: 33718375 PMCID: PMC7945952 DOI: 10.3389/fcell.2021.637565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
Snap29 is a conserved regulator of membrane fusion essential to complete autophagy and to support other cellular processes, including cell division. In humans, inactivating SNAP29 mutations causes CEDNIK syndrome, a rare multi-systemic disorder characterized by congenital neuro-cutaneous alterations. The fibroblasts of CEDNIK patients show alterations of the Golgi apparatus (GA). However, whether and how Snap29 acts at the GA is unclear. Here we investigate SNAP29 function at the GA and endoplasmic reticulum (ER). As part of the elongated structures in proximity to these membrane compartments, a pool of SNAP29 forms a complex with Syntaxin18, or with Syntaxin5, which we find is required to engage SEC22B-loaded vesicles. Consistent with this, in HeLa cells, in neuroepithelial stem cells, and in vivo, decreased SNAP29 activity alters GA architecture and reduces ER to GA trafficking. Our data reveal a new regulatory function of Snap29 in promoting secretory trafficking.
Collapse
Affiliation(s)
- Elena Morelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Elisa A Speranza
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Enrica Pellegrino
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Pisa, Italy
| | | | | | | | | | - Marco Onorati
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Pisa, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Huang CR, Kuo CJ, Huang CW, Chen YT, Liu BY, Lee CT, Chen PL, Chang WT, Chen YW, Lee TM, Hsieh HC, Chen CS. Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli. Nat Commun 2021; 12:90. [PMID: 33397943 PMCID: PMC7782584 DOI: 10.1038/s41467-020-20355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) induces changes to the intestinal cell cytoskeleton and formation of attaching and effacing lesions, characterized by the effacement of microvilli and then formation of actin pedestals to which the bacteria are tightly attached. Here, we use a Caenorhabditis elegans model of EHEC infection to show that microvillar effacement is mediated by a signalling pathway including mitotic cyclin-dependent kinase 1 (CDK1) and diaphanous-related formin 1 (CYK1). Similar observations are also made using EHEC-infected human intestinal cells in vitro. Our results support the use of C. elegans as a host model for studying attaching and effacing lesions in vivo, and reveal that the CDK1-formin signal axis is necessary for EHEC-induced microvillar effacement.
Collapse
Affiliation(s)
- Cheng-Rung Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Wen Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bang-Yu Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzer-Min Lee
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Chen Hsieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Liang X, Kokes M, Fetter RD, Sallee MD, Moore AW, Feldman JL, Shen K. Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites. eLife 2020; 9:e56547. [PMID: 32657271 PMCID: PMC7375809 DOI: 10.7554/elife.56547] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in Caenorhabditis elegans the dendritic growth cone contains a non-centrosomal microtubule organizing center (MTOC), which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.
Collapse
Affiliation(s)
- Xing Liang
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Marcela Kokes
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Richard D Fetter
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | | | | | | | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
13
|
Tanaka H, Kanatome A, Takagi S. Involvement of the synaptotagmin/stonin2 system in vesicular transport regulated by semaphorins in Caenorhabditis elegans epidermal cells. Genes Cells 2020; 25:391-401. [PMID: 32167217 DOI: 10.1111/gtc.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 11/30/2022]
Abstract
Vesicular transport serves as an important mechanism for cell shape regulation during development. Although the semaphorin signaling molecule, a well-known regulator of axon guidance, induces endocytosis in the growth cone and the axonal transport of vertebrate neurons, the underlying molecular mechanisms remain largely unclear. Here, we show that the Caenorhabditis elegans SNT-1/synaptotagmin-UNC-41/stonin2 system, whose role in synaptic vesicle recycling in neurons has been studied extensively, is involved in semaphorin-regulated vesicular transport in larval epidermal cells. Mutations in the snt-1/unc-41 genes strongly suppressed the cell shape defects of semaphorin mutants. The null mutation in the semaphorin receptor gene, plx-1, altered the expression and localization pattern of endocytic and exocytic markers in the epidermal cells while repressing the transport of SNT-1-containing vesicles toward late endosome/lysosome pathways. Our findings suggest that the nematode semaphorins regulate the vesicular transport in epidermal cells in a manner distinct from that of vertebrate semaphorins in neurons.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Biological Science, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Ayana Kanatome
- Division of Biological Science, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Shin Takagi
- Division of Biological Science, Nagoya University Graduate School of Science, Nagoya, Japan
| |
Collapse
|
14
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
15
|
Bidaud-Meynard A, Nicolle O, Heck M, Le Cunff Y, Michaux G. A V0-ATPase-dependent apical trafficking pathway maintains the polarity of the intestinal absorptive membrane. Development 2019; 146:dev174508. [PMID: 31110027 PMCID: PMC7376742 DOI: 10.1242/dev.174508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Intestine function relies on the strong polarity of intestinal epithelial cells and the array of microvilli forming a brush border at their luminal pole. Combining a genetic RNA interference (RNAi) screen with in vivo super-resolution imaging in the Caenorhabditiselegans intestine, we found that the V0 sector of the vacuolar ATPase (V0-ATPase) controls a late apical trafficking step, involving Ras-related protein 11 (RAB-11)+ endosomes and the N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) synaptosome-associated protein 29 (SNAP-29), and is necessary to maintain the polarized localization of both apical polarity modules and brush border proteins. We show that the V0-ATPase pathway also genetically interacts with glycosphingolipids and clathrin in enterocyte polarity maintenance. Finally, we demonstrate that silencing of the V0-ATPase fully recapitulates the severe structural, polarity and trafficking defects observed in enterocytes from individuals with microvillus inclusion disease (MVID) and use this new in vivo MVID model to follow the dynamics of microvillus inclusions. Thus, we describe a new function for V0-ATPase in apical trafficking and epithelial polarity maintenance and the promising use of the C. elegans intestine as an in vivo model to better understand the molecular mechanisms of rare genetic enteropathies.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Markus Heck
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Yann Le Cunff
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
16
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
17
|
Zhao YG, Zhang H. Autophagosome maturation: An epic journey from the ER to lysosomes. J Cell Biol 2018; 218:757-770. [PMID: 30578282 PMCID: PMC6400552 DOI: 10.1083/jcb.201810099] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and their delivery to lysosomes for degradation. In multicellular organisms, nascent autophagosomes fuse with vesicles originating from endolysosomal compartments before forming degradative autolysosomes, a process known as autophagosome maturation. ATG8 family members, tethering factors, Rab GTPases, and SNARE proteins act coordinately to mediate fusion of autophagosomes with endolysosomal vesicles. The machinery mediating autophagosome maturation is under spatiotemporal control and provides regulatory nodes to integrate nutrient availability with autophagy activity. Dysfunction of autophagosome maturation is associated with various human diseases, including neurodegenerative diseases, Vici syndrome, cancer, and lysosomal storage disorders. Understanding the molecular mechanisms underlying autophagosome maturation will provide new insights into the pathogenesis and treatment of these diseases.
Collapse
Affiliation(s)
- Yan G Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Hong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China .,National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Huang L, Yuan P, Yu P, Kong Q, Xu Z, Yan X, Shen Y, Yang J, Wan R, Hong K, Tang Y, Hu J. O-GlcNAc-modified SNAP29 inhibits autophagy-mediated degradation via the disturbed SNAP29-STX17-VAMP8 complex and exacerbates myocardial injury in type I diabetic rats. Int J Mol Med 2018; 42:3278-3290. [PMID: 30221662 PMCID: PMC6202107 DOI: 10.3892/ijmm.2018.3866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification and autophagy are associated with diabetic myocardial injury, however, the molecular mechanisms between the two processes remain to be fully elucidated. The purpose of the present study was to elucidate the molecular regulation of autophagy by O-GlcNAc-modified synaptosomal-associated protein 29 (SNAP29) in diabetic myocardial injury. A rat model of type I diabetes was established via intraperitoneal injection of streptozotocin (STZ; 55 mg/kg). Significant increases in the O-GlcNAc modification and accumulation of the autophagy markers microtubule-associated protein 1 light chain 3α II/I and P62, which suggest that autophagic flux is inhibited, were observed in rats 8 weeks following STZ induction. Subsequently, the selective O-GlcNAcase inhibitor, thiamet G, increased the level of O-GlcNAc modification, which further disrupted autophagic flux; deteriorated cardiac diastolic function, as indicated by an increased left ventricular filling peak velocity/atrial contraction flow peak velocity ratio shown by echocardiography; and exacerbated myocardial abnormalities, as characterized by cardiomyocyte disorganization and fat and interstitial fibrosis accumulation. By contrast, 6-diazo-5-oxo-L-norleucine, an inhibitor of glucosamine fructose-6-phosphate aminotransferase isomerizing 1, acted as an O-GlcNAc antagonist and reduced the level of O-GlcNAc modification, which maintained autophagic flux and improved cardiac diastolic function. In vitro, high glucose (25 mM) was used to stimulate primary neonatal rat cardiomyocytes (NRCMs). Consistent with the myocardium of diabetic rats, it was also shown in the NRCMs that O-GlcNAc modification of SNAP29 negatively regulated autophagic flux. The application of the short hairpin RNA interference lysosome-associated membrane protein (LAMP2) and the autophagy inhibitor 3-methyladenine demonstrated that high glucose inhibited autophagy-mediated degradation rather than affected the initial stage of autophagy. Finally, co-immunoprecipitation was used to determine the role of the O-GlcNAc-modified substrate protein SNAP29, which acted as an SNAP29-syntaxin-17 (STX17)-vesicle-associated membrane protein 8 (VAMP8) complex during disease progression. The present study is the first, to the best of our knowledge, to demonstrate that SNAP29 is an O-GlcNAc substrate and that an increase in O-GlcNAc-modified SNAP29 inhibits SNAP29-STX17-VAMP8 complex formation, thereby inhibiting the degradation of autophagy and exacerbating myocardial injury in type I diabetic rats.
Collapse
Affiliation(s)
- Lin Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Yuan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peng Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiling Kong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zixuan Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xia Yan
- The Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Shen
- The Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juesheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Wan
- The Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Saegusa K, Sato M, Morooka N, Hara T, Sato K. SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. J Cell Biol 2018; 217:2073-2085. [PMID: 29643117 PMCID: PMC5987718 DOI: 10.1083/jcb.201708115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Lipoproteins regulate the overall lipid homeostasis in animals. However, the molecular mechanisms underlying lipoprotein trafficking remain poorly understood. Here, we show that SFT-4, a Caenorhabditis elegans homologue of the yeast Erv29p, is essential for the endoplasmic reticulum (ER) export of the yolk protein VIT-2, which is synthesized as a lipoprotein complex. SFT-4 loss strongly inhibits the ER exit of yolk proteins and certain soluble cargo proteins in intestinal cells. SFT-4 predominantly localizes at ER exit sites (ERES) and physically interacts with VIT-2 in vivo, which suggests that SFT-4 promotes the ER export of soluble proteins as a cargo receptor. Notably, Surf4, a mammalian SFT-4 homologue, physically interacts with apolipoprotein B, a very-low-density lipoprotein core protein, and its loss causes ER accumulation of apolipoprotein B in human hepatic HepG2 cells. Interestingly, loss of SFT-4 and Surf4 reduced the number of COPII-positive ERES. Thus, SFT-4 and Surf4 regulate the export of soluble proteins, including lipoproteins, from the ER and participate in ERES organization in animals.
Collapse
Affiliation(s)
- Keiko Saegusa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Nobukatsu Morooka
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
20
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
21
|
Rapaport D, Fichtman B, Weidberg H, Sprecher E, Horowitz M. NEK3-mediated SNAP29 phosphorylation modulates its membrane association and SNARE fusion dependent processes. Biochem Biophys Res Commun 2018; 497:605-611. [DOI: 10.1016/j.bbrc.2018.02.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
|
22
|
Abstract
Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Collapse
|
23
|
Lee MH, Yoo YJ, Kim DH, Hanh NH, Kwon Y, Hwang I. The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus. PLANT PHYSIOLOGY 2017; 174:1576-1594. [PMID: 28487479 PMCID: PMC5490915 DOI: 10.1104/pp.17.00466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 05/28/2023]
Abstract
Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis (Arabidopsis thaliana) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4, atpra1.f4, was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na+/K+-ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA:AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus.
Collapse
Affiliation(s)
- Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yun-Joo Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dae Heon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Nguyen Hong Hanh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yun Kwon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
24
|
SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A 2017; 114:E307-E316. [PMID: 28053230 DOI: 10.1073/pnas.1612730114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.
Collapse
|
25
|
Kimura T, Jia J, Kumar S, Choi SW, Gu Y, Mudd M, Dupont N, Jiang S, Peters R, Farzam F, Jain A, Lidke KA, Adams CM, Johansen T, Deretic V. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J 2016; 36:42-60. [PMID: 27932448 DOI: 10.15252/embj.201695081] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL-1β is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R-SNARE Sec22b to recruit cargo to the LC3-II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome-lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP-23 and SNAP-29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway.
Collapse
Affiliation(s)
- Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jingyue Jia
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Suresh Kumar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Seong Won Choi
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yuexi Gu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Michal Mudd
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nicolas Dupont
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ryan Peters
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Farzin Farzam
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
26
|
Morelli E, Mastrodonato V, Beznoussenko GV, Mironov AA, Tognon E, Vaccari T. An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J 2016; 35:2223-2237. [PMID: 27647876 PMCID: PMC5069552 DOI: 10.15252/embj.201693991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis‐segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.
Collapse
Affiliation(s)
- Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Emiliana Tognon
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Vaccari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
27
|
Kuo CJ, Chen JW, Chiu HC, Teng CH, Hsu TI, Lu PJ, Syu WJ, Wang ST, Chou TC, Chen CS. Mutation of the Enterohemorrhagic Escherichia coli Core LPS Biosynthesis Enzyme RfaD Confers Hypersusceptibility to Host Intestinal Innate Immunity In vivo. Front Cell Infect Microbiol 2016; 6:82. [PMID: 27570746 PMCID: PMC4982379 DOI: 10.3389/fcimb.2016.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen causing severe diseases in humans worldwide. Currently, there is no specific treatment available for EHEC infection and the use of conventional antibiotics is contraindicated. Therefore, identification of potential therapeutic targets and development of effective measures to control and treat EHEC infection are needed. Lipopolysaccharides (LPS) are surface glycolipids found on the outer membrane of gram-negative bacteria, including EHEC, and LPS biosynthesis has long been considered as potential anti-bacterial target. Here, we demonstrated that the EHEC rfaD gene that functions in the biosynthesis of the LPS inner core is required for the intestinal colonization and pathogenesis of EHEC in vivo. Disruption of the EHEC rfaD confers attenuated toxicity in Caenorhabditis elegans and less bacterial colonization in the intestine of C. elegans and mouse. Moreover, rfaD is also involved in the control of susceptibility of EHEC to antimicrobial peptides and host intestinal immunity. It is worth noting that rfaD mutation did not interfere with the growth kinetics when compared to the wild-type EHEC cells. Taken together, we demonstrated that mutations of the EHEC rfaD confer hypersusceptibility to host intestinal innate immunity in vivo, and suggested that targeting the RfaD or the core LPS synthesis pathway may provide alternative therapeutic regimens for EHEC infection.
Collapse
Affiliation(s)
- Cheng-Ju Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jenn-Wei Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Tai-I Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Wan-Jr Syu
- Institute of Microbiology and Immunology, National Yang Ming UniversityTaipei, Taiwan
| | - Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Ting-Chen Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
28
|
Gershlick DC, Schindler C, Chen Y, Bonifacino JS. TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 2016; 27:2867-78. [PMID: 27440922 PMCID: PMC5025273 DOI: 10.1091/mbc.e16-04-0209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022] Open
Abstract
A previously uncharacterized WD40 domain–containing protein named TSSC1 is shown to interact with the GARP and EARP tethering complexes, promoting retrograde transport of Shiga toxin from endosomes to the TGN, as well as recycling internalized transferrin from endosomes to the plasma membrane. Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function.
Collapse
Affiliation(s)
- David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Christina Schindler
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yu Chen
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
29
|
Imae R, Dejima K, Kage-Nakadai E, Arai H, Mitani S. Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans. Sci Rep 2016; 6:28198. [PMID: 27306325 PMCID: PMC4910058 DOI: 10.1038/srep28198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
RNA silencing signals in C. elegans spread among cells, leading to RNAi
throughout the body. During systemic spread of RNAi, membrane trafficking is thought
to play important roles. Here, we show that RNAi Spreading Defective-3
(rsd-3), which encodes a homolog of epsinR, a conserved ENTH (epsin
N-terminal homology) domain protein, generally participates in cellular uptake of
silencing RNA. RSD-3 is previously thought to be involved in systemic RNAi only in
germ cells, but we isolated several deletion alleles of rsd-3, and found that
these mutants are defective in the spread of silencing RNA not only into germ cells
but also into somatic cells. RSD-3 is ubiquitously expressed, and intracellularly
localized to the trans-Golgi network (TGN) and endosomes. Tissue-specific
rescue experiments indicate that RSD-3 is required for importing silencing RNA into
cells rather than exporting from cells. Structure/function analysis showed that the
ENTH domain alone is sufficient, and membrane association of the ENTH domain is
required, for RSD-3 function in systemic RNAi. Our results suggest that endomembrane
trafficking through the TGN and endosomes generally plays an important role in
cellular uptake of silencing RNA.
Collapse
Affiliation(s)
- Rieko Imae
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
30
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Diapause is associated with a change in the polarity of secretion of insulin-like peptides. Nat Commun 2016; 7:10573. [PMID: 26838180 PMCID: PMC4742890 DOI: 10.1038/ncomms10573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022] Open
Abstract
The insulin/IGF-1 signalling (IIS) pathway plays an important role in the regulation of larval diapause, the long-lived growth arrest state called dauer arrest, in Caenorhabditis elegans. In this nematode, 40 insulin-like peptides (ILPs) have been identified as putative ligands of the IIS pathway; however, it remains unknown how ILPs modulate larval diapause. Here we show that the secretory polarity of INS-35 and INS-7, which suppress larval diapause, is changed in the intestinal epithelial cells at larval diapause. These ILPs are secreted from the intestine into the body cavity during larval stages. In contrast, they are secreted into the intestinal lumen and degraded during dauer arrest, only to be secreted into the body cavity again when the worms return to developmental growth. The process that determines the secretory polarity of INS-35 and INS-7, thus, has an important role in the modulation of larval diapause. Insulin-like peptides INS-7 and INS-35 suppress larval diapause in Caenorhabditis elegans via unknown mechanism. Here, Matsunaga et al. show that the secretory polarity of both peptides changes in diapause, when these peptides are secreted into the intestinal lumen instead of the body cavity like in other larval stages.
Collapse
|
32
|
Schiller SA, Seebode C, Wieser GL, Goebbels S, Möbius W, Horowitz M, Sarig O, Sprecher E, Emmert S. Establishment of Two Mouse Models for CEDNIK Syndrome Reveals the Pivotal Role of SNAP29 in Epidermal Differentiation. J Invest Dermatol 2015; 136:672-679. [PMID: 26747696 DOI: 10.1016/j.jid.2015.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/26/2022]
Abstract
Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) gene cause the cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome. In this study, we created total (Snap29(-/-)) as well as keratinocyte-specific (Snap29(fl/fl)/K14-Cre) Snap29 knockout mice. Both mutant mice exhibited a congenital distinct ichthyotic phenotype resulting in neonatal lethality. Mutant mice revealed acanthosis and hyperkeratosis as well as abnormal keratinocyte differentiation and increased proliferation. In addition, the epidermal barrier was severely impaired. These results indicate an essential role of SNAP29 in epidermal differentiation and barrier formation. Markedly decreased deposition of lamellar body contents in mutant mice epidermis and the observation of malformed lamellar bodies indicate severe impairments in lamellar body function due to the Snap29 knockout. We also found increased microtubule associated protein-1 light chain 3, isoform B-II levels, unchanged p62/SQSTM1 protein amounts, and strong induction of the endoplasmic reticulum stress marker C/EBP homologous protein in mutant mice. This emphasizes a role of SNAP29 in autophagy and endoplasmic reticulum stress. Our murine models serve as powerful tools for investigating keratinocyte differentiation processes and provide insights into the essential contribution of SNAP29 to epidermal differentiation.
Collapse
Affiliation(s)
- Stina A Schiller
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Christina Seebode
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany; Clinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Georg L Wieser
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Steffen Emmert
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany; Clinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
33
|
Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K, Sato K. REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in C. elegans Embryos. Dev Cell 2015; 35:211-221. [PMID: 26506309 DOI: 10.1016/j.devcel.2015.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/18/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
The small GTPase Rab11 dynamically changes its location to regulate various cellular processes such as endocytic recycling, secretion, and cytokinesis. However, our knowledge of its upstream regulators is still limited. Here, we identify the RAB-11-interacting protein-1 (REI-1) as a unique family of guanine nucleotide exchange factors (GEFs) for RAB-11 in Caenorhabditis elegans. Although REI-1 and its human homolog SH3-binding protein 5 do not contain any known Rab-GEF domains, they exhibited strong GEF activity toward Rab11 in vitro. In C. elegans, REI-1 is expressed in the germline and co-localizes with RAB-11 on the late-Golgi membranes. The loss of REI-1 specifically impaired the targeting of RAB-11 to the late-Golgi compartment and the recycling endosomes in embryos and further reduced the RAB-11 distribution to the cleavage furrow, which resulted in cytokinesis delay. These results suggest that REI-1 is a GEF specifically regulating the RAB-11 localization and functions in early embryos.
Collapse
Affiliation(s)
- Aisa Sakaguchi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Katsuya Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Keiko Gengyo-Ando
- Brain Science Institute, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Junichi Nakai
- Brain Science Institute, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|
34
|
SNAP23 is selectively expressed in airway secretory cells and mediates baseline and stimulated mucin secretion. Biosci Rep 2015; 35:BSR20150004. [PMID: 26182382 PMCID: PMC4613665 DOI: 10.1042/bsr20150004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/14/2015] [Indexed: 11/17/2022] Open
Abstract
Airway mucin secretion is important pathophysiologically and as a model of polarized epithelial regulated exocytosis. We find the trafficking protein, SNAP23 (23-kDa paralogue of synaptosome-associated protein of 25 kDa), selectively expressed in secretory cells compared with ciliated and basal cells of airway epithelium by immunohistochemistry and FACS, suggesting that SNAP23 functions in regulated but not constitutive epithelial secretion. Heterozygous SNAP23 deletant mutant mice show spontaneous accumulation of intracellular mucin, indicating a defect in baseline secretion. However mucins are released from perfused tracheas of mutant and wild-type (WT) mice at the same rate, suggesting that increased intracellular stores balance reduced release efficiency to yield a fully compensated baseline steady state. In contrast, acute stimulated release of intracellular mucin from mutant mice is impaired whether measured by a static imaging assay 5 min after exposure to the secretagogue ATP or by kinetic analysis of mucins released from perfused tracheas during the first 10 min of ATP exposure. Together, these data indicate that increased intracellular stores cannot fully compensate for the defect in release efficiency during intense stimulation. The lungs of mutant mice develop normally and clear bacteria and instilled polystyrene beads comparable to WT mice, consistent with these functions depending on baseline secretion that is fully compensated.
Collapse
|
35
|
Guo B, Liang Q, Li L, Hu Z, Wu F, Zhang P, Ma Y, Zhao B, Kovács AL, Zhang Z, Feng D, Chen S, Zhang H. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat Cell Biol 2014; 16:1215-26. [PMID: 25419848 DOI: 10.1038/ncb3066] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
The mechanism by which nutrient status regulates the fusion of autophagosomes with endosomes/lysosomes is poorly understood. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates O-GlcNAcylation of the SNARE protein SNAP-29 and regulates autophagy in a nutrient-dependent manner. In mammalian cells, OGT knockdown, or mutating the O-GlcNAc sites in SNAP-29, promotes the formation of a SNAP-29-containing SNARE complex, increases fusion between autophagosomes and endosomes/lysosomes, and promotes autophagic flux. In Caenorhabditis elegans, depletion of ogt-1 has a similar effect on autophagy; moreover, expression of an O-GlcNAc-defective SNAP-29 mutant facilitates autophagic degradation of protein aggregates. O-GlcNAcylated SNAP-29 levels are reduced during starvation in mammalian cells and in C. elegans. Our study reveals a mechanism by which O-GlcNAc-modification integrates nutrient status with autophagosome maturation.
Collapse
Affiliation(s)
- Bin Guo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhe Hu
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Fan Wu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peipei Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfen Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Bin Zhao
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Du Feng
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Hara T, Hashimoto Y, Akuzawa T, Hirai R, Kobayashi H, Sato K. Rer1 and calnexin regulate endoplasmic reticulum retention of a peripheral myelin protein 22 mutant that causes type 1A Charcot-Marie-Tooth disease. Sci Rep 2014; 4:6992. [PMID: 25385046 PMCID: PMC4227013 DOI: 10.1038/srep06992] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022] Open
Abstract
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Many PMP22 mutants accumulate in excess in the endoplasmic reticulum (ER) and lead to the inherited neuropathies of Charcot-Marie-Tooth (CMT) disease. However, the mechanism through which PMP22 mutants accumulate in the ER is unknown. Here, we studied the quality control mechanisms for the PMP22 mutants L16P and G150D, which were originally identified in mice and patients with CMT. We found that the ER-localised ubiquitin ligase Hrd1/SYVN1 mediates ER-associated degradation (ERAD) of PMP22(L16P) and PMP22(G150D), and another ubiquitin ligase, gp78/AMFR, mediates ERAD of PMP22(G150D) as well. We also found that PMP22(L16P), but not PMP22(G150D), is partly released from the ER by loss of Rer1, which is a Golgi-localised sorting receptor for ER retrieval. Rer1 interacts with the wild-type and mutant forms of PMP22. Interestingly, release of PMP22(L16P) from the ER was more prominent with simultaneous knockdown of Rer1 and the ER-localised chaperone calnexin than with the knockdown of each gene. These results suggest that CMT disease-related PMP22(L16P) is trapped in the ER by calnexin-dependent ER retention and Rer1-mediated early Golgi retrieval systems and partly degraded by the Hrd1-mediated ERAD system.
Collapse
Affiliation(s)
- Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Yukiko Hashimoto
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
37
|
Saegusa K, Sato M, Sato K, Nakajima-Shimada J, Harada A, Sato K. Caenorhabditis elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Mol Biol Cell 2014; 25:3095-3104. [PMID: 25143409 PMCID: PMC4196862 DOI: 10.1091/mbc.e13-09-0530] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 11/11/2022] Open
Abstract
Intestinal epithelial cells have unique apical membrane structures, known as microvilli, that contain bundles of actin microfilaments. In this study, we report that Caenorhabditis elegans cytosolic chaperonin containing TCP-1 (CCT) is essential for proper formation of microvilli in intestinal cells. In intestinal cells of cct-5(RNAi) animals, a substantial amount of actin is lost from the apical area, forming large aggregates in the cytoplasm, and the apical membrane is deformed into abnormal, bubble-like structures. The length of the intestinal microvilli is decreased in these animals. However, the overall actin protein levels remain relatively unchanged when CCT is depleted. We also found that CCT depletion causes a reduction in the tubulin levels and disorganization of the microtubule network. In contrast, the stability and localization of intermediate filament protein IFB-2, which forms a dense filamentous network underneath the apical surface, appears to be superficially normal in CCT-deficient cells, suggesting substrate specificity of CCT in the folding of filamentous cytoskeletons in vivo. Our findings demonstrate physiological functions of CCT in epithelial cell morphogenesis using whole animals.
Collapse
Affiliation(s)
- Keiko Saegusa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Katsuya Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
38
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
39
|
Xu H, Mohtashami M, Stewart B, Boulianne G, Trimble WS. Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic. PLoS One 2014; 9:e91471. [PMID: 24626111 PMCID: PMC3953403 DOI: 10.1371/journal.pone.0091471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Each membrane fusion event along the secretory and endocytic pathways requires a specific set of SNAREs to assemble into a 4-helical coiled-coil, the so-called trans-SNARE complex. Although most SNAREs contribute one helix to the trans-SNARE complex, members of the SNAP-25 family contribute two helixes. We report the characterization of the Drosophila homologue of SNAP-29 (dSNAP-29), which is expressed throughout development. Unlike the other SNAP-25 like proteins in fruit fly (i.e., dSNAP-25 and dSNAP-24), which form SDS-resistant SNARE complexes with their cognate SNAREs, dSNAP-29 does not participate in any SDS-resistant complexes, despite its interaction with dsyntaxin1 and dsyntaxin16 in vitro. Immunofluorescence studies indicated that dSNAP-29 is distributed in various tissues, locating in small intracellular puncta and on the plasma membrane, where it associates with EH domain-containing proteins implicated in the endocytic pathway. Overexpression and RNAi studies suggested that dSNAP-29 mediates an essential process in Drosophila development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| | - Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gabrielle Boulianne
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William S. Trimble
- Cell Biology Program, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 2014; 10:2251-68. [PMID: 25551675 PMCID: PMC4502674 DOI: 10.4161/15548627.2014.981913] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.
Collapse
Key Words
- Atg, autophagy-related
- CEDNIK, cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma
- CFP, cyan fluorescent protein
- E(spl)mβ-HLH, enhancer of split mβ, helix-loop-helix
- EM, electron microscopy
- ESCRT, endosomal sorting complex required for transport
- FE, follicular epithelium
- GFP, green fluorescent protein
- MENE, mutant eye no eclosion
- MVB, multivesicular body
- N, Notch
- NECD, N extracellular domain
- NPF, asparagine-proline-phenylalanine
- Notch
- SNARE
- SNARE, soluble NSF attachment protein receptor
- Snap29
- Snap29, synaptosomal-associated protein 29 kDa
- Socs36E, suppressor of cytokine signaling at 36E
- Syb, Synaptobrevin
- Syx, syntaxin
- V-ATPase, vacuolar H+-ATPase
- Vamp, vesicle-associated membrane protein
- Vps25, vacuolar protein sorting 25
- WT, wild type
- autophagy
- dome
- dome, domeless
- histone H3, His3
- hop-Stat92E, hopscotch-signal transducer and activator of transcription protein at 92E
- os, outstretched
- ref(2)P, refractory to sigma P
- trafficking
- usnp
Collapse
Affiliation(s)
- Elena Morelli
- IFOM - The FIRC Institute of Molecular Oncology; Milan, Italy
| | | | | | | | - Tor Erik Rusten
- Centre for Cancer Biomedicine; Oslo University Hospital; Oslo, Norway
| | - David Bilder
- Department of Molecular and Cell Biology; University of California; Berkeley, CA USA
| | - Harald Stenmark
- Centre for Cancer Biomedicine; Oslo University Hospital; Oslo, Norway
| | | | - Thomas Vaccari
- IFOM - The FIRC Institute of Molecular Oncology; Milan, Italy
| |
Collapse
|
41
|
Morgan JR, Comstra HS, Cohen M, Faundez V. Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 2013; 5:a016915. [PMID: 24086045 DOI: 10.1101/cshperspect.a016915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The release and uptake of neurotransmitters by synaptic vesicles is a tightly controlled process that occurs in response to diverse stimuli at morphologically disparate synapses. To meet these architectural and functional synaptic demands, it follows that there should be diversity in the mechanisms that control their secretion and retrieval and possibly in the composition of synaptic vesicles within the same terminal. Here we pay particular attention to areas where such diversity is generated, such as the variance in exocytosis/endocytosis coupling, SNAREs defining functionally diverse synaptic vesicle populations and the adaptor-dependent sorting machineries capable of generating vesicle diversity. We argue that there are various synaptic vesicle recycling pathways at any given synapse and discuss several lines of evidence that support the role of the endosome in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
42
|
Yasuno Y, Kawano JI, Inoue YH, Yamamoto MT. Distribution and morphological changes of the Golgi apparatus during Drosophila spermatogenesis. Dev Growth Differ 2013; 55:635-47. [PMID: 23855356 DOI: 10.1111/dgd.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/01/2022]
Abstract
In spermatogenesis, the Golgi apparatus is important for the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. Comprehensive examinations of the spatiotemporal distribution and morphological characterizations of the Golgi in various cells during spermatogenesis are necessary for functional analyses and mutant screenings in the model eukaryote Drosophila. Here, we examined the distribution and morphology of the Golgi during Drosophila spermatogenesis with immunofluorescence and electron microscopy. In pre-meiotic germ cells, the Golgi apparatuses were distributed evenly in the cytoplasm. In contrast, they were located exclusively in two regions near the poles during the meiotic metaphase, where they were segregated prior to the chromosomes. In cells in anaphase to telophase, the Golgi were predominantly left behind in the equatorial region between the separating daughter nuclei. After completion of meiosis, the dispersed Golgi were assembled at the apical side of the spermatid nucleus to form the acrosome. Further investigation of the Golgi distribution in β2-tubulin mutants showed aberrant and uneven distributions of the Golgi among sister cells in the meiotic spermatocytes and in the post-meiotic spermatids. At the ultrastructural level, the Golgi apparatus in pre-meiotic spermatocytes comprised a pair of stacks. The two stacks were situated adjacent to each other, as if they had duplicated before entering into meiotic division. These results highlight the dynamic nature of the Golgi during spermatogenesis and provide a framework for analyzing the correlations between the dynamics of the Golgi and its function in sperm development.
Collapse
Affiliation(s)
- Yusaku Yasuno
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|
43
|
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2013; 151:1256-69. [PMID: 23217709 DOI: 10.1016/j.cell.2012.11.001] [Citation(s) in RCA: 979] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/20/2012] [Accepted: 10/16/2012] [Indexed: 12/14/2022]
Abstract
The lysosome is a degradative organelle, and its fusion with other organelles is strictly regulated. In contrast to fusion with the late endosome, the mechanisms underlying autophagosome-lysosome fusion remain unknown. Here, we identify syntaxin 17 (Stx17) as the autophagosomal SNARE required for fusion with the endosome/lysosome. Stx17 localizes to the outer membrane of completed autophagosomes but not to the isolation membrane (unclosed intermediate structures); for this reason, the lysosome does not fuse with the isolation membrane. Stx17 interacts with SNAP-29 and the endosomal/lysosomal SNARE VAMP8. Depletion of Stx17 causes accumulation of autophagosomes without degradation. Stx17 has a unique C-terminal hairpin structure mediated by two tandem transmembrane domains containing glycine zipper-like motifs, which is essential for its association with the autophagosomal membrane. These findings reveal a mechanism by which the SNARE protein is available to the completed autophagosome.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
44
|
Abstract
A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans.
Collapse
|
45
|
Wesolowski J, Caldwell V, Paumet F. A novel function for SNAP29 (synaptosomal-associated protein of 29 kDa) in mast cell phagocytosis. PLoS One 2012. [PMID: 23185475 PMCID: PMC3503860 DOI: 10.1371/journal.pone.0049886] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mast cells play a critical role in the innate immune response to bacterial infection. They internalize and kill a variety of bacteria and process antigen for presentation to T cells via MHC molecules. Although mast cell phagocytosis appears to play a significant role during bacterial infection, little is known about the proteins involved in its regulation. In this study, we demonstrate that the SNARE protein SNAP29 is involved in mast cell phagocytosis. SNAP29 is localized in the endocytic pathway and is transiently recruited to Escherichia coli (E. coli)-containing phagosomes. Interestingly, overexpression of SNAP29 significantly increases the internalization and killing of E. coli, while it does not affect mast cell exocytosis of inflammatory mediators. To our knowledge, these data are the first to demonstrate a novel function of SNAP29 in mast cell phagocytosis and have implications in protection against bacterial infection.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Vernon Caldwell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Chou TC, Chiu HC, Kuo CJ, Wu CM, Syu WJ, Chiu WT, Chen CS. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 2012; 15:82-97. [PMID: 22985085 DOI: 10.1111/cmi.12030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) causes life-threatening infections in humans as a consequence of the production of Shiga-like toxins. Lack of a good animal model system currently hinders in vivo study of EHEC virulence by systematic genetic methods. Here we applied the genetically tractable animal, Caenorhabditis elegans, as a surrogate host to study the virulence of EHEC as well as the host immunity to this human pathogen. Our results show that E. coli O157:H7, a serotype of EHEC, infects and kills C. elegans. Bacterial colonization and induction of the characteristic attaching and effacing (A/E) lesions in the intact intestinal epithelium of C. elegans by E. coli O157:H7 were concomitantly demonstrated in vivo. Genetic analysis indicated that the Shiga-like toxin 1 (Stx1) of E. coli O157:H7 is a virulence factor in C. elegans and is required for full toxicity. Moreover, the C. elegans p38 mitogen-activated protein kinase (MAPK) pathway, an evolutionarily conserved innate immune and stress response signalling pathway, is activated in the regulation of host susceptibility to EHEC infection in a Stx1-dependent manner. Our results validate the EHEC-C. elegans interaction as suitable for future comprehensive genetic screens for both novel bacterial and host factors involved in the pathogenesis of EHEC infection.
Collapse
Affiliation(s)
- T-C Chou
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|