1
|
Schwabe RF, Brenner DA. Hepatic stellate cells: balancing homeostasis, hepatoprotection and fibrogenesis in health and disease. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01068-6. [PMID: 40404839 DOI: 10.1038/s41575-025-01068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/24/2025]
Abstract
In the past decades, the pathogenic role of hepatic stellate cells (HSCs) in the development of liver fibrosis and its complications has been deeply characterized, rendering HSCs a primary target for antifibrotic therapies. By contrast, the beneficial roles of HSCs in liver homeostasis and liver disease are only beginning to emerge, revealing critical regulatory and fibrosis-independent functions in hepatic zonation, metabolism, injury, regeneration and non-parenchymal cell identity. Here, we review how HSC mediators, such as R-spondin 3, hepatocyte growth factor and bone morphogenetic proteins, regulate critical and homeostatic liver functions in health and disease via cognate receptors in hepatocytes, Kupffer cells and endothelial cells. We highlight how the balance shifts from protective towards fibropathogenic HSC mediators during the progression of chronic liver disease (CLD) and the impact of this shifted balance on patient outcomes. Notably, the protective roles of HSCs are not accounted for in current therapeutic concepts for CLD. We discuss the concept that reverting the HSC balance from fibrogenesis towards hepatoprotection might represent a novel holistic treatment approach to inhibit fibrogenesis and restore epithelial health in CLD simultaneously.
Collapse
Affiliation(s)
- Robert F Schwabe
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA.
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
- Institute of Human Nutrition, New York, NY, USA.
| | - David A Brenner
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Sugimoto A, Saito Y, Wang G, Sun Q, Yin C, Lee KH, Geng Y, Rajbhandari P, Hernandez C, Steffani M, Qie J, Savage T, Goyal DM, Ray KC, Neelakantan TV, Yin D, Melms J, Lehrich BM, Yasaka TM, Liu S, Oertel M, Lan T, Guillot A, Peiseler M, Filliol A, Kanzaki H, Fujiwara N, Ravi S, Izar B, Brosch M, Hampe J, Remotti H, Argemi J, Sun Z, Kendall TJ, Hoshida Y, Tacke F, Fallowfield JA, Blockley-Powell SK, Haeusler RA, Steinman JB, Pajvani UB, Monga SP, Bataller R, Masoodi M, Arpaia N, Lee YA, Stockwell BR, Augustin HG, Schwabe RF. Hepatic stellate cells control liver zonation, size and functions via R-spondin 3. Nature 2025; 640:752-761. [PMID: 40074890 PMCID: PMC12003176 DOI: 10.1038/s41586-025-08677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Hepatic stellate cells (HSCs) have a central pathogenetic role in the development of liver fibrosis. However, their fibrosis-independent and homeostatic functions remain poorly understood1-5. Here we demonstrate that genetic depletion of HSCs changes WNT activity and zonation of hepatocytes, leading to marked alterations in liver regeneration, cytochrome P450 metabolism and injury. We identify R-spondin 3 (RSPO3), an HSC-enriched modulator of WNT signalling, as responsible for these hepatocyte-regulatory effects of HSCs. HSC-selective deletion of Rspo3 phenocopies the effects of HSC depletion on hepatocyte gene expression, zonation, liver size, regeneration and cytochrome P450-mediated detoxification, and exacerbates alcohol-associated and metabolic dysfunction-associated steatotic liver disease. RSPO3 expression decreases with HSC activation and is inversely associated with outcomes in patients with alcohol-associated and metabolic dysfunction-associated steatotic liver disease. These protective and hepatocyte-regulating functions of HSCs via RSPO3 resemble the R-spondin-expressing stromal niche in other organs and should be integrated into current therapeutic concepts.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Guanxiong Wang
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Chuan Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Ki Hong Lee
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yana Geng
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Presha Rajbhandari
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Celine Hernandez
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Marcella Steffani
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Jingran Qie
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Thomas Savage
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Dhruv M Goyal
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Kevin C Ray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taruna V Neelakantan
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Johannes Melms
- Department of Medicine, Columbia University, New York, NY, USA
| | - Brandon M Lehrich
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M Yasaka
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Oertel
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tian Lan
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Hiroaki Kanzaki
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoto Fujiwara
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samhita Ravi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin Izar
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Mario Brosch
- Department of Internal Medicine I, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Internal Medicine I, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Helen Remotti
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josepmaria Argemi
- Liver Unit and RNA Biology and Therapies Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Yujin Hoshida
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Storm K Blockley-Powell
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Rebecca A Haeusler
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | | | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Institute of Human Nutrition, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramon Bataller
- Liver Unit,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nicholas Arpaia
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brent R Stockwell
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA.
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Institute of Human Nutrition, New York, NY, USA.
- Burch-Lodge Center for Human Longevity, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Kisseleva T, Ganguly S, Murad R, Wang A, Brenner DA. Regulation of Hepatic Stellate Cell Phenotypes in Metabolic Dysfunction-Associated Steatohepatitis. Gastroenterology 2025:S0016-5085(25)00528-1. [PMID: 40120772 DOI: 10.1053/j.gastro.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Hepatic stellate cells (HSCs) play a crucial role in the pathogenesis of liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), a condition characterized by excessive fat accumulation in the hepatocytes, unrelated to alcohol consumption. In a healthy liver, HSCs are quiescent, store vitamin A, and function as pericytes. However, in response to liver injury and inflammation, HSCs become activated. In MASH, HSC activation is driven by metabolic stress, lipotoxicity, and chronic inflammation. Injured hepatocytes, recruited macrophage, capillarized sinusoidal endothelial cells, and permeable intestinal epithelium may each contribute to activating HSCS. This leads to a unique inflammatory environment that promotes fibrosis. MASH HSCs change their metabolism to favor glycolysis, glutaminolysis, and lactate generation. Activated HSCs transform into myofibroblast-like cells, producing excessive extracellular matrix components that result in fibrosis. In addition, HSCs in MASH have inflammatory and intermediate activated phenotypes. This fibrotic process is a key feature of MASH, which can lead to cirrhosis and liver cancer. Understanding the mechanisms of HSC activation and their role in MASH progression is essential for developing targeted therapies to treat and prevent liver fibrosis in affected individuals.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, California
| | | | - Rabi Murad
- Sanford Burnham Prebys, La Jolla, California
| | - Allen Wang
- Center for Epigenetics, University of California, San Diego, La Jolla, California
| | - David A Brenner
- Sanford Burnham Prebys, La Jolla, California; Department of Medicine, University of California, La Jolla California.
| |
Collapse
|
4
|
Kim JW, Kim YJ. The evidence-based multifaceted roles of hepatic stellate cells in liver diseases: A concise review. Life Sci 2024; 344:122547. [PMID: 38460810 DOI: 10.1016/j.lfs.2024.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Hepatic stellate cells (HSCs) play central roles in liver disease pathogenesis, spanning steatosis to cirrhosis and hepatocellular carcinoma. These cells, located in the liver's sinusoidal space of Disse, transition from a quiescent, vitamin A-rich state to an activated, myofibroblast-like phenotype in response to liver injury. This activation results from a complex interplay of cytokines, growth factors, and oxidative stress, leading to excessive collagen deposition and liver fibrosis, a hallmark of chronic liver diseases. Recently, HSCs have gained recognition for their dynamic, multifaceted roles in liver health and disease. Attention has shifted toward their involvement in various liver conditions, including acute liver injury, alcoholic and non-alcoholic fatty liver disease, and liver regeneration. This review aims to explore diverse functions of HSCs in these acute or chronic liver pathologies, with a focus on their roles beyond fibrogenesis. HSCs exhibit a wide range of actions, including lipid storage, immunomodulation, and interactions with other hepatic and extrahepatic cells, making them pivotal in the hepatic microenvironment. Understanding HSC involvement in the progression of liver diseases can offer novel insights into pathogenic mechanisms and guide targeted therapeutic strategies for various liver conditions.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yu Ji Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| |
Collapse
|
5
|
Abstract
Liver regeneration is a compensatory response to tissue injury and loss. It is known that liver regeneration plays a crucial role in recovery following acetaminophen (APAP)-induced hepatotoxicity, which is the major cause of acute liver failure (ALF) in the US. Regeneration increases proportional to the extent of liver injury upon APAP overdose, ultimately leading to regression of injury and spontaneous recovery in most cases. However, severe APAP overdose results in impaired liver regeneration and unchecked progression of liver injury, leading to failed recovery and mortality. Inter-communication between various cell types in the liver is important for effective regenerative response following APAP hepatotoxicity. Various non-parenchymal cells such macrophages, stellate cells, and endothelial cells produce mediators crucial for proliferation of hepatocytes. Liver regeneration is orchestrated by synchronized actions of several proliferative signaling pathways involving numerous kinases, nuclear receptors, transcription factors, transcriptional co-activators, which are activated by cytokines, growth factors, and endobiotics. Overt activation of anti-proliferative signaling pathways causes cell-cycle arrest and impaired liver regeneration after severe APAP overdose. Stimulating liver regeneration by activating proliferating signaling and suppressing anti-proliferative signaling in liver can prove to be important in developing novel therapeutics for APAP-induced ALF.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Trinh VQH, Lee TF, Lemoinne S, Ray KC, Ybanez MD, Tsuchida T, Carter JK, Agudo J, Brown BD, Akat KM, Friedman SL, Lee YA. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Sci Signal 2023; 16:eadf6696. [PMID: 37253090 PMCID: PMC10367116 DOI: 10.1126/scisignal.adf6696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
Organ size is maintained by the controlled proliferation of distinct cell populations. In the mouse liver, hepatocytes in the midlobular zone that are positive for cyclin D1 (CCND1) repopulate the parenchyma at a constant rate to preserve liver mass. Here, we investigated how hepatocyte proliferation is supported by hepatic stellate cells (HSCs), pericytes that are in close proximity to hepatocytes. We used T cells to ablate nearly all HSCs in the murine liver, enabling the unbiased characterization of HSC functions. In the normal liver, complete loss of HSCs persisted for up to 10 weeks and caused a gradual reduction in liver mass and in the number of CCND1+ hepatocytes. We identified neurotrophin-3 (Ntf-3) as an HSC-produced factor that induced the proliferation of midlobular hepatocytes through the activation of tropomyosin receptor kinase B (TrkB). Treating HSC-depleted mice with Ntf-3 restored CCND1+ hepatocytes in the midlobular region and increased liver mass. These findings establish that HSCs form the mitogenic niche for midlobular hepatocytes and identify Ntf-3 as a hepatocyte growth factor.
Collapse
Affiliation(s)
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Sara Lemoinne
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Kevin C. Ray
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Maria D. Ybanez
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Takuma Tsuchida
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - James K. Carter
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Judith Agudo
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kemal M. Akat
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center; Nashville, TN, USA
| |
Collapse
|
7
|
Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med 2023; 71:103365. [PMID: 36427419 DOI: 10.1016/j.retram.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
8
|
Stefanowicz AJ, Recio L, Black MB, Beames T, Andersen ME, Stern RA, Clewell RA, McMullen PD, Hartman JK, Ranade A. Comparison of Rat Hepatocyte 2D-Monocultures and Hepatocytes Non-Parenchymal Cell Co-Cultures for Assessing Chemical Toxicity. Int J Toxicol 2023; 42:19-36. [PMID: 36523256 DOI: 10.1177/10915818221139471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liver responses are the most common endpoints used as the basis for setting exposure standards. Liver hepatocytes play a vital role in biotransformation of xenobiotics, but non-parenchymal cells (NPCs) in the liver are also involved in certain liver responses. Development of in vitro systems that more faithfully capture liver responses to reduce reliance on animals is a major focus of New Approach Methodology (NAMs). Since rodent regulatory studies are frequently the sole source safety assessment data, mode-of-action data, and used for risk assessments, in vitro rodent models that reflect in vivo responses need to be developed to reduce reliance on animal models. In the work presented in this paper, we developed a 2-D hepatocyte monoculture and 2-D liver cell co-culture system using rat liver cells. These models were assessed for conditions for short-term stability of the cultures and phenotypic and transcriptomic responses of 2 prototypic hepatotoxicants compounds - acetaminophen and phenobarbital. The optimized multi-cellular 2-D culture required use of freshly prepared hepatocytes and NPCs from a single rat, a 3:1 ratio of hepatocytes to NPCs and growth medium using 50% Complete Williams E medium (WEM) and 50% Endothelial Cell Medium (ECM). The transcriptomic responses of the 2 model systems to PB were compared to previous studies from TG-Gates on the gene expression changes in intact rats and the co-culture model responses were more representative of the in vivo responses. Transcriptomic read-outs promise to move beyond conventional phenotypic evaluations with these in vitro NAMs and provide insights about modes of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rebecca A Clewell
- 477896ScitoVation, Durham, NC, USA.,21st Century Tox Consulting, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
9
|
Kawahara A, Kanno K, Yonezawa S, Otani Y, Kobayashi T, Tazuma S, Ito M. Depletion of hepatic stellate cells inhibits hepatic steatosis in mice. J Gastroenterol Hepatol 2022; 37:1946-1954. [PMID: 35933582 DOI: 10.1111/jgh.15974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs), the main source of extracellular matrix in hepatic fibrogenesis, produce various cytokines, growth factors, and morphogenetic proteins. Among these, several factors are known to promote hepatocyte lipid accumulation, suggesting that HSCs can be efficient therapeutic targets for non-alcoholic steatohepatitis (NASH). This study aimed to investigate the effects of HSC depletion on the development of hepatic steatosis and fibrosis in a murine NASH model. METHODS C57BL/6 mice were treated with gliotoxin (GTX), an apoptosis inducer of activated HSCs under the feeding of a choline-deficient l-amino acid-defined high-fat diet for 4 weeks. For in vitro study, Hc3716 cells, immortalized human hepatocytes, were treated with fatty acids in the presence or absence of LX2, immortalized HSCs. RESULTS Choline-deficient l-amino acid-defined high-fat diet increased pronounced hepatic steatosis, which was attenuated by GTX treatment, together with a reduction in the number of activated HSCs. This change was associated with the downregulation of the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream genes, including adipocyte protein 2, cluster of differentiation 36 (CD36), and fatty acid transport protein 1, all of which increase the fatty acid uptake into hepatocytes. As expected, GTX treatment improved hepatic fibrosis. Co-culture of hepatocytes with HSCs enhanced intracellular lipid accumulation, together with the upregulation of PPARγ and CD36 protein expressions. CONCLUSIONS In addition to the improvement in hepatic fibrogenesis, depletion of HSCs had a favorable effect on hepatic lipid metabolism in a mouse NASH model, suggesting that HSCs are potentially efficient targets for the treatment of NASH.
Collapse
Affiliation(s)
- Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- JA Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
10
|
Yang T, Wang H, Wang X, Li J, Jiang L. The Dual Role of Innate Immune Response in Acetaminophen-Induced Liver Injury. BIOLOGY 2022; 11:biology11071057. [PMID: 36101435 PMCID: PMC9312699 DOI: 10.3390/biology11071057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
Acetyl-para-aminophenol (APAP), a commonly used antipyretic analgesic, is becoming increasingly toxic to the liver, resulting in a high rate of acute hepatic failure in Europe and the United States. Excessive APAP metabolism in the liver develops an APAP-protein adduct, which causes oxidative stress, MPTP opening, and hepatic necrosis. HMGB-1, HSP, nDNA, mtDNA, uric acid, and ATP are DMAPs released during hepatic necrosis. DMAPs attach to TLR4-expressing immune cells such KCs, macrophages, and NK cells, activating them and causing them to secrete cytokines. Immune cells and their secreted cytokines have been demonstrated to have a dual function in acetaminophen-induced liver injury (AILI), with a role in either proinflammation or pro-regeneration, resulting in contradicting findings and some research confusion. Neutrophils, KCs, MoMFs, NK/NKT cells, γδT cells, DCs, and inflammasomes have pivotal roles in AILI. In this review, we summarize the dual role of innate immune cells involved in AILI and illustrate how these cells initiate innate immune responses that lead to persistent inflammation and liver damage. We also discuss the contradictory findings in the literature and possible protocols for better understanding the molecular regulatory mechanisms of AILI.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, The Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang 212001, China
| | - Han Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| |
Collapse
|
11
|
Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol 2022; 600:1825-1837. [PMID: 35307840 PMCID: PMC9012702 DOI: 10.1113/jp281061] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Hepatic stellate cells (HSCs) comprise a minor cell population in the liver but serve numerous critical functions in the normal liver and in response to injury. HSCs are primarily known for their activation upon liver injury and for producing the collagen-rich extracellular matrix in liver fibrosis. In the absence of liver injury, HSCs reside in a quiescent state, in which their main function appears to be the storage of retinoids or vitamin A-containing metabolites. Less appreciated functions of HSCs include amplifying the hepatic inflammatory response and expressing growth factors that are critical for liver development and both the initiation and termination of liver regeneration. Recent single-cell RNA sequencing studies have corroborated earlier studies indictaing that HSC activation involves a diverse array of phenotypic alterations and identified unique HSC populations. This review serves to highlight these many functions of HSCs, and to briefly describe the recent genetic tools that will help to thoroughly investigate the role of HSCs in hepatic physiology and pathology.
Collapse
Affiliation(s)
- Dakota R. Kamm
- Department of Biochemistry & Molecular Biology Saint Louis University School of Medicine St. Louis MO
| | - Kyle S. McCommis
- Department of Biochemistry & Molecular Biology Saint Louis University School of Medicine St. Louis MO
| |
Collapse
|
12
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
13
|
Cordero-Espinoza L, Dowbaj AM, Kohler TN, Strauss B, Sarlidou O, Belenguer G, Pacini C, Martins NP, Dobie R, Wilson-Kanamori JR, Butler R, Prior N, Serup P, Jug F, Henderson NC, Hollfelder F, Huch M. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell 2021; 28:1907-1921.e8. [PMID: 34343491 PMCID: PMC8577825 DOI: 10.1016/j.stem.2021.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
In the liver, ductal cells rarely proliferate during homeostasis but do so transiently after tissue injury. These cells can be expanded as organoids that recapitulate several of the cell-autonomous mechanisms of regeneration but lack the stromal interactions of the native tissue. Here, using organoid co-cultures that recapitulate the ductal-to-mesenchymal cell architecture of the portal tract, we demonstrate that a subpopulation of mouse periportal mesenchymal cells exerts dual control on proliferation of the epithelium. Ductal cell proliferation is either induced and sustained or, conversely, completely abolished, depending on the number of direct mesenchymal cell contacts, through a mechanism mediated, at least in part, by Notch signaling. Our findings expand the concept of the cellular niche in epithelial tissues, whereby not only soluble factors but also cell-cell contacts are the key regulatory cues involved in the control of cellular behaviors, suggesting a critical role for cell-cell contacts during regeneration.
Collapse
Affiliation(s)
- Lucía Cordero-Espinoza
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Anna M Dowbaj
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Timo N Kohler
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Bernhard Strauss
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Olga Sarlidou
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - German Belenguer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Clare Pacini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nuno P Martins
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Nicole Prior
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen 2200, Denmark
| | - Florian Jug
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Meritxell Huch
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
| |
Collapse
|
14
|
G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol 2021; 43:101965. [PMID: 33933881 PMCID: PMC8105674 DOI: 10.1016/j.redox.2021.101965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive ingestion of the common analgesic acetaminophen (APAP) leads to severe hepatotoxicity. Here we identify G protein β5 (Gβ5), elevated in livers from APAP overdose patients, as a critical regulator of cell death pathways and autophagic signaling in APAP-exposed liver. Liver-specific knockdown of Gβ5 in mice protected the liver from APAP-dependent fibrosis, cell loss, oxidative stress, and inflammation following either acute or chronic APAP administration. Conversely, overexpression of Gβ5 in liver was sufficient to drive hepatocyte dysfunction and loss. In hepatocytes, Gβ5 depletion ameliorated mitochondrial dysfunction, allowed for maintenance of ATP generation and mitigated APAP-induced cell death. Further, Gβ5 knockdown also reversed impacts of APAP on kinase cascades (e.g. ATM/AMPK) signaling to mammalian target of rapamycin (mTOR), a master regulator of autophagy and, as a result, interrupted autophagic flux. Though canonically relegated to nuclear DNA repair pathways, ATM also functions in the cytoplasm to control cell death and autophagy. Indeed, we now show that Gβ5 forms a direct, stable complex with the FAT domain of ATM, important for autophosphorylation-dependent kinase activation. These data provide a viable explanation for these novel, G protein-independent actions of Gβ5 in liver. Thus, Gβ5 sits at a critical nexus in multiple pathological sequelae driving APAP-dependent liver damage.
Collapse
|
15
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
16
|
Kitto LJ, Henderson NC. Hepatic Stellate Cell Regulation of Liver Regeneration and Repair. Hepatol Commun 2021; 5:358-370. [PMID: 33681672 PMCID: PMC7917274 DOI: 10.1002/hep4.1628] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The hepatic mesenchyme has been studied extensively in the context of liver fibrosis; however, much less is known regarding the role of mesenchymal cells during liver regeneration. As our knowledge of the cellular and molecular mechanisms driving hepatic regeneration deepens, the key role of the mesenchymal compartment during the regenerative response has been increasingly appreciated. Single-cell genomics approaches have recently uncovered both spatial and functional zonation of the hepatic mesenchyme in homeostasis and following liver injury. Here we discuss how the use of preclinical models, from in vivo mouse models to organoid-based systems, are helping to shape our understanding of the role of the mesenchyme during liver regeneration, and how these approaches should facilitate the precise identification of highly targeted, pro-regenerative therapies for patients with liver disease.
Collapse
Affiliation(s)
- Laura J. Kitto
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
17
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
18
|
Bell CC, Chouhan B, Andersson LC, Andersson H, Dear JW, Williams DP, Söderberg M. Functionality of primary hepatic non-parenchymal cells in a 3D spheroid model and contribution to acetaminophen hepatotoxicity. Arch Toxicol 2020; 94:1251-1263. [PMID: 32112222 PMCID: PMC7225187 DOI: 10.1007/s00204-020-02682-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
In addition to hepatocytes, the liver comprises a host of specialised non-parenchymal cells which are important to consider in the development of in vitro models which are both physiologically and toxicologically relevant. We have characterized a 3D co-culture system comprising primary human hepatocytes (PHH) and non-parenchymal cells (NPC) and applied it to the investigation of acetaminophen-induced toxicity. Firstly, we titrated ratios of PHH:NPC and confirmed the presence of functional NPCs via both immunohistochemistry and activation with both LPS and TGF-β. Based on these data we selected a ratio of 2:1 PHH:NPC for further studies. We observed that spheroids supplemented with NPCs were protected against acetaminophen (APAP) toxicity as determined by ATP (up to threefold difference in EC50 at day 14 compared to hepatocytes alone) and glutathione depletion, as well as miR-122 release. APAP metabolism was also altered in the presence of NPCs, with significantly lower levels of APAP-GSH detected. Expression of several CYP450 enzymes involved in the bioactivation of APAP was also lower in NPC-containing spheroids. Spheroids containing NPCs also expressed higher levels of miRNAs which have been implicated in APAP-induced hepatotoxicity, including miR-382 and miR-155 which have potential roles in liver regeneration and inflammation, respectively. These data indicate that the interaction between hepatocytes and NPCs can have significant metabolic and toxicological consequences important for the correct elucidation of hepatic safety mechanisms.
Collapse
Affiliation(s)
- Catherine C Bell
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Bhavik Chouhan
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda C Andersson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Håkan Andersson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - James W Dear
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic P Williams
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Magnus Söderberg
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
19
|
Xu T, Lu Z, Xiao Z, Liu F, Chen Y, Wang Z, Zhu S, Song Y. Myofibroblast induces hepatocyte-to-ductal metaplasia via laminin-ɑvβ6 integrin in liver fibrosis. Cell Death Dis 2020; 11:199. [PMID: 32251270 PMCID: PMC7090046 DOI: 10.1038/s41419-020-2372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Hepatocytes undergo the metaplasia into ductal biliary epithelial cells (BECs) in response to chronic injury, and subsequently contribute to liver regeneration. The mechanism underlying hepatocyte-to-ductal metaplasia has not been explored until now. In mouse models of liver fibrosis, a florid BEC response was observed in fibrotic liver, and the depletion of myofibroblasts attenuated BEC expansion remarkably. Then, in hepatocyte fate-tracing mouse model, we demonstrated the conversion of mature hepatocytes into ductal BECs in fibrotic liver, and the depletion of myofibroblasts diminished the hepatocyte-to-ductal metaplasia. Finally, the mechanism underlying the metaplasia was investigated. Myofibroblasts secreted laminin-rich extracellular matrix, and then laminin induced hepatocyte-to-ductal metaplasia through ɑvβ6 integrin. Therefore, our results demonstrated myofibroblasts induce the conversion of mature hepatocytes into ductal BECs through laminin-ɑvβ6 integrin, which reveals that the strategy improve regeneration in fibrotic liver through the modification of specific microenvironment.
Collapse
Affiliation(s)
- Ting Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhiwen Lu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhuanglong Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuhua Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shenghua Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
20
|
Qian L, Zhang H, Gu Y, Li D, He S, Wang H, Cheng Y, Yang W, Yu H, Zhao X, Cai W, Meng L, Jin M, Wang Y, Zhang Y. Reduced production of laminin by hepatic stellate cells contributes to impairment in oval cell response to liver injury in aged mice. Aging (Albany NY) 2019; 10:3713-3735. [PMID: 30513510 PMCID: PMC6326669 DOI: 10.18632/aging.101665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Aged liver is usually impaired in response to hepatic injury. Tissue-specific stem cells participate in the repair of tissue injury. However, how oval cells (OCs) respond to injury and how the process is regulated by tissue microenvironment in aged mice have not been fully understood. In this study, taking advantage of well-established murine OC activation model, we demonstrated that OCs were less activated upon injury in aged mice and the impairment was mainly attributed to dysfunction in their niche. Through analyzing global gene expression, we found that the genes differentially expressed in damaged young and aged mouse liver tissues were predominantly those required for the formation and remodeling of extracellular matrix. As one of the most important extracellular matrix components in the OC niche, laminin was shown to promote the proliferation of OCs. Not surprisingly, laminin was downregulated with aging. Consistent with the downregulation of genes encoding DNA-dependent protein kinase (DNA-PK) proteins in aged hepatic stellate cells (HSCs), inhibition of DNA-PK also led to reduced expression of laminin in HSCs. Moreover, impairment in OC activation caused by less supporting from DNA-damaged HSCs could be rescued by laminin. This study reveals a new cellular mechanism underlying impaired OCs functionality during aging.
Collapse
Affiliation(s)
- Liu Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Zhang
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuting Gu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hui Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiji Cheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hongshuang Yu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaonan Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Cai
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Meng
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Min Jin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yanyun Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Li J, Zhao YR, Tian Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis. World J Hepatol 2019; 11:412-420. [PMID: 31183002 PMCID: PMC6547291 DOI: 10.4254/wjh.v11.i5.412] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) usually results in hepatocellular dysfunction and coagulopathy and carries a high mortality rate. Hepatic stellate cells (HSCs) are famous for their role in liver fibrosis. Although some recent studies revealed that HSCs might participate in the pathogenesis of ALF, the accurate mechanism is still not fully understood. This review focuses on the recent advances in understanding the functions of HSCs in ALF and revealed both protective and promotive roles during the pathogenesis of ALF: HSC activation participates in the maintenance of cell attachment and the architecture of liver tissue via extracellular matrix production and assists liver regeneration by producing growth factors; and HSC inflammation plays a role in relaying inflammation signaling from sinusoids to parenchyma via secretion of inflammatory cytokines. A better understanding of roles of HSCs in the pathogenesis of ALF may lead to improvements and novel strategies for treating ALF patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Ren Zhao
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen Tian
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
22
|
Dkhil MA, Abdel Moneim AE, Hafez TA, Mubaraki MA, Mohamed WF, Thagfan FA, Al-Quraishy S. Myristica fragrans Kernels Prevent Paracetamol-Induced Hepatotoxicity by Inducing Anti-Apoptotic Genes and Nrf2/HO-1 Pathway. Int J Mol Sci 2019; 20:993. [PMID: 30823534 PMCID: PMC6412641 DOI: 10.3390/ijms20040993] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Paracetamol is responsible for acute liver failure in humans and experimental animals when taken at high doses and transformed into a reactive metabolite by the liver cytochrome P450. On the other hand, nutmeg is rich with many phytochemical ingredients that are known for their ability to inhibit cytochrome P450. Hence, the present experiment was aimed at studying the hepatoprotective effect of Myristica fragrans (nutmeg), kernel extract (MFKE) in respect to paracetamol (acetaminophen; N-acetyl-p-amino-phenol (APAP))-induced hepatotoxicity in rats, focusing on its antioxidant, anti-inflammatory, and anti-apoptotic activities. Liver toxicity was induced in rats by a single oral administration of APAP (2 g/kg). To evaluate the hepatoprotective effect of MFKE against this APAP-induced hepatotoxicity, rats were pre-treated with either oral administration of MFKE at 300 mg/kg daily for seven days or silymarin at 50 mg/kg as a standard hepatoprotective agent. APAP intoxication caused a drastic elevation in liver function markers (transaminases, alkaline phosphatase, and total bilirubin), oxidative stress indicators (lipid peroxidation and nitric oxide), inflammatory biomarkers (tumour necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and nuclear factor ĸB) and the pro-apoptotic BCL2 Associated X (Bax) and caspases-3 genes. Furthermore, analyses of rat liver tissue revealed that APAP significantly depleted glutathione and inhibited the activities of antioxidant enzymes in addition to downregulating two key anti-apoptotic genes: Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) and B-cell lymphoma 2 (Bcl-2). Pre-treatment with MFKE, however, attenuated APAP-induced liver toxicity by reversing all of these toxicity biomarkers. This hepatoprotective effect of MFKE was further confirmed by improvement in histopathological findings. Interestingly, the hepatoprotective effect of MFKE was comparable to that offered by the reference hepatoprotector, silymarin. In conclusion, our results revealed that MFKE had antioxidant, anti-inflammatory, and anti-apoptotic properties, and it is suggested that this hepatoprotective effect could be linked to its ability to promote the nuclear factor erythroid 2⁻related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt.
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt.
| | - Taghreed A Hafez
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia.
| | - Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia.
| | - Walid F Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11341, Egypt.
| | - Felwa A Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
23
|
Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:719-729. [PMID: 30653954 DOI: 10.1016/j.ajpath.2018.12.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol; APAP) overdose is the most common cause of acute liver failure in the Western world, with limited treatment opportunities. For years, research on APAP overdose has been focused on investigating the mechanisms of hepatotoxicity, with limited success in advancing therapeutic strategies. Acute liver injury after any insult, including APAP overdose, is followed by compensatory liver regeneration, which promotes recovery and is a crucial determinant of the final outcome. Liver regeneration after APAP-induced liver injury is dose dependent and impaired after severe APAP overdose. Although robust regenerative response is associated with spontaneous recovery and survival, impaired regeneration results in faster progression of injury and death after APAP overdose. APAP hepatotoxicity-induced liver regeneration involves a complex time- and dose-dependent interplay of several signaling mediators, including growth factors, cytokines, angiogenic factors, and other mitogenic pathways. Compared with the liver injury, which is established before most patients seek medical attention and has proved difficult to manipulate, liver regeneration can be potentially modulated even in late-stage APAP-induced acute liver failure. Despite recent efforts to study the mechanisms of liver regeneration after APAP-induced liver injury, more comprehensive research in this area is required, especially regarding factors that contribute to impaired regenerative response, to develop novel regenerative therapies for APAP-induced acute liver failure.
Collapse
|
24
|
Feng Q, Zhao N, Xia W, Liang C, Dai G, Yang J, Sun J, Liu L, Luo L, Yang J. Integrative proteomics and immunochemistry analysis of the factors in the necrosis and repair in acetaminophen-induced acute liver injury in mice. J Cell Physiol 2018; 234:6561-6581. [PMID: 30417486 DOI: 10.1002/jcp.27397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (AILI) is a significant clinical problem worldwide, the hepatotoxicity mechanisms are well elucidated, but the factors involved in the necrosis and repair still remain to be investigated. APAP was injected intraperitoneally in male Institute of Cancer Research (ICR) mice. Quantitative proteome analysis of liver tissues was performed by 2-nitrobenzenesulfenyl tagging, two-dimensional-nano high-performance liquid chromatography separation, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis. Diffrenetial proteins were verified by the immunochemistry method. 36 and 44 differentially expressed proteins were identified, respectively, at 24 hr after APAP (200 or 300 mg·kg -1 ) administration. The decrease in the mitochondrial protective proteins Prdx6, Prdx3, and Aldh2 accounted for the accumulation of excessive reactive oxygen species (ROS) and aldehydes, impairing mitochondria structure and function. The Gzmf combined with Bax and Apaf-1 jointly contributed to the necrosis. The blockage of Stat3 activation led to the overexpression of unphosphorylated Stat3 and the overproduction of Bax. The overexpression of unphosphorylated Stat3 represented necrosis; the alternation from Stat3 to p-Stat3 in necrotic regions represented hepatocytes from death to renewal. The high expressions of P4hα1, Ncam, α-SMA, and Cygb were involved in the liver repair, they were not only the markers of activated HSC but also represented an intermediate stage of hepatocytes from damage or necrosis to renewal. Our data provided a comprehensive report on the profile and dynamic changes of the liver proteins in AILI; the involvement of Gzmf and the role of Stat3 in necrosis were revealed; and the role of hepatocyte in liver self-repair was well clarified.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - ChengJie Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guoxin Dai
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jian Yang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingxia Sun
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
25
|
Jin L, Gao H, Wang J, Yang S, Wang J, Liu J, Yang Y, Yan T, Chen T, Zhao Y, He Y. Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure. Liver Int 2017; 37:1651-1659. [PMID: 28508586 DOI: 10.1111/liv.13476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We previously found that hepatic stellate cell activation induced by autophagy maintains the liver architecture to prevent collapse during acute liver failure. Nitric oxide has shown to induce hepatic stellate cell apoptosis. Whether and how nitric oxide is involved in acute liver failure and autophagy remains unclear. METHODS Acute liver failure patients were recruited to investigate the correlation between plasma nitric oxide levels and clinical features. Liver tissues were collected from chronic hepatitis patients by biopsy and from acute liver failure patients who had undergone liver transplantation. The expression of nitric oxide synthases and hepatic stellate cell activation (alpha-SMA), and autophagic activity (LC3) were investigated by immunohistochemistry. Autophagy and apoptosis were investigated by immunoblot analysis, confocal microscopy, and flow cytometry in hepatic stellate cells treated with nitric oxide donors. RESULTS Plasma nitric oxide level was significantly increased in patients with acute liver failure compared to those with cirrhosis (53.60±19.74 μM vs 19.40±9.03 μM, Z=-7.384, P<.001) and positively correlated with MELD-Na score (r=.539, P<.001), implicating nitric oxide in acute liver failure. At least some Nitric oxide was produced by overexpression of inducible nitric oxide synthases and endothelial nitric oxide synthases, but not neuronal nitric oxide synthases in the liver tissue. In vivo observation revealed that autophagy was inhibited in hepatic stellate cells based on decreased LC3 immunostaining, and in vitro experiments demonstrated that Nitric oxide can inhibit autophagy. Moreover, nitric oxide promoted hepatic stellate cell apoptosis, which was rescued by an autophagy inducer. CONCLUSIONS Increased nitric oxide synthases/ nitric oxide promotes apoptosis through autophagy inhibition in hepatic stellate cells during acute liver failure, providing a novel strategy for the treatment of patients with acute liver failure.
Collapse
Affiliation(s)
- Li Jin
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Heng Gao
- Xi'an Health School, Xi'an City, Shaanxi province, China
| | - JiuPing Wang
- Centre of Liver Diseases, Fourth Military Medical University, First Affiliated Teaching Hospital, Xi'an City, Shaanxi, China
| | - ShuJuan Yang
- Xi'an Eighth Hospital Affiliated to Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Jing Wang
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - JingFeng Liu
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Yuan Yang
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - TaoTao Yan
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Tianyan Chen
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Yingren Zhao
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Yingli He
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| |
Collapse
|
26
|
Saito Y, Morine Y, Shimada M. Mechanism of impairment on liver regeneration in elderly patients: Role of hepatic stellate cell function. Hepatol Res 2017; 47:505-513. [PMID: 28186674 DOI: 10.1111/hepr.12872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022]
Abstract
Japan, along with most other countries in the world, is facing an increasingly aging population with a prolonged life expectancy. Concurrently, the need for medical intervention, including hepatectomy, has also increased for the elderly. Although surgical outcomes for older patients are reported to be comparable with those for younger patients, additional care in the selection of older patients for hepatectomy is considered necessary. Although the effect of aging on human liver regeneration is not fully understood, the regeneration of liver tissue after hepatectomy in elderly patients is shown to be generally worse than in younger patients and, to date, the mechanisms involved in the impairment of liver regeneration have not been fully clarified. Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells that play critical roles in liver physiology and fibrogenesis. Recent studies in liver regeneration have increasingly focused on HSCs rather than on hepatocytes, Kupffer cells, endothelial cells, or infiltrating immune cells and suggest that HSCs might play a critical role in liver regeneration. In this review, we summarize the mechanisms involved in the impairment of liver regeneration in elderly patients, especially focusing on HSCs. We also discuss how HSCs contribute to the impairment of liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
27
|
Chang W, Song L, Chang X, Ji M, Wang H, Qin X, Niu W. Early activated hepatic stellate cell-derived paracrine molecules modulate acute liver injury and regeneration. J Transl Med 2017; 97:318-328. [PMID: 27991908 DOI: 10.1038/labinvest.2016.130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/09/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022] Open
Abstract
The effects of paracrine action from early activated hepatic stellate cells (HSCs) on resident liver epithelium cells are not clear. Here, we investigated whether a systemic infusion of early activated HSC-derived paracrine factors (HSC-CM) would evoke an enhanced liver protective response in acetaminophen (APAP)-induced acute liver injury (ALI) in mice and explored the possible underlying mechanisms. The survival rate, liver injury, and liver regeneration were analyzed in mice with or without HSC-CM treatment in vivo. A systemic infusion of HSC-CM provided a significant survival benefit in APAP-induced ALI. HSC-CM therapy resulted in a reduction of hepatocellular death and increased numbers of both proliferating hepatocytes and adult hepatic progenitor cells (AHPCs) with up-regulation of liver regeneration relevant genes. The HSC-CM treatment reduced leukocyte infiltration and down-regulated systemic inflammation with decreases in IFN-γ, IL-1ra, IL-1β, TNF-α, and increases in IL-10. The direct anti-death and pro-regeneration effects of HSC-CM on AHPCs were demonstrated using in vitro assays. Treatment with HSC-CM promoted AHPCs proliferation and resulted in increased pAkt expression in vitro, and this effect was abolished by the PI3K/Akt inhibitor LY294002. These data provide evidence that early activated HSC-CM therapy offered trophic support to the acutely injured liver by inhibiting liver cell death and stimulating regeneration, potentially creating a new method for the treatment of ALI.
Collapse
Affiliation(s)
- Wenju Chang
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| | - Lujun Song
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| | - Xiujuan Chang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.,Treatment and Research Center for Liver Cancer Department, 302 Military Hospital of China, Beijing, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| | - Weixin Niu
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key. Hepatol Int 2016; 10:902-908. [PMID: 27578210 DOI: 10.1007/s12072-016-9758-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/29/2016] [Indexed: 12/24/2022]
Abstract
Since their original identification, our understanding of the role of hepatic stellate cells in both health and disease continues to grow. Numerous studies have delineated the role of stellate cell activation in contributing to the pool of myofibroblasts responsible for liver fibrosis, and these have resulted in the development of a number of anti-fibrotic strategies targeting this cell. However, their potential role in liver regeneration, both initiation and termination, is also emerging and needs to be contemplated when considering targeted therapy. Perhaps what is most striking is the increasing recognition that this is not just one cell, but rather, a heterogenous population made up of a number of different subsets of cells, each with differentiated and specific functions. The tools are emerging for this dissection and are greatly needed to truly develop targeted therapies that will inhibit fibrosis while promoting liver regeneration and repair.
Collapse
|
29
|
Scanning and transmission electron microscopy of the cells forming the hepatic sinusoidal wall of rat in acetaminophen and Escherichia coli endotoxin-induced hepatotoxicity. J Microsc Ultrastruct 2016; 5:21-27. [PMID: 30023233 PMCID: PMC6014258 DOI: 10.1016/j.jmau.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Drugs and xenobiotics as well as bacterial endotoxins may reach the liver either systematically or after intestinal absorption. Therefore, cells lining the sinusoidal wall form the last barrier before blood constituents get in contact with the parenchymal cells. In this work, the ultrastructure of the cells forming the sinusoidal wall was studied after acetaminophen and Escherichia coli endotoxin treatments. Rats received acetaminophen at a dose of 1000 mg/kg body weight by intraperitoneal injection once in acute and four times with a 1-week interval in chronic treatments, and E. coli endotoxin at a dose of 5 mg/kg of body weight by intraperitoneal injection once in acute and four times with a 1-week interval in chronic treatments. Tissue samples were collected for scanning and transmission electron microscopy. Swelling of sinusoidal endothelial cells was noticed in both acute intoxicated groups with narrowing of the fenestrae, whereas large gaps were formed in chronic toxicity. Activation of Kupffer cells was a prominent common feature between the four toxicity groups. Interestingly, hepatic stellate cell activation was evident in both chronic acetaminophen and chronic endotoxin groups. Large amounts of collagen fibers were seen surrounding the hepatic stellate cells and in Disse space.
Collapse
|
30
|
Kegel V, Pfeiffer E, Burkhardt B, Liu JL, Zeilinger K, Nüssler AK, Seehofer D, Damm G. Subtoxic Concentrations of Hepatotoxic Drugs Lead to Kupffer Cell Activation in a Human In Vitro Liver Model: An Approach to Study DILI. Mediators Inflamm 2015; 2015:640631. [PMID: 26491234 PMCID: PMC4600928 DOI: 10.1155/2015/640631] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/15/2022] Open
Abstract
Drug induced liver injury (DILI) is an idiosyncratic adverse drug reaction leading to severe liver damage. Kupffer cells (KC) sense hepatic tissue stress/damage and therefore could be a tool for the estimation of consequent effects associated with DILI. Aim of the present study was to establish a human in vitro liver model for the investigation of immune-mediated signaling in the pathogenesis of DILI. Hepatocytes and KC were isolated from human liver specimens. The isolated KC yield was 1.2 ± 0.9 × 10(6) cells/g liver tissue with a purity of >80%. KC activation was investigated by the measurement of reactive oxygen intermediates (ROI, DCF assay) and cell activity (XTT assay). The initial KC activation levels showed broad donor variability. Additional activation of KC using supernatants of hepatocytes treated with hepatotoxic drugs increased KC activity and led to donor-dependent changes in the formation of ROI compared to KC incubated with supernatants from untreated hepatocytes. Additionally, a compound- and donor-dependent increase in proinflammatory cytokines or in anti-inflammatory cytokines was detected. In conclusion, KC related immune signaling in hepatotoxicity was successfully determined in a newly established in vitro liver model. KC were able to detect hepatocyte stress/damage and to transmit a donor- and compound-dependent immune response via cytokine production.
Collapse
Affiliation(s)
- Victoria Kegel
- Department of General, Visceral and Transplantation Surgery, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisa Pfeiffer
- Department of General, Visceral and Transplantation Surgery, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institute, Eberhard Karls University Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Jia L. Liu
- Department of General, Visceral and Transplantation Surgery, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas K. Nüssler
- BG Trauma Center, Siegfried Weller Institute, Eberhard Karls University Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Daniel Seehofer
- Department of General, Visceral and Transplantation Surgery, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Georg Damm
- Department of General, Visceral and Transplantation Surgery, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
31
|
Hashemi Goradel N, Darabi M, Shamsasenjan K, Ejtehadifar M, Zahedi S. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure. Adv Pharm Bull 2015; 5:293-8. [PMID: 26504749 DOI: 10.5681/apb.2015.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tabriz, Iran
| | - Mostafa Ejtehadifar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Zahedi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Kaur S, Siddiqui H, Bhat MH. Hepatic Progenitor Cells in Action. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2342-50. [DOI: 10.1016/j.ajpath.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/25/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
|
33
|
He Y, Jin L, Wang J, Yan Z, Chen T, Zhao Y. Mechanisms of fibrosis in acute liver failure. Liver Int 2015; 35:1877-85. [PMID: 25388426 PMCID: PMC5024020 DOI: 10.1111/liv.12731] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/05/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is a condition with high mortality and morbidity. Fibrosis in chronic liver disease was extensively researched, whereas fibrosis and underlying mechanism in acute liver failure remains unclear. METHODS Hepatitis B virus related ALF patients were recruited to investigate if there was ongoing fibrosis by liver histology and liver stiffness measurement(LSM) analysis as well as fibrosis markers assay. Sera HMGB1 were kinetically detected in progression and remission stage of ALF. Hepatic stellate cell(HSC) activation by HMGB1 was explored by testing mRNA and protein level of α-SMA and collagen 1a1 by using qPCR and western blot. Autophagy induction by HMGB1 was explored by LC3-II conversion, autophagy flux and fluorescence. RESULTS Firstly, ongoing fibrosis in progression stage of ALF was confirmed by histological analysis, LS measurement as well as fibrosis markers detection. HSC activation and autophagy induction in explanted liver tissue also revealed. Next, kinetic monitoring sera HMGB1 revealed elevated HMGB1 in progression stage of ALF vs HBsAg carrier, and drop back to base level in remission stage. Thirdly, rHMGB1 dose dependently activated HSCs, as indicated by increased mRNA and proteins level in α-SMA and collagen 1a1. Moreover, autophagy was induced in HSC treated with rHMGB1, as illustrated by increased LC3 lipidation, elevated autophagy flux and GFP-LC3 puncta. CONCLUSIONS Acute liver failure is accompanied by ongoing fibrosis, HSC activation and autophagy induction. Increased HMGB1 activates HSC via autophagy induction. Those findings integrate HMGB1, HSCs activation, autophagy into a common framework that underlies the fibrosis in ALF.
Collapse
Affiliation(s)
- Yingli He
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi provinceChina
| | - Li Jin
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi provinceChina
| | - Jing Wang
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi provinceChina
| | - Zhi Yan
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi provinceChina
- Department of Infectious DiseasesSecond teaching hospital of ShanDong universityJinanShandong provinceChina
| | - Tianyan Chen
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi provinceChina
| | - Yingren Zhao
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'anShaanxi provinceChina
| |
Collapse
|
34
|
Chang WJ, Song LJ, Yi T, Shen KT, Wang HS, Gao XD, Li M, Xu JM, Niu WX, Qin XY. Early activated hepatic stellate cell-derived molecules reverse acute hepatic injury. World J Gastroenterol 2015; 21:4184-4194. [PMID: 25892868 PMCID: PMC4394079 DOI: 10.3748/wjg.v21.i14.4184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/16/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To test whether hepatic stellate cells (HSCs) at different activation stages play different roles in acetaminophen (APAP)-induced acute liver injury (ALI).
METHODS: HSCs were isolated from mouse liver and cultured in vitro. Morphological changes of initiation HSCs [HSCs (5d)] and perpetuation HSCs [HSCs (p3)] were observed by immunofluorescence and transmission electron microscopy. The protective effects of HSC-derived molecules, cell lysates and HSC-conditioned medium (HSC-CM) were tested in vivo by survival and histopathological analyses. Liver injury was determined by measuring aminotransferase levels in the serum and by histologic examination of tissue sections under a light microscope. Additionally, to determine the molecular mediators of the observed protective effects of initiation HSCs, we examined HSC-CM using a high-density protein array.
RESULTS: HSCs (5d) and HSCs (p3) had different morphological and phenotypic traits. HSCs (5d) presented a star-shaped appearance with expressing α-SMA at non-uniform levels between cells. However, HSCs (p3) evolved into myofibroblast-like cells without lipid droplets and expressed a uniform and higher level of α-SMA. HSC-CM (5d), but not HSC-CM (p3), provided a significant survival benefit and showed a dramatic reduction of hepatocellular necrosis and panlobular leukocyte infiltrates in mice exposed to APAP. However, this protective effect was abrogated at higher cell masses, indicating a therapeutic window of effectiveness. Furthermore, the protein array screen revealed that HSC-CM (5d) was composed of many chemokines and growth factors that correlated with inflammatory inhibition and therapeutic activity. When compared with HSC-CM (p3), higher levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-1γ, hepatocyte growth factor, interleukin-10, and matrix metalloproteinase-2, but lower levels of stem cell factor and Fas-Ligand were observed in HSC-CM (5d).
CONCLUSION: These data indicated that initiation HSCs and perpetuation HSCs were different in morphology and protein expression, and provided the first experimental evidence of the potential medical value of initiation HSC-derived molecules in the treatment of ALI.
Collapse
|
35
|
Scheiermann P, Bachmann M, Härdle L, Pleli T, Piiper A, Zwissler B, Pfeilschifter J, Mühl H. Application of IL-36 receptor antagonist weakens CCL20 expression and impairs recovery in the late phase of murine acetaminophen-induced liver injury. Sci Rep 2015; 5:8521. [PMID: 25687687 PMCID: PMC4330543 DOI: 10.1038/srep08521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022] Open
Abstract
Overdosing of the analgesic acetaminophen (APAP, paracetamol) is a major cause of acute liver injury. Whereas toxicity is initiated by hepatocyte necrosis, course of disease is regulated by mechanisms of innate immunity having the potential to serve in complex manner pathogenic or pro-regenerative functions. Interleukin (IL)-36γ has been identified as novel IL-1-like cytokine produced by and targeting epithelial (-like) tissues. Herein, we investigated IL-36γ in acute liver disease focusing on murine APAP-induced hepatotoxicity. Enhanced expression of hepatic IL-36γ and its prime downstream chemokine target CCL20 was detected upon liver injury. CCL20 expression coincided with the later regeneration phase of intoxication. Primary murine hepatocytes and human Huh7 hepatocellular carcinoma cells indeed displayed enhanced IL-36γ expression when exposed to inflammatory cytokines. Administration of IL-36 receptor antagonist (IL-36Ra) decreased hepatic CCL20 in APAP-treated mice. Unexpectedly, IL-36Ra likewise increased late phase hepatic injury as detected by augmented serum alanine aminotransferase activity and histological necrosis which suggests disturbed tissue recovery upon IL-36 blockage. Finally, we demonstrate induction of IL-36γ in inflamed livers of endotoxemic mice. Observations presented introduce IL-36γ as novel parameter in acute liver injury which may contribute to the decision between unleashed tissue damage and initiation of liver regeneration during late APAP toxicity.
Collapse
Affiliation(s)
- Patrick Scheiermann
- 1] pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt [2] Clinic for Anesthesiology, University Hospital Ludwig-Maximilians-University Munich
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Lorena Härdle
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Thomas Pleli
- Medical Clinic I, University Hospital Goethe-University Frankfurt, Germany
| | - Albrecht Piiper
- Medical Clinic I, University Hospital Goethe-University Frankfurt, Germany
| | - Bernhard Zwissler
- Clinic for Anesthesiology, University Hospital Ludwig-Maximilians-University Munich
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| |
Collapse
|
36
|
Chang W, Yang M, Song L, Shen K, Wang H, Gao X, Li M, Niu W, Qin X. Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim Biophys Sin (Shanghai) 2014; 46:291-8. [PMID: 24389643 DOI: 10.1093/abbs/gmt143] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary extracellular matrix-producing cells within the liver and have numerous vital functions. A robust protocol for the isolation and culture of HSCs is important for further investigations of cell functions and related mechanisms in liver disease. The volume of the mouse liver is much smaller than that of the rat liver, which makes it much more difficult to isolate mouse HSCs (mHSCs) than rat HSCs. At present, isolating mHSCs is still a challenge because there is no efficient, robust method to isolate and culture these cells. In the present study, C57BL/6J mice were intravenously injected with liposome-encapsulated dichloromethylene diphosphate (CL2MDP) to selectively eliminate Kupffer cells from the liver. The mouse livers were then perfused in situ, and the mHSCs were isolated with an optimized density gradient centrifugation technique. In the phosphate buffer solution (PBS)-liposome group, the yield of mHSCs was (1.37 ± 0.23) × 10(6)/g liver, the cell purity was (90.18 ± 1.61)%, and the cell survival rate was (94.51 ± 1.61)%. While in the CL2MDP-liposome group, the yield of mHSCs was (1.62 ± 0.34) × 10(6)/g liver, the cell purity was (94.44 ± 1.89)%, and the cell survival rate was (94.41 ± 1.50)%. Based on the yield and purity of mHSCs, the CL2MDP-liposome treatment was superior to the PBS-liposome treatment (P < 0.05, P < 0.01). This study established successfully a robust and efficient protocol for the separation and purification of mHSCs, and both a high purity and an adequate yield of mHSCs were obtained.
Collapse
Affiliation(s)
- Wenju Chang
- Department of General Surgery, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Krüger L, Premont R, Yang L, Syn WK, Metzger D, Diehl AM. Smoothened is a master regulator of adult liver repair. J Clin Invest 2013; 123:2380-94. [PMID: 23563311 DOI: 10.1172/jci66904] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/12/2013] [Indexed: 12/16/2022] Open
Abstract
When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.
Collapse
Affiliation(s)
- Gregory A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nejak-Bowen KN, Orr AV, Bowen WC, Michalopoulos GK. Gliotoxin-induced changes in rat liver regeneration after partial hepatectomy. Liver Int 2013; 33:1044-1055. [PMID: 23552057 PMCID: PMC3706483 DOI: 10.1111/liv.12164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/10/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatic non-parenchymal cells (NPCs), encompassing hepatic stellate cells (HSCs), macrophages and endothelial cells, synthesize new hepatocyte growth factor (HGF) during liver regeneration (LR), and also play an important function in matrix production at the end of regeneration. AIMS The aim of this study was to determine whether ablating NPCs either during hepatocyte proliferation or during matrix resynthesis will have any effect on LR. METHODS Rats were injected with either gliotoxin (which induces NPC apoptosis) or vehicle control at various stages during partial hepatectomy (PH). NPCs and hepatocytes were also treated in vitro with gliotoxin. RESULTS Proliferating cells were abundant in control livers 24 h after PH, while in gliotoxin-treated rats, mitosis was absent, apoptotic NPCs were apparent and HGF was decreased. In vitro studies demonstrated a > 50% decrease in cell viability in NPC cultures, while hepatocyte viability and proliferation were unaffected. Chronic elimination of NPCs over a period of 5 days after PH led to increased desmin-positive HSCs and fewer alpha smooth muscle actin-expressing HSCs. Finally, there was continued proliferation of hepatocytes and decreased collagen I and TGF-β when HSCs, the matrix-producing NPCs, were ablated during later stages of LR. CONCLUSIONS Ablation of NPCs at early time points after PH interferes with liver regeneration, while their ablation at late stages causes impairment in the termination of LR, demonstrating a time-dependent regulatory role of NPCs in the regenerative process.
Collapse
|
39
|
Yin C, Evason KJ, Asahina K, Stainier DYR. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123:1902-10. [PMID: 23635788 DOI: 10.1172/jci66369] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases.
Collapse
Affiliation(s)
- Chunyue Yin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, UCSF, San Francisco, California, USA
| | | | | | | |
Collapse
|
40
|
Chen L, Zhang W, Zhou QD, Yang HQ, Liang HF, Zhang BX, Long X, Chen XP. HSCs play a distinct role in different phases of oval cell-mediated liver regeneration. Cell Biochem Funct 2012; 30:588-96. [PMID: 22535704 DOI: 10.1002/cbf.2838] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/07/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Lin Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Wei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Qiao-dan Zhou
- Department of Nephrology, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | | | - Hui-fang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Bi-xiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Xin Long
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Xiao-ping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| |
Collapse
|