1
|
Romero AH, Delgado F. 4-Aminoquinoline as a privileged scaffold for the design of leishmanicidal agents: structure-property relationships and key biological targets. Front Chem 2025; 12:1527946. [PMID: 39981131 PMCID: PMC11841433 DOI: 10.3389/fchem.2024.1527946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/26/2024] [Indexed: 02/22/2025] Open
Abstract
Leishmaniasis is one of the most important neglected tropical diseases, with more than two million new cases annually. It is endemic in several regions worldwide, representing a public health problem for more than 88 countries, in particular in the tropical and subtropical regions of developing countries. At the moment, there are neither approved vaccines nor effective drugs for the treatment of human leishmaniasis for any of its three typical clinical manifestations, and, importantly, the drugs of clinical use have several side effects, require complex administration regimens, present high cost, and are ineffective in many populations due to pathogen resistance. Moreover, beyond the pharmacological exigencies, there are other challenges concerning its parasitic nature, such as its great genetic plasticity and adaptability, enabling it to activate a battery of genes to develop resistance quickly. All these aspects demand the identification and development of new, safe, and effective chemical systems, which must not only be focused on medicinal chemistry and pharmacological aspects but also consider key aspects relative to parasite survival. In this sense, the quinolines and, in particular, 4-aminoquinoline, represent a privileged scaffold for the design of potential leishmanicidal candidates due not only to their versatility to generate highly active and selective compounds but also to their correlation with well-defined biological targets. These facts make it possible to generate safe leishmanicidal agents targeted at key aspects of parasite survival. The current review summarizes the most current examples of leishmanicidal agents based on 4-aminoquinolines focusing the analysis on two essential aspects: (i) structure-property relationship to identify the key pharmacophores and (ii) mode of action focused on key targets in parasite survival (e.g., depolarization of potential mitochondrial, accumulation into macrophage lysosome, and immunostimulation of host cells). With that information, we seek to give useful guidelines for interested researchers to face the drug discovery and development process for selective and potent leishmanicidal agents based on 4-aminoquinolines.
Collapse
Affiliation(s)
- Angel H. Romero
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
2
|
Liu J, Jiang J, Deng C, Huang X, Huang S, Liu Z, Yang J, Mo J, Chen HJ, Wang J, Xie X. Nanochannel Electro-Injection as a Versatile Platform for Efficient RNA/DNA Programming on Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303088. [PMID: 37381646 DOI: 10.1002/smll.202303088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Indexed: 06/30/2023]
Abstract
The utilization of dendritic cell (DC) vaccines is a promising approach in cancer immunotherapy, and the modification of DCs for the expression of tumor-associated antigens is critical for successful cancer immunotherapy. A safe and efficient method for delivering DNA/RNA into DCs without inducing maturation is beneficial to achieve successful DC transformation for cell vaccine applications, yet remains challenging. This work presents a nanochannel electro-injection (NEI) system for the safe and efficient delivery of a variety of nucleic acid molecules into DCs. The device is based on track-etched nanochannel membrane as key components, where the nano-sized channels localize the electric field on the cell membrane, enabling lower voltage (<30 V) for cell electroporation. The pulse conditions of NEI are examined so that the transfection efficiency (>70%) and biosafety (viability >85%) on delivering fluorescent dyes, plasmid DNA, messenger RNA, and circular RNA (circRNA) into DC2.4 are optimized. Primary mouse bone marrow DC can also be transfected with circRNA with 68.3% efficiency, but without remarkably affecting cellular viability or inducing DC maturation. These results suggest that NEI can be a safe and efficient transfection platform for in vitro transformation of DCs and possesses a promising potential for developing DC vaccines against cancer.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Caiguanxi Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jingshan Mo
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Gotay W, Rodrigues R, Yaochite J. Influence of host genetic polymorphisms involved in immune response and their role in the development of Chikungunya disease: a review. Braz J Med Biol Res 2023; 56:e12557. [PMID: 37703107 PMCID: PMC10496760 DOI: 10.1590/1414-431x2023e12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/22/2023] [Indexed: 09/15/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by the bite of infected mosquitoes and can cause significant pathogenicity in humans. Moreover, its importance has increased in the Americas since 2013. The primary vectors for viral delivery are the mosquito species Aedes aegypti and Aedes albopictus. Several factors, including host genetic variations and immune response against CHIKV, influence the outcomes of Chikungunya disease. This work aimed to gather information about different single nucleotide polymorphisms (SNPs) in genes that influence the host immune response during an infection by CHIKV. The viral characteristics, disease epidemiology, clinical manifestations, and immune response against CHIKV are also addressed. The main immune molecules related to this arboviral disease elucidated in this review are TLR3/7/8, DC-SIGN, HLA-DRB1/HLA-DQB1, TNF, IL1RN, OAS2/3, and CRP. Advances in knowledge about the genetic basis of the immune response during CHIKV infection are essential for expanding the understanding of disease pathophysiology, providing new genetic markers for prognosis, and identifying molecular targets for the development of new drug treatments.
Collapse
Affiliation(s)
- W.J.P. Gotay
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.O. Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J.N.U. Yaochite
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
4
|
Jain A, Begum T, Ahmad S. Analysis and Prediction of Pathogen Nucleic Acid Specificity for Toll-like Receptors in Vertebrates. J Mol Biol 2023; 435:168208. [PMID: 37479078 DOI: 10.1016/j.jmb.2023.168208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Identification of key sequence, expression and function related features of nucleic acid-sensing host proteins is of fundamental importance to understand the dynamics of pathogen-specific host responses. To meet this objective, we considered toll-like receptors (TLRs), a representative class of membrane-bound sensor proteins, from 17 vertebrate species covering mammals, birds, reptiles, amphibians, and fishes in this comparative study. We identified the molecular signatures of host TLRs that are responsible for sensing pathogen nucleic acids or other pathogen-associated molecular patterns (PAMPs), and potentially play important roles in host defence mechanism. Interestingly, our findings reveal that such host-specific features are directly related to the strand (single or double) specificity of nucleic acid from pathogens. However, during host-pathogen interactions, such features were unable to explain the pathogenic PAMP (i.e., DNA, RNA or other) selectivity, suggesting a more complex mechanism. Using these features, we developed a number of machine learning models, of which Random Forest achieved a high performance (94.57% accuracy) to predict strand specificity of TLRs from protein-derived features. We applied the trained model to propose strand specificity of some previously uncharacterized distinct fish-specific novel TLRs (TLR18, TLR23, TLR24, TLR25, TLR27).
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India. https://twitter.com/@Anuja334
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Bishani A, Makarova DM, Shmendel EV, Maslov MA, Sen‘kova AV, Savin IA, Gladkikh DV, Zenkova MA, Chernolovskaya EL. Influence of the Composition of Cationic Liposomes on the Performance of Cargo Immunostimulatory RNA. Pharmaceutics 2023; 15:2184. [PMID: 37765155 PMCID: PMC10535620 DOI: 10.3390/pharmaceutics15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the impact of different delivery systems on the cytokine-inducing, antiproliferative, and antitumor activities of short immunostimulatory double-stranded RNA (isRNA) was investigated. The delivery systems, consisting of the polycationic amphiphile 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20 tetraazahexacosan tetrahydrochloride (2X3), and the lipid-helper dioleoylphosphatidylethanolamine (DOPE), were equipped with polyethylene glycol lipoconjugates differing in molecular weight and structure. The main findings of this work are as follows: (i) significant activation of MCP-1 and INF-α, β, and γ production in CBA mice occurs under the action of isRNA complexes with liposomes containing lipoconjugates with long PEG chains, while activation of MCP-1 and INF-γ, but not INF-α or β, was observed under the action of isRNA lipoplexes containing lipoconjugates with short PEG chains; (ii) a pronounced antiproliferative effect on B16 melanoma cells in vitro, as well as an antitumor and hepatoprotective effect in vivo, was induced by isRNA pre-complexes with non-pegylated liposomes, while complexes containing lipoconjugates with long-chain liposomes were inactive; (iii) the antitumor activity of isRNA correlated with the efficiency of its accumulation in the cells and did not explicitly depend on the activation of cytokine and interferon production. Thus, the structure of the delivery system plays a vital role in determining the response to isRNA and allows for the choice of a delivery system depending on the desired effect.
Collapse
Affiliation(s)
- Ali Bishani
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Darya M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia; (D.M.M.); (E.V.S.); (M.A.M.)
| | - Aleksandra V. Sen‘kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Daniil V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (A.V.S.); (I.A.S.); (D.V.G.); (M.A.Z.)
| |
Collapse
|
6
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Bagci G, Gundogdu O, Pektas AN, Bagci B, Avci O, Gursoy S, Kaygusuz K, Elaldi N. The investigation of host genetic variants of toll-like receptor 7 and 8 in COVID-19. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-17. [PMID: 36787168 DOI: 10.1080/15257770.2023.2176515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Toll-like receptors (TLRs) recognize infectious agents and play an important role in the innate immune system. Studies have suggested that TLR single nucleotide polymorphisms (SNPs) are associated with poor antiviral responses against SARS-CoV-2. Therefore, we aimed to investigate the relationship of TLR7 and TLR8 (SNPs) with COVID-19 disease prognosis. A total of 120 COVID-19 patients, 40 outpatients, 40 clinical ward patients and 40 intensive care unit (ICU) patients were included in the study. TLR7 (rs179009), TLR8-129 C/G (rs3764879) and TLR8 Met1Val (rs3764880) SNPs were genotyped using the PCR-RFLP method. In female patients, individuals carrying AG genotype and G allele for TLR8 Met1Val SNP were found at a higher frequency in patients hospitalized in the ICU than in patients followed in the clinical ward (p < 0.05). In terms of the other two SNPs, no significant difference was found between the groups in females. Furthermore, in male patients, A allele of TLR7 rs179009 SNP was at a higher frequency in patients who have at least one comorbidity than in patients who have no comorbidity (p < 0.05). Our results suggest that TLR8 Met1Val SNP is important in the COVID-19 disease severity in females. Furthermore, TLR7 rs179009 SNP is important in male patients in the presence of comorbid diseases.
Collapse
Affiliation(s)
- Gokhan Bagci
- Faculty of Medicine, Department of Medical Biochemistry, Altınbaş University, Istanbul, Turkey
| | - Oguz Gundogdu
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayse Nur Pektas
- Advanced Technology Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Binnur Bagci
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Sivas Cumhuriyet University, Sivas, Turkey
| | - Onur Avci
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sinan Gursoy
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University, Sivas, Turkey
| | - Kenan Kaygusuz
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University, Sivas, Turkey
| | - Nazif Elaldi
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Jang JH, Kim H, Jung IY, Cho JH. A20 Inhibits LPS-Induced Inflammation by Regulating TRAF6 Polyubiquitination in Rainbow Trout. Int J Mol Sci 2021; 22:ijms22189801. [PMID: 34575978 PMCID: PMC8472768 DOI: 10.3390/ijms22189801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin-editing enzyme A20 is known to inhibit the NF-κB transcription factor in the Toll-like receptor (TLR) pathways, thereby negatively regulating inflammation. However, its role in the TLR signaling pathway in fish is still largely unknown. Here, we identified a gene encoding A20 (OmA20) in rainbow trout, Oncorhynchus mykiss, and investigated its role in TLR response regulation. The deduced amino acid sequence of OmA20 contained a conserved N-terminal ovarian tumor (OTU) domain and seven C-terminal zinc-finger (ZnF) domains. Lipopolysaccharide (LPS) stimulation increased OmA20 expression in RTH-149 cells. In LPS-stimulated RTH-149 cells, gain- and loss-of-function experiments revealed that OmA20 inhibited MAPK and NF-κB activation, as well as the expression of pro-inflammatory cytokines. OmA20 interacted with TRAF6, a key molecule involved in the activation of TLR-mediated NF-κB signaling pathways. LPS treatment increased the K63-linked polyubiquitination of TRAF6 in RTH-149 cells, which was suppressed when OmA20 was forced expression. Furthermore, mutations in the OTU domain significantly decreased deubiquitination of the K63-linked ubiquitin chain on TRAF6, indicating that deubiquitinase activity is dependent on the OTU domain. These findings suggest that OmA20, like those of mammals, reduces LPS-induced inflammation in rainbow trout, most likely by regulating K63-linked ubiquitination of TRAF6.
Collapse
Affiliation(s)
- Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (H.K.)
| | - Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (H.K.)
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (H.K.)
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1347; Fax: +82-55-772-1349
| |
Collapse
|
9
|
Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages. Metabolites 2021; 11:metabo11090602. [PMID: 34564417 PMCID: PMC8466172 DOI: 10.3390/metabo11090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative Gram-negative bacterium that causes acute gastroenteritis and food poisoning. S. Typhimurium can survive within macrophages that are able to initiate the innate immune response after recognizing bacteria via various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs). In this study, we investigated the effects and molecular mechanisms by which agonists of endosomal TLRs—especially TLR3—contribute to controlling S. Typhimurium infection in murine macrophages. Treatment with polyinosinic:polycytidylic acid (poly(I:C))—an agonist of TLR3—significantly suppressed intracellular bacterial growth by promoting intracellular ROS production in S. Typhimurium-infected cells. Pretreatment with diphenyleneiodonium (DPI)—an NADPH oxidase inhibitor—reduced phosphorylated MEK1/2 levels and restored intracellular bacterial growth in poly(I:C)-treated cells during S. Typhimurium infection. Nitric oxide (NO) production increased through the NF-κB-mediated signaling pathway in poly(I:C)-treated cells during S. Typhimurium infection. Intracellular microtubule-associated protein 1A/1B-light chain 3 (LC3) levels were increased in poly(I:C)-treated cells; however, they were decreased in cells pretreated with 3-methyladenine (3-MA)—a commonly used inhibitor of autophagy. These results suggest that poly(I:C) induces autophagy and enhances ROS production via MEK1/2-mediated signaling to suppress intracellular bacterial growth in S. Typhimurium-infected murine macrophages, and that a TLR3 agonist could be developed as an immune enhancer to protect against S. Typhimurium infection.
Collapse
|
10
|
Odoardi N, Kourko O, Petes C, Basta S, Gee K. TLR7 Ligation Inhibits TLR8 Responsiveness in IL-27-Primed Human THP-1 Monocytes and Macrophages. J Innate Immun 2021; 13:345-358. [PMID: 34058746 DOI: 10.1159/000515738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Regulation of proinflammatory cytokine expression is critical in the face of single-stranded RNA (ssRNA) virus infections. Many viruses, including coronavirus and influenza virus, wreak havoc on the control of cytokine expression, leading to the formation of detrimental cytokine storms. Understanding the regulation and interplay between inflammatory cytokines is critical to the identification of targets involved in controlling the induction of cytokine expression. In this study, we focused on how the antiviral cytokine interleukin-27 (IL-27) regulates signal transduction downstream of Toll-like receptor 7 (TLR7) and TLR8 ligation, which recognize endosomal single-stranded RNA. Given that IL-27 alters bacterial-sensing TLR expression on myeloid cells and can inhibit replication of single-stranded RNA viruses, we investigated whether IL-27 affects expression and function of TLR7 and TLR8. Analysis of IL-27-treated THP-1 monocytic cells and THP-1-derived macrophages revealed changes in mRNA and protein expression of TLR7 and TLR8. Although treatment with IL-27 enhanced TLR7 expression, only TLR8-mediated cytokine secretion was amplified. Furthermore, we demonstrated that imiquimod, a TLR7 agonist, inhibited cytokine and chemokine production induced by a TLR8 agonist, TL8-506. Delineating the immunomodulatory role of IL-27 on TLR7 and TLR8 responses provides insight into how myeloid cell TLR-mediated responses are regulated during virus infection.
Collapse
Affiliation(s)
- Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Zhang L, Cheng L, Cui Y, Wu Z, Cai L, Yang L, Duan M, Zhang D, Zhou C, Xie J. The virulence factor GroEL directs the osteogenic and adipogenic differentiation of human periodontal ligament stem cells through the involvement of JNK/MAPK and NF-κB signaling. J Periodontol 2021; 92:103-115. [PMID: 33913537 DOI: 10.1002/jper.20-0869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE GroEL, a bacterial metabolite, is an important stimulator of inflammation. The aim of this study is to confirm the effect of the virulence factor GroEL on differentiation potential of periodontal ligament (PDL) stem cells (PDLSCs) and the potential mechanisms. METHODS PDLSCs were obtained from extracted human premolars. GroEL was administered to osteogenic- and adipogenic-induced hPDLSCs. Alkaline phosphatase (ALP) staining, Alizarin Red staining and Oil Red staining were performed. Gene and protein expression were separately measured by qPCR and Western blotting. The expression and localization of activated signaling factors were confirmed by immunofluorescence staining. The inhibitors of myeloid differentiation factor 88 (MyD88, an adaptor protein of TLRs), JNK/MAPK and NF-κB signaling were used to verify their specific effects. RESULTS First, we found that GroEL inhibited the osteogenic differentiation and enhanced the adipogenic differentiation of hPDLSCs. Next, we found that GroEL increased the expression of TLR2 and TLR4 and GroEL activated JNK/MAPK and NF-κB signaling, which can be blocked by inhibition of MyD88. Finally, we found that inhibition of MyD88 restored GroEL-induced osteogenic and adipogenic differentiation and blocking JNK/MAPK or NF-κB signaling partly restored GroEL effects. CONCLUSION In the current study, we revealed a potential interaction between bacteria and host cells by showing that GroEL directs the osteogenic and adipogenic differentiation of hPDLSCs by the involvement of JNK/MAPK and NF-κB signaling. This study provides evidence that bacterial products can influence the differentiation of stem cells and reveals potential effect of GroEL on the context of tissue regeneration.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
13
|
High-Fat Diet Aggravates Acute Pancreatitis via TLR4-Mediated Necroptosis and Inflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8172714. [PMID: 31998444 PMCID: PMC6973188 DOI: 10.1155/2020/8172714] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
High-fat diet (HFD) often increases oxidative stress and enhances inflammatory status in the body. Toll-like receptor 4 (TLR4) is widely expressed in the pancreatic tissues and plays an important role in pancreatitis. This study is aimed at investigating the effect of HFD on acute pancreatitis (AP) and the role of TLR4-mediated necroptosis and inflammation in this disease. Weight-matched rats were allocated for an 8-week feeding on the standard chow diet (SCD) or HFD, and then, the AP model was induced by infusion of 5% sodium taurocholate into the biliopancreatic duct. Rats were sacrificed at an indicated time point after modeling. Additionally, inhibition of TLR4 signaling by TAK-242 in HFD rats with AP was conducted in vivo. The results showed that the levels of serum free fatty acid (FFA) in HFD rats were higher than those in SCD rats. Moreover, HFD rats were more vulnerable to AP injury than SCD rats, as indicated by more serious pathological damage and much higher pancreatic malondialdehyde (MDA) and lipid peroxidation (LPO) levels as well as lower pancreatic superoxide dismutase (SOD) activities and reduced glutathione (GSH) contents and more intense infiltration of MPO-positive neutrophils and CD68-positive macrophages. In addition, HFD markedly increased the expressions of TLR4 and necroptosis marker (RIP3) and aggravated the activation of NF-κB p65 and the expression of TNF-α in the pancreas of AP rats at indicated time points. However, TLR4 inhibition significantly attenuated the structural and functional damage of the pancreas induced by AP in HFD rats, as indicated by improvement of the above indexes. Taken together, these findings suggest that HFD exacerbated the extent and severity of AP via oxidative stress, inflammatory response, and necroptosis. Inhibition of TLR4 signaling by TAK-242 alleviated oxidative stress and decreased inflammatory reaction and necroptosis, exerting a protective effect during AP in HFD rats.
Collapse
|
14
|
Chu Q, Yan X, Liu L, Xu T. The Inducible microRNA-21 Negatively Modulates the Inflammatory Response in Teleost Fish via Targeting IRAK4. Front Immunol 2019; 10:1623. [PMID: 31379828 PMCID: PMC6648887 DOI: 10.3389/fimmu.2019.01623] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Eradication of bacterial infection requires timely and appropriate immune and inflammatory responses, but excessive induction of inflammatory cytokines can cause acute or chronic inflammatory disorders. Thus, various layers of negative regulators and mechanisms are needed to ensure maintenance of the homeostasis for the immune system. miRNAs are a family of small non-coding RNAs that emerged as significant and versatile regulators involved in regulation of immune responses. Recently, the molecular mechanisms of miRNA in host-pathogen interaction networks have been extensively studied in mammals, whereas the underlying regulatory mechanisms in fish are still poorly understood. In this study, we identify miR-21 as a negative regulator of the teleost inflammatory response. We found that lipopolysaccharide and Vibrio anguillarum significantly upregulated the expression of fish miR-21. Upregulated miR-21 suppresses LPS-induced inflammatory cytokine expression by targeting IL-1 receptor-associated kinase 4 (IRAK4), thereby avoiding excessive inflammatory responses. Furthermore, we demonstrated that miR-21 regulates inflammatory responses through NF-κB signaling pathways. The collective findings indicate that miR-21 plays a regulatory role in host-pathogen interactions through IRAK4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Lihua Liu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Davi C, Pastor A, Oliveira T, Neto FBDL, Braga-Neto U, Bigham AW, Bamshad M, Marques ETA, Acioli-Santos B. Severe Dengue Prognosis Using Human Genome Data and Machine Learning. IEEE Trans Biomed Eng 2019; 66:2861-2868. [PMID: 30716030 DOI: 10.1109/tbme.2019.2897285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dengue has become one of the most important worldwide arthropod-borne diseases. Dengue phenotypes are based on laboratorial and clinical exams, which are known to be inaccurate. OBJECTIVE We present a machine learning approach for the prediction of dengue fever severity based solely on human genome data. METHODS One hundred and two Brazilian dengue patients and controls were genotyped for 322 innate immunity single nucleotide polymorphisms (SNPs). Our model uses a support vector machine algorithm to find the optimal loci classification subset and then an artificial neural network (ANN) is used to classify patients into dengue fever or severe dengue. RESULTS The ANN trained on 13 key immune SNPs selected under dominant or recessive models produced median values of accuracy greater than 86%, and sensitivity and specificity over 98% and 51%, respectively. CONCLUSION The proposed classification method, using only genome markers, can be used to identify individuals at high risk for developing the severe dengue phenotype even in uninfected conditions. SIGNIFICANCE Our results suggest that the genetic context is a key element in phenotype definition in dengue. The methodology proposed here is extendable to other Mendelian based and genetically influenced diseases.
Collapse
|
16
|
Mainini F, Larsen DS, Webster GA, Young SL, Eccles MR. MIS416 as a siRNA Delivery System with the Ability to Target Antigen-Presenting Cells. Nucleic Acid Ther 2018; 28:225-232. [PMID: 29893623 PMCID: PMC6080116 DOI: 10.1089/nat.2017.0695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MIS416 is a microparticulate formulation derived from propionibacterium acnes cell wall skeletons with intrinsic adjuvant activity. Conjugates of MIS416-SS-peptide containing a disulfide linkage facilitate the cytoplasmic delivery and release of peptides in antigen-presenting cells (APCs). We hypothesized that MIS416-siRNA (small interfering RNA) conjugates, containing a disulfide linkage between MIS416 and the siRNA, would allow cytoplasmic release of siRNA in APCs. MIS416-SS-siStat3 conjugates added to cell culture medium of monolayers of DCs in culture flasks successfully targeted Stat3 mRNA in DCs in vitro without transfection, downregulating Stat3 mRNA and protein levels. These results suggest that MIS416-SS-siRNA conjugates can be used as a novel siRNA delivery system for the knockdown of mRNA levels in APCs.
Collapse
Affiliation(s)
- Francesco Mainini
- 1 Department of Pathology, University of Otago , Dunedin, New Zealand
| | - David S Larsen
- 2 Department of Chemistry, University of Otago , Dunedin, New Zealand
| | | | - Sarah L Young
- 1 Department of Pathology, University of Otago , Dunedin, New Zealand .,4 Maurice Wilkins Center for Molecular Biodiscovery , Auckland, New Zealand
| | - Michael R Eccles
- 1 Department of Pathology, University of Otago , Dunedin, New Zealand .,4 Maurice Wilkins Center for Molecular Biodiscovery , Auckland, New Zealand
| |
Collapse
|
17
|
Cecchinato V, Bernasconi E, Speck RF, Proietti M, Sauermann U, D'Agostino G, Danelon G, Rezzonico Jost T, Grassi F, Raeli L, Schöni-Affolter F, Stahl-Hennig C, Uguccioni M. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:184-195. [PMID: 27895171 PMCID: PMC5164881 DOI: 10.4049/jimmunol.1600568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
CD4+ T cell repopulation of the gut is rarely achieved in HIV-1-infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6+ and CXCR3+ Th cells accumulate in the blood of aviremic HIV-1-infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland;
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital, 6903 Lugano, Switzerland
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Michele Proietti
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, 37077 Göttingen, Germany
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Fabio Grassi
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Lorenzo Raeli
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | | | | | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland;
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| |
Collapse
|
18
|
Bercusson A, de Boer L, Armstrong-James D. Endosomal sensing of fungi: current understanding and emerging concepts. Med Mycol 2017; 55:10-15. [PMID: 27596144 DOI: 10.1093/mmy/myw072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 05/01/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Endosomal sensing represents a key strategy by which mammalian cells detect parasitization by invading pathogens. This is critical for the control of fungal pathogens, which are for the most part phagocytosed by effector cells of the innate immune system. Despite rapid overall progress in our understanding of endosomal responses in recent times, relatively little is known about how the endosomal sensing system detects fungi and the ensuing immunological consequences. Considering that many fungal pathogens must overcome and evade endosomal killing in order to survive in the host, understanding this key area of the early innate response is crucial for our understanding of fungal infection. In this review we present a summary of our current knowledge of endosomal sensing within the context of fungal pathogens, with a focus on the myeloid compartment.
Collapse
Affiliation(s)
- Amelia Bercusson
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| | - Leon de Boer
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, London UK SW7 6NP
| |
Collapse
|
19
|
Herzner AM, Wolter S, Zillinger T, Schmitz S, Barchet W, Hartmann G, Bartok E, Schlee M. G-rich DNA-induced stress response blocks type-I-IFN but not CXCL10 secretion in monocytes. Sci Rep 2016; 6:38405. [PMID: 27941826 PMCID: PMC5150577 DOI: 10.1038/srep38405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Excessive inflammation can cause damage to host cells and tissues. Thus, the secretion of inflammatory cytokines is tightly regulated at transcriptional, post-transcriptional and post-translational levels and influenced by cellular stress responses, such as endoplasmic reticulum (ER) stress or apoptosis. Here, we describe a novel type of post-transcriptional regulation of the type-I-IFN response that was induced in monocytes by cytosolic transfection of a short immunomodulatory DNA (imDNA), a G-tetrad forming CpG-free derivative of the TLR9 agonist ODN2216. When co-transfected with cytosolic nucleic acid stimuli (DNA or 3P-dsRNA), imDNA induced caspase-3 activation, translational shutdown and upregulation of stress-induced genes. This stress response inhibited the type-I-IFN induction at the translational level. By contrast, the induction of most type-I-IFN-associated chemokines, including Chemokine (C-X-C Motif) Ligand (CXCL)10 was not affected, suggesting a differential translational regulation of chemokines and type-I-IFN. Pan-caspase inhibitors could restore IFN-β secretion, yet, strikingly, caspase inhibition did not restore global translation but instead induced a compensatory increase in the transcription of IFN-β but not CXCL10. Altogether, our data provide evidence for a differential regulation of cytokine release at both transcriptional and post-transcriptional levels which suppresses type-I-IFN induction yet allows for CXCL10 secretion during imDNA-induced cellular stress.
Collapse
Affiliation(s)
- Anna-Maria Herzner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Steven Wolter
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Cologne-Bonn, Germany
| | - Saskia Schmitz
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Mainini F, Larsen DS, Webster GA, Young SL, Eccles MR. Bridging Small Molecules to Modified Bacterial Microparticles Using a Disulphide Linkage: MIS416 as a Cargo Delivery System. PLoS One 2015; 10:e0145403. [PMID: 26695183 PMCID: PMC4687933 DOI: 10.1371/journal.pone.0145403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
MIS416 is an intact minimal cell wall skeleton derived from Proprionibacterium acnes that is phagocytosed by antigen presenting cells, including dendritic cells (DCs). This property allows MIS416 to be exploited as a vehicle for the delivery of peptide antigens or other molecules (for example, nucleic acids) to DCs. We previously showed that covalent (non-cleavable) conjugation of OVA, a model antigen derived from ovalbumin, to MIS416 enhanced immune responses in DCs in vivo, compared to unconjugated MIS416 and OVA. Intracellular trafficking promotes the lysosomal degradation of MIS416, leading to the destruction of MIS416 plus the associated cargos conjugated to MIS416. However, lysosomal degradation of cargo may not be desired for some MIS416 conjugates. Here we have investigated whether a cleavable linkage could facilitate release of the cargo in the cytoplasm of DCs to avoid lysosomal degradation. DCs were treated in vitro with disulfide-containing conjugates, and as hypothesised faster release of SIINFEKL peptide in the cytoplasm of DCs was observed with the inclusion of a disulfide bond between MIS416 and cargo. The inclusion of a cleavable disulfide bond in the conjugates did not significantly alter the amount of SIINFEKL antigens presented on MHC I molecules on DCs as compared with conjugates without a disulfide bond. However, the conjugates containing disulfide-linkages performed either slightly better (p<0.05) than, or the same as conjugates without a disulfide bond with respect to in vitro OT-1 T-cell proliferation induced by the presentation of SIINFEKL antigens on DCs, or DC activation studies, respectively. However, disulfide-containing conjugates were less effective than conjugates without a disulfide bond in in vivo cytotoxicity assays. In conclusion, inclusion of a disulfide bond in MIS416-peptide conjugates was associated with efficient release of peptides in the cytoplasm of DCs, an important consideration for MIS416-mediated delivery of degradation-sensitive cargoes. However, treatment of DCs with disulfide-containing conjugates did not significantly alter the presentation of peptide antigens on MHC class I molecules to T-cells, or greatly enhance antigen-associated T-cell proliferation in vitro.
Collapse
Affiliation(s)
| | - David S. Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Gill A. Webster
- Innate Immunotherapeutics Ltd, 4B Walls Rd, Penrose, Auckland, New Zealand
| | - Sarah L. Young
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, 3A Symonds Street, Auckland, New Zealand
| | - Michael R. Eccles
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, 3A Symonds Street, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
21
|
Li T, He X, Jia H, Chen G, Zeng S, Fang Y, Jin Q, Jing Z. Molecular cloning and functional characterization of murine toll‑like receptor 8. Mol Med Rep 2015; 13:1119-26. [PMID: 26676274 PMCID: PMC4732850 DOI: 10.3892/mmr.2015.4668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 11/05/2015] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptors (TLRs) are a large family of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns and evoke the relevant innate immune responses. TLR8 is a member of several endosome nucleic acid-sensing TLRs; however little attention has been paid to murine TLR8 (mTLR8) compared with other endosome nucleic acid-sensing TLRs. In the present study, mTLR8 was cloned using reverse transcription-polymerase chain reaction from murine peripheral blood mononuclear cells and its function in regulating innate immune response was characterized. The open reading frame of mTLR8 consists of 3,099 bps and encodes 1,032 amino acids. It contains typical leucine-rich repeats, a transmembrane domain and a Toll/interleukin-1 receptor domain, and it shares a high level of identity with other mammalian species. The expression of mTLR8 has been widely observed in different tissues, and higher expression levels of mTLR8 have mainly been detected in the heart, spleen and lung. Overexpression of mTLR8 is required for the activation of transcription factor nuclear factor-κB and the production of tumor necrosis factor-α. However, mTLR8 is not able to activate interferon regulatory factor 3 or activator protein 1, nor can it induce interferon-α in HEK293T cells. These results indicate that mTLR8, as an important PRR, is indeed functional and is vital role in the activation of innate immune responses. This study may aid in determining the molecular basis of the interactions between mTLR8 and pathogens.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
22
|
Chiu CC, Wu WS. Investigation of microRNAs in mouse macrophage responses to lipopolysaccharide-stimulation by combining gene expression with microRNA-target information. BMC Genomics 2015; 16 Suppl 12:S13. [PMID: 26680554 PMCID: PMC4682375 DOI: 10.1186/1471-2164-16-s12-s13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Toll-like receptors, which stimulated by pathogen-associated molecular patterns such as lipopolysaccharides (LPS), induces the releasing of many kinds of proinflammatory cytokines to activate subsequent immune responses. Plenty of studies have also indicated the importance of TLR-signalling on the avoidance of excessive inflammation, tissue repairing and the return to homeostasis after infection and tissue injury. The significance of TLR-signalling attracts many attentions on the regulatory mechanisms since several years ago. However, as newly discovered regulators, how and how many different microRNAs (miRNAs) regulate TLR-signalling pathway are still unclear. Results By integrating several microarray datasets and miRNA-target information datasets, we identified 431 miRNAs and 498 differentially expressed target genes in bone marrow-derived macrophages (BMDMs) with LPS-stimulation. Cooperative miRNA network were constructed by calculating targets overlap scores, and a sub-network finding algorithm was used to identify cooperative miRNA modules. Finally, 17 and 8 modules are identified in the cooperative miRNA networks composed of miRNAs up-regulate and down-regulate genes, respectively. Conclusions We used gene expression data of mouse macrophage stimulated by LPS and miRNA-target information to infer the regulatory mechanism of miRNAs on LPS-induced signalling pathway. Also, our results suggest that miRNAs can be important regulators of LPS-induced innate immune response in BMDMs.
Collapse
|
23
|
The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2015; 95:651-658. [PMID: 26455529 DOI: 10.1016/j.tube.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023]
Abstract
Advances in next generation sequencing (NGS) technology have provided the tools to comprehensively and accurately characterize the microbial community in the respiratory tract in health and disease. The presence of commensal and pathogenic bacteria has been found to have important effects on the lung immune system. Until relatively recently, the lung has received less attention compared to other body sites in terms of microbiome characterization, and its study carries special technological difficulties related to obtaining reliable samples as compared to other body niches. Additionally, the complexity of the alveolar immune system, and its interactions with the lung microbiome, are only just beginning to be understood. Amidst this complexity sits Mycobacterium tuberculosis (Mtb), one of humanity's oldest nemeses and a significant public health concern, with millions of individuals infected with Mtb worldwide. The intricate interactions between Mtb, the lung microbiome, and the alveolar immune system are beginning to be understood, and it is increasingly apparent that improved treatment of Mtb will only come through deep understanding of the interplay between these three forces. In this review, we summarize our current understanding of the lung microbiome, alveolar immunity, and the interaction of each with Mtb.
Collapse
|
24
|
Devoldere J, Dewitte H, De Smedt SC, Remaut K. Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger. Drug Discov Today 2015. [PMID: 26210957 DOI: 10.1016/j.drudis.2015.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the field of nonviral gene therapy, in vitro transcribed (IVT) mRNA has emerged as a promising tool for the delivery of genetic information. Over the past few years it has become widely known that the introduction of IVT mRNA into mammalian cells elicits an innate immune response that has favored mRNA use toward immunotherapeutic vaccination strategies. However, for non-immunotherapy-related applications this intrinsic immune-stimulatory activity directly interferes with the aimed therapeutic outcome, because it can seriously compromise the expression of the desired protein. This review presents an overview of the immune-related obstacles that limit mRNA advance for non-immunotherapy-related applications.
Collapse
Affiliation(s)
- Joke Devoldere
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
Kodigepalli KM, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS One 2015; 10:e0117464. [PMID: 25658875 PMCID: PMC4320088 DOI: 10.1371/journal.pone.0117464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA). TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs)). Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs). Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126) did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA) significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid) suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma) cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.
Collapse
Affiliation(s)
- Karthik M. Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Acute respiratory tract infection (RTI) is a leading cause of morbidity and mortality worldwide and the majority of RTIs are caused by viruses, among which respiratory syncytial virus (RSV) and the closely related human metapneumovirus (hMPV) figure prominently. Host innate immune response has been implicated in recognition, protection and immune pathological mechanisms. Host-viral interactions are generally initiated via host recognition of pathogen-associated molecular patterns (PAMPs) of the virus. This recognition occurs through host pattern recognition receptors (PRRs) which are expressed on innate immune cells such as epithelial cells, dendritic cells, macrophages and neutrophils. Multiple PRR families, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), contribute significantly to viral detection, leading to induction of cytokines, chemokines and type I interferons (IFNs), which subsequently facilitate the eradication of the virus. This review focuses on the current literature on RSV and hMPV infection and the role of PRRs in establishing/mediating the infection in both in vitro and in vivo models. A better understanding of the complex interplay between these two viruses and host PRRs might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines.
Collapse
|
27
|
Fosdick A, Zheng J, Pflanz S, Frey CR, Hesselgesser J, Halcomb RL, Wolfgang G, Tumas DB. Pharmacokinetic and pharmacodynamic properties of GS-9620, a novel Toll-like receptor 7 agonist, demonstrate interferon-stimulated gene induction without detectable serum interferon at low oral doses. J Pharmacol Exp Ther 2014; 348:96-105. [PMID: 24133297 DOI: 10.1124/jpet.113.207878] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
GS-9620 [8-(3-(pyrrolidin-1-ylmethyl)benzyl)-4-amino-2-butoxy-7,8-dihydropteridin-6(5H)-one] is a potent, orally bioavailable small-molecule agonist of Toll-like receptor 7 (TLR7) developed for finite treatment of chronic hepatitis B viral (HBV) infection, with the goal of inducing a liver-targeted antiviral effect without inducing the adverse effects associated with current systemic interferon-α (IFN-α) therapies. We characterized the pharmacodynamic response of GS-9620 in CD-1 mice and cynomolgus monkeys following intravenous or oral administration and showed that GS-9620 induces the production of select chemokines and cytokines, including IFN-α and interferon-stimulated genes (ISGs). It is noteworthy that we also demonstrated that, in animals and healthy human volunteers, oral administration of GS-9620 can induce a type I interferon-dependent antiviral innate immune response, as measured by whole-blood mRNA of the ISGs 2'5'-oligoadenylate synthetase 1 (OAS1) and myxovirus resistance 1 (MX1), without the induction of detectable systemic IFN-α, i.e., a presystemic response. Additionally, presystemic induction of hepatic OAS1 and MX1 mRNA was observed in CD-1 mice in the absence of detectable systemic IFN-α. We propose that the mechanism of this presystemic response is likely its high intestinal absorption, which facilitates localized activation of TLR7, probably in plasmacytoid dendritic cells at the level of gut-associated lymphoid tissue and/or the liver. This localized response is further supported by data that indicate only minimal contributions of systemic immune stimulation to the overall pharmacodynamic response to orally administered GS-9620. These data demonstrate that GS-9620 can induce an antiviral innate immune response without inducing a systemic IFN-α response and thus suggest the therapeutic potential of this approach in the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Abigail Fosdick
- Departments of Drug Safety Evaluation (A.F., G.W.), Drug Metabolism (J.Z.), Biology (S.P., C.R.F., D.B.T.), Clinical Virology (J.H.), and Medicinal Chemistry (R.L.H.), Gilead Sciences, Inc., Foster City, California
| | | | | | | | | | | | | | | |
Collapse
|