1
|
Bischoff MC, Norton JE, Peifer M. Plexin/Semaphorin Antagonism Orchestrates Collective Cell Migration, Gap Closure and Organ sculpting by Contact-Mesenchymalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617649. [PMID: 39416156 PMCID: PMC11482903 DOI: 10.1101/2024.10.10.617649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell behavior emerges from the intracellular distribution of properties like protrusion, contractility and adhesion. Thus, characteristic emergent rules of collective migration can arise from cell-cell contacts locally tweaking architecture - orchestrating self-regulation during development, wound healing, and cancer progression. The new Drosophila testis-nascent-myotube-system allows dissection of contact-dependent migration in vivo at high resolution. Here, we describe a process driving gap-closure during migration: Contact-mesenchymalization via the axon guidance factor Plexin A. This is crucial for testis myotubes to migrate as a continuous sheet, allowing normal sculpting-morphogenesis. Cells must stay filopodial and dynamically ECM-tethered near cell-cell contacts to spread while collectively moving. Our data suggest Semaphorin 1B acts as a Plexin A antagonist, fine-tuning activation. Our data reveal a contact-dependent mechanism to maintain sheet-integrity during migration, driving organ-morphogenesis using a highly conserved pathway. This is relevant for understanding mesenchymal organ-sculpting and gap-closure in migratory contexts like angiogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
2
|
Liu X, Tan W, Wang W, Feng T, Wang C, Wang L, Zhou W. SEMA4A promotes prostate cancer invasion: involvement of tumor microenvironment. J Cancer 2023; 14:2633-2643. [PMID: 37779872 PMCID: PMC10539395 DOI: 10.7150/jca.86739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/30/2023] [Indexed: 10/03/2023] Open
Abstract
Semaphorin 4A (SEMA4A) belonged to a family of membrane-bound proteins that were initially recognized as a kind of axon guidance factors in nervous system. It was preferentially expressed on immune cells and has been proven to play a prominent role in immune function and angiogenesis. In this study, we found that SEMA4A was highly expressed in prostate cancer (PCa) tissues and correlated with Gleason scores and distant metastasis. SEMA4A could induce Epithelial-mesenchymal transition (EMT) of PCa cells and consequently promote invasion by establishing a positive loop with IL-10 in stromal cells. In vivo experiments showed more dissemination in mice injected with SEMA4A-overexpressing cells in mouse models and both the number and size of lung metastases were significantly increased in SEMA4A-overexpressing tumors. SEMA4A depletion by genetic means prevents lung metastasis in PCa xenograft models. Our data suggest a crucial role of SEMA4A in PCa and blocking SEMA4A-IL-10 axis represents an attractive approach to improving therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Weiwei Tan
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Weiqi Wang
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunni Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Caven LT, Carabeo RA. The role of infected epithelial cells in Chlamydia-associated fibrosis. Front Cell Infect Microbiol 2023; 13:1208302. [PMID: 37265500 PMCID: PMC10230099 DOI: 10.3389/fcimb.2023.1208302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Ocular, genital, and anogenital infection by the obligate intracellular pathogen Chlamydia trachomatis have been consistently associated with scar-forming sequelae. In cases of chronic or repeated infection of the female genital tract, infection-associated fibrosis of the fallopian tubes can result in ectopic pregnancy or infertility. In light of this urgent concern to public health, the underlying mechanism of C. trachomatis-associated scarring is a topic of ongoing study. Fibrosis is understood to be an outcome of persistent injury and/or dysregulated wound healing, in which an aberrantly activated myofibroblast population mediates hypertrophic remodeling of the basement membrane via deposition of collagens and other components of the extracellular matrix, as well as induction of epithelial cell proliferation via growth factor signaling. Initial study of infection-associated immune cell recruitment and pro-inflammatory signaling have suggested the cellular paradigm of chlamydial pathogenesis, wherein inflammation-associated tissue damage and fibrosis are the indirect result of an immune response to the pathogen initiated by host epithelial cells. However, recent work has revealed more direct routes by which C. trachomatis may induce scarring, such as infection-associated induction of growth factor signaling and pro-fibrotic remodeling of the extracellular matrix. Additionally, C. trachomatis infection has been shown to induce an epithelial-to-mesenchymal transition in host epithelial cells, prompting transdifferentiation into a myofibroblast-like phenotype. In this review, we summarize the field's current understanding of Chlamydia-associated fibrosis, reviewing key new findings and identifying opportunities for further research.
Collapse
Affiliation(s)
- Liam T. Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
5
|
Lai YJ, Tsai FC, Chang GJ, Chang SH, Huang CC, Chen WJ, Yeh YH. miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J Clin Invest 2022; 132:142548. [PMID: 35775491 PMCID: PMC9246393 DOI: 10.1172/jci142548] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β-treated human AEECs, cardiac-specific TGF-β-transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis. Using isolated AEECs, we found that miR-181b was induced in TGF-β-treated AEECs, which decreased semaphorin 3A (Sema3A) and increased EndMT markers, and these effects could be reversed by a miR-181b antagomir. Experiments in which Sema3A was increased by a peptide or decreased by a siRNA in AEECs revealed a mechanistic link between Sema3A and LIM-kinase 1/phosphorylated cofilin (LIMK/p-cofilin) signaling and suggested that Sema3A is upstream of LIMK in regulating actin remodeling through p-cofilin. Administration of the miR-181b antagomir or recombinant Sema3A to TGF-β-transgenic mice evoked increased Sema3A, reduced EndMT markers, and significantly decreased atrial fibrosis and AF vulnerability. Our study provides a mechanistic link between the induction of EndMT by TGF-β via miR-181b/Sema3A/LIMK/p-cofilin signaling to atrial fibrosis. Blocking miR-181b and increasing Sema3A are potential strategies for AF therapeutic intervention.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chia Yi, Taiwan
| | - Feng-Chun Tsai
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao Yuan, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Tao Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| |
Collapse
|
6
|
Karpińska K, Gielata M, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin Based Reporter System to Track and Characterize the Population of Invasive Cancer Cells in the Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010140. [PMID: 35008571 PMCID: PMC8745103 DOI: 10.3390/ijms23010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial-mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC invasive cells. This profile overlapped partially with the expression of signature genes related to the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting the relevance of our data to the clinical disease progression state. Interestingly, we also observed upregulations of genes involved in axonal guidance-L1 cell adhesion molecule (L1CAM), neuropilin-1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components of the stroma. Taken together, our data indicated that the catulin reporter system marked a population of invasive HNSCC cells with a molecular profile associated with cancer invasion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Aleksandra Gwiazdowska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Łukasz Boryń
- Laboratory of Stem Cells, Tissue Development and Regeneration, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland;
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-22-55-43-735
| |
Collapse
|
7
|
Rutherford TR, Elder AM, Lyons TR. Anoikis resistance in mammary epithelial cells is mediated by semaphorin 7a. Cell Death Dis 2021; 12:872. [PMID: 34561423 PMCID: PMC8463677 DOI: 10.1038/s41419-021-04133-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
Semaphorin-7a (SEMA7A), best known as a neuroimmune molecule, plays a diverse role in many cellular processes and pathologies. Here, we show that SEMA7A promotes anoikis resistance in cultured mammary epithelial cells through integrins and activation of pro-survival kinase AKT, which led us to investigate a role for SEMA7A during postpartum mammary gland involution-a normal developmental process where cells die by anoikis. Our results reveal that SEMA7A is expressed on live mammary epithelial cells during involution, that SEMA7A expression is primarily observed in α6-integrin expressing cells, and that luminal progenitor cells, specifically, are decreased in mammary glands of SEMA7A-/- mice during involution. We further identify a SEMA7A-α6/β1-integrin dependent mechanism of mammosphere formation and chemoresistance in mammary epithelial cells and suggest that this mechanism is relevant for recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Taylor R Rutherford
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cell biology, Stem cell, and Development Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan M Elder
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cancer biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Cell biology, Stem cell, and Development Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Cancer biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- University of Colorado Cancer Center, Aurora, CO, USA.
| |
Collapse
|
8
|
Sripathi SR, Hu MW, Liu MM, Wan J, Cheng J, Duan Y, Mertz JL, Wahlin KJ, Maruotti J, Berlinicke CA, Qian J, Zack DJ. Transcriptome Landscape of Epithelial to Mesenchymal Transition of Human Stem Cell-Derived RPE. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33792620 PMCID: PMC8024778 DOI: 10.1167/iovs.62.4.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/21/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose RPE injury often induces epithelial to mesenchymal transition (EMT). Although RPE-EMT has been implicated in a variety of retinal diseases, including proliferative vitroretinopathy, neovascular and atrophic AMD, and diabetic retinopathy, it is not well-understood at the molecular level. To contribute to our understanding of EMT in human RPE, we performed a time-course transcriptomic analysis of human stem cell-derived RPE (hRPE) monolayers induced to undergo EMT using 2 independent, yet complementary, model systems. Methods EMT of human stem cell-derived RPE monolayers was induced by either enzymatic dissociation or modulation of TGF-β signaling. Transcriptomic analysis of cells at different stages of EMT was performed by RNA-sequencing, and select findings were confirmed by reverse transcription quantitative PCR and immunostaining. An ingenuity pathway analysis (IPA) was performed to identify signaling pathways and regulatory networks associated with EMT. Results Proteocollagenolytic enzymatic dissociation and cotreatment with TGF-β and TNF-α both induce EMT in human stem cell-derived RPE monolayers, leading to an increased expression of mesenchymal factors and a decreased expression of RPE differentiation-associated factors. Ingenuity pathway analysis identified the upstream regulators of the RPE-EMT regulatory networks and identified master switches and nodes during RPE-EMT. Of particular interest was the identification of widespread dysregulation of axon guidance molecules during RPE-EMT progression. Conclusions The temporal transcriptome profiles described here provide a comprehensive resource of the dynamic signaling events and the associated biological pathways that underlie RPE-EMT onset. The pathways defined by these studies may help to identify targets for the development of novel therapeutic targets for the treatment of retinal disease.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Ming-Wen Hu
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Melissa M. Liu
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jie Cheng
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Yukan Duan
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Joseph L. Mertz
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, LA Jolla, California, United States
| | | | - Cynthia A. Berlinicke
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Jiang Qian
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Donald J. Zack
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, Department of Genetic Medicine, Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Song Y, Wang L, Zhang L, Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J Cell Physiol 2021; 236:6235-6248. [PMID: 33611799 DOI: 10.1002/jcp.30340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Semaphorins, a large group of highly conserved proteins, consist of eight subfamilies that are widely expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. First described as axon guidance cues during neurogenesis, semaphorins also perform physiological functions in other organ systems, such as bone homeostasis, immune response, and tumor progression. Semaphorin 7A (SEMA7A), also known as CDw108, is an immune semaphorin that modulates diverse immunoinflammatory processes, including immune cell interactions, inflammatory infiltration, and cytokine production. In addition, SEMA7A regulates the proliferation, migration, invasion, lymph formation, and angiogenesis of multiple types of tumor cells, and these effects are mediated by the interaction of SEMA7A with two specific receptors, PLXNC1 and integrins. Thus, SEMA7A is intimately related to the pathogenesis of multiple autoimmune and inflammation-related diseases and tumors. This review focuses on the role of SEMA7A in the pathogenesis of autoimmune disorders, inflammatory diseases, and tumors, as well as the underlying mechanisms. Furthermore, strategies targeting SEMA7A as a potential predictive, diagnostic, and therapeutic agent for these diseases are also addressed.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev 2020; 57:55-63. [PMID: 32900601 DOI: 10.1016/j.cytogfr.2020.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.
Collapse
Affiliation(s)
- Damon Fard
- University of Torino School of Medicine, Torino, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
11
|
Zadora PK, Chumduri C, Imami K, Berger H, Mi Y, Selbach M, Meyer TF, Gurumurthy RK. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep 2020; 26:1286-1302.e8. [PMID: 30699355 DOI: 10.1016/j.celrep.2019.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis (Ctr) causes a range of infectious diseases and is epidemiologically associated with cervical and ovarian cancers. To obtain a panoramic view of Ctr-induced signaling, we performed global phosphoproteomic and transcriptomic analyses. We identified numerous Ctr phosphoproteins and Ctr-regulated host phosphoproteins. Bioinformatics analysis revealed that these proteins were predominantly related to transcription regulation, cellular growth, proliferation, and cytoskeleton organization. In silico kinase substrate motif analysis revealed that MAPK and CDK were the most overrepresented upstream kinases for upregulated phosphosites. Several of the regulated host phosphoproteins were transcription factors, including ETS1 and ERF, that are downstream targets of MAPK. Functional analysis of phosphoproteome and transcriptome data confirmed their involvement in epithelial-to-mesenchymal transition (EMT), a phenotype that was validated in infected cells, along with the essential role of ERK1/2, ETS1, and ERF for Ctr replication. Our data reveal the extent of Ctr-induced signaling and provide insights into its pro-carcinogenic potential.
Collapse
Affiliation(s)
- Piotr K Zadora
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Cindrilla Chumduri
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine, 13353 Berlin, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Yang Mi
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
12
|
Tarullo SE, Hill RC, Hansen KC, Behbod F, Borges VF, Nelson AC, Lyons TR. Postpartum breast cancer progression is driven by semaphorin 7a-mediated invasion and survival. Oncogene 2020; 39:2772-2785. [PMID: 32020054 PMCID: PMC7103487 DOI: 10.1038/s41388-020-1192-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 11/09/2022]
Abstract
Young women diagnosed with breast cancer (BC) have poor prognosis due to increased rates of metastasis. In addition, women diagnosed within 10 years of most recent childbirth are approximately three times more likely to develop metastasis than age- and stage-matched nulliparous women. We define these cases as postpartum BC (PPBC) and propose that the unique biology of the postpartum mammary gland drives tumor progression. Our published results revealed roles for SEMA7A in breast tumor cell growth, motility, invasion, and tumor-associated lymphangiogenesis, all of which are also increased in preclinical models of PPBC. However, whether SEMA7A drives progression in PPBC remains largely unexplored. Our results presented herein show that silencing of SEMA7A decreases tumor growth in a model of PPBC, while overexpression is sufficient to increase growth in nulliparous hosts. Further, we show that SEMA7A promotes multiple known drivers of PPBC progression including tumor-associated COX-2 expression and fibroblast-mediated collagen deposition in the tumor microenvironment. In addition, we show for the first time that SEMA7A-expressing cells deposit fibronectin to promote tumor cell survival. Finally, we show that co-expression of SEMA7A/COX-2/FN predicts for poor prognosis in breast cancer patient cohorts. These studies suggest SEMA7A as a key mediator of BC progression, and that targeting SEMA7A may open avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Sarah E Tarullo
- Division of Medical Oncology, Department of Medicine, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
- Young Women's BC Translational Program, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Fariba Behbod
- Division of Cancer and Developmental Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Virginia F Borges
- Division of Medical Oncology, Department of Medicine, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
- Young Women's BC Translational Program, CU Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, Aurora, CO, 80045, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, CU Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Young Women's BC Translational Program, CU Anschutz Medical Campus, Aurora, CO, 80045, USA.
- University of Colorado Cancer Center, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Yang L, Yu Y, Xiong Z, Chen H, Tan B, Hu H. Downregulation of SEMA4C Inhibit Epithelial-Mesenchymal Transition (EMT) and the Invasion and Metastasis of Cervical Cancer Cells via Inhibiting Transforming Growth Factor-beta 1 (TGF-β1)-Induced Hela cells p38 Mitogen-Activated Protein Kinase (MAPK) Activation. Med Sci Monit 2020; 26:e918123. [PMID: 31951596 PMCID: PMC6986213 DOI: 10.12659/msm.918123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a key role in promoting invasion and metastasis of tumor cells. SEMA4C can regulate the generation of transforming growth factor-beta 1 (TGF-ß1)-induced EMT in cervical cancer. This study investigated the relationship between the regulation of SEMA4C on TGF-ß1-induced p38 mitogen-activated protein kinase (MAPK) activation and invasion and metastasis of cervical cancer. MATERIAL AND METHODS Hela-shSEMA4C cell line was established and the success of transfection was confirmed with fluorescence intensity. Cell experiments were divided into 2 groups. Group 1 was Hela, Hela-shNC, and Hela-shSEMA4C; and Group 2 was Hela, Hela-shNC, Hela-shSEMA4C, Hela+TGF-ß1, Hela-shNC+TGF-ß1, and Hela-shSEMA4C+TGF-ß1. Group 1 was detected for SEMA4C mRNA expression by real-time polymerase chain reaction (RT-PCR), cell viability by Cell Counting Kit-8 (CCK-8), F-actin fluorescence intensity by immunofluorescence, cell migration by scratch test, and cell invasion by invasion test. Group 2 was analyzed for E-cadherin fluorescence intensity by immunofluorescence, human fibronectin (FN) content by enzyme-linked immunosorbent assay (ELISA), and SEMA4C, E-cadherin and p-p38 expressions by Western blot. RESULTS For Group 1, compared with Hela and Hela-shNC subgroups, the SEMA4C mRNA expression, cell viability, F-actin fluorescence intensity, cell migration and invasion ability in the Hela-shSEMA4C subgroup were significantly decreased (P<0.05). For Group 2, compared with Hela and Hela-shNC subgroups, the E-cadherin expression and fluorescence intensity in the Hela-shSEMA4C subgroup were significantly increased (P<0.01), while the FN content, SEMA4C, and p-p38 MAPK expressions were significantly decreased (P<0.01). Compared with Hela-shNC+TGF-ß1 and Hela+TGF-ß1 subgroups, the E-cadherin expression and fluorescence intensity in the Hela-shSEMA4C+TGF-ß1 subgroup were significantly increased (P<0.01), while the FN content, SEMA4C and p-p38 expressions were significantly decreased (P<0.01). CONCLUSIONS Downregulation of SEMA4C can inhibit EMT and the invasion and metastasis of cervical cancer cells via inhibiting TGF-ß1-induced Hela cells p38 MAPK activation.
Collapse
Affiliation(s)
- Lilan Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland).,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yayuan Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hongxia Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hui Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
14
|
Yin X, Zheng X, Liu M, Wang D, Sun H, Qiu Y, Chen J, Shi B. Exosomal miR-663b targets Ets2-repressor factor to promote proliferation and the epithelial-mesenchymal transition of bladder cancer cells. Cell Biol Int 2020; 44:958-965. [PMID: 31872468 DOI: 10.1002/cbin.11292] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
Abstract
Exosomes circulating in biological fluids have the potential to be utilized as cancer biomarkers and are associated with cancer progression and metastasis. MicroRNA (miR)-663b has been found to be elevated in plasma from patients with bladder cancer (BC). However, the functional role of exosomal miR-663b in BC processes remains unknown. Here, we isolated exosomes from plasma and found that the miR-663b level was elevated in exosomes from plasma of patients with BC compared with healthy controls. Exosomal miR-663b from BC cells promoted cell proliferation and epithelial-mesenchymal transition. Moreover, exosomal miR-663b targeted Ets2-repressor factor and acted as a tumor promoter in BC cells. Taken together, our findings suggested that exosomal miR-663b is a promising potential biomarker and target for clinical detection and therapy in BC.
Collapse
Affiliation(s)
- Xinbao Yin
- Department of Urology, Qilu Hospital of Shandong University, Qingdao, Shandong, 266035, P.R. China
| | - Xueping Zheng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, P.R. China
| | - Ming Liu
- Department of Urology, Qilu Hospital of Shandong University, Qingdao, Shandong, 266035, P.R. China
| | - Dong Wang
- Department of Urology, Qilu Hospital of Shandong University, Qingdao, Shandong, 266035, P.R. China
| | - Hui Sun
- Department of Urology, Qilu Hospital of Shandong University, Qingdao, Shandong, 266035, P.R. China
| | - Yue Qiu
- Department of Urology, Qilu Hospital of Shandong University, Qingdao, Shandong, 266035, P.R. China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University, Qingdao, Shandong, 266035, P.R. China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
15
|
Gurrapu S, Tamagnone L. Semaphorins as Regulators of Phenotypic Plasticity and Functional Reprogramming of Cancer Cells. Trends Mol Med 2019; 25:303-314. [PMID: 30824197 DOI: 10.1016/j.molmed.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Semaphorins, initially found as neuronal guidance cues in embryo development, are now appreciated as major regulators of tissue morphogenesis and homeostasis, as well as of cancer progression. In fact, semaphorin signals have a profound impact on cell morphology, which has been commonly associated with the ability to regulate monomeric GTPases, cell-substrate adhesion, and cytoskeletal dynamics. Recently, however, several reports have indicated a novel and additional function of diverse semaphorins in the regulation of gene expression and cell phenotype plasticity. In this review article, we discuss these novel findings, focusing on the role of semaphorin signals in the regulation of bi-directional epithelial-mesenchymal transitions, stem cell properties, and drug resistance, which greatly contribute to the pathogenesis of cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy. .,Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Saxena S, Purohit A, Varney ML, Hayashi Y, Singh RK. Semaphorin-5A maintains epithelial phenotype of malignant pancreatic cancer cells. BMC Cancer 2018; 18:1283. [PMID: 30577767 PMCID: PMC6303891 DOI: 10.1186/s12885-018-5204-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly aggressive disease, and the lethality of this disease stems from early metastatic dissemination where surgical removal cannot provide a cure. Improvement of the therapeutic outcome and overall survival of PC patients requires to understand the fundamental processes that lead to metastasis such as the gain of cellular migration ability. One such family of proteins, which are essential players of cellular migration, is Semaphorin. Previously, we have identified one of the Semaphorin family member, Semaphorin-5A (SEMA5A) to be involved in organ-specific homing during PC metastasis. We have also demonstrated that SEMA5A has a constitutive expression in PC cell lines derived from metastatic sites in comparison with low endogenous expression in the primary tumor-derived cell line. In this study, we examined whether constitutive SEMA5A expression in metastatic PC cells regulates tumor growth and metastatic potential. METHODS We generated SEMA5A knockdown in T3M-4 and CD18/HPAF cells and assessed their phenotypes on in vitro motility, tumor growth, and metastatic progression. RESULTS In contrary to our initial expectations, orthotopic injection of SEMA5A knockdown cells into nude mice resulted in a significant increase in both tumor burden and liver metastases in comparison with the Control cells. Similarly, we observed higher in vitro migratory potential with pronounced morphological changes associated with epithelial-mesenchymal transition (EMT), a decrease in the expression of epithelial marker E-cadherin (E-Cad), increase in the expression of mesenchymal markers N-cadherin (N-Cad) and Snail and the activation of the Wnt-signaling pathway in SEMA5A knockdown cells. Furthermore, re-establishing SEMA5A expression with a knockdown resistant mouse Sema5A in SEMA5A knockdown cells resulted in a reversion to the epithelial state (mesenchymal-epithelial transition; MET), as indicated by the rescue of E-Cad expression and a decrease in N-Cad and Snail expression. CONCLUSIONS Collectively, our data suggest that SEMA5A expression maintains epithelial phenotype in the metastatic microenvironment.
Collapse
Affiliation(s)
- Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845 USA
| | - Abhilasha Purohit
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104 USA
| | - Michelle L. Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5845 USA
| | - Yuri Hayashi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845 USA
| | - Rakesh K. Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845 USA
| |
Collapse
|
17
|
Kinehara Y, Nagatomo I, Koyama S, Ito D, Nojima S, Kurebayashi R, Nakanishi Y, Suga Y, Nishijima-Futami Y, Osa A, Nakatani T, Kato Y, Nishide M, Hayama Y, Higashiguchi M, Morimura O, Miyake K, Kang S, Minami T, Hirata H, Iwahori K, Takimoto T, Takamatsu H, Takeda Y, Hosen N, Hoshino S, Shintani Y, Okumura M, Kumagai T, Nishino K, Imamura F, Nakatsuka SI, Kijima T, Kida H, Kumanogoh A. Semaphorin 7A promotes EGFR-TKI resistance in EGFR mutant lung adenocarcinoma cells. JCI Insight 2018; 3:123093. [PMID: 30568033 DOI: 10.1172/jci.insight.123093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
Although responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) are initially positive, 30%-40% of patients with EGFR-mutant tumors do not respond well to EGFR-TKIs, and most lung cancer patients harboring EGFR mutations experience relapse with resistance. Therefore, it is necessary to identify not only the mechanisms underlying EGFR-TKI resistance, but also potentially novel therapeutic targets and/or predictive biomarkers for EGFR-mutant lung adenocarcinoma. We found that the GPI-anchored protein semaphorin 7A (SEMA7A) is highly induced by the EGFR pathway, via mTOR signaling, and that expression levels of SEMA7A in human lung adenocarcinoma specimens were correlated with mTOR activation. Investigations using cell culture and animal models demonstrated that loss or overexpression of SEMA7A made cells less or more resistant to EGFR-TKIs, respectively. The resistance was due to the inhibition of apoptosis by aberrant activation of ERK. The ERK signal was suppressed by knockdown of integrin β1 (ITGB1). Furthermore, in patients with EGFR mutant tumors, higher SEMA7A expression in clinical samples predicted poorer response to EGFR-TKI treatment. Collectively, these data show that the SEMA7A-ITGB1 axis plays pivotal roles in EGFR-TKI resistance mediated by ERK activation and apoptosis inhibition. Moreover, our results reveal the potential utility of SEMA7A not only as a predictive biomarker, but also as a potentially novel therapeutic target in EGFR-mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuhei Kinehara
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Daisuke Ito
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Department of Pathology, Osaka University Graduate school of Medicine, Suita, Osaka, Japan
| | - Ryota Kurebayashi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yasuhiko Suga
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yu Nishijima-Futami
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Nakatani
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yasuhiro Kato
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masayuki Nishide
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yoshitomo Hayama
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masayoshi Higashiguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Osamu Morimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sujin Kang
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Takimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Hosen
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | - Shin-Ichi Nakatsuka
- Department of Pathology, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
18
|
Elder AM, Tamburini BAJ, Crump LS, Black SA, Wessells VM, Schedin PJ, Borges VF, Lyons TR. Semaphorin 7A Promotes Macrophage-Mediated Lymphatic Remodeling during Postpartum Mammary Gland Involution and in Breast Cancer. Cancer Res 2018; 78:6473-6485. [PMID: 30254150 PMCID: PMC6239927 DOI: 10.1158/0008-5472.can-18-1642] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Postpartum mammary gland involution is a tissue remodeling event that occurs in all mammals in the absence of nursing or after weaning to return the gland to the pre-pregnant state. The tissue microenvironment created by involution has proven to be tumor promotional. Here we report that the GPI-linked protein semaphorin 7A (SEMA7A) is expressed on mammary epithelial cells during involution and use preclinical models to demonstrate that tumors induced during involution express high levels of SEMA7A. Overexpression of SEMA7A promoted the presence of myeloid-derived podoplanin (PDPN)-expressing cells in the tumor microenvironment and during involution. SEMA7A drove the expression of PDPN in macrophages, which led to integrin- and PDPN-dependent motility and adherence to lymphatic endothelial cells to promote lymphangiogenesis. In support of this mechanism, mammary tissue from SEMA7A-knockout mice exhibited decreased myeloid-derived PDPN-expressing cells, PDPN-expressing endothelial cells, and lymphatic vessel density. Furthermore, coexpression of SEMA7A, PDPN, and macrophage marker CD68 predicted for decreased distant metastasis-free survival in a cohort of over 600 cases of breast cancer as well as in ovarian, lung, and gastric cancers. Together, our results indicate that SEMA7A may orchestrate macrophage-mediated lymphatic vessel remodeling, which in turn drives metastasis in breast cancer.Signficance: SEMA7A, which is expressed on mammary cells during glandular involution, alters macrophage biology and lymphangiogenesis to drive breast cancer metastasis. Cancer Res; 78(22); 6473-85. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Breast Neoplasms/pathology
- Cell Movement
- Crosses, Genetic
- Endothelial Cells/pathology
- Epithelial Cells/metabolism
- Female
- GPI-Linked Proteins/metabolism
- Humans
- Integrins/metabolism
- Lymphangiogenesis
- Lymphatic Vessels/pathology
- Macrophages/cytology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Human/pathology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Metastasis
- Postpartum Period
- Semaphorins/genetics
- Semaphorins/metabolism
- Tumor Microenvironment
Collapse
Affiliation(s)
- Alan M Elder
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
| | - Beth A J Tamburini
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lyndsey S Crump
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
| | - Sarah A Black
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
| | - Veronica M Wessells
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
| | - Pepper J Schedin
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
- Department of Cell, Development and Cancer Biology, Oregon Health Sciences University, Oregon
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, Colorado
| |
Collapse
|
19
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
20
|
Guo LL, Wang GC, Li PJ, Wang CM, Liu LB. Recombinant adenovirus expressing a dendritic cell-targeted melanoma surface antigen for tumor-specific immunotherapy in melanoma mice model. Exp Ther Med 2018; 15:5394-5402. [PMID: 29844804 DOI: 10.3892/etm.2018.6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/05/2017] [Indexed: 11/06/2022] Open
Abstract
Viral vectors represent a potential strategy for the treatment of human malignant tumors. Currently, recombinant adenovirus vectors are commonly used as gene therapy vehicles, as it possesses a proven safety profile in normal human cells. The recombinant adenovirus system has an ability to highly express exogenous genes and increase the stability of the carrier, which is only transiently expressed in the host cell genome, without integrating. Malignant melanoma cells are produced by the skin, and melanocyte tumors that exhibit higher malignant degrees lead to earlier transfer and higher mortality. In the present study, a recombinant adenovirus (rAd) was generated to express Anti-programmed death-1 (rAd-Anti-PD-1) and used to investigate the efficacy in melanoma cells and tumors. The results demonstrated that B16-F10 cell growth was significantly inhibited and the apoptosis incidence rate was markedly promoted following rAd-PD-1 treatment. The present study demonstrated that the production of α and β interferon was increased, which led to the induction of dendritic cell (DCs) maturation in rAd-anti-PD-1-treated mice. The present study indicated that rAd-anti-PD-1 exhibited the ability to generate more cluster of differentiation (CD)4+CD8+ T cells and induce a PD-1-specific cytotoxic T lymphocyte through DC-targeted surface antigens in mice. This resulted in a further enhanced recognition of melanoma cells due to DCs being targeted by the rAd-anti-PD-1-encoded PD-1. Notably, mice treated with the rAd-anti-PD-1-targeted PD-1 demonstrated an improved protection compared with tumor-bearing mice from the challenge group treated with a recombinant gutless adenovirus and Anti-PD-1. In conclusion, the present study demonstrated that targeting the melanoma surface antigens via the rAd-anti-PD-1-infected tumor cells enhanced the ability of recombinant adenovirus to induce a potent tumor-inhibitory effect and antigen-specific immune response.
Collapse
Affiliation(s)
- Li-Li Guo
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Gang-Cheng Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng-Jie Li
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Cui-Mei Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin-Bo Liu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
21
|
Butti R, Kumar TV, Nimma R, Kundu GC. Impact of semaphorin expression on prognostic characteristics in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:79-88. [PMID: 29910635 PMCID: PMC5987790 DOI: 10.2147/bctt.s135753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the major causes of cancer-related deaths among women worldwide. Aberrant regulation of various growth factors, cytokines, and other proteins and their receptors in cancer cells drives the activation of various oncogenic signaling pathways that lead to cancer progression. Semaphorins are a class of proteins which are differentially expressed in various types of cancer including breast cancer. Earlier, these proteins were known to have a major function in the nerve cell adhesion, migration, and development of the central nervous system. However, their role in the regulation of several aspects of tumor progression has eventually emerged. There are over 30 genes encoding the semaphorins, which are divided into eight subclasses. It has been reported that some members of semaphorin classes are antiangiogenic and antimetastatic in nature, whereas others act as proangiogenic and prometastatic genes. Because of their differential expression and role in angiogenesis and metastasis, semaphorins emerged as one of the important prognostic factors for appraising breast cancer progression.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Totakura Vs Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
22
|
Chen X, Wang H, Jia K, Wang H, Ren T. Anti-Semaphorin-7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. Exp Ther Med 2018; 15:2356-2364. [PMID: 29456642 PMCID: PMC5795465 DOI: 10.3892/etm.2018.5724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Pulmonary inflammation is a primary characteristic of lung injury initiated by the accession of immune cells into the alveolar space. Neutrophil migration serves an important role in pulmonary inflammation mediated by the migration of neutrophils into hypoxic tissue sites. The elimination of pulmonary inflammation is directly associated with rehabilitation in patients with lung injury. Anti-inflammatory treatment is essential following lung injury and ultimately determines patient outcomes. Semaphorin-7A (SEMA-7A) is a member of the Semaphorin family that influences the migration of neutrophils into hypoxic tissue sites, thus promoting inflammation. However, understanding of the role of SEMA-7A serves during lung injury is limited and the immunological function of SEMA-7A during the migration of neutrophils into acute injury sites remains unknown. The present study investigated SEMA-7A expression and constructed a single chain antibody for SEMA-7A (Anti-SEMA-7A) to study its therapeutic efficacy against pulmonary inflammation in a mouse model of acute injury sites. The data indicated that the expression of SEMA-7A was upregulated due to induction by pro-inflammatory cytokines and demonstrated that Anti-SEMA-7A inhibited SEMA-7A expression in vitro and in vivo. The current study also indicated that the production of pro-inflammatory cytokines induced by SEMA-7A in endothelial and epithelial cells enhanced pulmonary inflammation. Anti-SEMA-7A suppressed the transendothelial migration of neutrophils mediated by SEMA-7A. Anti-SEMA-7A treatment neutralized SEMA-7A expression and reduced signs of pulmonary inflammation, leading to the elimination of pulmonary inflammation in rat with acute lung injury. The current study identified Anti-SEMA-7A as a potential agent to interfere with the inflammatory pathway during acute lung injury, which may be the basis for anti-inflammatory strategies to treat lung injuries in the future.
Collapse
Affiliation(s)
- Xiao Chen
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Hailing Wang
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Kui Jia
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Hao Wang
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Tao Ren
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| |
Collapse
|
23
|
Garcia-Areas R, Libreros S, Simoes M, Castro-Silva C, Gazaniga N, Amat S, Jaczewska J, Keating P, Schilling K, Brito M, Wojcikiewicz EP, Iragavarpu-Charyulu V. Suppression of tumor-derived Semaphorin 7A and genetic ablation of host-derived Semaphorin 7A impairs tumor progression in a murine model of advanced breast carcinoma. Int J Oncol 2017; 51:1395-1404. [PMID: 29048670 PMCID: PMC5642386 DOI: 10.3892/ijo.2017.4144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Solid tumors can generate a plethora of neurogenesis-related molecules that enhance their growth and metastasis. Among them, we have identified axonal guidance molecule Semaphorin 7A (SEMA7A) in breast cancer. The goal of this study was to determine the therapeutic effect of suppressing SEMA7A levels in the 4T1 murine model of advanced breast carcinoma. We used anti-SEMA7A short hairpin RNA (shRNA) to gene silence SEMA7A in 4T1 mammary tumor cells. When implanted into the mammary fat pads of syngeneic mice, SEMA7A shRNA-expressing 4T1 tumors exhibited decreased growth rates, deferred metastasis and reduced mortality. In vitro, SEMA7A shRNA-expressing 4T1 cells had weakened proliferative, migratory and invasive abilities, and decreased levels of mesenchymal factors. Atomic force microscopy studies showed that SEMA7A shRNA-expressing 4T1 cells had an increase in cell stiffness that corresponded with their decreased malignant potential. Genetic ablation of host-derived SEMA7A further enhanced the antitumor effects of SEMA7A shRNA gene silencing in 4T1 cells. Our preclinical findings demonstrate a critical role for SEMA7A in mediating mammary tumor progression.
Collapse
Affiliation(s)
- R Garcia-Areas
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - S Libreros
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - M Simoes
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - C Castro-Silva
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - N Gazaniga
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - S Amat
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - J Jaczewska
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - P Keating
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - K Schilling
- Lynn Women's Health & Wellness Institute, Boca Raton Regional Hospital, Boca Raton, FL 33431, USA
| | - M Brito
- Department of Pathology, Boca Raton Regional Hospital, Boca Raton, FL 33431, USA
| | - E P Wojcikiewicz
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - V Iragavarpu-Charyulu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
24
|
The Ets2 Repressor Factor (Erf) Is Required for Effective Primitive and Definitive Hematopoiesis. Mol Cell Biol 2017; 37:MCB.00183-17. [PMID: 28694332 DOI: 10.1128/mcb.00183-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Erf is a gene for a ubiquitously expressed Ets DNA-binding domain-containing transcriptional repressor. Erf haploinsufficiency causes craniosynostosis in humans and mice, while its absence in mice leads to failed chorioallantoic fusion and death at embryonic day 10.5 (E10.5). In this study, we show that Erf is required in all three waves of embryonic hematopoiesis. Mice lacking Erf in the embryo proper exhibited severe anemia and died around embryonic day 14.5. Erf epiblast-specific knockout embryos had reduced numbers of circulating blood cells from E9.5 onwards, with the development of severe anemia by E14.5. Elimination of Erf resulted in both reduced and more immature primitive erythroblasts at E9.5 to E10.5. Reduced definitive erythroid colony-forming activity was found in the bloodstream of E10.5 embryos and in the fetal liver at E11.5 to E13.5. Finally, elimination of Erf resulted in impaired repopulation ability, indicating that Erf is necessary for hematopoietic stem cell maintenance or differentiation. We conclude that Erf is required for both primitive and erythromyeloid progenitor waves of hematopoietic stem cell (HSC)-independent hematopoiesis as well as for the normal function of HSCs.
Collapse
|
25
|
Liu TJ, Guo JL, Xu X. CXC chemokine‑7 inhibits growth and migration of oral tongue squamous cell carcinoma cells, mediated by the epithelial‑mesenchymal transition signaling pathway. Mol Med Rep 2017; 16:6896-6903. [PMID: 28901471 DOI: 10.3892/mmr.2017.7441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is the most common oral malignancy with different histopathological symptoms and etiology of tumorigenesis. Migration and invasion is the most important characteristics of OTSCC, and limits tumor therapy in clinics. The epithelial‑to‑mesenchymal transition (EMT) signaling pathway is an important process in the progress of tumor cell migration and invasion. Previous studies have indicated that C‑X‑C chemokine receptor‑7 (CXCR‑7) promotes the progression and metastasis of tumor cells, presenting a potential target molecule for cancer therapy. The present study investigated the inhibitory effects of C‑X‑C chemokine‑7 (CXC‑7) on human OTSCC cells both in vitro and in vivo. The results demonstrated that the Tca8113 human OTSCC cell line expressed higher levels of CXC‑7 mRNA compared with the hNOE human normal oral epithelial cell line. MTT assays indicated that CXC‑7 suppressed Tca8113 cell growth, and the cytotoxicity of CXC‑7 was indicated as the cell survival of the negative control group was significantly decreased compared with the blank control and hNOE cells. Migration and invasion assays revealed that CXC‑7 inhibited Tca8113 cell local expansion and distant metastasis. In addition, the results demonstrated that the extracellular signal‑regulated kinase (ERK)/protein kinase B (AKT) signaling pathway was inhibited after CXC‑7 treatment in Tca8113 cells. N‑cadherin, E‑Cadherin, Snail and Slug expression levels in the ERK/AKT signaling pathway were inhibited in Tca8113 cells after treatment with CXC‑7. It was demonstrated that important extracellular matrix proteins involved in cell migration, including Slug, collagen type I and Vimentin, were significantly downregulated by CXC‑7 treatment. In conclusion, CXC‑7 inhibited growth and migration in OTSCC cells, mediated by the EMT signaling pathway. This suggests that CXC‑7 serves an inhibitory role in OTSCC migration, implicating CXCR‑7 as a promising biomarker for chemokine receptor‑based drug development.
Collapse
Affiliation(s)
- Tong-Jun Liu
- Department of Implantology, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian-Lian Guo
- Department of Ophthalmology, The Eighth People's Hospital of Jinan, Jinan, Shandong 250014, P.R. China
| | - Xin Xu
- Department of Implantology, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
26
|
Vorgia E, Zaragkoulias A, Peraki I, Mavrothalassitis G. Suppression of Fgf2 by ETS2 repressor factor (ERF) is required for chorionic trophoblast differentiation. Mol Reprod Dev 2017; 84:286-295. [PMID: 28244611 DOI: 10.1002/mrd.22780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/26/2023]
Abstract
ETS2 repressor factor (ERF) is a ubiquitous transcriptional repressor regulated by Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Homozygous deletion of Erf in mice blocks chorionic trophoblast differentiation, resulting in the failure of chorioallantoic fusion and subsequent embryo death. Fibroblast growth factor (FGF) signaling is important for proper trophoblast stem cell (TSC) differentiation and development of the hemochorial placenta. Lack of Fgf2 promotes TSC differentiation, while FGF4 or FGF2 is required for murine TSC maintenance. Here, we show that low in vivo Fgf2 mRNA abundance occurs in patches of placental chorion cells and ex vivo in TSCs. This expression is repressed via direct interaction of ERF with the Fgf2 transcription unit is increased in the absence of ERF, and is decreased in the presence of an ERF mutant resistant to ERK phosphorylation. Thus, FGF2 inhibition by ERF appears to be necessary for proper chorionic TSC differentiation, and may account for the block of chorionic trophoblast differentiation in Erf-knockout animals. The differentiation of ERF-overexpressing TSC lines also suggests that ERF may have an FGF2-independent effect during the commitment towards syncytiotrophoblasts.
Collapse
Affiliation(s)
- Elena Vorgia
- Medical School, University of Crete, Heraklion, Crete, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | | | - Ioanna Peraki
- Medical School, University of Crete, Heraklion, Crete, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | - George Mavrothalassitis
- Medical School, University of Crete, Heraklion, Crete, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| |
Collapse
|
27
|
Esnault S, Torr EE, Bernau K, Johansson MW, Kelly EA, Sandbo N, Jarjour NN. Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation. PLoS One 2017; 12:e0170207. [PMID: 28095470 PMCID: PMC5240965 DOI: 10.1371/journal.pone.0170207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/31/2016] [Indexed: 12/20/2022] Open
Abstract
Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF). Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore, endogenous and exogenous semaphorin-7A may have opposite effects on the fibroblast phenotype.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - Elizabeth E. Torr
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Elizabeth A. Kelly
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nizar N. Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
28
|
Zhang M, Wang H, Jin F. The role of semaphorin 7A and its receptor plexin C1 in the migration of NSCLC cells. RSC Adv 2017. [DOI: 10.1039/c7ra08518d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We aim to explore the role of semaphorin 7A (SEMA7A) and its receptor plexin C1 in the migration of NSCLC cells.
Collapse
Affiliation(s)
- Minlong Zhang
- Department of Respiration
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- PR China
| | - Hu Wang
- Department of Respiration
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- PR China
| | - Faguang Jin
- Department of Respiration
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an 710038
- PR China
| |
Collapse
|
29
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
30
|
Black SA, Nelson AC, Gurule NJ, Futscher BW, Lyons TR. Semaphorin 7a exerts pleiotropic effects to promote breast tumor progression. Oncogene 2016; 35:5170-8. [PMID: 27065336 PMCID: PMC5720143 DOI: 10.1038/onc.2016.49] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/22/2016] [Accepted: 01/19/2016] [Indexed: 02/05/2023]
Abstract
Understanding what drives breast tumor progression is of utmost importance for blocking tumor metastasis; we have identified that semaphorin 7a is a potent driver of ductal carcinoma in situ (DCIS) progression. Semaphorin 7a is a GPI membrane anchored protein that promotes attachment and spreading in multiple cell types. Here we show that increased expression of SEMA7A occurs in a large percentage of breast cancers and is associated with decreased overall and distant metastasis free survival. In both in vitro and in vivo models, shRNA mediated silencing of SEMA7A reveals roles for semaphorin 7a in the promotion of DCIS growth, motility, and invasion as well as lymphangiogenesis in the tumor microenvironment. Our studies also uncover a relationship between COX-2 and semaphorin 7a expression and suggest that semaphorin 7a promotes tumor cell invasion on collagen and lymphangiogenesis via activation of β1-integrin receptor. Our results suggest that semaphorin 7a, may be novel target for blocking breast tumor progression.
Collapse
Affiliation(s)
- S A Black
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A C Nelson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - N J Gurule
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - B W Futscher
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - T R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Hart T, Dider S, Han W, Xu H, Zhao Z, Xie L. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology. Sci Rep 2016; 6:20441. [PMID: 26841718 PMCID: PMC4740793 DOI: 10.1038/srep20441] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin's molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies.
Collapse
Affiliation(s)
- Thomas Hart
- The Rockefeller University, New York, New York, United States of America
- Department of Biological Sciences, Hunter College, The City University of New York, New York, New York, United States of America
| | - Shihab Dider
- Department of Biological Sciences, Hunter College, The City University of New York, New York, New York, United States of America
| | - Weiwei Han
- The Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education Jilin University, Changchun, P. R. China
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lei Xie
- Ph.D. Program in Computer Science, Biology, and Biochemistry, The Graduate Center, The City University of New York, New York, New York, United States of America
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
| |
Collapse
|
32
|
Hezova R, Kovarikova A, Srovnal J, Zemanova M, Harustiak T, Ehrmann J, Hajduch M, Sachlova M, Svoboda M, Slaby O. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus. Tumour Biol 2015; 37:8007-18. [DOI: 10.1007/s13277-015-4656-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
|
33
|
Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 2014; 1:e23272. [PMID: 24665374 PMCID: PMC3879177 DOI: 10.4161/tisb.23272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
Tissue barriers maintain homeostasis, protect underlying tissues, are remodeled during organogenesis and injury and limit aberrant proliferation and dissemination. In this context, endothelial and epithelial intercellular junctions are the primary targets of various cues. This cellular adaptation requires plasticity and dynamics of adhesion molecules and the associated cytoskeleton, as well as the adhesive-linked signaling platforms. It is therefore not surprising that the guidance molecules from the Semaphorin family arise as novel modifiers of epithelia and endothelia in development and diseases. This review will focus on the actions of Semaphorins, and their cognate receptors, Plexins and Neuropilins, on epithelial and endothelial barrier properties.
Collapse
Affiliation(s)
- Lucas Treps
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Armelle Le Guelte
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Julie Gavard
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
34
|
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta Gen Subj 2014; 1840:2621-34. [PMID: 24561266 DOI: 10.1016/j.bbagen.2014.02.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial-mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM). SCOPE OF THE REVIEW Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer. MAJOR CONCLUSIONS Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal-epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET. GENERAL SIGNIFICANCE Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
35
|
Ciau-Uitz A, Wang L, Patient R, Liu F. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol Dis 2013; 51:248-55. [DOI: 10.1016/j.bcmd.2013.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/04/2013] [Indexed: 01/08/2023]
|
36
|
Saben J, Zhong Y, McKelvey S, Dajani NK, Andres A, Badger TM, Gomez-Acevedo H, Shankar K. A comprehensive analysis of the human placenta transcriptome. Placenta 2013; 35:125-31. [PMID: 24333048 DOI: 10.1016/j.placenta.2013.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023]
Abstract
As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 healthy women with uncomplicated pregnancies using RNA-seq. To identify genes that were highly expressed and unique to the placenta we compared placental RNA-seq data to data from 7 other tissues (adipose, breast, hear, kidney, liver, lung, and smooth muscle) and identified several genes novel to placental biology (QSOX1, DLG5, and SEMA7A). Semi-quantitative RT-PCR confirmed the RNA-seq results and immunohistochemistry indicated these proteins were highly expressed in the placental syncytium. Additionally, we mined our RNA-seq data to map the relative expression of key developmental gene families (Fox, Sox, Gata, Tead, and Wnt) within the placenta. We identified FOXO4, GATA3, and WNT7A to be amongst the highest expressed members of these families. Overall, these findings provide a new reference for understanding of placental transcriptome and can aid in the identification of novel pathways regulating placenta physiology that may be dysregulated in placental disease.
Collapse
Affiliation(s)
- J Saben
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S McKelvey
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - N K Dajani
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Gomez-Acevedo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - K Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
37
|
Li M, Yang X, Shi H, Ren H, Chen X, Zhang S, Zhu J, Zhang J. Downregulated expression of the cyclase-associated protein 1 (CAP1) reduces migration in esophageal squamous cell carcinoma. Jpn J Clin Oncol 2013; 43:856-64. [PMID: 23904342 DOI: 10.1093/jjco/hyt093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Overexpression of cyclase-associated proteins has been associated with poor prognosis in several human cancers. Cyclase-associated protein 1 is a member of the cyclase-associated proteins which contributes to tumor progression. The aim of the present study was to examine the expression of cyclase-associated protein 1 and to elucidate its clinicopathologic significance in a larger series of esophageal squamous cell carcinoma. METHODS Immunohistochemical and western blot analyses were performed in esophageal squamous cell carcinoma tissues. Survival analyses were performed by using the Kaplan-Meier method. The role of cyclase-associated protein 1 in migration was studied in esophageal squamous cell carcinoma cell lines of TE1 through knocking down cyclase-associated protein 1 with siRNA and overexpression of cyclase-associated protein 1. The regulation of cyclase-associated protein 1 on migration was determined by transwell and wound-healing assays. RESULTS Immunohistochemical analysis showed that cyclase-associated protein 1 expression was negatively associated with E-cadherin and significantly associated with lymph node metastases. Survival analysis revealed that cyclase-associated protein 1 overexpression was significantly associated with overall survival (P = 0.011). Knock down of cyclase-associated protein 1 in TE1 cells resulted in decreased vimentin and F-actin levels and the capability for migration. In addition, overexpression of cyclase-associated protein 1 promoted the migration of TE1 cells. CONCLUSIONS These findings suggest that cyclase-associated protein 1 is involved in the metastasis of esophageal squamous cell carcinoma, and that elevated levels of cyclase-associated protein 1 expression may indicate a poor prognosis for patients with esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Mei Li
- Department of Pathology, Affiliated Hospital of Nantong University, Jiangsu 226001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 2013; 45:308-13. [PMID: 23354439 DOI: 10.1038/ng.2539] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/03/2013] [Indexed: 12/15/2022]
Abstract
The extracellular signal-related kinases 1 and 2 (ERK1/2) are key proteins mediating mitogen-activated protein kinase signaling downstream of RAS: phosphorylation of ERK1/2 leads to nuclear uptake and modulation of multiple targets. Here, we show that reduced dosage of ERF, which encodes an inhibitory ETS transcription factor directly bound by ERK1/2 (refs. 2,3,4,5,6,7), causes complex craniosynostosis (premature fusion of the cranial sutures) in humans and mice. Features of this newly recognized clinical disorder include multiple-suture synostosis, craniofacial dysmorphism, Chiari malformation and language delay. Mice with functional Erf levels reduced to ∼30% of normal exhibit postnatal multiple-suture synostosis; by contrast, embryonic calvarial development appears mildly delayed. Using chromatin immunoprecipitation in mouse embryonic fibroblasts and high-throughput sequencing, we find that ERF binds preferentially to elements away from promoters that contain RUNX or AP-1 motifs. This work identifies ERF as a novel regulator of osteogenic stimulation by RAS-ERK signaling, potentially by competing with activating ETS factors in multifactor transcriptional complexes.
Collapse
|
39
|
Semaphorin7A and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Semin Cell Dev Biol 2013; 24:129-38. [PMID: 23333497 DOI: 10.1016/j.semcdb.2013.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
Abstract
Semaphorins form a large, evolutionary conserved family of cellular guidance signals. The semaphorin family contains several secreted and transmembrane proteins, but only one GPI-anchored member, Semaphorin7A (Sema7A). Although originally identified in immune cells, as CDw108, Sema7A displays widespread expression outside the immune system. It is therefore not surprising that accumulating evidence supports roles for this protein in a wide variety of biological processes in different organ systems and in disease. Well-characterized biological effects of Sema7A include those during bone and immune cell regulation, neuron migration and neurite growth. These effects are mediated by two receptors, plexinC1 and integrins. However, most of what is known today about Sema7A signaling concerns Sema7A-integrin interactions. Here, we review our current knowledge of Sema7A function and signaling in different organ systems, highlighting commonalities between the cellular effects and signaling pathways activated by Sema7A in different cell types. Furthermore, we discuss a potential role for Sema7A in disease and provide directions for further research.
Collapse
|