1
|
Herbert C, Luies L, Loots DT, Williams AA. The metabolic consequences of HIV/TB co-infection. BMC Infect Dis 2023; 23:536. [PMID: 37592227 PMCID: PMC10436461 DOI: 10.1186/s12879-023-08505-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The synergy between the human immunodeficiency virus (HIV) and Mycobacterium tuberculosis during co-infection of a host is well known. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms that contribute to the associated disease burden experienced during HIV/tuberculosis (TB) co-infection remain poorly understood. Furthermore, while anti-HIV treatments suppress viral replication, these therapeutics give rise to host metabolic disruption and adaptations beyond that induced by only infection or disease. METHODS In this study, the serum metabolic profiles of healthy controls, untreated HIV-negative TB-positive patients, untreated HIV/TB co-infected patients, and HIV/TB co-infected patients on antiretroviral therapy (ART), were measured using two-dimensional gas chromatography time-of-flight mass spectrometry. Since no global metabolic profile for HIV/TB co-infection and the effect of ART has been published to date, this pilot study aimed to elucidate the general areas of metabolism affected during such conditions. RESULTS HIV/TB co-infection induced significant changes to the host's lipid and protein metabolism, with additional microbial product translocation from the gut to the blood. The results suggest that HIV augments TB synergistically, at least in part, contributing to increased inflammation, oxidative stress, ART-induced mitochondrial damage, and its detrimental effects on gut health, which in turn, affects energy availability. ART reverses these trends to some extent in HIV/TB co-infected patients but not to that of healthy controls. CONCLUSION This study generated several new hypotheses that could direct future metabolic studies, which could be combined with other research techniques or methodologies to further elucidate the underlying mechanisms of these changes.
Collapse
Affiliation(s)
- Chandré Herbert
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
2
|
Abnousian A, Vasquez J, Sasaninia K, Kelley M, Venketaraman V. Glutathione Modulates Efficacious Changes in the Immune Response against Tuberculosis. Biomedicines 2023; 11:biomedicines11051340. [PMID: 37239011 DOI: 10.3390/biomedicines11051340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB.
Collapse
Affiliation(s)
- Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Vasquez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Melissa Kelley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
3
|
Chemparathy DT, Sil S, Callen S, Chand HS, Sopori M, Wyatt TA, Acharya A, Byrareddy SN, Fox HS, Buch S. Inflammation-Associated Lung Tissue Remodeling and Fibrosis in Morphine-Dependent SIV-Infected Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:380-391. [PMID: 37003622 PMCID: PMC10116601 DOI: 10.1016/j.ajpath.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/03/2023]
Abstract
With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-β, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.
Collapse
Affiliation(s)
- Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Mohan Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard S Fox
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
4
|
Gauba K, Gupta S, Shekhawat J, Dutt N, Yadav D, Nag VL, Rao M, Sharma P, Banerjee M. Gene expression, levels and polymorphism (Ala16Val) of Mitochondrial Superoxide Dismutase in Tuberculosis patients of Rajasthan. Microbes Infect 2022; 25:105075. [PMID: 36356830 DOI: 10.1016/j.micinf.2022.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Infectious diseases cause redox imbalance and oxidative stress (OS) in host. Superoxide Dismutases(SOD) decrease this OS. SOD2 gene polymorphism can influence the expression and levels of enzyme. AIM To investigate the association of genetic polymorphism of MnSOD with enzyme levels and mRNA expression in TB patients. METHODS A total of 87 TB patients and 85 healthy individuals participated in the study. The serum SOD2 levels were measured by ELISA. Gene polymorphism was analysed using PCR-RFLP with BsaW1 as the restriction enzyme. Expression was studied by Real-TimePCR. Statistical significance was determined using the Mann-Whitney, Chi-square and Kruskal-Wallis tests and p value < 0.05 was considered statistically significant. RESULTS The median(IQR) serum SOD2 levels of TB patients were lower than those of healthy subjects (4.64(6.48) vs 11.35(20.36)ng/mL respectively,p < 0.001). SOD2 expression was significantly down-regulated in TB patients with a fold change value of 0.312. The Val/Val genotype was higher in the patient group than healthy subjects (36.8% vs 23.5%). However, the difference observed between serum SOD2 levels and mRNA expression in the different genotypes were statistically non-significant. CONCLUSION Significant difference was found between levels and expression of SOD2 in TB patients and healthy controls, but not for SOD2 gene polymorphism.
Collapse
Affiliation(s)
- Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences Manipal, 576104, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, 342005, India.
| |
Collapse
|
5
|
Herrera MT, Guzmán-Beltrán S, Bobadilla K, Santos-Mendoza T, Flores-Valdez MA, Gutiérrez-González LH, González Y. Human Pulmonary Tuberculosis: Understanding the Immune Response in the Bronchoalveolar System. Biomolecules 2022; 12:biom12081148. [PMID: 36009042 PMCID: PMC9405639 DOI: 10.3390/biom12081148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis, the causal agent of one of the most devastating infectious diseases worldwide, can evade or modulate the host immune response and remain dormant for many years. In this review, we focus on identifying the local immune response induced in vivo by M. tuberculosis in the lungs of patients with active tuberculosis by analyzing data from untouched cells from bronchoalveolar lavage fluid (BALF) or exhaled breath condensate (EBC) samples. The most abundant resident cells in patients with active tuberculosis are macrophages and lymphocytes, which facilitate the recruitment of neutrophils. The cellular response is characterized by an inflammatory state and oxidative stress produced mainly by macrophages and T lymphocytes. In the alveolar microenvironment, the levels of cytokines such as interleukins (IL), chemokines, and matrix metalloproteinases (MMP) are increased compared with healthy patients. The production of cytokines such as interferon (IFN)-γ and IL-17 and specific immunoglobulin (Ig) A and G against M. tuberculosis indicate that the adaptive immune response is induced despite the presence of a chronic infection. The role of epithelial cells, the processing and presentation of antigens by macrophages and dendritic cells, as well as the role of tissue-resident memory T cells (Trm) for in situ vaccination remains to be understood.
Collapse
Affiliation(s)
- María Teresa Herrera
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Karen Bobadilla
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Luis Horacio Gutiérrez-González
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (L.H.G.-G.); (Y.G.); Tel.: +52-55-5487-1700 (ext. 5117) (Y.G.)
| | - Yolanda González
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (L.H.G.-G.); (Y.G.); Tel.: +52-55-5487-1700 (ext. 5117) (Y.G.)
| |
Collapse
|
6
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
7
|
Patti G, Pellegrino C, Ricciardi A, Novara R, Cotugno S, Papagni R, Guido G, Totaro V, De Iaco G, Romanelli F, Stolfa S, Minardi ML, Ronga L, Fato I, Lattanzio R, Bavaro DF, Gualano G, Sarmati L, Saracino A, Palmieri F, Di Gennaro F. Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review. Antibiotics (Basel) 2021; 10:1354. [PMID: 34827292 PMCID: PMC8614960 DOI: 10.3390/antibiotics10111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Tuberculosis (TB) is one of the world's top infectious killers, in fact every year 10 million people fall ill with TB and 1.5 million people die from TB. Vitamins have an important role in vital functions, due to their anti-oxidant, pro-oxidant, anti-inflammatory effects and to metabolic functions. The aim of this review is to discuss and summarize the evidence and still open questions regarding vitamin supplementation as a prophylactic measure in those who are at high risk of Mycobacterium tuberculosis (MTB) infection and active TB; (2) Methods: We conducted a search on PubMed, Scopus, Google Scholar, EMBASE, Cochrane Library and WHO websites starting from March 1950 to September 2021, in order to identify articles discussing the role of Vitamins A, B, C, D and E and Tuberculosis; (3) Results: Supplementation with multiple micronutrients (including zinc) rather than vitamin A alone may be more beneficial in TB. The WHO recommend Pyridoxine (vitamin B6) when high-dose isoniazid is administered. High concentrations of vitamin C sterilize drug-susceptible, MDR and extensively drug-resistant MTB cultures and prevent the emergence of drug persisters; Vitamin D suppresses the replication of mycobacterium in vitro while VE showed a promising role in TB management as a result of its connection with oxidative balance; (4) Conclusions: Our review suggests and encourages the use of vitamins in TB patients. In fact, their use may improve outcomes by helping both nutritionally and by interacting directly and/or indirectly with MTB. Several and more comprehensive trials are needed to reinforce these suggestions.
Collapse
Affiliation(s)
- Giulia Patti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Carmen Pellegrino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Aurelia Ricciardi
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Roberta Novara
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Sergio Cotugno
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Roberta Papagni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Giacomo Guido
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Valentina Totaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Giuseppina De Iaco
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Federica Romanelli
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, 70124 Bari, Italy; (F.R.); (S.S.); (L.R.)
| | - Stefania Stolfa
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, 70124 Bari, Italy; (F.R.); (S.S.); (L.R.)
| | - Maria Letizia Minardi
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (M.L.M.); (I.F.); (L.S.)
| | - Luigi Ronga
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, 70124 Bari, Italy; (F.R.); (S.S.); (L.R.)
| | - Ilenia Fato
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (M.L.M.); (I.F.); (L.S.)
| | - Rossana Lattanzio
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Gina Gualano
- National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00161 Rome, Italy;
| | - Loredana Sarmati
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (M.L.M.); (I.F.); (L.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| | - Fabrizio Palmieri
- National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00161 Rome, Italy;
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70123 Bari, Italy; (G.P.); (C.P.); (A.R.); (R.N.); (S.C.); (R.P.); (G.G.); (V.T.); (G.D.I.); (R.L.); (D.F.B.); (A.S.); (F.D.G.)
| |
Collapse
|
8
|
Liebenberg C, Luies L, Williams AA. Metabolomics as a Tool to Investigate HIV/TB Co-Infection. Front Mol Biosci 2021; 8:692823. [PMID: 34746228 PMCID: PMC8565463 DOI: 10.3389/fmolb.2021.692823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
The HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome) and tuberculosis (TB) pandemics are perpetuated by a significant global burden of HIV/TB co-infection. The synergy between HIV and Mycobacterium tuberculosis (Mtb) during co-infection of a host is well established. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms thereof remain poorly understood. Metabolomics has been applied to study various aspects of HIV and Mtb infection separately, yielding insights into infection- and treatment-induced metabolic adaptations experienced by the host. Despite the contributions that metabolomics has made to the field, this approach has not yet been systematically applied to characterize the HIV/TB co-infected state. Considering that limited HIV/TB co-infection metabolomics studies have been published to date, this review briefly summarizes what is known regarding the HIV/TB co-infection synergism from a conventional and metabolomics perspective. It then explores metabolomics as a tool for the improved characterization of HIV/TB co-infection in the context of previously published human-related HIV infection and TB investigations, respectively as well as for addressing the gaps in existing knowledge based on the similarities and deviating trends reported in these HIV infection and TB studies.
Collapse
|
9
|
Personalized profiles of antioxidant signaling pathway in patients with tuberculosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:405-412. [PMID: 34301493 DOI: 10.1016/j.jmii.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND/PURPOSE The non-protein thiol glutathione is protective against infection by Mycobacterium tuberculosis (MTB) and, together with the transcription factor NRF2 (the nuclear factor erythroid 2-related factor 2), plays a crucial role in counteracting MTB-induced redox imbalance. Many genes implicated in the antioxidant response belong to the NRF2-signalling pathway, whose central role in the pathogenesis of tuberculosis (TB) has been recently proposed. METHODS In this study, we measured GSH levels in blood of patients with active TB and analysed the individual NRF2-mediated redox profile, in order to provide additional tools for discriminating the pathologic TB state and addressing therapeutic interventions. RESULTS Our findings show a systemic individual modulation of GSH and NRF2 signaling pathway in patients with TB, with a "personalized" induction of NRF2-target genes. CONCLUSION This study can provide useful tools to monitor the course of the infection and address patients' treatment.
Collapse
|
10
|
Amaral EP, Vinhaes CL, Oliveira-de-Souza D, Nogueira B, Akrami KM, Andrade BB. The Interplay Between Systemic Inflammation, Oxidative Stress, and Tissue Remodeling in Tuberculosis. Antioxid Redox Signal 2021; 34:471-485. [PMID: 32559410 PMCID: PMC8020551 DOI: 10.1089/ars.2020.8124] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Excessive and prolonged proinflammatory responses are associated with oxidative stress, which is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and consequently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating a wide spectrum of clinical manifestations. Recent Advances: Since persistent and exacerbated oxidative stress responses have been associated with severe pathology, a number of studies have suggested that the inhibition of this augmented stress response by improving host antioxidant status may represent a reasonable strategy to ameliorate tissue damage in TB. Critical Issues: This review summarizes the interplay between oxidative stress, systemic inflammation and tissue remodeling, and its consequences in promoting TB disease. We emphasize the most important mechanisms associated with stress responses that contribute to the progression of TB. We also point out important host immune components that may influence the exacerbation of cellular stress and the subsequent tissue injury. Future Directions: Further research should reveal valuable targets for host-directed therapy of TB, preventing development of severe immunopathology and disease progression. Antioxid. Redox Signal. 34, 471-485.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caian L Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Deivide Oliveira-de-Souza
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Betania Nogueira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Kevan M Akrami
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Division of Infectious Diseases and Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, California, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
11
|
PERUMAL P, CHAURASIA D, DE AK, BHATTACHARYA D, SUNDER JAI, BHOWMICK SNEHA, KUNDU A, MISHRA PC. Effect of clinical endometritis on physiological, hematological, biochemical and endocrinological profiles in crossbred cows under tropical island ecosystem. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was carried out to assess the effect of endometritis on hematological, physiological, antioxidant, oxidative and endocrinological profiles in crossbred cows under tropical island ecosystem of Andaman and Nicobar Islands. Each 12 number of cows affected with clinical endometritis was selected as group 2 and without endometritis as group 1. These cows were in same parity in same locality with similar type management. Physiological profiles, hematological profiles, antioxidant profiles and hormone profiles were estimated. The result revealed that the crossbred cows with endometritis were suffering severe anaemia. The endometritis affected animals were shown significantly low level of antioxidant profiles and higher MDA level than the unaffected animal groups. Similarly endocrinological profiles revealed that the endometritis affected animals have significantly higher level of CORT and lower level of E2, P4, FSH, LH and T4 than the unaffected crossbred cows. It was concluded that the endometritis was due to anaemia, lack of antioxidants, over production of free radicals and disturbances of endocrinological profiles in crossbred cows of Andaman and Nicobar Islands.
Collapse
|
12
|
Ejigu DA, Abay SM. N-Acetyl Cysteine as an Adjunct in the Treatment of Tuberculosis. Tuberc Res Treat 2020; 2020:5907839. [PMID: 32411461 PMCID: PMC7210531 DOI: 10.1155/2020/5907839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is a common feature of tuberculosis (TB), and persons with reduced antioxidants are at more risk of TB. TB patients with relatively severe oxidative stress had also more advanced disease as measured by the Karnofsky performance index. Since adverse effects from anti-TB drugs are also mediated by free radicals, TB patients are prone to side effects, such as hearing loss. In previous articles, researchers appealed for clinical trials aiming at evaluating N-acetyl cysteine (NAC) in attenuating the dreaded hearing loss during multidrug-resistant TB (MDR-TB) treatment. However, before embarking on such trials, considerations of NAC's overall impact on TB treatment are crucial. Unfortunately, such a comprehensive report on NAC is missing in the literature and this manuscript reviews the broader effect of NAC on TB treatment. This paper discusses NAC's effect on mycobacterial clearance, hearing loss, drug-induced liver injury, and its interaction with anti-TB drugs. Based on the evidence accrued to date, NAC appears to have various beneficial effects on TB treatment. However, despite the favorable interaction between NAC and first-line anti-TB drugs, the interaction between the antioxidant and some of the second-line anti-TB drugs needs further investigations.
Collapse
Affiliation(s)
- Dawit A. Ejigu
- Department of Pharmacology, St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Solomon M. Abay
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Coleman MM, Basdeo SA, Coleman AM, Cheallaigh CN, Peral de Castro C, McLaughlin AM, Dunne PJ, Harris J, Keane J. All-trans Retinoic Acid Augments Autophagy during Intracellular Bacterial Infection. Am J Respir Cell Mol Biol 2019; 59:548-556. [PMID: 29852080 DOI: 10.1165/rcmb.2017-0382oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vitamin A deficiency strongly predicts the risk of developing tuberculosis (TB) in individuals exposed to Mycobacterium tuberculosis (Mtb). The burden of antibiotic-resistant TB is increasing globally; therefore, there is an urgent need to develop host-directed adjunctive therapies to treat TB. Alveolar macrophages, the niche cell for Mtb, metabolize vitamin A to all-trans retinoic acid (atRA), which influences host immune responses. We sought to determine the mechanistic effects of atRA on the host immune response to intracellular bacterial infection in primary human and murine macrophages. In this study, atRA promoted autophagy resulting in a reduced bacterial burden in human macrophages infected with Mtb and Bordetella pertussis, but not bacillus Calmette-Guérin (BCG). Autophagy is induced by cytosolic sensing of double-stranded DNA via the STING/TBK1/IRF3 axis; however, BCG is known to evade cytosolic DNA sensors. atRA enhanced colocalization of Mtb, but not BCG, with autophagic vesicles and acidified lysosomes. This enhancement was inhibited by blocking TBK1. Our data indicate that atRA augments the autophagy of intracellular bacteria that trigger cytosolic DNA-sensing pathways but does not affect bacteria that evade these sensors. The finding that BCG evades the beneficial effects of atRA has implications for vaccine design and global health nutritional supplementation strategies. The ability of atRA to promote autophagy and aid bacterial clearance of Mtb and B. pertussis highlights a potential role for atRA as a host-directed adjunctive therapy.
Collapse
Affiliation(s)
- Michelle M Coleman
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and.,2 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland; and
| | - Sharee A Basdeo
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and
| | - Amy M Coleman
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and
| | - Clíona Ní Cheallaigh
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and.,2 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland; and
| | - Celia Peral de Castro
- 2 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland; and
| | - Anne Marie McLaughlin
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and
| | - Padraic J Dunne
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and
| | - James Harris
- 2 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland; and.,3 Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Joseph Keane
- 1 Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, and
| |
Collapse
|
14
|
Moliva JI, Duncan MA, Olmo-Fontánez A, Akhter A, Arnett E, Scordo JM, Ault R, Sasindran SJ, Azad AK, Montoya MJ, Reinhold-Larsson N, Rajaram MVS, Merrit RE, Lafuse WP, Zhang L, Wang SH, Beamer G, Wang Y, Proud K, Maselli DJ, Peters J, Weintraub ST, Turner J, Schlesinger LS, Torrelles JB. The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. J Infect Dis 2019; 220:514-523. [PMID: 30923818 PMCID: PMC6603975 DOI: 10.1093/infdis/jiz138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
As we age, there is an increased risk for the development of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection. Few studies consider that age-associated changes in the alveolar lining fluid (ALF) may increase susceptibility by altering soluble mediators of innate immunity. We assessed the impact of adult or elderly human ALF during Mtb infection in vitro and in vivo. We identified amplification of pro-oxidative and proinflammatory pathways in elderly ALF and decreased binding capability of surfactant-associated surfactant protein A (SP-A) and surfactant protein D (SP-D) to Mtb. Human macrophages infected with elderly ALF-exposed Mtb had reduced control and fewer phagosome-lysosome fusion events, which was reversed when elderly ALF was replenished with functional SP-A/SP-D. In vivo, exposure to elderly ALF exacerbated Mtb infection in young mice. Our studies demonstrate how the pulmonary environment changes as we age and suggest that Mtb may benefit from declining host defenses in the lung mucosa of the elderly.
Collapse
Affiliation(s)
| | - Michael A Duncan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | | | | | | | | | - Russell Ault
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Smitha J Sasindran
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio
| | | | | | | | | | - William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus
| | - Shu-Hua Wang
- Department of Internal Medicine, The Ohio State University, Columbus
| | - Gillian Beamer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio
| | - Kevin Proud
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | | | - Jay Peters
- Division of Pulmonary and Critical Care Medicine, School of Medicine
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Larry S Schlesinger
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| | - Jordi B Torrelles
- Texas Biomedical Research Institute, San Antonio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
| |
Collapse
|
15
|
Role of Oxidative Stress in Tuberculous Meningitis: a Clinico-Radiological Correlation. J Mol Neurosci 2019; 68:287-294. [PMID: 30976988 DOI: 10.1007/s12031-019-01304-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 11/08/2022]
Abstract
Central nervous system infection may be associated with oxidative stress and may influence clinical severity and outcome. We report oxidative stress markers in the patients with tuberculous meningitis (TBM) and correlate these with clinico-radiological severity and outcome. Fifty-six patients with TBM diagnosed on the basis of clinical, cerebrospinal fluid (CSF), and magnetic resonance (MRI) were included. Plasma glutathione (GSH), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured in the patients and 55 matched healthy controls. Hospital death was noted. Disabilities at 3 and 6 months were categorized using the modified Rankin Scale (mRS) as poor (mRS > 2) or good (mRS ≤ 2). The patients had lower levels of GSH (1.49 ± 0.49 vs 2.57 ± 0.39 mg/dL, p ˂ 0.001) and TAC (0.25 ± 0.17 vs 2.20 ± 0.31 mmol Trolox Eq/L, p ˂ 0.001), and higher level of MDA (6.61 ± 1.72 vs 3.09 ± 0.38 nmol/mL, p < 0.001) compared to controls. Total antioxidant capacity correlated with cranial nerve palsy and CSF pleocytosis. Patients with tuberculoma had lower GSH compared to those without. Six patients died in the hospital, and they had lower GSH (p < 0.01) and TAC (p = 0.02) levels compared to those who survived. Thirty-one and 36 patients had a good outcome at 3 and 6 months respectively. The patients with good outcome had higher GSH level.
Collapse
|
16
|
Talhar SS, Ambulkar PS, Sontakke BR, Waghmare PJ, Shende MR, Pal AK, Narang P. Oxidative stress and its impact on mitochondrial DNA in pulmonary tuberculosis patients- a pilot study. ACTA ACUST UNITED AC 2019; 66:227-233. [DOI: 10.1016/j.ijtb.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023]
|
17
|
Oh J, Park HD, Kim SY, Koh WJ, Lee SY. Assessment of Vitamin Status in Patients with Nontuberculous Mycobacterial Pulmonary Disease: Potential Role of Vitamin A as a Risk Factor. Nutrients 2019; 11:343. [PMID: 30764587 PMCID: PMC6412884 DOI: 10.3390/nu11020343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
As microbiological diagnostic techniques improve and the frequency of nontuberculous mycobacterial pulmonary disease (NTM-PD) infection increases worldwide, NTM-PD is becoming increasingly important to clinicians and researchers. Vitamin activity has been associated with the host immune response in tuberculosis; however, such information is very limited in NTM-PD. We performed a case-control study in 150 patients with NTM-PD and 150 healthy controls to investigate serum vitamin status. We measured concentrations of vitamins A, D, and E along with homocysteine and methylmalonic acid (MMA) as indicators of vitamin B12 deficiency, using high-performance liquid chromatography (HPLC) or HPLC-tandem mass spectrometry. The serum concentrations of vitamins A and E were significantly lower in patients with NTM-PD than in healthy controls (1.5 vs. 2.1 µmol/L, p < 0.01 for vitamin A; and 27.3 vs. 33.1 µmol/L, p < 0.01 for vitamin E). In contrast, the serum concentrations of vitamin D and homocysteine were not significantly different between the two groups. Vitamin A deficiency (< 1.05 µmol/L) was significantly more prevalent in patients with NTM-PD than in healthy controls (p < 0.01) and was associated with an 11-fold increase in risk of NTM-PD. Multiple vitamin deficiencies were only observed in patients with NTM-PD (7.3% of all NTM-PD patients). Positive correlations were observed among vitamins (vitamins A and D; r = 0.200, p < 0.05; vitamins D and E, r = 0.238, p < 0.05; vitamins A and E, r = 0.352, p < 0.05). Serum vitamin status, demographic variables, and biochemical indicators were not associated with treatment outcomes. Vitamin A deficiency was strongly associated with patients with NTM-PD. Our study suggests that altered vitamin status is associated with mycobacterial disease. Future well-designed prospective studies with large patient cohorts addressing these issues are needed to clarify the significance of vitamins in NTM-PD.
Collapse
Affiliation(s)
- Jongwon Oh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea.
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea.
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea.
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea.
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul 06351, Korea.
| |
Collapse
|
18
|
Aibana O, Franke MF, Huang CC, Galea JT, Calderon R, Zhang Z, Becerra MC, Smith ER, Contreras C, Yataco R, Lecca L, Murray MB. Vitamin E Status Is Inversely Associated with Risk of Incident Tuberculosis Disease among Household Contacts. J Nutr 2018; 148:56-62. [PMID: 29378042 PMCID: PMC6251539 DOI: 10.1093/jn/nxx006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/21/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023] Open
Abstract
Background Few studies have previously assessed how pre-existing vitamin E status is associated with risk of tuberculosis (TB) disease progression. Objective We evaluated the association between baseline plasma concentrations of 3 vitamin E isomers (α-tocopherol, γ-tocopherol, and δ-tocopherol) and TB disease risk. Methods We conducted a case-control study nested within a longitudinal cohort of household contacts (HHCs) of pulmonary TB cases in Lima, Peru. We defined cases as HHCs who developed active TB disease ≥15 d after the diagnosis of the index patient, and we matched each case to 4 control cases who did not develop active TB based on age by year and gender. We used univariate and multivariate conditional logistic regression to calculate ORs for incident TB disease by plasma concentrations of α-tocopherol, γ-tocopherol, and δ-tocopherol. Results Among 6751 HIV-negative HHCs who provided baseline blood samples, 180 developed secondary TB during follow-up. After controlling for possible confounders, we found that baseline α-tocopherol deficiency conferred increased risk of incident TB disease (adjusted OR: 1.59; 95% CI: 1.02, 2.50; P = 0.04). Household contacts in the lowest tertile of δ-tocopherol were also at increased risk of progression to TB disease compared to those in the highest tertile (tertile 1 compared with tertile 3, adjusted OR: 2.29; 95% CI: 1.29, 4.09; P-trend = 0.005). We found no association between baseline concentration of γ-tocopherol and incident TB disease. Conclusions Vitamin E deficiency was associated with an increased risk of progression to TB disease among HHCs of index TB cases. Assessment of vitamin E status among individuals at high risk for TB disease may play a role in TB control efforts.
Collapse
Affiliation(s)
- Omowunmi Aibana
- Division of General Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
- Division of Infectious Diseases, The Miriam Hospital, Warren Alpert School of Medicine at Brown University, Providence, RI
| | - Molly F Franke
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jerome T Galea
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Partners In Health, Socios En Salud Sucursal Peru, Lima, Peru
| | - Roger Calderon
- Partners In Health, Socios En Salud Sucursal Peru, Lima, Peru
| | - Zibiao Zhang
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mercedes C Becerra
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Emily R Smith
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA
| | | | - Rosa Yataco
- Partners In Health, Socios En Salud Sucursal Peru, Lima, Peru
| | - Leonid Lecca
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Partners In Health, Socios En Salud Sucursal Peru, Lima, Peru
| | - Megan B Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Parker WA, Mchiza ZJ, Sewpaul R, Job N, Chola L, Sithole M, Labadarios D. The impact of sociodemography, diet, and body size on serum retinol in women 16-35 years of age: SANHANES-1. Ann N Y Acad Sci 2017; 1416:48-65. [PMID: 29125179 DOI: 10.1111/nyas.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
Abstract
To determine the current vitamin A status of a nationally representative sample of women aged 16-35 years, compare it with previous national data, and determine the impact of sociodemography, diet, and body size on vitamin A status, we performed secondary analysis of data on South African women who participated in the first South African National Health and Nutrition Examination Survey (SANHANES-1). Vitamin A status was assessed by serum retinol, and the findings are reported as means and prevalences with corresponding 95% confidence intervals. Overall, the age-standardized vitamin A deficiency prevalence was 11.7%, a decrease from previous national data, but serum retinol levels remained lower than in other developing countries. Overall, unweighted, multilevel, multivariate logistic regression showed that vitamin A deficiency was influenced by race only (odds ratio (OR) = 1.89, P = 0.031), while weighted multiple logistic regression for 16- to 18-year-olds showed that vitamin A deficiency was influenced by locality (OR = 9.83, P = 0.005) and household income (intermediate (OR = 0.2, P = 0.022) and upper (OR = 0.25, P = 0.049)). Despite the decreased prevalence, vitamin A deficiency remains a moderate public health problem in the country. Opportunities for targeted interventions have been identified.
Collapse
Affiliation(s)
- Whadi-Ah Parker
- Population Health, Health Systems and Innovation, Human Sciences Research Council, Cape Town, South Africa
| | - Zandile J Mchiza
- Population Health, Health Systems and Innovation, Human Sciences Research Council, Cape Town, South Africa
| | - Ronel Sewpaul
- Population Health, Health Systems and Innovation, Human Sciences Research Council, Cape Town, South Africa
| | - Nophiwe Job
- Population Health, Health Systems and Innovation, Human Sciences Research Council, Cape Town, South Africa
| | - Lumbwe Chola
- PRICELESS SA, University of Witwatersrand School of Public Health, Parktown, South Africa
| | - Moses Sithole
- Centre for Science, Technology and Innovation Indicators, Human Sciences Research Council, Cape Town, South Africa
| | - Demetre Labadarios
- Population Health, Health Systems and Innovation, Human Sciences Research Council, Cape Town, South Africa
| |
Collapse
|
20
|
Chandrasekaran P, Saravanan N, Bethunaickan R, Tripathy S. Malnutrition: Modulator of Immune Responses in Tuberculosis. Front Immunol 2017; 8:1316. [PMID: 29093710 PMCID: PMC5651251 DOI: 10.3389/fimmu.2017.01316] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Nutrition plays a major role in the management of both acute and chronic diseases, in terms of body’s response to the pathogenic organism. An array of nutrients like macro- and micro-nutrients, vitamins, etc., are associated with boosting the host’s immune responses against intracellular pathogens including mycobacterium tuberculosis (M.tb). These nutrients have an immunomodulatory effects in controlling the infection and inflammation process and nutritional deficiency of any form, i.e., malnutrition may lead to nutritionally acquired immunodeficiency syndrome, which greatly increases an individual’s susceptibility to progression of infection to disease. This narrative review looks at the various mechanisms by which nutrition or its deficiency leads to impaired cell mediated and humoral immune responses, which in turn affects the ability of an individual to fight M.tb infection or disease. There is very little evidence in the literature that any specific food on its own or a specific quantity can alter the course of TB disease or be effective in the treatment of malnutrition. Further clinical trials or studies will be needed to recommend and to better understand the link between malnutrition, tuberculosis, and impaired immunity.
Collapse
Affiliation(s)
| | - Natarajan Saravanan
- Department of Biochemistry and Clinical Pharmacology, National Institute for Research in Tuberculosis, Chennai, India
| | | | | |
Collapse
|
21
|
Vitamin A and D Deficiencies Associated With Incident Tuberculosis in HIV-Infected Patients Initiating Antiretroviral Therapy in Multinational Case-Cohort Study. J Acquir Immune Defic Syndr 2017; 75:e71-e79. [PMID: 28169875 DOI: 10.1097/qai.0000000000001308] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Numerous micronutrients have immunomodulatory roles that may influence risk of tuberculosis (TB), but the association between baseline micronutrient deficiencies and incident TB after antiretroviral therapy (ART) initiation in HIV-infected individuals is not well characterized. METHODS We conducted a case-cohort study (n = 332) within a randomized trial comparing 3 ART regimens in 1571 HIV treatment-naive adults from 9 countries. A subcohort of 30 patients was randomly selected from each country (n = 270). Cases (n = 77; main cohort = 62, random subcohort = 15) included patients diagnosed with TB by 96 weeks post-ART initiation. We determined pretreatment concentrations of vitamin A, carotenoids, vitamin B6, vitamin B12, vitamin D, vitamin E, and selenium. We measured associations between pretreatment micronutrient deficiencies and incident TB using Breslow-weighted Cox regression models. RESULTS Median pretreatment CD4 T-cell count was 170 cells/mm; 47.3% were women; and 53.6% Black. In multivariable models after adjusting for age, sex, country, treatment arm, previous TB, baseline CD4 count, HIV viral load, body mass index, and C-reactive protein, pretreatment deficiency in vitamin A (adjusted hazard ratio, aHR 5.33, 95% confidence interval, CI: 1.54 to 18.43) and vitamin D (aHR 3.66, 95% CI: 1.16 to 11.51) were associated with TB post-ART. CONCLUSIONS In a diverse cohort of HIV-infected adults from predominantly low- and middle-income countries, deficiencies in vitamin A and vitamin D at ART initiation were independently associated with increased risk of incident TB in the ensuing 96 weeks. Vitamin A and D may be important modifiable risk factors for TB in high-risk HIV-infected patients starting ART in resource-limited highly-TB-endemic settings.
Collapse
|
22
|
Soh AZ, Chee CBE, Wang YT, Yuan JM, Koh WP. Dietary Intake of Antioxidant Vitamins and Carotenoids and Risk of Developing Active Tuberculosis in a Prospective Population-Based Cohort Study. Am J Epidemiol 2017; 186:491-500. [PMID: 28520939 DOI: 10.1093/aje/kwx132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 11/14/2022] Open
Abstract
Antioxidants may protect against oxidative stress, which is associated with tuberculosis (TB) disease. However, direct evidence for a protective association between dietary antioxidants and TB incidence in humans has been lacking. The relationship between intake of antioxidant vitamins (vitamins A, C, D, and E) and individual carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein) and TB incidence was examined in the Singapore Chinese Health Study, a prospective cohort study of 63,257 adults aged 45-74 years enrolled during 1993-1998. Baseline intake of these antioxidants was estimated using a validated semiquantitative food frequency questionnaire including questions on use of dietary supplements. After an average of 16.9 years of follow-up, 1,186 incident active TB cases were identified among cohort participants. Compared with the lowest quartile, reduced risk of active TB was observed for the highest quartile of vitamin A intake (hazard ratio = 0.71, 95% confidence interval: 0.59, 0.85; P-trend < 0.01) and β-carotene intake (hazard ratio = 0.76, 95% confidence interval: 0.63, 0.91; P-trend < 0.01), regardless of smoking status. Lower TB risk was seen for vitamin C intake among current smokers only. Other vitamins and carotenoids were not associated with TB risk. These results suggest that vitamin C may reduce TB risk among current smokers by ameliorating oxidative stress, while vitamin A and β-carotene may have additional antimycobacterial properties.
Collapse
|
23
|
Rajopadhye SH, Mukherjee SR, Chowdhary AS, Dandekar SP. Oxidative Stress Markers in Tuberculosis and HIV/TB Co-Infection. J Clin Diagn Res 2017; 11:BC24-BC28. [PMID: 28969114 DOI: 10.7860/jcdr/2017/28478.10473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/29/2017] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Dysfunction of redox homeostasis has been implicated in many pathological conditions. An imbalance of pro- and anti-oxidants have been observed in Tuberculosis (TB) and its co-morbidities especially HIV/AIDS. The pro inflammatory milieu in either condition aggravates the physiological balance of the redox mechanisms. The present study therefore focuses on assessing the redox status of patients suffering from TB and HIV-TB co-infection. AIM To assess the oxidative stress markers in the HIV-TB and TB study cohort. MATERIALS AND METHODS The current prospective study was conducted in Haffkine Institute, Parel, Maharashtra, India, during January 2013 to December 2015. Blood samples from 50 patients each suffering from active TB and HIV-TB co-infection were collected from Seth G.S.Medical College and KEM Hospital Mumbai and Group of Tuberculosis Hospital, Sewree Mumbai. Samples were processed and the experiments were carried out at the Department of Biochemistry, Haffkine Institute. Samples from 50 healthy volunteers were used as controls. Serum was assessed for pro-oxidant markers such as Nitric Oxide (NO), Thiobarbituric Acid Reactive Species (TBARS), C-Reactive Protein (CRP), superoxide anion. Antioxidant markers such as catalase and Superoxide Dismutase (SOD) were assessed. Total serum protein, was also assessed. RESULTS Among the pro-oxidants, serum NO levels were decreased in TB group while no change was seen in HIV-TB group. TBARS and CRP levels showed significant increase in both groups; superoxide anion increased significantly in HIV-TB group. Catalase levels showed decreased activities in TB group. SOD activity significantly increased in HIV-TB but not in TB group. The total serum proteins were significantly increased in HIV-TB and TB groups. The values of Control cohort were with the normal reference ranges. CONCLUSION In the present study, we found the presence of oxidative stress to be profound in the TB and HIV-TB co-infection population.
Collapse
Affiliation(s)
- Shreewardhan Haribhau Rajopadhye
- PhD Fellow, Department of Biochemistry, Seth G.S. Medical College and KEM Hospital and Department of Biochemistry, Haffkine Institute, Parel, Mumbai, Maharashtra, India
| | - Sandeepan R Mukherjee
- Scientific Officer, Department of Virology and Immunology, Haffkine Institute, Parel, Mumbai, Maharashtra, India
| | - Abhay S Chowdhary
- Professor and Head, Department of Microbiology, GGMC and Sir J.J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Sucheta P Dandekar
- Professor and Head, Department of Biochemistry, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
24
|
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol 2017; 25:688-697. [PMID: 28366292 PMCID: PMC5522344 DOI: 10.1016/j.tim.2017.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/17/2022]
Abstract
Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Choi R, Jeong BH, Koh WJ, Lee SY. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations. Ann Lab Med 2017; 37:97-107. [PMID: 28028995 PMCID: PMC5204003 DOI: 10.3343/alm.2017.37.2.97] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Although tuberculosis is largely a curable disease, it remains a major cause of morbidity and mortality worldwide. Although the standard 6-month treatment regimen is highly effective for drug-susceptible tuberculosis, the use of multiple drugs over long periods of time can cause frequent adverse drug reactions. In addition, some patients with drug-susceptible tuberculosis do not respond adequately to treatment and develop treatment failure and drug resistance. Response to tuberculosis treatment could be affected by multiple factors associated with the host-pathogen interaction including genetic factors and the nutritional status of the host. These factors should be considered for effective tuberculosis control. Therefore, therapeutic drug monitoring (TDM), which is individualized drug dosing guided by serum drug concentrations during treatment, and pharmacogenetics-based personalized dosing guidelines of anti-tuberculosis drugs could reduce the incidence of adverse drug reactions and increase the likelihood of successful treatment outcomes. Moreover, assessment and management of comorbid conditions including nutritional status could improve anti-tuberculosis treatment response.
Collapse
Affiliation(s)
- Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byeong Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Soo Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Oh J, Choi R, Park HD, Lee H, Jeong BH, Park HY, Jeon K, Kwon OJ, Koh WJ, Lee SY. Evaluation of vitamin status in patients with pulmonary tuberculosis. J Infect 2017; 74:272-280. [PMID: 27838523 DOI: 10.1016/j.jinf.2016.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Vitamins are known to be associated with immunity and nutrition. Moreover, vitamin deficiency can affect host immunity to various infectious diseases, including tuberculosis. Although patients with tuberculosis often have vitamin D deficiency, little is known about the levels of other vitamins. Here, we aimed to investigate the status of vitamins A, B12, D, and E in patients with tuberculosis. We also aimed to investigate the clinical and laboratory variables related to vitamin status in patients with tuberculosis. METHODS We performed a case-control study to investigate the serum vitamin concentrations in 152 patients with tuberculosis and 137 control subjects. The concentrations of vitamin A, vitamin D, vitamin E, homocysteine, and methylmalonic acid were measured using high-performance liquid chromatography (HPLC) or HPLC-tandem mass spectrometry. Patient demographic data and other biochemical parameters were also analyzed. RESULTS The serum concentrations of vitamins A, D, and E were significantly lower in patients with tuberculosis than in control subjects (1.4 vs. 2.0 μmol/L, P < 0.001; 10.6 vs. 19.3 ng/mL, P < 0.001; and 22.8 vs. 30.6 μmol/L, P < 0.001, respectively). In contrast, the methylmalonic acid levels were higher in patients with tuberculosis (134.9 vs. 110.8 nmol/L, P < 0.001). The prevalences of vitamin deficiencies were significantly higher in patients with tuberculosis. Moreover, multiple vitamin deficiencies were only observed in patients with tuberculosis (22.4% of all patients with tuberculosis vs. 0% of all control subjects). Positive correlations among vitamin A, D, and E concentrations were observed (vitamins A and D, r = 0.395; vitamins D and E, r = 0.342; and vitamins A and E, r = 0.427, P < 0.001). Body mass index, total cholesterol, low-density lipoprotein, iron, and total iron-binding capacity all showed positive correlations with vitamin A, D, and E concentrations. CONCLUSIONS Vitamin deficiencies are common in patients with tuberculosis. Further research investigating the clinical importance of vitamin and nutritional status in patients with tuberculosis is needed.
Collapse
Affiliation(s)
- Jongwon Oh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Amaral EP, Conceição EL, Costa DL, Rocha MS, Marinho JM, Cordeiro-Santos M, D'Império-Lima MR, Barbosa T, Sher A, Andrade BB. N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol 2016; 16:251. [PMID: 27793104 PMCID: PMC5084440 DOI: 10.1186/s12866-016-0872-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Mycobacterium tuberculosis infection is thought to induce oxidative stress. N-acetyl-cysteine (NAC) is widely used in patients with chronic pulmonary diseases including tuberculosis due to its mucolytic and anti-oxidant activities. Here, we tested whether NAC exerts a direct antibiotic activity against mycobacteria. Methods Oxidative stress status in plasma was compared between pulmonary TB (PTB) patients and those with latent M. tuberculosis infection (LTBI) or healthy uninfected individuals. Lipid peroxidation, DNA oxidation and cell death, as well as accumulation of reactive oxygen species (ROS) were measured in cultures of primary human monocyte-derived macrophages infected with M. tuberculosis and treated or not with NAC. M. tuberculosis, M. avium and M. bovis BCG cultures were also exposed to different doses of NAC with or without medium pH adjustment to control for acidity. The anti-mycobacterial effect of NAC was assessed in M. tuberculosis infected human THP-1 cells and bone marrow-derived macrophages from mice lacking a fully functional NADPH oxidase system. The capacity of NAC to control M. tuberculosis infection was further tested in vivo in a mouse (C57BL/6) model. Results PTB patients exhibited elevated levels of oxidation products and a reduction of anti-oxidants compared with LTBI cases or uninfected controls. NAC treatment in M. tuberculosis-infected human macrophages resulted in a decrease of oxidative stress and cell death evoked by mycobacteria. Importantly, we observed a dose-dependent reduction in metabolic activity and in vitro growth of NAC treated M. tuberculosis, M. avium and M. bovis BCG. Furthermore, anti-mycobacterial activity in infected macrophages was shown to be independent of the effects of NAC on the host NADPH oxidase system in vitro. Short-term NAC treatment of M. tuberculosis infected mice in vivo resulted in a significant reduction of mycobacterial loads in the lungs. Conclusions NAC exhibits potent anti-mycobacterial effects and may limit M. tuberculosis infection and disease both through suppression of the host oxidative response and through direct antimicrobial activity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0872-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Immunology, Laboratory of Immunology of Infectious Diseases, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Elisabete L Conceição
- Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil.,Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia, Salvador, 40110-100, Brazil
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael S Rocha
- Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil
| | - Jamocyr M Marinho
- Departament of Internal Medicine, School of Medicine and Public Health, Salvador, 41150-100, Brazil.,Programa de Controle da Tuberculose, Hospital Especializado Octávio Mangabeira, Salvador, 40320-350, Brazil
| | - Marcelo Cordeiro-Santos
- Departamento de Ensino e Pós-Graduação, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Maria Regina D'Império-Lima
- Department of Immunology, Laboratory of Immunology of Infectious Diseases, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Theolis Barbosa
- Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil.,Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia, Salvador, 40110-100, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. .,Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil. .,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, 45204-040, Brazil. .,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, 41741-590, Brazil.
| |
Collapse
|
28
|
Gassó D, Vicente J, Mentaberre G, Soriguer R, Jiménez Rodríguez R, Navarro-González N, Tvarijonaviciute A, Lavín S, Fernández-Llario P, Segalés J, Serrano E. Oxidative Stress in Wild Boars Naturally and Experimentally Infected with Mycobacterium bovis. PLoS One 2016; 11:e0163971. [PMID: 27682987 PMCID: PMC5040450 DOI: 10.1371/journal.pone.0163971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS-RNS) are important defence substances involved in the immune response against pathogens. An excessive increase in ROS-RNS, however, can damage the organism causing oxidative stress (OS). The organism is able to neutralise OS by the production of antioxidant enzymes (AE); hence, tissue damage is the result of an imbalance between oxidant and antioxidant status. Though some work has been carried out in humans, there is a lack of information about the oxidant/antioxidant status in the presence of tuberculosis (TB) in wild reservoirs. In the Mediterranean Basin, wild boar (Sus scrofa) is the main reservoir of TB. Wild boar showing severe TB have an increased risk to Mycobacterium spp. shedding, leading to pathogen spreading and persistence. If OS is greater in these individuals, oxidant/antioxidant balance in TB-affected boars could be used as a biomarker of disease severity. The present work had a two-fold objective: i) to study the effects of bovine TB on different OS biomarkers (namely superoxide dismutase (SOD), catalasa (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and thiobarbituric acid reactive substances (TBARS)) in wild boar experimentally challenged with Mycobacterium bovis, and ii) to explore the role of body weight, sex, population and season in explaining the observed variability of OS indicators in two populations of free-ranging wild boar where TB is common. For the first objective, a partial least squares regression (PLSR) approach was used whereas, recursive partitioning with regression tree models (RTM) were applied for the second. A negative relationship between antioxidant enzymes and bovine TB (the more severe lesions, the lower the concentration of antioxidant biomarkers) was observed in experimentally infected animals. The final PLSR model retained the GPX, SOD and GR biomarkers and showed that 17.6% of the observed variability of antioxidant capacity was significantly correlated with the PLSR X’s component represented by both disease status and the age of boars. In the samples from free-ranging wild boar, however, the environmental factors were more relevant to the observed variability of the OS biomarkers than the TB itself. For each OS biomarker, each RTM was defined as a maximum by one node due to the population effect. Along the same lines, the ad hoc tree regression on boars from the population with a higher prevalence of severe TB confirmed that disease status was not the main factor explaining the observed variability in OS biomarkers. It was concluded that oxidative damage caused by TB is significant, but can only be detected in the absence of environmental variation in wild boar.
Collapse
Affiliation(s)
- Diana Gassó
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail:
| | - Joaquín Vicente
- Sabio-IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Gregorio Mentaberre
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ramón Soriguer
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rocío Jiménez Rodríguez
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Nora Navarro-González
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| | - Asta Tvarijonaviciute
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Santiago Lavín
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i d’Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Emmanuel Serrano
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biología, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Zeliger HI. Predicting disease onset in clinically healthy people. Interdiscip Toxicol 2016; 9:39-54. [PMID: 28652846 PMCID: PMC5458104 DOI: 10.1515/intox-2016-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/17/2022] Open
Abstract
Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease.
Collapse
|
30
|
Kulkarni RA, Deshpande AR. Anti-inflammatory and antioxidant effect of ginger in tuberculosis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 13:201-6. [PMID: 27089418 DOI: 10.1515/jcim-2015-0032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Tuberculosis (TB) has reemerged to become the world's leading cause of death from a single infectious agent. Inflammatory cytokines play an important role during the course of the disease and may be responsible for tissue damage by lipid peroxidation. The study was aimed to explore the anti-inflammatory and antioxidant effect of ginger in pulmonary TB patients. METHODS A total of 69 pulmonary TB patients participated in a randomized and placebo-controlled study. The intervention group received 3 g of ginger extract daily for 1 month and placebo group was supplemented with starch capsule. Participants of both groups were taking standard antitubercular treatment during the study. The concentrations of tumor necrosis factor (TNF) alpha, ferritin and malondialdehyde (MDA) in blood samples were analyzed before and after the intervention by using enzyme-linked immunosorbent assay for TNF alpha and ferritin and spectrophotometry for MDA. RESULTS Ginger supplementation significantly reduced the levels of TNF alpha, ferritin and MDA in ginger supplemented group in comparison to baseline. Ginger supplementation with antitubercular treatment significantly lowered TNF alpha, ferritin and MDA concentrations in comparison to control group. CONCLUSIONS Ginger was found to be effective as an anti-inflammatory and antioxidant supplement along with anti-TB therapy as it possesses strong free radical scavenging property.
Collapse
|
31
|
Abstract
Malnutrition and tuberculosis are both problems mostly of the developing countries. Tuberculosis can lead to malnutrition and malnutrition may predispose to tuberculosis. Poor nutrition leads to protein-energy malnutrition and micronutrients deficiencies which lead to immunodeficiency. This secondary immunodeficiency increases the host's susceptibility to infection and hence increase the risk for developing tuberculosis. Tuberculosis itself leads to reduction in appetite, nutrient malabsorption, micronutrient malabsorption, and altered metabolism leading to wasting and poor nutritional status. Nutritional status and dietary intake and hence nutritional status of patients get improved during antituberculosis treatment.
Collapse
Affiliation(s)
- Surya Kant
- a Department of Pulmonary Medicine, C. S. M. Medical University (Erstwhile King George Medical College) , Lucknow , UP , India
| | | | | |
Collapse
|
32
|
Edem V, Ige O, Arinola O. Plasma vitamins and essential trace elements in multi-drug resistant tuberculosis patients before and during chemotherapy. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Adebimpe WO, Faremi AO, Nassar SA. Effects of treatment on free radicals in patients with pulmonary tuberculosis in South Western Nigeria. Afr Health Sci 2015; 15:1256-61. [PMID: 26958028 DOI: 10.4314/ahs.v15i4.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Formation of Malondialdehyde (MDA), a free radical, in Tuberculosis patients does occur when Tubercule bacilli induces reactive oxygen species as a result of phagocytic respiratory burst. OBJECTIVES This study evaluated the effect of treatment on plasma level of Malondialdehyde among patients infected with Mycobacterium Tuberculosis in Osogbo South Western Nigeria. METHODOLOGY Descriptive cross sectional study among 110 patients, grouped into four categories (three TB patient categories and controls). All patients were screened for presence or absence of Mycobacterium tuberculosis in their sputum and HIV 1 & 2 in their blood using standard techniques. The level of free radical (Malondialdehyde, MDA) was determined by Thiobabituric acid reacting method. Data was analyzed using the SPSS software version 17.0. RESULTS Serum Malondialdehyde (MDA) levels were significantly lower in TB patients on drugs (TBD) compared with the new cases on treatment (NCT). (0.17+0.88mol/L Vs 0.27+0.08mol/L, p<0.05). Varying degrees of correlations were also found between free radicals and electrolytes. CONCLUSION Reduced serum MDA levels in TBD suggested a reduction in the levels of free radical injury once treatment was commenced. Therefore serum free radical may be an index of monitoring response to treatment in tuberculosis management.
Collapse
Affiliation(s)
- Wasiu Olalekan Adebimpe
- Department of Community Medicine, College of Health Sciences, Osun State University Osogbo, Osun State. Nigeria
| | | | | |
Collapse
|
34
|
Andrade BB, Pavan Kumar N, Amaral EP, Riteau N, Mayer-Barber KD, Tosh KW, Maier N, Conceição EL, Kubler A, Sridhar R, Banurekha VV, Jawahar MS, Barbosa T, Manganiello VC, Moss J, Fontana JR, Marciano BE, Sampaio EP, Olivier KN, Holland SM, Jackson SH, Moayeri M, Leppla S, Sereti I, Barber DL, Nutman TB, Babu S, Sher A. Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2015; 195:2763-73. [PMID: 26268658 DOI: 10.4049/jimmunol.1500942] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/15/2015] [Indexed: 01/19/2023]
Abstract
Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.
Collapse
Affiliation(s)
- Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil;
| | - Nathella Pavan Kumar
- National Institutes of Health, International Center for Excellence in Research, Chennai 600031, India; National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicolas Riteau
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kevin W Tosh
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nolan Maier
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Elisabete L Conceição
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
| | - Andre Kubler
- Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | - Theolis Barbosa
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joseph R Fontana
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Beatriz E Marciano
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Elizabeth P Sampaio
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth N Olivier
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sharon H Jackson
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Irini Sereti
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Subash Babu
- National Institutes of Health, International Center for Excellence in Research, Chennai 600031, India; Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
35
|
Quadruple burden of HIV/AIDS, tuberculosis, chronic intestinal parasitoses, and multiple micronutrient deficiency in ethiopia: a summary of available findings. BIOMED RESEARCH INTERNATIONAL 2015; 2015:598605. [PMID: 25767808 PMCID: PMC4342072 DOI: 10.1155/2015/598605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the “hidden hunger” are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the “quadruple burden trouble” of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders.
Collapse
|
36
|
Torun E, Gedik AH, Cakir E, Umutoglu T, Gok O, Kilic U. Serum paraoxonase 1 activity and oxidative stress in pediatric patients with pulmonary tuberculosis. Med Princ Pract 2014; 23:426-31. [PMID: 25034194 PMCID: PMC5586969 DOI: 10.1159/000363700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/19/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine the oxidative stress and paraoxonase 1 (PON1) levels in children with pulmonary tuberculosis (TB) compared to healthy controls, and to examine the association of demographical with oxidative stress. SUBJECTS AND METHODS Forty children diagnosed with pulmonary TB and 40 age- and gender-matched healthy controls were enrolled in the study. Serum total antioxidant status (TAS), total oxidant status (TOS) and PON1 levels were measured. The oxidative stress index (OSI) was calculated to indicate the degree of oxidative stress. RESULTS The TAS levels were lower (1.73 ± 0.5 vs. 2.54 ± 1.2 μmol Trolox Eq/l) while TOS levels were significantly higher (26.9 ± 14.4 vs. 13.4 ± 7.7 μmol H2O2 Eq/l) in the TB group than in the controls (p < 0.001). The OSI was significantly higher in the TB group than in the controls (21.2 ± 5.1 vs. 6.5 ± 4.9 units, p = 0.006). Serum PON1 levels were significantly lower in the TB group than in the controls (14.2 ± 13.2 vs. 28.4 ± 17.3 U/l, p < 0.001). The lower PON1 levels correlated with TAS and OSI levels but not with anthropometric parameters (r = 0.264, p = 0.018 and r = -0.255, p = 0.023, respectively). CONCLUSION The TOS and OSI levels were higher and the TAS and PON1 levels were lower in pediatric patients with pulmonary TB when compared to healthy controls. This indicates greater oxidative stress in the patients.
Collapse
Affiliation(s)
- Emel Torun
- Department of Pediatrics, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
- *Emel Torun, MD, Department of Pediatrics, Bezmialem Vakif University Hospital, Adnan Menderes Avenue, P.K., TR-34093 Fatih/Istanbul (Turkey), E-Mail
| | - Ahmet Hakan Gedik
- Department of Pediatrics, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Erkan Cakir
- Department of Pediatric Pulmonology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Tarik Umutoglu
- Department of Anestesiology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozlem Gok
- Department of Medical Biology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
37
|
Andrade BB, Pavan Kumar N, Mayer-Barber KD, Barber DL, Sridhar R, Rekha VVB, Jawahar MS, Nutman TB, Sher A, Babu S. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One 2013; 8:e62618. [PMID: 23671613 PMCID: PMC3646008 DOI: 10.1371/journal.pone.0062618] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/23/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is associated with oxidative stress and the induction of host anti-oxidants to counteract this response. Heme oxygenase-1 (HO-1) is a critical promoter of cytoprotection in diverse disease models including mycobacterial infection. Nevertheless, the pattern of expression of HO-1 in human tuberculosis has not been studied. Here, we examine expression of HO-1 in M. tuberculosis-exposed and -infected individuals and test its ability to distinguish active from latent and successfully treated TB cases. In addition, we assess correlations between plasma levels of HO-1 and cytokines closely associated with the immunopathogenesis of TB. METHODS Cross-sectional and longitudinal analyses of levels of HO-1, acute phase proteins and pro-inflammatory cytokines were performed in plasma samples from individuals with active pulmonary, extra-pulmonary or latent TB infection and healthy controls as part of a prospective cohort study in South India. RESULTS Systemic levels of HO-1 were dramatically increased in individuals with active pulmonary and extra-pulmonary tuberculosis and particularly those with bilateral lung lesions and elevated bacillary loads in sputum. HO-1 levels effectively discriminated active from latent tuberculosis with higher predictive values than either C-reactive protein or serum amyloid protein. Moreover, there was a marked reduction in HO-1 levels in active TB cases following anti-tuberculous therapy but not in those who failed treatment. Pulmonary TB patients displaying the highest concentrations of HO-1 in plasma exhibited significantly elevated plasma levels of interleukin (IL)-10, interferon (IFN)-γ and IL-17 and diminished levels of tumor necrosis factor (TNF)-α. CONCLUSION These findings establish HO-1 levels as a potentially useful parameter for distinguishing active from latent or treated pulmonary tuberculosis, that is superior in this respect to the measurement of other acute inflammatory proteins.
Collapse
Affiliation(s)
- Bruno B Andrade
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Correlation of ambient pollution levels and heavily-trafficked roadway proximity on the prevalence of smear-positive tuberculosis. Public Health 2013; 127:268-74. [DOI: 10.1016/j.puhe.2012.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 01/17/2023]
|
39
|
Rudolf F, Joaquim LC, Vieira C, Bjerregaard-Andersen M, Andersen A, Erlandsen M, Sodemann M, Andersen PL, Wejse C. The Bandim tuberculosis score: Reliability and comparison with the Karnofsky performance score. ACTA ACUST UNITED AC 2012; 45:256-64. [DOI: 10.3109/00365548.2012.731077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
de Oliveira LRC, Peresi E, Tavares FC, Corrêa CR, Pierine DT, Calvi SA. DNA damage in peripheral blood mononuclear cells of patients undergoing anti-tuberculosis treatment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:82-85. [DOI: 10.1016/j.mrgentox.2012.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/29/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
41
|
Abstract
For centuries the treatment of TB has presented an enormous challenge to global health. In the 20th century, the treatment of TB patients with long-term multidrug therapy gave hope that TB could be controlled and cured; however, contrary to these expectations and coinciding with the emergence of AIDS, the world has witnessed a rampant increase in hard-to-treat cases of TB, along with the emergence of highly virulent and multidrug-resistant Mycobacterium tuberculosis strains. Unfortunately, these bacteria are now circulating around the world, and there are few effective drugs to treat them. As a result, the prospects for improved treatment and control of TB in the 21st century have worsened and we urgently need to identify new therapies that deal with this problem. The potential use of immunotherapy for TB is now of greater consideration than ever before, as immunotherapy could potentially overcome the problem of drug resistance. TB immunotherapy targets the already existing host anti-TB immune response and aims to enhance killing of the bacilli. For this purpose, several approaches have been used: the use of anti-Mycobacteria antibodies; enhancing the Th1 protective responses by using mycobacterial antigens or increasing Th1 cytokines; interfering with the inflammatory process and targeting of immunosuppressive pathways and targeting the cell activation/proliferation pathways. This article reviews our current understanding of TB immunity and targets for immunotherapy that could be used in combination with current TB chemotherapy.
Collapse
Affiliation(s)
- Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology & Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
42
|
Biomarkers of oxidative stress and personalized treatment of pulmonary tuberculosis: emerging role of gamma-glutamyltransferase. Adv Pharmacol Sci 2012; 2012:465634. [PMID: 22611380 PMCID: PMC3352232 DOI: 10.1155/2012/465634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/04/2012] [Indexed: 11/18/2022] Open
Abstract
Background. The objectives were (i) to evaluate the impact of acute pulmonary tuberculosis (PTB) and anti-TB therapy on the relationship between AST, ALT, and GGT levels in absence of conditions related to hepatotoxicity; (ii) to evaluate the rate and the time of alterations of AST, ALT, and GGT. Design and Methods. A prospective followup of 40 adults (21 males; mean age of 34.7 ± 5.8 years) with active PTB on initial phase and continuation phase anti-TB. Results. Only 3% (n = 1) developed a transient and benign ADR at day 30 without interruption of anti-TB treatment. Within normal ranges, GGT decreased significantly from day 0 to day 60, while AST and ALT increased significantly and respectively. During day 0–day 60, there was a significant, negative, and independent association between GGT and AST. Conclusion. The initial two months led to significant improvement of oxidative stress. Values of oxidative markers in normal ranges might predict low rate of ADR.
Collapse
|
43
|
Selek S, Aslan M, Horoz M, Celik H, Cosar N, Gunak F, Kocyigit A. Peripheral DNA damage in active pulmonary tuberculosis. ENVIRONMENTAL TOXICOLOGY 2012; 27:380-384. [PMID: 21344605 DOI: 10.1002/tox.20674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 05/30/2023]
Abstract
In pulmonary tuberculosis patients, little is known about peripheral DNA damage, although increased oxidative stress is a well documented entity. Therefore, we aimed to investigate DNA damage along with oxidative status parameters in pulmonary tuberculosis patients. Twenty-seven pulmonary tuberculosis patients and 26 controls were included. DNA damage was assessed by comet assay. Total oxidant and antioxidant status, and oxidative stress index were determined. DNA damage, total oxidant status and oxidative stress index were higher in pulmonary tuberculosis patients than controls (all P < 0.05), while total antioxidant status was lower (P < 0.05). DNA damage was correlated with total oxidant and antioxidant status, and oxidative stress index (r = 0.69, P < 0.05; r = 0.48, P < 0.05, r = -0.47, P < 0.05; respectively) in pulmonary tuberculosis patients. Oxidative stress and DNA damage are increased in pulmonary tuberculosis patients. Increased oxidative stress associated DNA damage may be one of the pathogenetic mechanisms involved in the disorders suggested to be associated with pulmonary tuberculosis.
Collapse
Affiliation(s)
- Sahbettin Selek
- Department of Biochemistry, School of Medicine, Harran University, Sanliurfa, Turkey
| | | | | | | | | | | | | |
Collapse
|
44
|
Challenges in the Management of HIV-Infected Malnourished Children in Sub-Saharan Africa. AIDS Res Treat 2012; 2012:790786. [PMID: 22606378 PMCID: PMC3353143 DOI: 10.1155/2012/790786] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
Infection with HIV, and oftentimes coinfection with TB, complicates the care of severely malnourished children in sub-Saharan Africa. These superimposed infections challenge clinicians faced with a population of malnourished children for whose care evidence-based guidelines have not kept up. Even as the care of HIV-uninfected malnourished children has improved dramatically with the advent of community-based care and even as there are hopeful signs that the HIV epidemic may be stabilizing or ameliorating, significant gaps remain in the care of malnourished children with HIV. Here we summarize what is currently known, what remains unknown, and what remains challenging about how to treat severely malnourished children with HIV and TB.
Collapse
|
45
|
Johnkennedy N, Onyinyechi AS, Chukwunyere NE. The antioxidant status and lipid peroxidation product of newly diagnosed and 6 weeks follow–up patients with pulmonary tuberculosis in Owerri, Imo state, Nigeria. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2011. [DOI: 10.1016/s2222-1808(11)60069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM, Basaraba RJ. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS One 2011; 6:e26254. [PMID: 22028843 PMCID: PMC3196542 DOI: 10.1371/journal.pone.0026254] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/23/2011] [Indexed: 01/31/2023] Open
Abstract
The development of granulomatous inflammation with caseous necrosis is an important but poorly understood manifestation of tuberculosis in humans and some animal models. In this study we measured the byproducts of oxidative stress in granulomatous lesions as well as the systemic antioxidant capacity of BCG vaccinated and non-vaccinated guinea pigs experimentally infected with Mycobacterium tuberculosis. In non-vaccinated guinea pigs, oxidative stress was evident within 2 weeks of infection as measured by a decrease in the serum total antioxidant capacity and blood glutathione levels accompanied by an increase in malondialdehyde, a byproduct of lipid peroxidation, within lesions. Despite a decrease in total and reduced blood glutathione concentrations, there was an increase in lesion glutathione by immunohistochemistry in response to localized oxidative stress. In addition there was an increase in the expression of the host transcription factor nuclear erythroid 2 p45-related factor 2 (Nrf2), which regulates several protein and non-proteins antioxidants, including glutathione. Despite the increase in cytoplasmic expression of Nrf2, immunohistochemical staining revealed a defect in Nrf2 nuclear translocation within granulomatous lesions as well as a decrease in the expression of the Nrf2-regulated antioxidant protein NQO1. Treating M. tuberculosis-infected guinea pigs with the antioxidant drug N-acetyl cysteine (NAC) partially restored blood glutathione concentrations and the serum total antioxidant capacity. Treatment with NAC also decreased spleen bacterial counts, as well as decreased the lung and spleen lesion burden and the severity of lesion necrosis. These data suggest that the progressive oxidative stress during experimental tuberculosis in guinea pigs is due in part to a defect in host antioxidant defenses, which, we show here, can be partially restored with antioxidant treatment. These data suggest that the therapeutic strategies that reduce oxidant-mediated tissue damage may be beneficial as an adjunct therapy in the treatment and prevention of tuberculosis in humans.
Collapse
Affiliation(s)
- Gopinath S. Palanisamy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Natalie M. Kirk
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - David F. Ackart
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Crystal A. Shanley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ian M. Orme
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Randall J. Basaraba
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
47
|
Akiibinu MO, Ogunyemi EO, Shoyebo EO. Levels of Oxidative Metabolites, Antioxidants
and Neopterin in Nigerian Pulmonary
Tuberculosis Patients. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2011. [DOI: 10.29333/ejgm/82740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Semba RD, Darnton-Hill I, de Pee S. Addressing Tuberculosis in the Context of Malnutrition and HIV Coinfection. Food Nutr Bull 2010. [DOI: 10.1177/15648265100314s404] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Tuberculosis is the second leading cause of infectious disease mortality (1.8 million/year), after HIV/AIDS. There are more than 9 million new cases each year. One-third of the world's population, and 50% of adults in sub-Saharan Africa, South Asia, and South-East Asia, are infected, representing an enormous pool of individuals at risk for developing the disease. The situation is complicated by the HIV/AIDS pandemic, widespread undernutrition, smoking, diabetes, increased mobility, and emergence of multi- and extensively drug-resistant tuberculosis. Objective To review the scientific evidence about the interactions among tuberculosis, nutrition, and HIV coinfection. Results HIV infection and malnutrition lower immunity, increasing the risk of reactivation tuberculosis and primary progressive disease. Having either tuberculosis or HIV infection causes weight loss. Malnutrition markedly increases mortality among both tuberculosis and HIV/AIDS patients and should be treated concurrently with treatment of the infections. Tuberculosis treatment is a prerequisite for nutritional recovery, in addition to intake of nutrients required for rebuilding tissues, which is constrained in food-insecure households. Additional pharmaceutical treatment to reduce the catabolic impact of inflammation or promote growth may be needed. Specific nutrients can contribute to faster sputum smear clearance, which is important for reducing transmission, as well as faster weight gain when combined with an adequate diet. Adequate nutrition and weight gain in undernourished populations might reduce the incidence of tuberculosis. Conclusions The many risk factors for the development of tuberculosis need to be addressed simultaneously, especially HIV/AIDS and food insecurity and undernutrition. For stronger evidence-based guidelines, existing recommendations and clinical applications need to be more widely applied and evaluated.
Collapse
|
49
|
Cobanoglu U, Sayir F, Mergan D. Reactive oxygen metabolites can be used to differentiate malignant and non-malignant pleural efffusions. Ann Thorac Med 2010; 5:140-4. [PMID: 20835307 PMCID: PMC2930651 DOI: 10.4103/1817-1737.65042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/18/2009] [Accepted: 05/08/2010] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE: Increase in reactive oxygen metabolites (ROM) and free radicals is an important cause of cell injury. In this study, we investigated whether determination of ROM in pleural fluids of patients with malignant and non-malignant pleural effusions can be used as a tumor marker indicating malignant effusions in the differential diagnosis. METHODS: Sixty subjects with exudative pleural effusion and 25 healthy individuals as the control group were included in the study. Of the subjects with pleural effusion, 50% were malignant and 50% were non-malignant. ROM was studied in the pleural fluids and sera of the subjects with pleural effusion and in the sera of those in the control group. The ROM values of smokers and non-smokers were compared in each group. The Student’s t-test and the Mann-Whitney U test were used in order to detect differences between groups for descriptive statistics in terms of pointed features. The statistical significance level was set at 5% in computations, and the computations were made using the SPSS (ver.13) statistical package program RESULTS: It was determined that the difference between the ROM values of subjects with malignant and non-malign pleural effusions and the sera of the control group was significant in the malignant group compared to both groups (P = 0.0001), and the sera ROM values of patients with non-malignant pleural effusion were significant compared to the control group (P = 0.0001), and the ROM values of smokers were significant compared to non-smokers in each of the three groups (P = 0.0001). CONCLUSION: These findings indicate that sera ROM levels are increased considerably in patients with exudative effusions compared to that of the control group. This condition can be instructive in terms of serum ROM value being suggestive of exudative effusion in patients with effusions. Furthermore, the detection of pleural ROM values being significantly higher in subjects with malignant pleural effusions compared to non-malignant subjects suggests that ROM can be used as a tumor marker in the differential diagnosis of pleural effusions of unknown origin.
Collapse
Affiliation(s)
- Ufuk Cobanoglu
- Faculty of Medicine, Department of Thoracic Surgery, Yuzuncu Yil University, Van, Turkey.
| | | | | |
Collapse
|
50
|
Abstract
The immune system requires several essential micronutrients to maintain an effective immune response. HIV infection destroys the immune system and promotes nutritional deficiencies, which further impair immunity. This article reviews the role of several micronutrients (vitamins A, C, E and D, the B vitamins, and minerals, selenium, iron and zinc) that are relevant for maintaining immune function. In addition, the deficiencies of these micronutrients have been associated with faster progression of HIV-1 disease. This review examines the evidence from observational studies of an association between micronutrient status and HIV disease, as well as the effectiveness of micronutrient supplementation on HIV-disease progression, pregnancy outcomes and nutritional status, among others, utilizing randomized clinical trials. Each micronutrient is introduced with a summary of its functions in human physiology, followed by the presentation of studies conducted in HIV-infected patients in relation to this specific micronutrient. Overall findings and recommendations are then summarized.
Collapse
Affiliation(s)
- Adriana Campa
- Florida International University, Stempel College of Public Health & Social Work, University Park, HLS-1–337, Miami, FL 33199, USA
| | | |
Collapse
|