1
|
Walter Z, Li M, Molho M, Berish L, Isopi A, O'Mara M, Dittmar M, Nwaezeapu C, Richards A, McCullagh M, Krogan NJ, Cherry S, Johnson JR, Ramage H. An integrated proteomics approach identifies phosphorylation sites on viral and host proteins that regulate West Nile virus infection. Cell Rep 2025; 44:115728. [PMID: 40381193 DOI: 10.1016/j.celrep.2025.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/22/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Upon infection, viruses alter the proteome, creating a hospitable environment for infection. Cells respond to limit viral replication, including through protein regulation by post-translational modifications. We use mass spectrometry to define proteome alterations during West Nile virus (WNV) infection. Our studies identify upregulation of HERPUD1, which restricts WNV replication through a mechanism independent of its role in endoplasmic reticulum (ER)-associated degradation (ERAD). We also identify modifications on viral proteins, including a WNV NS3 phosphorylation site that impacts viral replication. Finally, we reveal activation of two host kinases with antiviral activity. We identify phosphorylation at S108 of AMPKβ1, a non-catalytic subunit that regulates activity of the AMPK complex. We also show activation of PAK2 by phosphorylation at S141, which restricts translation of the viral genome. This work contributes to our understanding of the interplay between host and virus while providing a resource to define the changes to the proteome that regulate viral infection.
Collapse
Affiliation(s)
- Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Melissa Molho
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Isopi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary O'Mara
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chike Nwaezeapu
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alicia Richards
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
2
|
Ryu JE, Shim KW, Roh HW, Park M, Lee JH, Kim EY. Circadian regulation of endoplasmic reticulum calcium response in cultured mouse astrocytes. eLife 2024; 13:RP96357. [PMID: 39601391 PMCID: PMC11602189 DOI: 10.7554/elife.96357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.
Collapse
Affiliation(s)
- Ji Eun Ryu
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Brain Science, Ajou University School of MedicineSuwonRepublic of Korea
| | - Kyu-Won Shim
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Hyun Woong Roh
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Psychiatry, Ajou University School of MedicineSuwonRepublic of Korea
| | - Minsung Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Brain Science, Ajou University School of MedicineSuwonRepublic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee UniversitySeoulRepublic of Korea
| | - Eun Young Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Brain Science, Ajou University School of MedicineSuwonRepublic of Korea
| |
Collapse
|
3
|
Chen Y, Liu Y, Li Y, Yao C, Qu J, Tang J, Chen G, Han Y. Acute exposure to polystyrene nanoplastics induces unfolded protein response and global protein ubiquitination in lungs of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116580. [PMID: 38865938 DOI: 10.1016/j.ecoenv.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51 mg/kg PS-NPs once for 24 h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yingqi Liu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China; Wujiang Center for Disease Control and Prevention, Suzhou, Jiangsu 215299, China
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
4
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
5
|
Paredes F, Navarro-Marquez M, Quiroga C, Jiménez-Gallegos D, Yeligar SM, Parra V, Müller M, Chiong M, Quest AFG, San Martin A, Lavandero S. HERPUD1 governs tumor cell mitochondrial function via inositol 1,4,5-trisphosphate receptor-mediated calcium signaling. Free Radic Biol Med 2024; 211:24-34. [PMID: 38043868 DOI: 10.1016/j.freeradbiomed.2023.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The intricate relationship between calcium (Ca2+) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca2+-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca2+ signals in tumor cells. This study explores the role of HERPUD1 in regulating mitochondrial function and tumor cell migration by controlling ITPR3-dependent Ca2+ signals. We found HERPUD1 levels correlated with mitochondrial function in tumor cells, with HERPUD1 deficiency leading to enhanced mitochondrial activity. HERPUD1 knockdown increased intracellular Ca2+ release and mitochondrial Ca2+ influx, which was prevented using the ITPR3 antagonist xestospongin C or the Ca2+ chelator BAPTA-AM. Furthermore, HERPUD1 expression reduced tumor cell migration by controlling ITPR3-mediated Ca2+ signals. HERPUD1-deficient cells exhibited increased migratory capacity, which was attenuated by treatment with xestospongin C or BAPTA-AM. Additionally, HERPUD1 deficiency led to reactive oxygen species-dependent activation of paxillin and FAK proteins, which are associated with enhanced cell migration. Our findings highlight the pivotal role of HERPUD1 in regulating mitochondrial function and cell migration by controlling intracellular Ca2+ signals mediated by ITPR3. Understanding the interplay between HERPUD1 and mitochondrial Ca2+ regulation provides insights into potential therapeutic targets for cancer treatment and other pathologies involving altered energy metabolism.
Collapse
Affiliation(s)
- Felipe Paredes
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases, Division de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Danica Jiménez-Gallegos
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA; Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Valentina Parra
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA; Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Xie W, Shan Y, Wu Z, Liu N, Yang J, Zhang H, Sun S, Chi J, Feng W, Lin H, Guo H. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Cell Biol Toxicol 2023; 39:2665-2684. [PMID: 36746840 DOI: 10.1007/s10565-023-09794-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Yue Shan
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Zhuonan Wu
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Nan Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Jinjin Yang
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Weizhong Feng
- Department of Cardiovascular Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
7
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Son SH, Lee J, Cho SN, Choi JA, Kim J, Nguyen TD, Lee SA, Son D, Song CH. Herp regulates intracellular survival of Mycobacterium tuberculosis H37Ra in macrophages by regulating reactive oxygen species-mediated autophagy. mBio 2023; 14:e0153523. [PMID: 37800958 PMCID: PMC10653826 DOI: 10.1128/mbio.01535-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Several studies have suggested that endoplasmic reticulum (ER) stress is important in the pathogenesis of infectious diseases; however, the precise function of ER stress regulation and the role of Herp as a regulator in Mtb H37Ra-induced ER stress remain elusive. Therefore, our study investigated ER stress and autophagy associated with Herp expression in Mycobacterium tuberculosis-infected macrophages to determine the role of Herp in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| | - Jaewhan Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Tam Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seong-Ahn Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Doyi Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
9
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
10
|
Su R, Yin J, Ruan X, Chen Y, Wan P, Luo Z. Featured interactome of homocysteine-inducible endoplasmic reticulum protein uncovers novel binding partners in response to ER stress. Comput Struct Biotechnol J 2023; 21:4478-4487. [PMID: 37736299 PMCID: PMC10510068 DOI: 10.1016/j.csbj.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Homocysteine-inducible endoplasmic reticulum protein (HERP) is an endoplasmic reticulum (ER)-resident protein and important for the adaptation of cellular protein homeostasis by ER-associated degradation (ERAD) system. HERP interactors are critical for cellular viability and the reaction to ER stress. To explore the exact mechanisms by which HERP performed the biological functions, we conducted an interaction analysis of HERP protein in HeLa cells by co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometer (LC-MS)/MS coupled with label-free quantification (LFQ). Among the interactome results, 123 proteins significantly interacted with HERP, which leads to numerous biological processes including protein import into nucleus, ubiquitin-dependent ERAD pathway, negative regulation of apoptotic process, and protein transport from ER, along with multiple pathways including several diseases, protein processing in ER, fatty acid metabolism, and steroid biosynthesis. Furthermore, we selected several prey proteins from the interactome data and confirmed that HERP interacted with ancient ubiquitous protein 1 (AUP1), Fas-associated factor family member 2 (FAF2), tripartite motif containing 47 (TRIM47), acyl-CoA synthetase long-chain family member 3 (ACSL3), sequestosome 1 (SQSTM1), and poly(rC) binding protein 2 (PCBP2) by Co-IP and confocal microscopy experiments, respectively. Moreover, the expression and location of several interacted proteins were obviously altered in response to ER stress induced by Thapsigargin stimulation and Enterovirus 71 infection. In conclusion, our findings revealed that the vital proteins interacted with HERP to mediate signaling transduction, thus providing novel clues for the mechanisms of HERP associated with ERAD and metabolism in response to ER stress under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Su
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Jialing Yin
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Xiaolan Ruan
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yanxi Chen
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Pin Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430072, China
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
11
|
Ogen-Shtern N, Chang C, Saad H, Mazkereth N, Patel C, Shenkman M, Lederkremer GZ. COP I and II dependent trafficking controls ER-associated degradation in mammalian cells. iScience 2023; 26:106232. [PMID: 36876137 PMCID: PMC9982306 DOI: 10.1016/j.isci.2023.106232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Misfolded proteins and components of the endoplasmic reticulum (ER) quality control and ER associated degradation (ERAD) machineries concentrate in mammalian cells in the pericentriolar ER-derived quality control compartment (ERQC), suggesting it as a staging ground for ERAD. By tracking the chaperone calreticulin and an ERAD substrate, we have now determined that the trafficking to the ERQC is reversible and recycling back to the ER is slower than the movement in the ER periphery. The dynamics suggest vesicular trafficking rather than diffusion. Indeed, using dominant negative mutants of ARF1 and Sar1 or the drugs Brefeldin A and H89, we observed that COPI inhibition causes accumulation in the ERQC and increases ERAD, whereas COPII inhibition has the opposite effect. Our results suggest that targeting of misfolded proteins to ERAD involves COPII-dependent transport to the ERQC and that they can be retrieved to the peripheral ER in a COPI-dependent manner.
Collapse
Affiliation(s)
- Navit Ogen-Shtern
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chieh Chang
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Mazkereth
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Nie X, Liu D, Zheng M, Li X, Liu O, Guo Q, Zhu L, Lin B. HERPUD1 promotes ovarian cancer cell survival by sustaining autophagy and inhibit apoptosis via PI3K/AKT/mTOR and p38 MAPK signaling pathways. BMC Cancer 2022; 22:1338. [PMID: 36544104 PMCID: PMC9769045 DOI: 10.1186/s12885-022-10248-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
HERPUD1 is an important early marker of endoplasmic reticulum stress (ERS) and is involved in the ubiquitination and degradation of several unfolded proteins. However, its role in tumorigenesis is seldom studied, and its role in ovarian cancer is unclear. Lewis y antigen is a tumor-associated sugar antigen that acts as an 'antenna' on the cell surface to receive signals from both inside and outside the cell. We previously reported that Lewis y can promote ovarian cancer by promoting autophagy and inhibiting apoptosis. In this study, we detect the expression of HERPUD1 and Lewis y antigens in 119 different ovarian cancer tissues, determine their relationship with clinicopathological parameters, analyze the correlation between these two proteins, and explore the related cancer-promoting mechanisms through MTT, flow cytometry, western blotting, and bioinformatics. HERPUD1 is highly expressed in ovarian cancer, especially in the early stage, and the expression of HERPUD1 and Lewis y antigen was positively correlated. After overexpression of Lewis y antigen, the expression level of HERPUD1 increased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) analysis showed that HERPUD1 and its related genes are enriched in regulating immunity, endoplasmic reticulum stress, ubiquitin-dependent degradation, ERS-induced apoptosis, and other key signaling pathways. We also clarified the HERPUD1 network of kinases, microRNA and transcription factor targets, and the impact of HERPUD1 mutations on prognosis. In addition, HERPUD1 promotes the proliferation of ovarian cancer cells, inhibits apoptosis, affects the cell cycle, promotes the occurrence of autophagy, and inhibits EMT and PI3K/AKT/mTOR and p38MAPK pathways. Overall, HERPUD1, regulated by the expression of tumor-associated protein Lewis y, promotes cell survival in the early stages of tumors, suggesting that HERPUD1 may play an important role in the development of ovarian cancer.
Collapse
Affiliation(s)
- Xin Nie
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Dawo Liu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Mingjun Zheng
- grid.411095.80000 0004 0477 2585Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Xiao Li
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Qian Guo
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Liancheng Zhu
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, 110004 China ,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
13
|
Homocysteine causes neuronal leptin resistance and endoplasmic reticulum stress. PLoS One 2022; 17:e0278965. [PMID: 36512575 PMCID: PMC9746958 DOI: 10.1371/journal.pone.0278965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.
Collapse
|
14
|
Peng Y, Li N, Tang F, Qian C, Jia T, Liu J, Xu Y. Corosolic acid sensitizes ferroptosis by upregulating HERPUD1 in liver cancer cells. Cell Death Dis 2022; 8:376. [PMID: 36038536 PMCID: PMC9424261 DOI: 10.1038/s41420-022-01169-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Primary liver cancer is the third leading cause of cancer death in the world, and the lack of effective treatments is the main reason for the high mortality. Corosolic acid (CA) has been proved to have antitumor activity. In this study, we found that CA can sensitize liver cancer cells to ferroptosis, which is a regulated form of cell death characterized by iron-dependent lipid peroxides reaching lethal levels. Here, we revealed that CA can inhibit glutathione (GSH) synthesis via HERPUD1, decreasing the cellular GSH level and causing liver cancer cells to become more sensitive to ferroptosis. Mechanistically, further studies found that HERPUD1 reduced the ubiquitination of the GSS-associated E3 ubiquitin ligase MDM2, which promoted ubiquitination of GSS, thereby inhibiting GSH synthesis to increase ferroptosis susceptibility. Importantly, a mouse xenograft model also demonstrated that CA inhibits tumor growth via HERPUD1. Collectively, our findings suggesting that CA is a candidate component for the development of treatments against liver cancer.
Collapse
Affiliation(s)
- Yingxiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Ning Li
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Feifeng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Chunmei Qian
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Tingting Jia
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Jingjin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China.
| |
Collapse
|
15
|
CREB3 Plays an Important Role in HPSE-Facilitated HSV-1 Release in Human Corneal Epithelial Cells. Viruses 2022; 14:v14061171. [PMID: 35746643 PMCID: PMC9227461 DOI: 10.3390/v14061171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/16/2023] Open
Abstract
Herpes simplex virus type-1 (HSV-1) exploits several host factors to enhance its replication and release from infected cells. It induces the production of host enzyme heparanase (HPSE) to aid in egress. While the mechanism by which HPSE assists in viral release is well-characterized, other host factors that are recruited along with HPSE for viral release are less well understood. In this study, we identify cyclic-AMP-responsive element-binding protein3 (CREB3) as a key player in HPSE-facilitated HSV-1 egress. When CREB3 is transiently upregulated in human corneal epithelial cells, HSV-1 release from the infected cells is correspondingly enhanced. This activity is linked to HPSE expression such that HPSE-transfected corneal epithelial (HCE) cells more highly express CREB3 than wild-type cells while the cells knocked out for HPSE show very little CREB3 expression. CREB3-transfected HCE cells showed significantly higher export of HPSE upon infection than wild-type cells. Our data suggests that coat protein complex II (COPII), which mediates HPSE trafficking, is also upregulated via a CREB3-dependent pathway during HSV-1 infection. Finally, the co-transfection of CREB3 and HPSE in HCE cells shows the highest viral release compared to either treatment alone, establishing CREB3 as a key player in HPSE-facilitated HSV-1 egress.
Collapse
|
16
|
Thapsigargin: key to new host-directed coronavirus antivirals? Trends Pharmacol Sci 2022; 43:557-568. [PMID: 35534355 PMCID: PMC9013669 DOI: 10.1016/j.tips.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Despite the great success of vaccines that protect against RNA virus infections, and the development and clinical use of a limited number of RNA virus-specific drugs, there is still an urgent need for new classes of antiviral drugs against circulating or emerging RNA viruses. To date, it has proved difficult to efficiently suppress RNA virus replication by targeting host cell functions, and there are no approved drugs of this type. This opinion article discusses the recent discovery of a pronounced and sustained antiviral activity of the plant-derived natural compound thapsigargin against enveloped RNA viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), and influenza A virus. Based on its mechanisms of action, thapsigargin represents a new prototype of compounds with multimodal host-directed antiviral activity.
Collapse
|
17
|
Vargas G, Cortés O, Arias-Muñoz E, Hernández S, Cerda-Troncoso C, Hernández L, González AE, Tatham MH, Bustamante HA, Retamal C, Cancino J, Varas-Godoy M, Hay RT, Rojas-Fernández A, Cavieres VA, Burgos PV. Negative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival. Front Cell Dev Biol 2022; 10:743287. [PMID: 35309917 PMCID: PMC8924303 DOI: 10.3389/fcell.2022.743287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
Collapse
Affiliation(s)
- Gabriela Vargas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Omar Cortés
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Laura Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alexis E González
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Michael H Tatham
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hianara A Bustamante
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronald T Hay
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alejandro Rojas-Fernández
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom.,Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
18
|
Carluccio MA, Martinelli R, Massaro M, Calabriso N, Scoditti E, Maffia M, Verri T, Gatta V, De Caterina R. Nutrigenomic Effect of Hydroxytyrosol in Vascular Endothelial Cells: A Transcriptomic Profile Analysis. Nutrients 2021; 13:nu13113990. [PMID: 34836245 PMCID: PMC8623349 DOI: 10.3390/nu13113990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Hydroxytyrosol (HT), a peculiar olive and olive oil phenolic antioxidant, plays a significant role in the endothelial and cardiovascular protection associated with olive oil consumption. However, studies examining the effects of HT on the whole-genome expression of endothelial cells, which are prominent targets for vasculo-protective effects of olive oil polyphenols, have been lacking. This study aims to comprehensively evaluate the genomic effects exerted by HT, at the transcriptional level, in endothelial cells under resting or proinflammatory conditions. Human umbilical vein endothelial cells (HUVECs) were treated with 10 µmol/L HT for 1 h and then stimulated with 5 ng/mL interleukin (IL)-1β for 3 h. Total RNA was extracted, and gene expression profile assessed with microarray analysis. Functional enrichment analysis and pathway analysis were performed by Ingenuity Pathways Analysis. Microarray data were validated by qRT-PCR. Fixing a significance threshold at 1.5-fold change, HT affected the expression of 708 and 599 genes, respectively, in HUVECs under resting and IL-1β-stimulated conditions; among these, 190 were common to both conditions. Unfolded protein response (UPR) and endoplasmic reticulum stress resulted from the two top canonical pathways common between HT and HT-IL-1β affected genes. IL-17F/A signaling was found in the top canonical pathways of HT modified genes under resting unstimulated conditions, whereas cardiac hypertrophy signaling was identified among the pathways affected by HT-IL-1β. The transcriptomic analysis allowed pinpointing immunological, inflammatory, proliferative, and metabolic-related pathways as the most affected by HT in endothelial cells. It also revealed previously unsuspected genes and related gene pathways affected by HT, thus broadening our knowledge of its biological properties. The unbiased identification of novel genes regulated by HT improves our understanding of mechanisms by which olive oil prevents or attenuates inflammatory diseases and identifies new genes to be enquired as potential contributors to the inter-individual variation in response to functional food consumption.
Collapse
Affiliation(s)
- Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology (IFC), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (M.M.); (N.C.); (E.S.)
- Correspondence: (M.A.C.); (R.D.C.)
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Salerno, Italy;
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (M.M.); (N.C.); (E.S.)
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (M.M.); (N.C.); (E.S.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy; (M.M.); (N.C.); (E.S.)
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology (DISTEBA), Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy; (M.M.); (T.V.)
| | - Tiziano Verri
- Department of Biological and Environmental Science and Technology (DISTEBA), Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy; (M.M.); (T.V.)
| | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy;
| | - Raffaele De Caterina
- Cardiology Division, Pisa University Hospital, 56124 Pisa, Italy
- Correspondence: (M.A.C.); (R.D.C.)
| |
Collapse
|
19
|
Zhang F, Zeng QY, Xu H, Xu AN, Liu DJ, Li NZ, Chen Y, Jin Y, Xu CH, Feng CZ, Zhang YL, Liu D, Liu N, Xie YY, Yu SH, Yuan H, Xue K, Shi JY, Liu TX, Xu PF, Zhao WL, Zhou Y, Wang L, Huang QH, Chen Z, Chen SJ, Zhou XL, Sun XJ. Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discov 2021; 7:98. [PMID: 34697290 PMCID: PMC8547220 DOI: 10.1038/s41421-021-00332-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.
Collapse
Affiliation(s)
- Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Ning Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dian-Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Zhe Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chang-Zhou Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yin-Yin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yuan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yi Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xi Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Fei Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, and Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiu-Hua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Jiang Y, Tao Z, Chen H, Xia S. Endoplasmic Reticulum Quality Control in Immune Cells. Front Cell Dev Biol 2021; 9:740653. [PMID: 34660599 PMCID: PMC8511527 DOI: 10.3389/fcell.2021.740653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum quality control (ERQC) system, including endoplasmic reticulum-associated degradation (ERAD), the unfolded protein response (UPR), and autophagy, presides over cellular protein secretion and maintains proteostasis in mammalian cells. As part of the immune system, a variety of proteins are synthesized and assembled correctly for the development, activation, and differentiation of immune cells, such as dendritic cells (DCs), macrophages, myeloid-derived-suppressor cells (MDSCs), B lymphocytes, T lymphocytes, and natural killer (NK) cells. In this review, we emphasize the role of the ERQC in these immune cells, and also discuss how the imbalance of ER homeostasis affects the immune response, thereby suggesting new therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hua Chen
- Department of Colorectal Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Multi-level inhibition of coronavirus replication by chemical ER stress. Nat Commun 2021; 12:5536. [PMID: 34545074 PMCID: PMC8452654 DOI: 10.1038/s41467-021-25551-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.
Collapse
|
22
|
Luizet JB, Raymond J, Lacerda TLS, Barbieux E, Kambarev S, Bonici M, Lembo F, Willemart K, Borg JP, Celli J, Gérard FCA, Muraille E, Gorvel JP, Salcedo SP. The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc Natl Acad Sci U S A 2021; 118:e2105324118. [PMID: 34353909 PMCID: PMC8364137 DOI: 10.1073/pnas.2105324118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection. However, it remains poorly understood how bacterial pathogens exploit ER quality-control functions to complete their intracellular cycle. Brucella spp. replicate extensively within an ER-derived niche, which evolves into specialized vacuoles suited for exit from infected cells. Here we present Brucella-secreted protein L (BspL), a Brucella abortus effector that interacts with Herp, a central component of the ER-associated degradation (ERAD) machinery. We found that BspL enhances ERAD at the late stages of the infection. BspL targeting of Herp and ERAD allows tight control of the kinetics of autophagic Brucella-containing vacuole formation, delaying the last step of its intracellular cycle and cell-to-cell spread. This study highlights a mechanism by which a bacterial pathogen hijacks ERAD components for fine regulation of its intracellular trafficking.
Collapse
Affiliation(s)
- Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Julie Raymond
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Thais Lourdes Santos Lacerda
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Emeline Barbieux
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
- Laboratory of Parasitology, Université Libre de Bruxelles Centre for Research in Immunology (UCRI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Stanimir Kambarev
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| | - Magali Bonici
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Frédérique Lembo
- Equipe labellisée Ligue 'Cell Polarity, Cell Signaling and Cancer', Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, INSERM, 13009 Marseille, France
| | - Kévin Willemart
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
| | - Jean-Paul Borg
- Equipe labellisée Ligue 'Cell Polarity, Cell Signaling and Cancer', Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, INSERM, 13009 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| | - Francine C A Gérard
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Eric Muraille
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
- Laboratory of Parasitology, Université Libre de Bruxelles Centre for Research in Immunology (UCRI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille Université, 13009 Marseille, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France;
| |
Collapse
|
23
|
Gumeni S, Vantaggiato C, Montopoli M, Orso G. Hereditary Spastic Paraplegia and Future Therapeutic Directions: Beneficial Effects of Small Compounds Acting on Cellular Stress. Front Neurosci 2021; 15:660714. [PMID: 34025345 PMCID: PMC8134669 DOI: 10.3389/fnins.2021.660714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of inherited neurodegenerative conditions that share a characteristic feature of degeneration of the longest axons within the corticospinal tract, which leads to progressive spasticity and weakness of the lower limbs. Mutations of over 70 genes produce defects in various biological pathways: axonal transport, lipid metabolism, endoplasmic reticulum (ER) shaping, mitochondrial function, and endosomal trafficking. HSPs suffer from an adequate therapeutic plan. Currently the treatments foreseen for patients affected by this pathology are physiotherapy, to maintain the outgoing tone, and muscle relaxant therapies for spasticity. Very few clinical studies have been conducted, and it's urgent to implement preclinical animal studies devoted to pharmacological test and screening, to expand the rose of compounds potentially attractive for clinical trials. Small animal models, such as Drosophila melanogaster and zebrafish, have been generated, analyzed, and used as preclinical model for screening of compounds and their effects. In this work, we briefly described the role of HSP-linked proteins in the organization of ER endomembrane system and in the regulation of ER homeostasis and stress as a common pathological mechanism for these HSP forms. We then focused our attention on the pharmacodynamic and pharmacokinetic features of some recently identified molecules with antioxidant property, such as salubrinal, guanabenz, N-acetyl cysteine, methylene blue, rapamycin, and naringenin, and on their potential use in future clinical studies. Expanding the models and the pharmacological screening for HSP disease is necessary to give an opportunity to patients and clinicians to test new molecules.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
24
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
25
|
The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. Cell Rep 2021; 34:108659. [PMID: 33472082 DOI: 10.1016/j.celrep.2020.108659] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023] Open
Abstract
The endolysosomal system fulfills a wide variety of cellular functions, many of which are modulated through interactions with other organelles. In particular, the ER exerts spatiotemporal constraints on the organization and motility of endosomes and lysosomes. We have recently described the ER transmembrane E3 ubiquitin ligase RNF26 as a regulator of endolysosomal perinuclear positioning and transport dynamics. Here, we report that the ubiquitin conjugating enzyme UBE2J1, also anchored in the ER membrane, partners with RNF26 in this context, and that the cellular activity of the resulting E2/E3 pair is localized in a perinuclear ER subdomain and supported by transmembrane interactions. Through modification of SQSTM1/p62 on lysine 435, the ER-embedded UBE2J1/RNF26 ubiquitylation complex recruits endosomal adaptors to immobilize their cognate vesicles in the perinuclear region of the cell. The resulting spatiotemporal compartmentalization promotes the trafficking of activated EGFR to lysosomes and facilitates the termination of EGF-induced AKT signaling.
Collapse
|
26
|
Patel C, Saad H, Shenkman M, Lederkremer GZ. Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD. Cells 2020; 9:cells9092138. [PMID: 32971745 PMCID: PMC7563561 DOI: 10.3390/cells9092138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
N-linked glycosylation and sugar chain processing, as well as disulfide bond formation, are among the most common post-translational protein modifications taking place in the endoplasmic reticulum (ER). They are essential modifications that are required for membrane and secretory proteins to achieve their correct folding and native structure. Several oxidoreductases responsible for disulfide bond formation, isomerization, and reduction have been shown to form stable, functional complexes with enzymes and chaperones that are involved in the initial addition of an N-glycan and in folding and quality control of the glycoproteins. Some of these oxidoreductases are selenoproteins. Recent studies also implicate glycan machinery–oxidoreductase complexes in the recognition and processing of misfolded glycoproteins and their reduction and targeting to ER-associated degradation. This review focuses on the intriguing cooperation between the glycoprotein-specific cell machineries and ER oxidoreductases, and highlights open questions regarding the functions of many members of this large family.
Collapse
Affiliation(s)
- Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
27
|
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is an essential process that removes misfolded proteins from the ER, preventing cellular dysfunction and disease. While most of the key components of ERAD are known, their specific localization remains a mystery. This study uses in situ cryo-electron tomography to directly visualize the ERAD machinery within the native cellular environment. Proteasomes and Cdc48, the complexes that extract and degrade ER proteins, cluster together in non–membrane-bound cytosolic microcompartments that contact ribosome-free patches on the ER membrane. This discrete molecular organization may facilitate efficient ERAD. Structural analysis reveals that proteasomes directly engage ER-localized substrates, providing evidence for a noncanonical “direct ERAD” pathway. In addition, live-cell fluorescence microscopy suggests that these ER-associated proteasome clusters form by liquid–liquid phase separation. To promote the biochemical reactions of life, cells can compartmentalize molecular interaction partners together within separated non–membrane-bound regions. It is unknown whether this strategy is used to facilitate protein degradation at specific locations within the cell. Leveraging in situ cryo-electron tomography to image the native molecular landscape of the unicellular alga Chlamydomonas reinhardtii, we discovered that the cytosolic protein degradation machinery is concentrated within ∼200-nm foci that contact specialized patches of endoplasmic reticulum (ER) membrane away from the ER–Golgi interface. These non–membrane-bound microcompartments exclude ribosomes and consist of a core of densely clustered 26S proteasomes surrounded by a loose cloud of Cdc48. Active proteasomes in the microcompartments directly engage with putative substrate at the ER membrane, a function canonically assigned to Cdc48. Live-cell fluorescence microscopy revealed that the proteasome clusters are dynamic, with frequent assembly and fusion events. We propose that the microcompartments perform ER-associated degradation, colocalizing the degradation machinery at specific ER hot spots to enable efficient protein quality control.
Collapse
|
28
|
Zhang H, Read C, Nguyen CC, Siddiquey MNA, Shang C, Hall CM, von Einem J, Kamil JP. The Human Cytomegalovirus Nonstructural Glycoprotein UL148 Reorganizes the Endoplasmic Reticulum. mBio 2019; 10:e02110-19. [PMID: 31822584 PMCID: PMC6904874 DOI: 10.1128/mbio.02110-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes an endoplasmic reticulum (ER)-resident glycoprotein, UL148, which activates the unfolded protein response (UPR) but is fully dispensable for viral replication in cultured cells. Hence, its previously ascribed roles in immune evasion and modulation of viral cell tropism are hypothesized to cause ER stress. Here, we show that UL148 is necessary and sufficient to drive the formation of prominent ER-derived structures that on average occupy 5% of the infected cell cytoplasm. The structures are sites where UL148 coalesces with cellular proteins involved in ER quality control, such as HRD1 and EDEM1. Electron microscopy revealed that cells infected with wild-type but not UL148-null HCMV show prominent accumulations of densely packed ruffled ER membranes which connect to distended cisternae of smooth and partially rough ER. During ectopic expression of UL148-green fluorescent protein (GFP) fusion protein, punctate signals traffic to accumulate at conspicuous structures. The structures exhibit poor recovery of fluorescence after photobleaching, which suggests that their contents are poorly mobile and do not efficiently exchange with the rest of the ER. Small-molecule blockade of the integrated stress response (ISR) prevents the formation of puncta, leading to a uniform reticular fluorescent signal. Accordingly, ISR inhibition during HCMV infection abolishes the coalescence of UL148 and HRD1 into discrete structures, which argues that UL148 requires the ISR to cause ER reorganization. Given that UL148 stabilizes immature forms of a receptor binding subunit for a viral envelope glycoprotein complex important for HCMV infectivity, our results imply that stress-dependent ER remodeling contributes to viral cell tropism.IMPORTANCE Perturbations to endoplasmic reticulum (ER) morphology occur during infection with various intracellular pathogens and in certain genetic disorders. We identify that a human cytomegalovirus (HCMV) gene product, UL148, profoundly reorganizes the ER during infection and is sufficient to do so when expressed on its own. Our results reveal that UL148-dependent reorganization of the ER is a prominent feature of HCMV-infected cells. Moreover, we find that this example of virally induced organelle remodeling requires the integrated stress response (ISR), a stress adaptation pathway that contributes to a number of disease states. Since ER reorganization accompanies roles of UL148 in modulation of HCMV cell tropism and in evasion of antiviral immune responses, our results may have implications for understanding the mechanisms involved. Furthermore, our findings provide a basis to utilize UL148 as a tool to investigate organelle responses to stress and to identify novel drugs targeting the ISR.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Clarissa Read
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Christopher C Nguyen
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Mohammed N A Siddiquey
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Chaowei Shang
- Research Core Facility, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Cameron M Hall
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, LSU Health Sciences Center, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
29
|
Shenkman M, Lederkremer GZ. Compartmentalization and Selective Tagging for Disposal of Misfolded Glycoproteins. Trends Biochem Sci 2019; 44:827-836. [PMID: 31133362 DOI: 10.1016/j.tibs.2019.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The ability of mammalian cells to correctly identify and degrade misfolded secretory proteins, most of them bearing N-glycans, is crucial for their correct function and survival. An inefficient disposal mechanism results in the accumulation of misfolded proteins and consequent endoplasmic reticulum (ER) stress. N-glycan processing creates a code that reveals the folding status of each molecule, enabling continued folding attempts or targeting of the doomed glycoprotein for disposal. We review here the main steps involved in the accurate processing of unfolded glycoproteins. We highlight recent data suggesting that the processing is not stochastic, but that there is selective accelerated glycan trimming on misfolded glycoprotein molecules.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
30
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
31
|
Brody MJ, Vanhoutte D, Bakshi CV, Liu R, Correll RN, Sargent MA, Molkentin JD. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem 2019; 294:8918-8929. [PMID: 31006653 DOI: 10.1074/jbc.ra119.007585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Indexed: 01/14/2023] Open
Abstract
Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.
Collapse
Affiliation(s)
- Matthew J Brody
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Davy Vanhoutte
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Chinmay V Bakshi
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Ruije Liu
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan 49401, and
| | - Robert N Correll
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487-0344
| | - Michelle A Sargent
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Jeffery D Molkentin
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, .,the Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039
| |
Collapse
|
32
|
Glass K, Thibault D, Guo F, Mitchel JA, Pham B, Qiu W, Li Y, Jiang Z, Castaldi PJ, Silverman EK, Raby B, Park JA, Yuan GC, Zhou X. Integrative epigenomic analysis in differentiated human primary bronchial epithelial cells exposed to cigarette smoke. Sci Rep 2018; 8:12750. [PMID: 30143676 PMCID: PMC6109173 DOI: 10.1038/s41598-018-30781-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke (CS) is one of the major risk factors for many pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. The first line of defense for CS exposure is the bronchial epithelial cells. Elucidation of the epigenetic changes during CS exposure is key to gaining a mechanistic understanding into how mature and differentiated bronchial epithelial cells respond to CS. Therefore, we performed epigenomic profiling in conjunction with transcriptional profiling in well-differentiated human bronchial epithelial (HBE) cells cultured in air-liquid interface (ALI) exposed to the vapor phase of CS. The genome-wide enrichment of histone 3 lysine 27 acetylation was detected by chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) in HBE cells and suggested the plausible binding of specific transcription factors related to CS exposure. Additionally, interrogation of ChIP-Seq data with gene expression profiling of HBE cells after CS exposure for different durations (3 hours, 2 days, 4 days) suggested that earlier epigenetic changes (3 hours after CS exposure) may be associated with later gene expression changes induced by CS exposure (4 days). The integration of epigenetics and gene expression data revealed signaling pathways related to CS-induced epigenetic changes in HBE cells that may identify novel regulatory pathways related to CS-induced COPD.
Collapse
Affiliation(s)
- Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Derek Thibault
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Jennifer A Mitchel
- Department of Enviromental Health, Harvard T.H. School of Public Health, Boston, United States
| | - Betty Pham
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Yan Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Zhiqiang Jiang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Benjamin Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Jin-Ah Park
- Department of Enviromental Health, Harvard T.H. School of Public Health, Boston, United States
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biostatistics, Harvard T.H. School of Public Health, Boston, United States
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.
| |
Collapse
|
33
|
Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci Rep 2018; 8:7317. [PMID: 29743537 PMCID: PMC5943263 DOI: 10.1038/s41598-018-25724-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step. Under ER stress conditions, Derlin family proteins (Derlins), which are components of ER-associated degradation, reroute specific ER-targeting proteins to the cytosol. Newly synthesized rerouted polypeptides are degraded via the cytosolic chaperone Bag6 and the AAA-ATPase p97 in the ubiquitin-proteasome system. However, the mechanisms by which ER-targeting proteins are rerouted from the ER translocation pathway to the cytosolic degradation pathway and how the E3 ligase ubiquitinates ERpQC substrates remain unclear. Here, we show that ERpQC substrates are captured by the carboxyl-terminus region of Derlin-1 and ubiquitinated by the HRD1 E3 ubiquitin ligase prior to degradation. Moreover, HRD1 forms a large ERpQC-related complex composed of Sec61α and Derlin-1 during ER stress. These findings indicate that the association of the degradation factor HRD1 with the translocon and the rerouting factor Derlin-1 may be necessary for the smooth and effective clearance of ERpQC substrates.
Collapse
|
34
|
Américo-Da-Silva L, Diaz J, Bustamante M, Mancilla G, Oyarzún I, Verdejo HE, Quiroga C. A new role for HERPUD1 and ERAD activation in osteoblast differentiation and mineralization. FASEB J 2018; 32:4681-4695. [PMID: 29570393 DOI: 10.1096/fj.201701229rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone integrity depends on a finely tuned balance between bone synthesis by osteoblasts and resorption by osteoclasts. The secretion capacity of mature osteoblasts requires strict control of proteostasis. Endoplasmic reticulum-associated degradation (ERAD) prevents the accumulation of unfolded ER proteins via dislocation to the cytosol and degradation by the proteasome. The ER membrane protein, homocysteine-inducible endoplasmic reticulum protein with ubiquitin-like domain 1 (HERPUD1), is a key component of the ERAD multiprotein complex which helps to stabilize the complex and facilitate the efficient degradation of unfolded proteins. HERPUD1 expression is strongly up-regulated by the unfolded protein response and cellular stress. The aim of the current study was to establish whether HERPUD1 and ERAD play roles in osteoblast differentiation and maturation. We evaluated preosteoblastic MC3T3-E1 cell and primary rat osteoblast differentiation by measuring calcium deposit levels, alkaline phosphatase activity, and runt-related transcription factor 2 and osterix expression. We found that ERAD and proteasomal degradation were activated and that HERPUD1 expression was increased as osteoblast differentiation progressed. The absence of HERPUD1 blocked osteoblast mineralization in vitro and significantly reduced alkaline phosphatase activity. In contrast, HERPUD1 overexpression activated the osteoblast differentiation program. Our results demonstrate that HERPUD1 and ERAD are important for the activation of the osteoblast maturation program and may be useful new targets for elucidating bone physiology.-Américo-Da-Silva, L., Diaz, J., Bustamante, M., Mancilla, G., Oyarzún, I., Verdejo, H. E., Quiroga, C. A new role for HERPUD1 and ERAD activation in osteoblast differentiation and mineralization.
Collapse
Affiliation(s)
- Luan Américo-Da-Silva
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jheimmy Diaz
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Bustamante
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ingrid Oyarzún
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Bergmann TJ, Fregno I, Fumagalli F, Rinaldi A, Bertoni F, Boersema PJ, Picotti P, Molinari M. Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem 2018; 293:5600-5612. [PMID: 29453283 DOI: 10.1074/jbc.ra117.001484] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
The stress sensors ATF6, IRE1, and PERK monitor deviations from homeostatic conditions in the endoplasmic reticulum (ER), a protein biogenesis compartment of eukaryotic cells. Their activation elicits unfolded protein responses (UPR) to re-establish proteostasis. UPR have been extensively investigated in cells exposed to chemicals that activate ER stress sensors by perturbing calcium, N-glycans, or redox homeostasis. Cell responses to variations in luminal load with unfolded proteins are, in contrast, poorly characterized. Here, we compared gene and protein expression profiles in HEK293 cells challenged with ER stress-inducing drugs or expressing model polypeptides. Drug titration to limit up-regulation of the endogenous ER stress reporters heat shock protein family A (Hsp70) member 5 (BiP/HSPA5) and homocysteine-inducible ER protein with ubiquitin-like domain 1 (HERP/HERPUD1) to levels comparable with luminal accumulation of unfolded proteins substantially reduced the amplitude of both transcriptional and translational responses. However, these drug-induced changes remained pleiotropic and failed to recapitulate responses to ER load with unfolded proteins. These required unfolded protein association with BiP and induced a much smaller subset of genes participating in a chaperone complex that binds unfolded peptide chains. In conclusion, UPR resulting from ER load with unfolded proteins proceed via a well-defined and fine-tuned pathway, whereas even mild chemical stresses caused by compounds often used to stimulate UPR induce cellular responses largely unrelated to the UPR or ER-mediated protein secretion.
Collapse
Affiliation(s)
- Timothy J Bergmann
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ilaria Fregno
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fiorenza Fumagalli
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the Graduate School for Cellular and Biomedical Sciences, University of Bern, 3001 Bern, Switzerland
| | - Andrea Rinaldi
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Istituto Oncologico di Ricerca, 6500 Bellinzona, Switzerland, and
| | - Francesco Bertoni
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland.,the Istituto Oncologico di Ricerca, 6500 Bellinzona, Switzerland, and
| | - Paul J Boersema
- the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- the Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Maurizio Molinari
- From the Università della Svizzera italiana, 6900 Lugano, Switzerland, .,the Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.,the École Polytechnique Fédérale de Lausanne, School of Life Sciences, 1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Shim SM, Choi HR, Sung KW, Lee YJ, Kim ST, Kim D, Mun SR, Hwang J, Cha-Molstad H, Ciechanover A, Kim BY, Kwon YT. The endoplasmic reticulum-residing chaperone BiP is short-lived and metabolized through N-terminal arginylation. Sci Signal 2018; 11:11/511/eaan0630. [PMID: 29295953 DOI: 10.1126/scisignal.aan0630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BiP and other endoplasmic reticulum (ER)-resident proteins are thought to be metabolically stable and to function primarily in the ER lumen. We sought to assess how the abundance of these proteins dynamically fluctuates in response to various stresses and how their subpopulations are relocated to non-ER compartments such as the cytosol. We showed that the molecular chaperone BiP (also known as GRP78) was short-lived under basal conditions and ER stress. The turnover of BiP was in part driven by its amino-terminal arginylation (Nt-arginylation) by the arginyltransferase ATE1, which generated an autophagic N-degron of the N-end rule pathway. ER stress elicited the formation of R-BiP, an effect that was increased when the proteasome was also inhibited. Nt-arginylation correlated with the cytosolic relocalization of BiP under the types of stress tested. The cytosolic relocalization of BiP did not require the functionality of the unfolded protein response or the Sec61- or Derlin1-containing translocon. A key inhibitor of the turnover and Nt-arginylation of BiP was HERP (homocysteine-responsive ER protein), a 43-kDa ER membrane-integrated protein that is an essential component of ER-associated protein degradation. Pharmacological inhibition of the ER-Golgi secretory pathway also suppressed R-BiP formation. Finally, we showed that cytosolic R-BiP induced by ER stress and proteasomal inhibition was routed to autophagic vacuoles and possibly additional metabolic fates. These results suggest that Nt-arginylation is a posttranslational modification that modulates the function, localization, and metabolic fate of ER-resident proteins.
Collapse
Affiliation(s)
- Sang Mi Shim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ha Rim Choi
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ki Woon Sung
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yoon Jee Lee
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung Tae Kim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daeho Kim
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su Ran Mun
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Joonsung Hwang
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Hyunjoo Cha-Molstad
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Aaron Ciechanover
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Tumor and Vascular Biology Research Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bo Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea.
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
37
|
Ge M, Luo Z, Qiao Z, Zhou Y, Cheng X, Geng Q, Cai Y, Wan P, Xiong Y, Liu F, Wu K, Liu Y, Wu J. HERP Binds TBK1 To Activate Innate Immunity and Repress Virus Replication in Response to Endoplasmic Reticulum Stress. THE JOURNAL OF IMMUNOLOGY 2017; 199:3280-3292. [DOI: 10.4049/jimmunol.1700376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
|
38
|
van de Weijer ML, Schuren ABC, van den Boomen DJH, Mulder A, Claas FHJ, Lehner PJ, Lebbink RJ, Wiertz EJHJ. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J Cell Sci 2017; 130:2883-2892. [PMID: 28743740 DOI: 10.1242/jcs.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Anouk B C Schuren
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | | | - Arend Mulder
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frans H J Claas
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Robert Jan Lebbink
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
39
|
Joly P, Vignaud H, Di Martino J, Ruiz M, Garin R, Restier L, Belmalih A, Marchal C, Cullin C, Arveiler B, Fergelot P, Gitler AD, Lachaux A, Couthouis J, Bouchecareilh M. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency. PLoS One 2017; 12:e0179369. [PMID: 28617828 PMCID: PMC5472284 DOI: 10.1371/journal.pone.0179369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. METHODS We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. RESULTS Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. CONCLUSION This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis.
Collapse
Affiliation(s)
- Philippe Joly
- University Lyon - University Claude Bernard Lyon 1 - EA 7424 – Inter-university Laboratory of Human Movement Science, Villeurbanne, France
- Laboratoire de Biochimie et biologie moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Hélène Vignaud
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Julie Di Martino
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| | - Mathias Ruiz
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Roman Garin
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Lioara Restier
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Abdelouahed Belmalih
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Christelle Marchal
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Christophe Cullin
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Benoit Arveiler
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Patricia Fergelot
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alain Lachaux
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marion Bouchecareilh
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
- * E-mail:
| |
Collapse
|
40
|
Dubnikov T, Ben-Gedalya T, Cohen E. Protein Quality Control in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023523. [PMID: 27864315 DOI: 10.1101/cshperspect.a023523] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maintaining functional protein homeostasis (proteostasis) is a constant challenge in the face of limited protein-folding capacity, environmental threats, and aging. Cells have developed several quality-control mechanisms that assist nascent polypeptides to fold properly, clear misfolded molecules, respond to the accumulation of protein aggregates, and deposit potentially toxic conformers in designated sites. Proteostasis collapse can lead to the development of diseases known as proteinopathies. Here we delineate the current knowledge on the different layers of protein quality-control mechanisms at the organelle and cellular levels with an emphasis on the prion protein (PrP). We also describe how protein quality control is integrated at the organismal level and discuss future perspectives on utilizing proteostasis maintenance as a strategy to develop novel therapies for the treatment of proteinopathies.
Collapse
Affiliation(s)
- Tatyana Dubnikov
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Tziona Ben-Gedalya
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
41
|
Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD. J Mol Biol 2016; 428:3194-3205. [DOI: 10.1016/j.jmb.2016.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
|
42
|
Mirabelli C, Pelletier I, Téoulé F, Vidalain PO, Brisac C, Tangy F, Delpeyroux F, Blondel B. The CREB3-Herp signalling module limits the cytosolic calcium concentration increase and apoptosis induced by poliovirus. J Gen Virol 2016; 97:2194-2200. [PMID: 27405867 DOI: 10.1099/jgv.0.000544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Poliovirus (PV)-induced apoptosis seems to play a major role in central nervous system (CNS) tissue injury, a crucial feature of the pathogenesis of poliomyelitis. We have previously shown that calcium (Ca2+) flux from the endoplasmic reticulum (ER) to the cytosol during PV infection is involved in apoptosis induction in human neuroblastoma cells. We show here that PV infection is associated with a transient upregulation of Herp (homocysteine-induced ER protein), a protein known to promote the degradation of ER-resident Ca2+ channels. Herp gene transcription is controlled by the transcription factor CREB3 (cAMP response element-binding protein 3). We found that the CREB3/Herp pathway limited the increase in cytosolic Ca2+ concentration and apoptosis early in PV infection. This may reduce the extent of PV-induced damage to the CNS during poliomyelitis.
Collapse
Affiliation(s)
- Carmen Mirabelli
- Institut Pasteur, Unité de Biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.,INSERM U994, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Unité de Biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.,INSERM U994, Paris, France
| | - François Téoulé
- Institut Pasteur, Unité de Biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.,INSERM U994, Paris, France.,Université Versailles Saint-Quentin, Versailles, France
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique virale et vaccination, 25 rue du Dr Roux, 75015 Paris, France.,CNRS UMR 3569, Paris, France
| | - Cynthia Brisac
- Institut Pasteur, Unité de Biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.,Université Versailles Saint-Quentin, Versailles, France.,INSERM U994, Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique virale et vaccination, 25 rue du Dr Roux, 75015 Paris, France.,CNRS UMR 3569, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de Biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.,INSERM U994, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Unité de Biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.,INSERM U994, Paris, France
| |
Collapse
|
43
|
Garcia-Huerta P, Bargsted L, Rivas A, Matus S, Vidal RL. ER chaperones in neurodegenerative disease: Folding and beyond. Brain Res 2016; 1648:580-587. [PMID: 27134034 DOI: 10.1016/j.brainres.2016.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Leslie Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alexis Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Soledad Matus
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Rene L Vidal
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
44
|
Protein aggregation and ER stress. Brain Res 2016; 1648:658-666. [PMID: 27037184 DOI: 10.1016/j.brainres.2016.03.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a common feature of the protein misfolding or conformational diseases, among them most of the neurodegenerative diseases. These disorders are a major scourge, with scarce if any effective therapies at present. Recent research has identified ER stress as a major mechanism implicated in cytotoxicity in these diseases. Whether amyloid-β or tau in Alzheimer's, α-synuclein in Parkinson's, huntingtin in Huntington's disease or other aggregation-prone proteins in many other neurodegenerative diseases, there is a shared pathway of oligomerization and aggregation into amyloid fibrils. There is increasing evidence in recent years that the toxic species, and those that evoke ER stress, are the intermediate oligomeric forms and not the final amyloid aggregates. This review focuses on recent findings on the mechanisms and importance of the development of ER stress upon protein aggregation, especially in neurodegenerative diseases, and possible therapeutic approaches that are being examined. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
45
|
Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, Di Marino D, Carr EJ, Oskolkov N, Lyssenko V, Franckaert D, Lagou V, Overbergh L, Vandenbussche J, Allemeersch J, Chabot-Roy G, Dahlstrom JE, Laybutt DR, Petrovsky N, Socha L, Gevaert K, Jetten AM, Lambrechts D, Linterman MA, Goodnow CC, Nolan CJ, Lesage S, Schlenner SM, Liston A. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet 2016; 48:519-27. [PMID: 26998692 DOI: 10.1038/ng.3531] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes.
Collapse
Affiliation(s)
- James Dooley
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Lei Tian
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susann Schonefeldt
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | - Josselyn E Garcia-Perez
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Emanuela Pasciuto
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Daniele Di Marino
- Department of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
| | - Edward J Carr
- Lymphocyte Signaling and Development Institute Strategic Programme, Babraham Institute, Cambridge, UK
| | - Nikolay Oskolkov
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden.,Department of Translational Pathophysiology, Steno Diabetes Center, Gentofte, Denmark
| | - Dean Franckaert
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Vasiliki Lagou
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium.,Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Lut Overbergh
- Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Jonathan Vandenbussche
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Genevieve Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jane E Dahlstrom
- Australian National University Medical School, Canberra, Australian Capital Territory, Australia.,Department of Anatomical Pathology, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University, Adelaide, South Australia, Australia
| | - Luis Socha
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, University of Leuven, Leuven, Belgium
| | - Michelle A Linterman
- Lymphocyte Signaling and Development Institute Strategic Programme, Babraham Institute, Cambridge, UK
| | - Chris C Goodnow
- Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher J Nolan
- Australian National University Medical School, Canberra, Australian Capital Territory, Australia.,Department of Endocrinology, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Susan M Schlenner
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Center for the Biology of Disease, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Truchan HK, Cockburn CL, Hebert KS, Magunda F, Noh SM, Carlyon JA. The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front Cell Infect Microbiol 2016; 6:22. [PMID: 26973816 PMCID: PMC4771727 DOI: 10.3389/fcimb.2016.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
The genus Anaplasma consists of tick-transmitted obligate intracellular bacteria that invade white or red blood cells to cause debilitating and potentially fatal infections. A. phagocytophilum, a human and veterinary pathogen, infects neutrophils to cause granulocytic anaplasmosis. A. marginale invades bovine erythrocytes. Evidence suggests that both species may also infect endothelial cells in vivo. In mammalian and arthropod host cells, A. phagocytophilum and A. marginale reside in host cell derived pathogen-occupied vacuoles (POVs). While it was recently demonstrated that the A. phagocytophilum-occupied vacuole (ApV) intercepts membrane traffic from the trans-Golgi network, it is unclear if it or the A. marginale-occupied vacuole (AmV) interacts with other secretory organelles. Here, we demonstrate that the ApV and AmV extensively interact with the host endoplasmic reticulum (ER) in endothelial, myeloid, and/or tick cells. ER lumen markers, calreticulin, and protein disulfide isomerase, and the ER membrane marker, derlin-1, were pronouncedly recruited to the peripheries of both POVs. ApV association with the ER initiated early and continued throughout the infection cycle. Both the ApV and AmV interacted with the rough ER and smooth ER. However, only derlin-1-positive rough ER derived vesicles were delivered into the ApV lumen where they localized with intravacuolar bacteria. Transmission electron microscopy identified multiple ER-POV membrane contact sites on the cytosolic faces of both species' vacuoles that corresponded to areas on the vacuoles' lumenal faces where intravacuolar Anaplasma organisms closely associated. A. phagocytophilum is known to hijack Rab10, a GTPase that regulates ER dynamics and morphology. Yet, ApV-ER interactions were unhindered in cells in which Rab10 had been knocked down, demonstrating that the GTPase is dispensable for the bacterium to parasitize the ER. These data establish the ApV and AmV as pathogen-host interfaces that directly engage the ER in vertebrate and invertebrate host cells and evidence the conservation of ER parasitism between two Anaplasma species.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Forgivemore Magunda
- Program in Vector Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA; The Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| | - Susan M Noh
- Program in Vector Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA; Animal Disease Research Unit, Agricultural Research Service, U. S. Department of AgriculturePullman, WA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
47
|
Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defense: Potential therapeutic targets for neurodegeneration and ageing. Ageing Res Rev 2015; 24:138-59. [PMID: 26247845 DOI: 10.1016/j.arr.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
Efficient and regular performance of Ubiquitin Proteasome System and Autophagy continuously eliminate deleterious accumulation of nonnative protiens. In cellular quality control system, E3 ubiquitin ligases are significant employees for defense mechanism against abnormal toxic proteins. Few findings indicate that lack of functions of E3 ubiquitin ligases can be a causative factor of neurodevelopmental disorders, neurodegeneration, cancer and ageing. However, the detailed molecular pathomechanism implying E3 ubiquitin ligases in cellular functions in multifactorial disease conditions are not well understood. This article systematically represents the unique characteristics, molecular nature, and recent developments in the knowledge of neurobiological functions of few crucial E3 ubiquitin ligases. Here, we review recent literature on the roles of E6-AP, HRD1 and ITCH E3 ubiquitin ligases in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic interventions.
Collapse
|
48
|
Kadowaki H, Nagai A, Maruyama T, Takami Y, Satrimafitrah P, Kato H, Honda A, Hatta T, Natsume T, Sato T, Kai H, Ichijo H, Nishitoh H. Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP. Cell Rep 2015; 13:944-56. [DOI: 10.1016/j.celrep.2015.09.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023] Open
|
49
|
Briant K, Koay YH, Otsuka Y, Swanton E. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues. J Cell Sci 2015; 128:4112-25. [PMID: 26446255 PMCID: PMC4712780 DOI: 10.1242/jcs.171215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. Summary: Proteins containing defective transmembrane domains are removed from the endoplasmic reticulum through a specific mechanism that depends upon the ubiquitylation of cytoplasmic lysine residues.
Collapse
Affiliation(s)
- Kit Briant
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yee-Hui Koay
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuka Otsuka
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Eileithyia Swanton
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
50
|
EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:12205-10. [PMID: 26371323 DOI: 10.1073/pnas.1511724112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function.
Collapse
|