1
|
Yang X, Ma Z, Lian P, Wu Y, Liu K, Zhang Z, Tang Z, Xu Y, Cao X. Disruption of axonal transport in Parkinson's disease: the role of pathological α-Syn and AMPK/p38 MAPK signaling. NPJ Parkinsons Dis 2025; 11:114. [PMID: 40328804 PMCID: PMC12055991 DOI: 10.1038/s41531-025-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
The accumulation of α-synuclein within Lewy bodies is a critical factor in the pathogenesis of Parkinson's disease, with potential implications for axonal transport deficits. Activated asparagine endopeptidase enzymatically cleaves α-synuclein and tau, resulting in the formation of α-SynN103 and tauN368, which are markedly elevated in the brains with Parkinson's disease. In this study, rats received intrastriatal injections of 15 µg of preformed α-SynN103 and tauN368 fibrils, and their behaviors were evaluated after a 2-month period. Subsequent analyses investigated alterations in axonal transport and the underlying molecular mechanisms. Our findings indicated that preformed fibrils reduced kinesin levels and excessively activated the AMPK and p38 MAPK, thereby compromising the function of kinesin and dynein in axonal transport. Pharmacological inhibition of AMPK and p38 MAPK ameliorated these dysfunctions in rat models, which identified Compound C and SB203580 as potent inhibitors, offering evidence for early interventions of Parkinson's disease. Mechanisms by which PFFs caused axonal transport defects of dopamine neurons in PD-like models. (A) Shows normal axonal transport. (B) Demonstrates how PFFs increase ?-Syn accumulation, reducing PIKE expression and triggering AMPK/p38 MAPK over-activation, which lowers kinesin levels and motor-cargo interaction. (C) AMPK activity inhibition with C.C significantly improves these deficits. (D) The p38 inhibitor enhances kinesin transport by preventing p38 MAPK over-activation, reducing its inhibition of kinesin-cargo binding.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Amaral L, Martins M, Côrte-Real M, Outeiro TF, Chaves SR, Rego A. The neurotoxicity of pesticides: Implications for Parkinson's disease. CHEMOSPHERE 2025; 377:144348. [PMID: 40203643 DOI: 10.1016/j.chemosphere.2025.144348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder worldwide, and no effective cure is currently available. Neuropathologically, PD is characterized by the selective degeneration of dopaminergic neurons in the substantia nigra and by the accumulation of alpha-synuclein (aSyn)-rich proteinaceous inclusions within surviving neurons. As a multifactorial disorder, approximately 85 % of PD cases are sporadic with unknown etiology. Among the many risk factors implicated in PD, exposure to neurotoxic pesticides stands out as a significant contributor. While the effects of many are still uncharacterized, it has already been shown that rotenone, paraquat, maneb, and dieldrin affect critical cellular pathways, including mitochondrial and proteasomal dysfunction, aSyn aggregation, autophagy dysregulation, and disruption of dopamine metabolism. With the constant rise in pesticide usage to meet the demands of a growing human population, the risk of environmental contamination and subsequent PD development is also increasing. This review explores the molecular mechanisms by which pesticide exposure influences PD development, shedding light on their role in the pathogenesis of PD and highlighting the need for preventative measures and regulatory oversight to mitigate these risks.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Márcia Martins
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| | - António Rego
- Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; Solfarcos, Pharmaceutical and Cosmetic Solutions, Braga, Portugal.
| |
Collapse
|
3
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Coles NP, Elsheikh S, Quesnel A, Butler L, Achadu O, Islam M, Kalesh K, Occhipinti A, Angione C, Marles-Wright J, Koss DJ, Thomas AJ, Outeiro TF, Filippou PS, Khundakar AA. Alpha-synuclein aggregation induces prominent cellular lipid changes as revealed by Raman spectroscopy and machine learning analysis. Brain Commun 2025; 7:fcaf133. [PMID: 40226383 PMCID: PMC11992568 DOI: 10.1093/braincomms/fcaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
The aggregation of α-synuclein is a central neuropathological hallmark in neurodegenerative disorders known as Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. In the aggregation process, α-synuclein transitions from its native disordered/α-helical form to a β-sheet-rich structure, forming oligomers and protofibrils that accumulate into Lewy bodies, in a process that is thought to underlie neurodegeneration. Lipids are thought to play a critical role in this process by facilitating α-synuclein aggregation and contributing to cell toxicity, possibly through ceramide production. This study aimed to investigate biochemical changes associated with α-synuclein aggregation, focusing on lipid changes, using Raman spectroscopy coupled with machine learning. HEK293, Neuro2a and SH-SY5Y expressing increased levels of α-synuclein were treated with sonicated α-synuclein pre-formed fibrils, to model seeded aggregation. Raman spectroscopy, complemented by an in-house lipid spectral library, was used to monitor the aggregation process and its effects on cellular viability over 14 days. We detected α-synuclein aggregation by assessing β-sheet peaks at 1045 cm⁻1, in cells treated with α-synuclein pre-formed fibrils, using machine learning (principal component analysis and uniform manifold approximation and projection) analysis based on Raman spectral features. Changes in lipid profiles, and especially sphingolipids, including a decrease in sphingomyelin and increase in ceramides, were observed, consistent with oxidative stress and apoptosis. Altogether, our study informs on biochemical alterations that can be considered for the design of therapeutic strategies for Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Nathan P Coles
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Suzan Elsheikh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Lucy Butler
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Ojodomo Achadu
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Karunakaran Kalesh
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Annalisa Occhipinti
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Claudio Angione
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Jon Marles-Wright
- Biosciences Institute, Cookson Building, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David J Koss
- Division of Neuroscience, School of Medicine, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3a, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Straße 3A, 37075 Göttingen, Germany
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
6
|
Sirerol-Piquer MS, Perez-Villalba A, Duart-Abadia P, Belenguer G, Gómez-Pinedo U, Blasco-Chamarro L, Carrillo-Barberà P, Pérez-Cañamás A, Navarro-Garrido V, Dehay B, Vila M, Vitorica J, Pérez-Sánchez F, Fariñas I. Age-dependent progression from clearance to vulnerability in the early response of periventricular microglia to α-synuclein toxic species. Mol Neurodegener 2025; 20:26. [PMID: 40038767 PMCID: PMC11881471 DOI: 10.1186/s13024-025-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Cytoplasmic alpha-synuclein (αSyn) aggregates are a typical feature of Parkinson's disease (PD). Extracellular insoluble αSyn can induce pathology in healthy neurons suggesting that PD neurodegeneration may spread through cell-to-cell transfer of αSyn proteopathic seeds. Early pro-homeostatic reaction of microglia to toxic forms of αSyn remains elusive, which is especially relevant considering the recently uncovered microglial molecular diversity. Here, we show that periventricular microglia of the subependymal neurogenic niche monitor the cerebrospinal fluid and can rapidly phagocytize and degrade different aggregated forms of αSyn delivered into the lateral ventricle. However, this clearing ability worsens with age, leading to an increase in microglia with aggregates in aged treated mice, an accumulation also observed in human PD samples. We also show that exposure of aged microglia to aggregated αSyn isolated from human PD samples results in the phosphorylation of the endogenous protein and the generation of αSyn seeds that can transmit the pathology to healthy neurons. Our data indicate that while microglial phagocytosis rapidly clears toxic αSyn, aged microglia can contribute to synucleinopathy spreading.
Collapse
Affiliation(s)
- Mª Salomé Sirerol-Piquer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain.
| | - Ana Perez-Villalba
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
- L.A.B.P. (Laboratory of Animal Behavior Phenotype), Facultad de Psicología. UCV, Valencia, Spain
| | - Pere Duart-Abadia
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Germán Belenguer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, Hospital Clínico San Carlos Health Research Institute, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Blasco-Chamarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Pau Carrillo-Barberà
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Victoria Navarro-Garrido
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
- Departamento Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, F-33000, France
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d´Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
- Departamento Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Francisco Pérez-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain.
| |
Collapse
|
7
|
Petschner T, Hofman K, Chen JZ, Andreska T, Wolf D, Knorr S, Blum R, Muthuraman M, Gbureck U, Volkmann J, Sendtner M, Ip CW. Chronic subthalamic nucleus deep brain stimulation reduces pathological TrkB aggregates in a Parkinson's disease rat model. Transl Neurodegener 2025; 14:11. [PMID: 39980065 PMCID: PMC11843761 DOI: 10.1186/s40035-025-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Tobias Petschner
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Katarina Hofman
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Jia Zhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacherstraße 5, 97078, Würzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacherstraße 5, 97078, Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacherstraße 5, 97078, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| |
Collapse
|
8
|
Numakawa T, Kajihara R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025; 30:848. [PMID: 40005159 PMCID: PMC11857940 DOI: 10.3390/molecules30040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Among neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4/5), BDNF has been extensively studied for its physiological role in cell survival and synaptic regulation in the central nervous system's (CNS's) neurons. BDNF binds to TrkB (a tyrosine kinase) with high affinity, and the resulting downstream intracellular signaling cascades play crucial roles in determining cell fate, including neuronal differentiation and maturation of the CNS neurons. It has been well demonstrated that the downregulation/dysregulation of the BDNF/TrkB system is implicated in the pathogenesis of neurologic and psychiatric disorders, such as Alzheimer's disease (AD) and depression. Interestingly, the effects of BDNF mimetic compounds including flavonoids, small molecules which can activate TrkB-mediated signaling, have been extensively investigated as potential therapeutic strategies for brain diseases, given that p75NTR, a common neurotrophin receptor, also contributes to cell death under a variety of pathological conditions such as neurodegeneration. Since the downregulation of the BDNF/TrkB system is associated with the pathophysiology of neurodegenerative diseases and psychiatric disorders, understanding how alterations in the BDNF/TrkB system contribute to disease progression could provide valuable insight for the prevention of these brain diseases. The present review shows recent advances in the molecular mechanisms underlying the BDNF/TrkB system in neuronal survival and plasticity, providing critical insights into the potential therapeutic impact of BDNF mimetics in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Hematology and Immunology, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
9
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Ruiz-Ortega ED, Wilkaniec A, Adamczyk A. Liquid-liquid phase separation and conformational strains of α-Synuclein: implications for Parkinson's disease pathogenesis. Front Mol Neurosci 2024; 17:1494218. [PMID: 39507104 PMCID: PMC11537881 DOI: 10.3389/fnmol.2024.1494218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD) and other synucleinopathies are characterized by the aggregation and deposition of alpha-synuclein (α-syn) in brain cells, forming insoluble inclusions such as Lewy bodies (LBs) and Lewy neurites (LNs). The aggregation of α-syn is a complex process involving the structural conversion from its native random coil to well-defined secondary structures rich in β-sheets, forming amyloid-like fibrils. Evidence suggests that intermediate species of α-syn aggregates formed during this conversion are responsible for cell death. However, the molecular events involved in α-syn aggregation and its relationship with disease onset and progression remain not fully elucidated. Additionally, the clinical and pathological heterogeneity observed in various synucleinopathies has been highlighted. Liquid-liquid phase separation (LLPS) and condensate formation have been proposed as alternative mechanisms that could underpin α-syn pathology and contribute to the heterogeneity seen in synucleinopathies. This review focuses on the role of the cellular environment in α-syn conformational rearrangement, which may lead to pathology and the existence of different α-syn conformational strains with varying toxicity patterns. The discussion will include cellular stress, abnormal LLPS formation, and the potential role of LLPS in α-syn pathology.
Collapse
Affiliation(s)
| | | | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Liu S, Yang N, Yan Y, Wang S, Chen J, Wang Y, Gan X, Zhou J, Xie G, Wang H, Huang T, Ji W, Wang Z, Si W. An accelerated Parkinson's disease monkey model using AAV-α-synuclein plus poly(ADP-ribose). CELL REPORTS METHODS 2024; 4:100876. [PMID: 39413778 PMCID: PMC11573744 DOI: 10.1016/j.crmeth.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The etiology of Parkinson's disease (PD) remains elusive, and the limited availability of suitable animal models hampers research on pathogenesis and drug development. We report the development of a cynomolgus monkey model of PD that combines adeno-associated virus (AAV)-mediated overexpression of α-synuclein into the substantia nigra with an injection of poly(ADP-ribose) (PAR) into the striatum. Our results show that pathological processes were accelerated, including dopaminergic neuron degeneration, Lewy body aggregation, and hallmarks of inflammation in microglia and astrocytes. Behavioral phenotypes, dopamine transporter imaging, and transcriptomic profiling further demonstrate consistencies between the model and patients with PD. This model can help to determine the mechanisms underlying PD impacted by α-synuclein and PAR and aid in the accelerated development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Naixue Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shaobo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yichao Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xue Gan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiawen Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Guoqing Xie
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
12
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
13
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
14
|
Raza S. Autophagy and metabolic aging: Current understanding and future applications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119753. [PMID: 38763302 DOI: 10.1016/j.bbamcr.2024.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
"Metabolic aging" refers to the gradual decline in cellular metabolic function across various tissues due to defective hormonal signaling, impaired nutrient sensing, mitochondrial dysfunction, replicative stress, and cellular senescence. While this process usually corresponds with chronological aging, the recent increase in metabolic diseases and cancers occurring at younger ages in humans suggests the premature onset of cellular fatigue and metabolic aging. Autophagy, a cellular housekeeping process facilitated by lysosomes, plays a crucial role in maintaining tissue rejuvenation and health. However, various environmental toxins, hormones, lifestyle changes, and nutrient imbalances can disrupt autophagy in humans. In this review, we explore the connection between autophagy and cellular metabolism, its regulation by extrinsic factors and its modulation to prevent the early onset of metabolic aging.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
15
|
Qiu C, Wei R, Bian J, Lin X, Bai T, He J, Guo X, Chu Y. Novel 4-triazole phenyl amide (4-TPA) molecules: Potent promoters of α-synuclein fibril disassembly. Eur J Med Chem 2024; 273:116490. [PMID: 38772136 DOI: 10.1016/j.ejmech.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease profoundly compromises patients' daily lives, and the disassembly of α-synuclein aggregates, a primary pathological factor, represents a promising therapeutic approach. In this study, we conducted a systematic screening and optimization process to identify the novel scaffold B37, a 4-triazolyl-phenylamine derivative, exhibiting a potent disassembly activity of 1.1 μM against α-synuclein preformed fibrils. Notably, B37 demonstrated significant neuroprotective effects, ameliorated autophagic dysfunction induced by preformed fibrils, mitigated oxidative stress, and restored the co-localization of preformed fibrils with lysosomes. Transmission electron microscopy corroborated its in vitro disassembly function. Pharmacokinetic profiling revealed favorable parameters with a receptible blood-brain barrier permeability. B37 emerges as a promising lead compound for further optimization, aiming to develop a highly effective agent targeting the disassembly of α-synuclein aggregates to treat neurodegenerative diseases like Parkinson's disease.
Collapse
Affiliation(s)
- Chenyang Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ruonan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiang Bian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tengfei Bai
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jie He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaomin Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
16
|
He M, Zhang X, Ran X, Zhang Y, Nie X, Xiao B, Lei L, Zhai S, Zhu J, Zhang J, Li R, Liu Z, Zhu Y, Dai Z, He Z, Feng J, Zhang C. Black Phosphorus Nanosheets Protect Neurons by Degrading Aggregative α-syn and Clearing ROS in Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404576. [PMID: 38696266 DOI: 10.1002/adma.202404576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Although evidence indicates that the abnormal accumulation of α-synuclein (α-syn) in dopamine neurons of the substantia nigra is the main pathological feature of Parkinson's disease (PD), no compounds that have both α-syn antiaggregation and α-syn degradation functions have been successful in treating the disease in the clinic. Here, it is shown that black phosphorus nanosheets (BPNSs) interact directly with α-syn fibrils to trigger their disaggregation for PD treatment. Moreover, BPNSs have a specific affinity for α-syn through van der Waals forces. And BPNSs are found to activate autophagy to maintain α-syn homeostasis, improve mitochondrial dysfunction, reduce reactive oxygen species levels, and rescue neuronal death and synaptic loss in PC12 cells. It is also observed that BPNSs penetrate the blood-brain barrier and protect against dopamine neuron loss, alleviating behavioral disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model and hA53T α-syn transgenic mice. Together, the study reveals that BPNSs have the potential as a novel integrated nanomedicine for clinical diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Meina He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiangming Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xia Ran
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Yan Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaoran Nie
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Bo Xiao
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Li Lei
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Suzhen Zhai
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - JinMing Zhu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jingjing Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Rong Li
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zuoji Liu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Yuping Zhu
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zhijun Dai
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Zhixu He
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Jian Feng
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 561113, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
17
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Kinnart I, Manders L, Heyninck T, Imberechts D, Praschberger R, Schoovaerts N, Verfaillie C, Verstreken P, Vandenberghe W. Elevated α-synuclein levels inhibit mitophagic flux. NPJ Parkinsons Dis 2024; 10:80. [PMID: 38594264 PMCID: PMC11004019 DOI: 10.1038/s41531-024-00696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The pathogenic effect of SNCA gene multiplications indicates that elevation of wild-type α-synuclein levels is sufficient to cause Parkinson's disease (PD). Mitochondria have been proposed to be a major target of α-synuclein-induced damage. PINK1/parkin/DJ-1-mediated mitophagy is a defense strategy that allows cells to selectively eliminate severely damaged mitochondria. Here, we quantified mitophagic flux and non-mitochondrial autophagic flux in three models of increased α-synuclein expression: 1/Drosophila melanogaster that transgenically express human wild-type and mutant α-synuclein in flight muscle; 2/human skin fibroblasts transfected with α-synuclein or β-synuclein; and 3/human induced pluripotent stem cell (iPSC)-derived neurons carrying an extra copy of wild-type SNCA under control of a doxycycline-inducible promoter, allowing titratable α-synuclein upregulation. In each model, elevated α-synuclein levels potently suppressed mitophagic flux, while non-mitochondrial autophagy was preserved. In human neurons, a twofold increase in wild-type α-synuclein was already sufficient to induce this effect. PINK1 and parkin activation and mitochondrial translocation of DJ-1 after mitochondrial depolarization were not affected by α-synuclein upregulation. Overexpression of the actin-severing protein cofilin or treatment with CK666, an inhibitor of the actin-related protein 2/3 (Arp2/3) complex, rescued mitophagy in neurons with increased α-synuclein, suggesting that excessive actin network stabilization mediated the mitophagy defect. In conclusion, elevated α-synuclein levels inhibit mitophagic flux. Disruption of actin dynamics may play a key role in this effect.
Collapse
Affiliation(s)
- Inge Kinnart
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Liselot Manders
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Thibaut Heyninck
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Dorien Imberechts
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Roman Praschberger
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Nils Schoovaerts
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Patrik Verstreken
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Goralski TM, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse DJ, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat Commun 2024; 15:2642. [PMID: 38531900 PMCID: PMC10966039 DOI: 10.1038/s41467-024-47027-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas M Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lisa Turner
- Van Andel Institute Pathology Core, Grand Rapids, MI, 49503, USA
| | - Katelyn Becker
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
21
|
Mamais A, Sanyal A, Fajfer A, Zykoski CG, Guldin M, Riley-DiPaolo A, Subrahmanian N, Gibbs W, Lin S, LaVoie MJ. The LRRK2 kinase substrates RAB8a and RAB10 contribute complementary but distinct disease-relevant phenotypes in human neurons. Stem Cell Reports 2024; 19:163-173. [PMID: 38307024 PMCID: PMC10874859 DOI: 10.1016/j.stemcr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge upon a pathogenic increase in LRRK2 kinase activity. A subset of small RAB GTPases has been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in RAB inactivation. We used CRISPR-Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well-validated LRRK2 substrates, RAB8a and RAB10, from deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed opposing effects of RAB8a and RAB10 deficiency on lysosomal pH and Golgi organization, with isolated effects of RAB8a and RAB10 ablation on α-synuclein and tau, respectively. Our data demonstrate largely antagonistic effects of genetic RAB8a or RAB10 inactivation, which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation in human disease.
Collapse
Affiliation(s)
- Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Austin Fajfer
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Catherine G Zykoski
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael Guldin
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Nitya Subrahmanian
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Whitney Gibbs
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Lin
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew J LaVoie
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
Hansen ML, Ambjørn M, Harndahl MN, Benned-Jensen T, Fog K, Bjerregaard-Andersen K, Sotty F. Characterization of pSer129-αSyn Pathology and Neurofilament Light-Chain Release across In Vivo, Ex Vivo, and In Vitro Models of Pre-Formed-Fibril-Induced αSyn Aggregation. Cells 2024; 13:253. [PMID: 38334646 PMCID: PMC10854598 DOI: 10.3390/cells13030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Protein aggregation is a predominant feature of many neurodegenerative diseases, including synucleinopathies, which are characterized by cellular inclusions containing α-Synuclein (αSyn) phosphorylated at serine 129 (pSer129). In the present study, we characterized the development of αSyn pre-formed fibril (PFF)-induced pSer129-αSyn pathology in F28tg mice overexpressing human wild-type αSyn, as well as in ex vivo organotypic cultures and in vitro primary cultures from the same mouse model. Concurrently, we collected cerebrospinal fluid (CSF) from mice and conditioned media from ex vivo and in vitro cultures and quantified the levels of neurofilament light chain (NFL), a biomarker of neurodegeneration. We found that the intra-striatal injection of PFFs induces the progressive spread of pSer129-αSyn pathology and microglial activation in vivo, as well as modest increases in NFL levels in the CSF. Similarly, PFF-induced αSyn pathology occurs progressively in ex vivo organotypic slice cultures and is accompanied by significant increases in NFL release into the media. Using in vitro primary hippocampal cultures, we further confirmed that pSer129-αSyn pathology and NFL release occur in a manner that correlates with the fibril dose and the level of the αSyn protein. Overall, we demonstrate that αSyn pathology is associated with NFL release across preclinical models of seeded αSyn aggregation and that the pharmacological inhibition of αSyn aggregation in vitro also significantly reduces NFL release.
Collapse
Affiliation(s)
- Maja L. Hansen
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Malene Ambjørn
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Mikkel N. Harndahl
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.N.H.); (K.B.-A.)
| | - Tau Benned-Jensen
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | - Karina Fog
- Neuroscience, Molecular and Cellular Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; (M.L.H.); (M.A.); (K.F.)
| | | | - Florence Sotty
- Neuroscience, Histology and Pathology Models, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| |
Collapse
|
23
|
Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023; 186:3350-3367.e19. [PMID: 37421950 PMCID: PMC10527432 DOI: 10.1016/j.cell.2023.06.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aβ or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Biomedical Sciences, School of Medicine, JiangHan University, #8, Sanjiaohu Rd., Wuhan 430056, China
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun-Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
24
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
25
|
Goralski T, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse D, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with Lewy pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541144. [PMID: 37292685 PMCID: PMC10245657 DOI: 10.1101/2023.05.17.541144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lewy pathology composed of α-synuclein is the key pathological hallmark of Parkinson's disease (PD), found both in dopaminergic neurons that control motor function, and throughout cortical regions that control cognitive function. Recent work has investigated which dopaminergic neurons are most susceptible to death, but little is known about which neurons are vulnerable to developing Lewy pathology and what molecular changes an aggregate induces. In the current study, we use spatial transcriptomics to selectively capture whole transcriptome signatures from cortical neurons with Lewy pathology compared to those without pathology in the same brains. We find, both in PD and in a mouse model of PD, that there are specific classes of excitatory neurons that are vulnerable to developing Lewy pathology in the cortex. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. This gene signature indicates that neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. However, beyond DNA repair gene upregulation, we find that neurons also activate apoptotic pathways, suggesting that if DNA repair fails, neurons undergo programmed cell death. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and identify a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | | | | | | | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
26
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
27
|
Mamais A, Sanyal A, Fajfer A, Zykoski CG, Guldin M, Riley-DiPaolo A, Subrahmanian N, Gibbs W, Lin S, LaVoie MJ. The LRRK2 kinase substrates Rab8a and Rab10 contribute complementary but distinct disease-relevant phenotypes in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538317. [PMID: 37163109 PMCID: PMC10168414 DOI: 10.1101/2023.04.30.538317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge toward a pathogenic increase in LRRK2 kinase activity. A subset of small Rab GTPases have been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in Rab inactivation. We used CRISPR/Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well validated LRRK2 substrates, Rab8a and Rab10, from two independent, deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed divergent effects of Rab8a and Rab10 deficiency on lysosomal pH, LAMP1 association with Golgi, α-synuclein insolubility and tau phosphorylation, while parallel effects on lysosomal numbers and Golgi clustering were observed. Our data demonstrate largely antagonistic effects of genetic Rab8a or Rab10 inactivation which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation.
Collapse
Affiliation(s)
- Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Austin Fajfer
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Catherine G. Zykoski
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Michael Guldin
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Alexis Riley-DiPaolo
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Nitya Subrahmanian
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Whitney Gibbs
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Steven Lin
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Matthew J. LaVoie
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Feller B, Fallon A, Luo W, Nguyen PT, Shlaifer I, Lee AK, Chofflet N, Yi N, Khaled H, Karkout S, Bourgault S, Durcan TM, Takahashi H. α-Synuclein Preformed Fibrils Bind to β-Neurexins and Impair β-Neurexin-Mediated Presynaptic Organization. Cells 2023; 12:cells12071083. [PMID: 37048156 PMCID: PMC10093570 DOI: 10.3390/cells12071083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Synucleinopathies form a group of neurodegenerative diseases defined by the misfolding and aggregation of α-synuclein (α-syn). Abnormal accumulation and spreading of α-syn aggregates lead to synapse dysfunction and neuronal cell death. Yet, little is known about the synaptic mechanisms underlying the α-syn pathology. Here we identified β-isoforms of neurexins (β-NRXs) as presynaptic organizing proteins that interact with α-syn preformed fibrils (α-syn PFFs), toxic α-syn aggregates, but not α-syn monomers. Our cell surface protein binding assays and surface plasmon resonance assays reveal that α-syn PFFs bind directly to β-NRXs through their N-terminal histidine-rich domain (HRD) at the nanomolar range (KD: ~500 nM monomer equivalent). Furthermore, our artificial synapse formation assays show that α-syn PFFs diminish excitatory and inhibitory presynaptic organization induced by a specific isoform of neuroligin 1 that binds only β-NRXs, but not α-isoforms of neurexins. Thus, our data suggest that α-syn PFFs interact with β-NRXs to inhibit β-NRX-mediated presynaptic organization, providing novel molecular insight into how α-syn PFFs induce synaptic pathology in synucleinopathies such as Parkinson’s disease and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélie Fallon
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Wen Luo
- The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Irina Shlaifer
- The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Samer Karkout
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Steve Bourgault
- Department of Chemistry, Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
29
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
30
|
Lin S, Leitão ADG, Fang S, Gu Y, Barber S, Gilliard-Telefoni R, Castro A, Sung K, Shen R, Florio JB, Mante ML, Ding J, Spencer B, Masliah E, Rissman RA, Wu C. Overexpression of alpha synuclein disrupts APP and Endolysosomal axonal trafficking in a mouse model of synucleinopathy. Neurobiol Dis 2023; 178:106010. [PMID: 36702318 PMCID: PMC10754494 DOI: 10.1016/j.nbd.2023.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.
Collapse
Affiliation(s)
- Suzhen Lin
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - André D G Leitão
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Sophia Barber
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Alfredo Castro
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jazmin B Florio
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Michael L Mante
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; VA San Diego Health System, La Jolla, CA, USA.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Tomagra G, Franchino C, Cesano F, Chiarion G, de lure A, Carbone E, Calabresi P, Mesin L, Picconi B, Marcantoni A, Carabelli V. Alpha-synuclein oligomers alter the spontaneous firing discharge of cultured midbrain neurons. Front Cell Neurosci 2023; 17:1078550. [PMID: 36744002 PMCID: PMC9896582 DOI: 10.3389/fncel.2023.1078550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to monitor the effects of extracellular α-synuclein on the firing activity of midbrain neurons dissociated from substantia nigra TH-GFP mice embryos and cultured on microelectrode arrays (MEA). We monitored the spontaneous firing discharge of the network for 21 days after plating and the role of glutamatergic and GABAergic inputs in regulating burst generation and network synchronism. Addition of GABA A , AMPA and NMDA antagonists did not suppress the spontaneous activity but allowed to identify three types of neurons that exhibited different modalities of firing and response to applied L-DOPA: high-rate (HR) neurons, low-rate pacemaking (LR-p), and low-rate non-pacemaking (LR-np) neurons. Most HR neurons were insensitive to L-DOPA, while the majority of LR-p neurons responded with a decrease of the firing discharge; less defined was the response of LR-np neurons. The effect of exogenous α-synuclein (α-syn) on the firing discharge of midbrain neurons was then studied by varying the exposure time (0-48 h) and the α-syn concentration (0.3-70 μM), while the formation of α-syn oligomers was monitored by means of AFM. Independently of the applied concentration, acute exposure to α-syn monomers did not exert any effect on the spontaneous firing rate of HR, LR-p, and LR-np neurons. On the contrary, after 48 h exposure, the firing activity was drastically altered at late developmental stages (14 days in vitro, DIV, neurons): α-syn oligomers progressively reduced the spontaneous firing discharge (IC50 = 1.03 μM), impaired burst generation and network synchronism, proportionally to the increased oligomer/monomer ratio. Different effects were found on early-stage developed neurons (9 DIV), whose firing discharge remained unaltered, regardless of the applied α-syn concentration and the exposure time. Our findings unravel, for the first time, the variable effects of exogenous α-syn at different stages of midbrain network development and provide new evidence for the early detection of neuronal function impairment associated to aggregated forms of α-syn.
Collapse
Affiliation(s)
- Giulia Tomagra
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| | | | - Federico Cesano
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
- Department of Chemistry and INSTM-UdR Torino, Turin, Italy
| | - Giovanni Chiarion
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Turin, Italy
| | - Antonio de lure
- Laboratory Experimental Neurophysiology, IRCCS San Raffaele Rome, Rome, Italy
| | - Emilio Carbone
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Neurology, Department of Neuroscience, Faculty of Medicine, Università Cattolica del “Sacro Cuore,”Rome, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Turin, Italy
| | - Barbara Picconi
- Laboratory Experimental Neurophysiology, IRCCS San Raffaele Rome, Rome, Italy
- Dipartimento di Scienze Umane e Promozione della Qualitá della Vita, Telematic University San Raffaele Roma, Rome, Italy
| | - Andrea Marcantoni
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| | - Valentina Carabelli
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| |
Collapse
|
32
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
33
|
Yang X, Ma Z, Lian P, Xu Y, Cao X. Common mechanisms underlying axonal transport deficits in neurodegenerative diseases: a mini review. Front Mol Neurosci 2023; 16:1172197. [PMID: 37168679 PMCID: PMC10164940 DOI: 10.3389/fnmol.2023.1172197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the accumulation of pathogenic proteins and abnormal localization of organelles. These pathological features may be related to axonal transport deficits in neurons, which lead to failures in pathological protein targeting to specific sites for degradation and organelle transportation to designated areas needed for normal physiological functioning. Axonal transport deficits are most likely early pathological events in such diseases and gradually lead to the loss of axonal integrity and other degenerative changes. In this review, we investigated reports of mechanisms underlying the development of axonal transport deficits in a variety of common neurodegenerative diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease to provide new ideas for therapeutic targets that may be used early in the disease process. The mechanisms can be summarized as follows: (1) motor protein changes including expression levels and post-translational modification alteration; (2) changes in microtubules including reducing stability and disrupting tracks; (3) changes in cargoes including diminished binding to motor proteins. Future studies should determine which axonal transport defects are disease-specific and whether they are suitable therapeutic targets in neurodegenerative diseases.
Collapse
|
34
|
Han S, Gim Y, Jang EH, Hur EM. Functions and dysfunctions of oligodendrocytes in neurodegenerative diseases. Front Cell Neurosci 2022; 16:1083159. [PMID: 36605616 PMCID: PMC9807813 DOI: 10.3389/fncel.2022.1083159] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive loss of selectively vulnerable populations of neurons, which is responsible for the clinical symptoms. Although degeneration of neurons is a prominent feature that undoubtedly contributes to and defines NDD pathology, it is now clear that neuronal cell death is by no means mediated solely by cell-autonomous mechanisms. Oligodendrocytes (OLs), the myelinating cells of the central nervous system (CNS), enable rapid transmission of electrical signals and provide metabolic and trophic support to neurons. Recent evidence suggests that OLs and their progenitor population play a role in the onset and progression of NDDs. In this review, we discuss emerging evidence suggesting a role of OL lineage cells in the pathogenesis of age-related NDDs. We start with multiple system atrophy, an NDD with a well-known oligodendroglial pathology, and then discuss Alzheimer's disease (AD) and Parkinson's disease (PD), NDDs which have been thought of as neuronal origins. Understanding the functions and dysfunctions of OLs might lead to the advent of disease-modifying strategies against NDDs.
Collapse
Affiliation(s)
- Seungwan Han
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Yunho Gim
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- BK21 Four Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Yang X, Wang J, Zeng W, Zhang X, Yang X, Xu Y, Xu Y, Cao X. Time-dependent alterations in the rat nigrostriatal system after intrastriatal injection of fibrils formed by α–Syn and tau fragments. Front Aging Neurosci 2022; 14:1049418. [DOI: 10.3389/fnagi.2022.1049418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionAccurate demonstration of phosphorylated α-synuclein aggregation and propagation, progressive nigrostriatal degeneration and motor deficits will help further research on elucidating the mechanisms of Parkinson’s Disease. α-synucleinN103 and tauN368, cleaved by activated asparagine endopeptidase in Parkinson’s Disease, robustly interacted with each other and triggered endogenous α-synuclein accumulation in a strong manner. However, the detailed pathophysiological process caused by the complex remains to be established.MethodsIn this study, rats were unilaterally inoculated with 15 or 30 μg of this complex or vehicle (phosphate buffered saline, PBS). Over a 6-month period post injection, we then investigated the abundance of pSyn inclusions, nigrostriatal degeneration, and changes in axonal transport proteins to identify the various dynamic pathological changes caused by pSyn aggregates in the nigrostriatal system.ResultsAs expected, rats displayed a dose-dependent increase in the amount of α-synuclein inclusions, and progressive dopaminergic neurodegeneration was observed throughout the study, reaching 30% at 6 months post injection. Impairments in anterograde axonal transport, followed by retrograde transport, were observed prior to neuron death, which was first discovered in the PFFs model.DiscussionThe current results demonstrate the value of a novel rat model of Parkinson’s disease characterized by widespread, “seed”-initiated endogenous α-Syn pathology, impaired axonal transport, and a neurodegenerative cascade in the nigrostriatal system. Notably, the present study is the first to examine alterations in axonal transport proteins in a PFF model, providing an appropriate foundation for future research regarding the mechanisms leading to subsequent neurodegeneration. As this model recapitulates some essential features of Parkinson’s disease, it provides an important platform for further research on specific pathogenic mechanisms and pre-clinical evaluations of novel therapeutic strategies.
Collapse
|
36
|
Kulkarni VV, Stempel MH, Anand A, Sidibe DK, Maday S. Retrograde Axonal Autophagy and Endocytic Pathways Are Parallel and Separate in Neurons. J Neurosci 2022; 42:8524-8541. [PMID: 36167783 PMCID: PMC9665928 DOI: 10.1523/jneurosci.1292-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Autophagy and endocytic trafficking are two key pathways that regulate the composition and integrity of the neuronal proteome. Alterations in these pathways are sufficient to cause neurodevelopmental and neurodegenerative disorders. Thus, defining how autophagy and endocytic pathways are organized in neurons remains a key area of investigation. These pathways share many features and converge on lysosomes for cargo degradation, but what remains unclear is the degree to which the identity of each pathway is preserved in each compartment of the neuron. Here, we elucidate the degree of intersection between autophagic and endocytic pathways in axons of primary mouse cortical neurons of both sexes. Using microfluidic chambers, we labeled newly-generated bulk endosomes and signaling endosomes in the distal axon, and systematically tracked their trajectories, molecular composition, and functional characteristics relative to autophagosomes. We find that newly-formed endosomes and autophagosomes both undergo retrograde transport in the axon, but as distinct organelle populations. Moreover, these pathways differ in their degree of acidification and association with molecular determinants of organelle maturation. These results suggest that the identity of autophagic and newly endocytosed organelles is preserved for the length of the axon. Lastly, we find that expression of a pathogenic form of α-synuclein, a protein enriched in presynaptic terminals, increases merging between autophagic and endocytic pathways. Thus, aberrant merging of these pathways may represent a mechanism contributing to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.SIGNIFICANCE STATEMENT Autophagy and endocytic trafficking are retrograde pathways in neuronal axons that fulfill critical degradative and signaling functions. These pathways share many features and converge on lysosomes for cargo degradation, but the extent to which the identity of each pathway is preserved in axons is unclear. We find that autophagosomes and endosomes formed in the distal axon undergo retrograde transport to the soma in parallel and separate pathways. These pathways also have distinct maturation profiles along the mid-axon, further highlighting differences in the potential fate of transported cargo. Strikingly, expression of a pathogenic variant of α-synuclein increases merging between autophagic and endocytic pathways, suggesting that mis-sorting of axonal cargo may contribute to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.
Collapse
Affiliation(s)
- Vineet Vinay Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Max Henry Stempel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anip Anand
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David Kader Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
37
|
Ahnaou A, Whim D. REM sleep behavior and olfactory dysfunction: improving the utility and translation of animal models in the search for neuroprotective therapies for Parkinson's disease. Neurosci Biobehav Rev 2022; 143:104897. [PMID: 36183864 DOI: 10.1016/j.neubiorev.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease that belongs to the family of synucleiopathies, varying in age, symptoms and progression. Hallmark of the disease is the accumulation of misfolded α-synuclein protein (α-Syn) in neuronal and non-neuronal brain cells. In past decades, diagnosis and treatment of PD has focused on motor deficits, which for the clinical endpoint, have contributed to the prevalence of deficits in the nigrostriatal dopaminergic system and animal models related to motor behavior to study disease. However, clinical trials have failed to translate results from animal models into effective treatments. PD as a multisystem disorder therefore requires additional assessment of motor and non-motor symptoms. Braak's staging revealed early α-Syn pathology in pontine brainstem and olfactory circuits controlling rapid eye movement sleep behavior disorder (RBD) and olfaction, respectively. Recent converging evidence from multicenter clinical studies supports that RBD is the most important risk factor for prodromal PD and the conduct of neuroprotective therapeutic trials in RBD-enriched cohorts has been recommended. Animal models of RBD and olfaction dysfunction can aid to fill the gap in translational research.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Drinkenburg Whim
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
38
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
39
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Sidibe DK, Vogel MC, Maday S. Organization of the autophagy pathway in neurons. Curr Opin Neurobiol 2022; 75:102554. [PMID: 35649324 PMCID: PMC9990471 DOI: 10.1016/j.conb.2022.102554] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an essential quality-control pathway in neurons, which face unique functional and morphological challenges in maintaining the integrity of organelles and the proteome. To overcome these challenges, neurons have developed compartment-specific pathways for autophagy. In this review, we discuss the organization of the autophagy pathway, from autophagosome biogenesis, trafficking, to clearance, in the neuron. We dissect the compartment-specific mechanisms and functions of autophagy in axons, dendrites, and the soma. Furthermore, we highlight examples of how steps along the autophagy pathway are impaired in the context of aging and neurodegenerative disease, which underscore the critical importance of autophagy in maintaining neuronal function and survival.
Collapse
Affiliation(s)
- David K Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Vogel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F. The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119243. [PMID: 35217144 DOI: 10.1016/j.bbamcr.2022.119243] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jan Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Kluge
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
42
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
43
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
44
|
Brain-Derived Neurotropic Factor in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10051143. [PMID: 35625880 PMCID: PMC9138678 DOI: 10.3390/biomedicines10051143] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, neurodegenerative diseases cause a significant degree of disability and distress. Brain-derived neurotrophic factor (BDNF), primarily found in the brain, has a substantial role in the development and maintenance of various nerve roles and is associated with the family of neurotrophins, including neuronal growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). BDNF has affinity with tropomyosin receptor kinase B (TrKB), which is found in the brain in large amounts and is expressed in several cells. Several studies have shown that decrease in BDNF causes an imbalance in neuronal functioning and survival. Moreover, BDNF has several important roles, such as improving synaptic plasticity and contributing to long-lasting memory formation. BDNF has been linked to the pathology of the most common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. This review aims to describe recent efforts to understand the connection between the level of BDNF and neurodegenerative diseases. Several studies have shown that a high level of BDNF is associated with a lower risk for developing a neurodegenerative disease.
Collapse
|
45
|
Tourville A, Akbar D, Corti O, Prehn JHM, Melki R, Hunot S, Michel PP. Modelling α-Synuclein Aggregation and Neurodegeneration with Fibril Seeds in Primary Cultures of Mouse Dopaminergic Neurons. Cells 2022; 11:cells11101640. [PMID: 35626675 PMCID: PMC9139621 DOI: 10.3390/cells11101640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
To model α-Synuclein (αS) aggregation and neurodegeneration in Parkinson’s disease (PD), we established cultures of mouse midbrain dopamine (DA) neurons and chronically exposed them to fibrils 91 (F91) generated from recombinant human αS. We found that F91 have an exquisite propensity to seed the aggregation of endogenous αS in DA neurons when compared to other neurons in midbrain cultures. Until two weeks post-exposure, somal aggregation in DA neurons increased with F91 concentrations (0.01–0.75 μM) and the time elapsed since the initiation of seeding, with, however, no evidence of DA cell loss within this time interval. Neither toxin-induced mitochondrial deficits nor genetically induced loss of mitochondrial quality control mechanisms promoted F91-mediated αS aggregation or neurodegeneration under these conditions. Yet, a significant loss of DA neurons (~30%) was detectable three weeks after exposure to F91 (0.5 μM), i.e., at a time point where somal aggregation reached a plateau. This loss was preceded by early deficits in DA uptake. Unlike αS aggregation, the loss of DA neurons was prevented by treatment with GDNF, suggesting that αS aggregation in DA neurons may induce a form of cell death mimicking a state of trophic factor deprivation. Overall, our model system may be useful for exploring PD-related pathomechanisms and for testing molecules of therapeutic interest for this disorder.
Collapse
Affiliation(s)
- Aurore Tourville
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - David Akbar
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - Olga Corti
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - Jochen H. M. Prehn
- Department of Physiology & Medical Physics and FutureNeuro Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
| | - Ronald Melki
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France;
| | - Stéphane Hunot
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - Patrick P. Michel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
- Correspondence:
| |
Collapse
|
46
|
Impact of α-Synuclein Fibrillar Strains and β-Amyloid Assemblies on Mouse Cortical Neurons Endo-Lysosomal Logistics. eNeuro 2022; 9:ENEURO.0227-21.2022. [PMID: 35470226 PMCID: PMC9118757 DOI: 10.1523/eneuro.0227-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Endosomal transport and positioning cooperate in the establishment of neuronal compartment architecture, dynamics, and function, contributing to neuronal intracellular logistics. Furthermore, dysfunction of endo-lysosomal has been identified as a common mechanism in neurodegenerative diseases. Here, we analyzed endo-lysosomal transport when α-synuclein (α-syn) fibrillar polymorphs, β-amyloid (Aβ) fibrils, and oligomers were externally applied on primary cultures of mouse cortical neurons. To measure this transport, we used a simple readout based on the spontaneous endocytosis in cultured neurons of fluorescent nanodiamonds (FNDs), a perfectly stable nano-emitter, and the subsequent automatic extraction and quantification of their directed motions at high-throughput. α-Syn fibrillar polymorphs, Aβ fibrils, and oligomers induce a 2-fold decrease of the fraction of nanodiamonds transported along microtubules, while only slightly reducing their interaction with cortical neurons. This important decrease in moving endosomes is expected to have a huge impact on neuronal homeostasis. We next assessed lysosomes dynamics, using LysoTracker. Neurons exposure to Aβ oligomers led to an increase in the number of lysosomes, a decrease in the fraction of moving lysosome and an increase in their size, reminiscent of that found in APP transgenic model of Alzheimer’s disease. We then analyzed the effect of α-syn fibrillar polymorphs, Aβ fibrils, and oligomers on endosomal and lysosomal transport and quantified directed transport of those assemblies within cortical neurons. We report different impacts on endosomal and lysosomal transport parameters and differences in the trajectory lengths of cargoes loaded with pathogenic protein assemblies. Our results suggest that intraneuronal pathogenic protein aggregates internalization and transport may represent a target for novel neuroprotective therapeutic strategies.
Collapse
|
47
|
Bonanni R, Cariati I, Tarantino U, D’Arcangelo G, Tancredi V. Physical Exercise and Health: A Focus on Its Protective Role in Neurodegenerative Diseases. J Funct Morphol Kinesiol 2022; 7:jfmk7020038. [PMID: 35645300 PMCID: PMC9149968 DOI: 10.3390/jfmk7020038] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Scientific evidence has demonstrated the power of physical exercise in the prevention and treatment of numerous chronic and/or age-related diseases, such as musculoskeletal, metabolic, and cardiovascular disorders. In addition, regular exercise is known to play a key role in the context of neurodegenerative diseases, as it helps to reduce the risk of their onset and counteracts their progression. However, the underlying molecular mechanisms have not yet been fully elucidated. In this regard, neurotrophins, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glia cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been suggested as key mediators of brain health benefits, as they are involved in neurogenesis, neuronal survival, and synaptic plasticity. The production of these neurotrophic factors, known to be increased by physical exercise, is downregulated in neurodegenerative disorders, suggesting their fundamental importance in maintaining brain health. However, the mechanism by which physical exercise promotes the production of neurotrophins remains to be understood, posing limits on their use for the development of potential therapeutic strategies for the treatment of neurodegenerative diseases. In this literature review, we analyzed the most recent evidence regarding the relationship between physical exercise, neurotrophins, and brain health, providing an overview of their involvement in the onset and progression of neurodegeneration.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (R.B.); (U.T.)
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (R.B.); (U.T.)
- Correspondence:
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (R.B.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (G.D.); (V.T.)
| | - Giovanna D’Arcangelo
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (G.D.); (V.T.)
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (G.D.); (V.T.)
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| |
Collapse
|
48
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
49
|
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110:935-966. [PMID: 35134347 PMCID: PMC8930707 DOI: 10.1016/j.neuron.2022.01.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Motoki Fujimaki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Sung Min Son
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
50
|
Pathological Relevance of Post-Translationally Modified Alpha-Synuclein (pSer87, pSer129, nTyr39) in Idiopathic Parkinson's Disease and Multiple System Atrophy. Cells 2022; 11:cells11050906. [PMID: 35269528 PMCID: PMC8909017 DOI: 10.3390/cells11050906] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Aggregated alpha-synuclein (α-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of α-synuclein exist, including phosphorylated and nitrated forms. It is unclear which α-synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant α-synuclein PTMs in postmortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three α-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology-affected regions of 15 IPD cases, 5 MSA cases, and 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 α-synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures, followed by nY39 α-synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 α-synuclein in MSA. Quantification of the LB scores revealed that pS129 α-synuclein was the dominant and earliest α-synuclein PTM, followed by nY39 α-synuclein, while lower amounts of pSer87 α-synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments.
Collapse
|