1
|
Jia Y, Wang H, Fan W, Lv J, Niu Q, Zhu R, Zhang Q. Effects of polyphenol-rich seed foods on lipid and inflammatory markers in patients with coronary heart disease: a systematic review. Front Nutr 2024; 11:1493410. [PMID: 39628469 PMCID: PMC11611543 DOI: 10.3389/fnut.2024.1493410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Background Coronary heart disease (CHD) is a prevalent cardiovascular condition, with its incidence and mortality rates steadily rising over time, posing a significant threat to human health. Studies have indicated that polyphenols exhibit a certain degree of protective effect against coronary heart disease. However, the findings regarding the impact of polyphenol-rich seed foods on patients with CHD have yielded inconsistent results. Objective This study investigated the effects of polyphenol-rich seed foods on blood lipids and inflammatory markers in patients with coronary heart disease. Methods The China National Knowledge Network, China Science and Technology Journal Database, China Biomedical Literature Database, Wanfang Database, PubMed, Cochrane Library, Embase, and Web of Science were searched for articles from the self-built database until March 16, 2024. The quality of the included studies was assessed using Edition 2 of the Cochrane Randomized Trials Risk Bias Tool, and data analysis was conducted using RevMan 5.4. Results The study encompassed seven articles, with a total participation of 324 patients diagnosed with coronary heart disease. The study incorporated three seed foods abundant in polyphenols: Brazil nut, almond, and flaxseed. The meta-analysis findings revealed a significant reduction in triglyceride levels [MD = -20.03, 95% CI (-32.25, -17.44), p < 0.00001] among patients diagnosed with coronary heart disease who incorporated seed-based foods abundant in polyphenols into their diet regimen. Furthermore, a notable enhancement was observed in HDL cholesterol levels [MD = 3.14, 95% CI (1.55, 4.72), p = 0.0001]. Moreover, the type of intervention substance influenced the observed effects. The consumption of almonds has been demonstrated to significantly reduce total cholesterol [MD = -15.53, 95% CI (-21.97, -9.1), p < 0.00001] and LDL cholesterol [MD = -14.62, 95% CI (-20.92, -8.33), p < 0.00001] in patients diagnosed with coronary heart disease. Additionally, the incorporation of flaxseed into the diet has shown an enhanced effect on reducing C-reactive protein levels. Conclusion The consumption of polyphenol-rich seed foods can moderately improve TG and HDL-C levels in patients with coronary heart disease, while incorporating flaxseed into their diet can effectively improve inflammatory markers.
Collapse
Affiliation(s)
- Yatian Jia
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- School of Nursing, Shanxi University of Chinese Medicine, Yuci, China
| | - Hui Wang
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- School of Nursing, Shanxi University of Chinese Medicine, Yuci, China
| | - Wen Fan
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Jie Lv
- School of Nursing, Shanxi University of Chinese Medicine, Yuci, China
| | - Qingmei Niu
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- School of Nursing, Shanxi University of Chinese Medicine, Yuci, China
| | - Ruifang Zhu
- Editorial Office, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Zhang
- Nursing Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- School of Nursing, Shanxi University of Chinese Medicine, Yuci, China
| |
Collapse
|
2
|
Zheng Y, Sun F, Ye S, Zhu J, Ma Y, Shan M, Li S, Chen Y, Li J. Correlation between fruit consumption and 10-year all-cause mortality in patients with dyslipidemia. Front Nutr 2024; 11:1471737. [PMID: 39421625 PMCID: PMC11484278 DOI: 10.3389/fnut.2024.1471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Consuming fruit provides health benefits. Reportedly, increased fruit consumption reduces the risks of hypertension and cardiovascular disease. However, existing studies have not clarified the effect of fruit consumption on mortality risk in patients with dyslipidemia. This study aimed to assess the correlation between the consumption of different types of fruits and all-cause mortality in patients with dyslipidemia. METHODS A total of 2,184 patients with dyslipidemia were included in this study, and trends in the correlation between the frequency of consumption of different types of fruits and the 10-year all-cause mortality risk in patients with dyslipidemia were analyzed by smoothed curve fitting, Cox regression, and Kaplan-Meier curve analysis. Subgroup analysis and interaction test were applied to analyze the stability of the effect of apple consumption on 10-year all-cause mortality in patients with dyslipidemia. RESULTS Smoothed curve fitting and Cox regression analyses revealed a significant reduction in the 10-year all-cause mortality risk in patients with dyslipidemia who consumed apples 3-4 times/week (hazard ratio [HR] = 0.61, 95% confidence interval [CI]: 0.43-0.87, p = 0.007) and in those who consumed bananas 3-4 times/week (HR = 0.71, 95% CI: 0.52-0.98, p = 0.039), with a more pronounced effect in patients who consumed both apples and bananas (HR = 0.55, 95% CI: 0.30-0.99, p = 0.045). Other fruits did not exhibit similar effects. CONCLUSION Consuming apples or bananas 3-4 times/week significantly improved the 10-year survival rate in patients with dyslipidemia, and the effect was even more profound in patients who consumed both fruits.
Collapse
Affiliation(s)
- Yuanjuan Zheng
- Department of General Practice, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Feifei Sun
- Department of Critical Care Medicine, Heilongjiang Provincial Corps Hospital of Chinese People’s Armed Police Forces, Harbin, China
| | - Suling Ye
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Jinzhou Zhu
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Yu Ma
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Mengmeng Shan
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Shaomi Li
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Yingying Chen
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| | - Jie Li
- Department of Internal Medicine, Ruijin-Hainan Hospital Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Qionghai, China
| |
Collapse
|
3
|
Mierczak K, Garus-Pakowska A. An Overview of Apple Varieties and the Importance of Apple Consumption in the Prevention of Non-Communicable Diseases-A Narrative Review. Nutrients 2024; 16:3307. [PMID: 39408274 PMCID: PMC11478947 DOI: 10.3390/nu16193307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Non-communicable diseases such as cardiovascular diseases, cancers, diabetes, and asthma are increasingly common due to factors like industrialization, urbanization, fast-paced life, stress, sedentary lifestyle, and unbalanced diet in the 21st century. These chronic conditions are a global epidemic, being among the top causes of death worldwide. Preventing these diseases through a nutritious diet is crucial, and scientific studies suggest that appropriate fruit intake, particularly apples, can lower the risk of various health issues. Apples, rich in bioactive compounds, vitamins, minerals, and dietary fiber, offer numerous health benefits. Regular consumption of apples helps reduce the risk of atherosclerosis, coronary artery disease, heart attacks, and diabetes, and also provides anti-asthmatic and anti-allergic effects. Apples aid in detoxification, improve digestion, enhance skin, hair, and nail health, and offer protection against cancers, Alzheimer's, and Parkinson's disease. Apples have been a dietary staple for centuries, consumed in various forms like juices, sauces, and ciders. The reviewed article emphasizes the health benefits of apples, highlighting their role in preventing civilization diseases. It also discusses the characteristics of common apple varieties and the impact of thermal processing on their nutritional content.
Collapse
Affiliation(s)
| | - Anna Garus-Pakowska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| |
Collapse
|
4
|
Gonzalez JT. Are all sugars equal? Role of the food source in physiological responses to sugars with an emphasis on fruit and fruit juice. Eur J Nutr 2024; 63:1435-1451. [PMID: 38492022 PMCID: PMC11329689 DOI: 10.1007/s00394-024-03365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High (free) sugar intakes can increase self-reported energy intake and are associated with unfavourable cardiometabolic health. However, sugar source may modulate the effects of sugars due to several mechanisms including the food matrix. The aim of this review was to assess the current state of evidence in relation to food source effects on the physiological responses to dietary sugars in humans relevant to cardiometabolic health. An additional aim was to review potential mechanisms by which food sources may influence such responses. Evidence from meta-analyses of controlled intervention trials was used to establish the balance of evidence relating to the addition of sugars to the diet from sugar-sweetened beverages, fruit juice, honey and whole fruit on cardiometabolic outcomes. Subsequently, studies which have directly compared whole fruit with fruit juices, or variants of fruit juices, were discussed. In summary, the sources of sugars can impact physiological responses, with differences in glycaemic control, blood pressure, inflammation, and acute appetite. Longer-term effects and mechanisms require further work, but initial evidence implicates physical structure, energy density, fibre, potassium and polyphenol content, as explanations for some of the observed responses.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
5
|
Zhang Y, Tabung FK, Smith-Warner SA, Giovannucci E. High-quality fruit and vegetable characterized by cardiometabolic biomarkers and its relation to major chronic disease risk: results from 3 prospective United States cohort studies. Am J Clin Nutr 2024; 120:369-379. [PMID: 38802063 PMCID: PMC11347790 DOI: 10.1016/j.ajcnut.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The current guidelines recommend a specified total serving of fruits and vegetables (FV). However, how differences in their nutritional quality of specific FV influence overall health remains unclear. OBJECTIVES To identify high-quality FV using 14 cardiometabolic biomarkers, and assess their consumption, alongside overall FV intake, with chronic disease risk. METHODS We used data from 3 prospective cohorts, Health Professionals Follow-up Study, Nurses' Health Study (NHS), and NHSII. Diet was assessed at baseline and updated every 4 y. Biomarker analysis was conducted on 41,714 participants using generalized linear models. Metabolic quality was ascertained by each FV's association with biomarkers. Major chronic disease risk analysis involved 207,241 participants followed for 32 y with Cox proportional hazards models. We also analyzed atherosclerotic cardiovascular disease (ASCVD), type 2 diabetes (T2D), cancer, and chronic obstructive pulmonary disease (COPD) as secondary outcomes. RESULTS Of 52 FV items, 19 were identified as high-metabolic quality (top 5: apples/pears, iceberg/head lettuce, raw spinach, alfalfa sprouts, and eggplant/summer squash). In disease risk analysis, 60,712 major chronic disease events were recorded. A higher proportion of high-metabolic quality FV intake was associated with lower chronic disease risk across total FV quantity levels. In each quantity level stratum (quartiles Q1-Q4), comparing the highest to the lowest quality proportion quartiles, the hazard ratio (HR) (95% confidence interval [CI]) were 0.85 (0.81-0.90), 0.86 (0.82-0.90), 0.84 (0.80-0.89), and 0.89 (0.84-0.94), all P-trend < 0.001. Patterns were similar for ASCVD, T2D, and COPD but less consistent for cancer. High total FV intake, if consisting mostly of neutral or low-metabolic quality items, was not associated with lower chronic disease risk. For diabetes specifically, these were associated with significantly higher risk [quantity-Q3, HR: 1.13 (1.05, 1.22); quantity-Q4, HR: 1.17 (1.07, 1.28)]. CONCLUSIONS Our findings indicate the importance of considering both quality and quantity of FV for health, and support dietary guidelines to emphasize high-metabolic quality FV consumption alongside overall intake.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
6
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
7
|
Jia Y, Zhang Q, Zhang Y, Wang H, Niu Q, Zhu R, Li J, Fan W, Zhang Y. Effects of Polyphenol-Rich Foods on Lipids and Oxidative Stress Status in Patients with Hyperlipidemia: A Systematic Review of Randomized Controlled Trials. J Multidiscip Healthc 2024; 17:3167-3179. [PMID: 39006877 PMCID: PMC11245574 DOI: 10.2147/jmdh.s471372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Background Hyperlipidemia has been demonstrated to be an autonomous predictor of numerous cardiovascular and cerebrovascular ailments, and research indicates that polyphenols have preventive and therapeutic effects on hyperlipidemia. Nevertheless, the impact of polyphenol-rich foods on blood lipids and oxidative stress status in patients with hyperlipidemia remains inconclusive. Objective To examine the impact of polyphenol-rich foods on lipid levels and oxidative stress in individuals with hyperlipidemia. Methods To retrieve papers published from the establishment of the database through October 9, 2023, eight databases were searched: the Chinese National Knowledge Infrastructure, the China Biomedical Literature Database, the Wanfang Database, the China Science and Technology Journal Database, PubMed, the Cochrane Library, Embase, and the Web of Science. The quality of include studies was assessed using the Cochrane Risk of Bias in Randomized Trials tool, v2. Results The study involved 13 surveys encompassing 640 patients diagnosed with hyperlipidemia. The scope of the food surveys included 12 commonly consumed food groups and medicinal and food homologous substances. All 13 studies reported the effects of polyphenol-rich foods on blood lipids, with significant improvements observed in blood lipid levels for 9 types of foods. Eight studies examined the impact on oxidative stress, and six foods demonstrated a significant reduction in oxidative stress levels. The observed effects were found to be influenced by factors such as dosage, duration of intervention, and gender. Conclusion Foods abundant in polyphenols play a crucial role in the prevention and treatment of hyperlipidemia by counteracting oxidative stress and regulating metabolic disorders. The confirmation of certain positive effects by several studies notwithstanding, discrepancies in results arise from various factors, necessitating further large-scale, prospective, well-designed randomized controlled studies to address this issue.
Collapse
Affiliation(s)
- Yatian Jia
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Qian Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
- School of Nursing/Research Center of Dietary Therapy Technology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yihua Zhang
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Hui Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Qingmei Niu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Ruifang Zhu
- Editorial Office, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jia Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
| | - Wen Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, People’s Republic of China
| | - Yuexing Zhang
- School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| |
Collapse
|
8
|
Wang P, Liu XL, Jiang ZZ, Long Y, Gao CL, Huang W, Tan XZ, Ma XM, Xu Y. Effect of proanthocyanidins on blood lipids: A systematic review and meta-analysis. Phytother Res 2024; 38:2154-2164. [PMID: 38391003 DOI: 10.1002/ptr.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
| | - Xue Lian Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Sichuan College of Traditional Chinese Medicine, Mianyang, PR China
| | - Zong Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Chen Lin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Xiao Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
| | - Xiu Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, PR China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China
| |
Collapse
|
9
|
Lee HB, Khan R, Vally M, Orchard A. A scoping review on natural cholesterol lowering supplements sold in South African pharmacies. Health SA 2024; 29:2299. [PMID: 38445038 PMCID: PMC10913186 DOI: 10.4102/hsag.v29i0.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/30/2023] [Indexed: 03/07/2024] Open
Abstract
Background Dyslipidaemia is defined as elevated total or low-density lipoprotein (LDL) levels or low levels of high-density lipoprotein (HDL). Patients may often make use of natural cholesterol lowering supplements (NCLSs) available at the pharmacy; however, limited information on these supplements is readily available. Pharmacists should be knowledgeable about NCLSs to ensure that the use of these supplements is supported by evidence and to provide appropriate advice to patients for desirable therapeutic outcomes. Aim This study aimed to identify the NCLSs being sold in South African pharmacies and review the scientific evidence for each of the ingredients in these NCLSs. Methods Seventeen NCLS products were identified, and the Joanna Briggs Institute (JBI) scoping review methodology was used to conduct a literature review of NCLSs. Results From the ingredients reviewed it is evident that co-enzyme Q10, probiotics and sterols have sufficient evidence supporting their use. However, there is still limited scientific evidence available to validate the remaining ingredients. Conclusion Further research on NCLSs will provide practising pharmacists and practitioners with a guide of the evidence available on the various ingredients in NCLSs. Contribution This study provides a review of the available literature on the NCLSs being sold in the pharmacies across South Africa to provide pharmacists with a collated document of the evidence behind these popular supplements to assist them in making evidence based informed decision regarding natural products for cholesterol.
Collapse
Affiliation(s)
- Hyeon Bok Lee
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Razeeya Khan
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Vally
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ané Orchard
- Department of Pharmacy and Pharmacology, Division of Clinical Pharmacy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Frumuzachi O, Babotă M, Miere D, Mocan A, Crișan G. The impact of consuming technologically processed functional foods enriched/fortified with (poly)phenols on cardiometabolic risk factors: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2024; 65:947-963. [PMID: 38214689 DOI: 10.1080/10408398.2023.2286475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cardiovascular diseases are a major global cause of death and healthcare costs, emphasizing the need for effective prevention and management of cardiometabolic risk factors. One promising approach is the consumption of technologically processed functional foods enriched/fortified with (poly)phenols. The current systematic review aimed to evaluate the human clinical trials evidence on the effect of intake of these foods on reducing the most common cardiometabolic risk factors. 12 randomized controlled studies were included in the systematic review, with varying food intake amounts (27-360 g/day) and (poly)phenol doses (32.5-850 mg/day). These interventions included consumption of functional bakery goods, cereal bars, pasta, chocolate, and yogurt, with supplementation periods spanning from 2 to 52 wk. Several foods, such as green tea extract-fortified rye bread and olive fruit (poly)phenol-fortified yogurt, significantly lowered blood pressure. Flavonoid-enriched chocolate, hydroxytyrosol-fortified bread, and other products influenced glucose metabolism. Additionally, various functional foods were associated with improved blood lipid levels. While these results indicate the health advantages of consuming technologically processed functional foods enriched/fortified with (poly)phenols, caution is warranted due to the scarcity and limitations of existing studies. Further research is needed to confirm and expand upon these results in the prevention and management of cardiometabolic risk factors.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Zhu Z, Xu Y, Xia Y, Jia X, Chen Y, Liu Y, Zhang L, Chai H, Sun L. Review on chronic metabolic diseases surrounding bile acids and gut microbiota: What we have explored so far. Life Sci 2024; 336:122304. [PMID: 38016578 DOI: 10.1016/j.lfs.2023.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Bile acid, the final product of cholesterol breakdown, functions as a complex regulator and signaling factor in human metabolism. Chronic metabolic diseases pose significant medical challenges. Growing research underscores bile acids' capacity to enhance metabolism via diverse pathways, regulating disorders and offering treatment potential. Numerous bile-acid-triggered pathways have become treatment targets. This review outlines bile acid synthesis, its role as a signal in chronic metabolic diseases, and highlights its interaction with gut microbiota in different metabolic conditions. Exploring host-bacteria-bile acid links emerges as a valuable future research direction with clinical implications.
Collapse
Affiliation(s)
- Zhenzheng Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuemiao Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixin Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyue Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Hui Chai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
12
|
Castro RJ, Pedroza K, Hong MY. The effects of mango consumption on vascular health and immune function. Metabol Open 2023; 20:100260. [PMID: 38115868 PMCID: PMC10728568 DOI: 10.1016/j.metop.2023.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023] Open
Abstract
Objectives Heart disease, caused by atherosclerosis, is the leading cause of death. Maintaining vascular integrity is crucial to reducing atherosclerosis risk. Mangos are rich in fiber, vitamins, minerals, and phytochemicals that may offer cardioprotective and immune-boosting benefits. However, their effects on the vasculature and immune system in adults with overweight and obesity remain unclear. The objective of this study was to investigate the effects of mango consumption on vascular health and immune function in adults with overweight and obesity. Methods In a 12-week, crossover study, 27 overweight and obese participants consumed either 100 kcals of mangos daily or isocaloric low-fat cookies daily. Fasting blood samples were collected at baseline, week 4, and week 12 and analyzed for vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, E-selectin, sCD4, sCD8, sCD3E, and sCD45, tumor necrosis factor-alpha (TNF-α), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Results Mango consumption significantly decreased VCAM-1 between baseline and week 4 (P = 0.046) and week 12 (P = 0.004). CAT increased between baseline and week 12 (P = 0.035) with mango consumption. GPx increased at week 12 compared to baseline and week 4 (P < 0.05). At week 12, SOD was higher after mango consumption compared to low-fat cookie consumption (P = 0.046). There were no significant differences in ICAM-1, P-selectin, E-selectin, sCD4, sCD8, sCD3E, sCD45 or TNF-α concentrations (P > 0.05 for all non-significant results). Conclusions This study suggests that 100 kcals of mangos may benefit the integrity of the vasculature by reducing VCAM-1 and increasing SOD, CAT, and GPx levels. Mangos can be an alternative snack for improving atherosclerosis and oxidative stress risk factors.
Collapse
Affiliation(s)
- Robert J. Castro
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Kazandra Pedroza
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
13
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
14
|
Yang X, Liu L, Xi L, Wu B, Ku C, Wang R, Dai M, Ping Z. Trends in total cholesterol control among American adults with hypercholesterolemia, 1988-2018. Nutr Metab Cardiovasc Dis 2023; 33:1511-1520. [PMID: 37344285 DOI: 10.1016/j.numecd.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Cholesterol control and management in patients with hypercholesterolemia are significant for the primary and secondary prevention of atherosclerotic cardiovascular disease. This study analyzed the trend of serum total cholesterol (TC) control (<240 mg/dL and <200 mg/dL) in American adults with hypercholesterolemia and thereby make some effective recommendations for the public health measures. METHODS AND RESULTS Basing on the National Health and Nutrition Examination Survey (NHANES) data from 1988 to 2018 (12 cycles), we calculated the weighted and representative rate of patients with hypercholesterolemia who had controlled TC, and then described the trend. Among the adults with hypercholesterolemia, the age-adjusted rate of those whose TC was less than 240 mg/dL increased from 7.67% (95%CI: 5.94%-9.40%) in 1988-1991 to 58.52% (95%CI: 55.89%-61.15%) in 2013-2014 and then remained stable; and the age-adjusted rate of those whose TC was less than 200 mg/dL increased from 2.49% (95%CI: 1.48%-3.50%) in 1988-1991 to 44.58% (95%CI: 40.00%-49.16%) in 2017-2018. CONCLUSION We concluded that the rate of controlling TC below 200 mg/dL among all patients had shown an increasing trend from 1988 to 2018 in America, while the rate of controlling TC below 240 mg/dL remained stable in recent years after an increasing.
Collapse
Affiliation(s)
- Xueke Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Lijing Xi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Binbin Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoyue Ku
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhe Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Man Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiguang Ping
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
16
|
Zhor C, Wafaa L, Ghzaiel I, Kessas K, Zarrouk A, Ksila M, Ghrairi T, Latruffe N, Masmoudi-Kouki O, El Midaoui A, Vervandier-Fasseur D, Hammami M, Lizard G, Vejux A, Kharoubi O. Effects of polyphenols and their metabolites on age-related diseases. Biochem Pharmacol 2023:115674. [PMID: 37414102 DOI: 10.1016/j.bcp.2023.115674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Aging contributes to the progressive loss of cellular biological functions and increases the risk of age-related diseases. Cardiovascular diseases, some neurological disorders and cancers are generally classified as age-related diseases that affect the lifespan of individuals. These diseases result from the accumulation of cellular damage and reduced activity of protective stress response pathways, which can lead to inflammation and oxidative stress, which play a key role in the aging process. There is now increasing interest in the therapeutic effects of edible plants for the prevention of various diseases, including those associated with aging. It has become clear that the beneficial effects of these foods are due, at least in part, to the high concentration of bioactive phenolic compounds with low side effects. Antioxidants are the most abundant, and their high consumption in the Mediterranean diet has been associated with slower ageing in humans. Extensive human dietary intervention studies strongly suggest that polyphenol supplementation protects against the development of degenerative diseases, especially in the elderly. In this review, we present data on the biological effects of plant polyphenols in the context of their relevance to human health, ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Chouari Zhor
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Lounis Wafaa
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khadidja Kessas
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Amira Zarrouk
- University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse: Faculty of Medicine, Sousse, Tunisia.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Norbert Latruffe
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Olfa Masmoudi-Kouki
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, University Bourgogne Franche-Comté, 9, avenue A. Savary, 21078 Dijon Cedex, France.
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Omar Kharoubi
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| |
Collapse
|
17
|
Fan JH, Sun WY, Yang H, Wang XK, Abnet CC, Qiao YL. Short-term and long-term effect of nutrition intervention in the Linxian Dysplasia Nutrition Intervention Trial and the reason for disappearance of the intervention effect: A cohort study. Cancer 2023. [PMID: 37243894 DOI: 10.1002/cncr.34761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The objective of this study was to determine the short-term and long-term effects of a nutrition intervention in using 37 years of follow-up data. METHODS The Linxian Dysplasia Population Nutrition Intervention Trial was a randomized, double-blind, placebo-controlled trial with 7 years of intervention and 30 years of follow-up. The Cox proportional hazard model was used for analyses. Subgroup analyses were conducted in age and sex subgroups, and the 30 years of follow-up were divided into two 15-year early and late periods. RESULTS The results at 37 years did not indicate any effects on mortality from cancers or other diseases. In the first 15 years, the intervention decreased the overall risk of gastric cancer deaths in all participants (hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.58-1.00) and in the subgroup participants younger than 55 years (HR, 0.64; 95% CI, 0.43-0.96). In addition, in the group younger than 55 years (HR, 0.58; 95% CI, 0.35-0.96), the intervention decreased the risk of death from other diseases; and, in the group aged 55 years and older (HR, 0.75; 95% CI, 0.58-0.98), the intervention reduced the risk of death from heart disease. There were no significant results in the later 15 years, which indicated the disappearance of the intervention effect. Comparing demographic characteristics between those who died during the two periods, the participants who died later included more women, had a higher education level, had a lower smoking rate, were younger, and also more had a mild degree of esophageal dysplasia, representing a better lifestyle and health condition. CONCLUSIONS Long-term follow-up indicated no effect of nutrition on deaths in a population with esophageal squamous dysplasia, further supporting the significance of continuous nutritional intervention for cancer protection. The pattern of protective effect of a nutrition intervention on gastric cancer in patients with esophageal squamous dysplasia was similar to that in the general population. Participants who died in the later period had more protective factors than those who died in the earlier period, contributing to the obvious effect of the intervention in early stage disease.
Collapse
Affiliation(s)
- Jin-Hu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wan-Yi Sun
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Yang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Kun Wang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - You-Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Nie F, Liu L, Cui J, Zhao Y, Zhang D, Zhou D, Wu J, Li B, Wang T, Li M, Yan M. Oligomeric Proanthocyanidins: An Updated Review of Their Natural Sources, Synthesis, and Potentials. Antioxidants (Basel) 2023; 12:antiox12051004. [PMID: 37237870 DOI: 10.3390/antiox12051004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Oligomeric Proanthocyanidins (OPCs), as a class of compounds widely found in plants, are particularly abundant in grapes and blueberries. It is a polymer comprising many different monomers, such as catechins and epicatechins. The monomers are usually linked to each other by two types of links, A-linkages (C-O-C) and B-linkages (C-C), to form the polymers. Numerous studies have shown that compared to high polymeric procyanidins, OPCs exhibit antioxidant properties due to the presence of multiple hydroxyl groups. This review describes the molecular structure and natural source of OPCs, their general synthesis pathway in plants, their antioxidant capacity, and potential applications, especially the anti-inflammatory, anti-aging, cardiovascular disease prevention, and antineoplastic functions. Currently, OPCs have attracted much attention, being non-toxic and natural antioxidants of plant origin that scavenge free radicals from the human body. This review would provide some references for further research on the biological functions of OPCs and their application in various fields.
Collapse
Affiliation(s)
- Fanxuan Nie
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lili Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiamin Cui
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuquan Zhao
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
19
|
Wang J, Liu YM, Hu J, Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed Pharmacother 2023; 162:114464. [PMID: 37060657 DOI: 10.1016/j.biopha.2023.114464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
Over the past few decades, clinical trials conducted worldwide have demonstrated the efficacy of arsenic trioxide (ATO) in the treatment of relapsed acute promyelocytic leukemia (APL). Currently, ATO has become the frontline treatments for patients with APL. However, its therapeutic applicability is severely constrained by ATO-induced cardiac side effects. Any cardioprotective agents that can ameliorate the cardiac side effects and allow exploiting the full therapeutic potential of ATO, undoubtedly gain significant attention. The knowledge and use of natural products for evidence-based therapy have grown rapidly in recent years. Here we discussed the potential mechanism of ATO-induced cardiac side effects and reviewed the studies on cardiac side effects as well as the research history of ATO in the treatment of APL. Then, We summarized the protective effects and underlying mechanisms of natural products in the treatment of ATO-induced cardiac side effects. Based on the efficacy and safety of the natural product, it has a promising future in the development of cardioprotective agents against ATO-induced cardiac side effects.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
20
|
Ma Q, Gao J, Fan Q, Yang T, Zhao Z, Zhang S, Hu R, Cui L, Liang B, Xie X, Liu J, Long J. Thinned young apple polyphenols may prevent neuronal apoptosis by up-regulating 5-hydroxymethylcytosine in the cerebral cortex of high-fat diet-induced diabetic mice. Food Funct 2023; 14:3279-3289. [PMID: 36929718 DOI: 10.1039/d2fo03281c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Apple polyphenols exert neuroprotective effects by improving the mitochondrial tricarboxylic acid (TCA) cycle function, but the details of their mechanisms are still not fully understood. TCA cycle metabolites regulate the level of 5-hydroxymethylcytosine (5hmC) by affecting the ten-eleven translocation (TET) enzyme activity. Therefore, we hypothesized that thinned young apple polyphenols (TYAPs) inhibit neuronal apoptosis by up-regulating the level of 5hmC in the cerebral cortex of high-fat diet-induced diabetic mice. C57BL/6J mice were randomly divided into 5 groups (n = 10 each group): the control (CON) group, the high-fat diet (HFD, negative control) group, the lovastatin (LOV, positive drug control) group, the resveratrol (RES, positive polyphenol control) group and the TYAP group during an eight-week intervention. The presented results verified that in the HFD group, the level of 5hmC and the expression of TET2 in the cerebral cortex were significantly lower, and the ratio of (succinic acid + fumaric acid)/α-ketoglutarate and the neuronal apoptosis rate were significantly higher than those in the CON group. However, TYAP intervention effectively restored the level of 5hmC through up-regulating the expression and activity of TET2, so as to improve diabetes symptoms and prevent diabetes-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Qingqing Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Qiang Fan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Tao Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiuying Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| |
Collapse
|
21
|
Kiyimba T, Yiga P, Bamuwamye M, Ogwok P, Van der Schueren B, Matthys C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2023; 14:270-282. [PMID: 36796437 PMCID: PMC10229382 DOI: 10.1016/j.advnut.2023.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
The evidence from clinical trials concerning the efficacy of dietary polyphenols on cardiometabolic health is divergent. Therefore, this review aimed to determine the pooled effect of dietary polyphenols on cardiometabolic risk markers and compare the difference in efficacy between whole polyphenol-rich foods and purified food polyphenol extracts. We conducted a random-effect model meta-analysis of randomized controlled trials (RCTs) on the effect of polyphenols on blood pressure, lipid profile, flow-mediated dilation (FMD), fasting blood glucose (FBG), waist circumference, and markers of inflammation. Effect size was expressed as weighted mean difference and 95% CI. RCTs published in English between 2000 and 2021 involving adult participants with cardiometabolic risks were searched in electronic databases. Forty-six RCTs involving 2494 participants with a mean age of 53.3 ±10 y were included in this review. Whole polyphenol-rich food but not purified food polyphenol extracts significantly reduced systolic blood pressure (SBP, -3.69 mmHg; 95% CI: -4.24, -3.15 mmHg; P = 0.00001) and diastolic blood pressure (DBP, -1.44 mmHg; 95% CI: -2.56, -0.31 mmHg; P = 0.0002). Concerning waist circumference, purified food polyphenol extracts led to a larger effect (-3.04 cm; 95% CI: -7.06, -0.98 cm; P = 0.14). Significant effects on total cholesterol (-9.03 mg/dL; 95% CI: -16.46, -1.06 mg/dL; P = 0.02) and TGs (-13.43 mg/dL; 95% CI: -23.63, -3.23; P = 0.01) were observed when purified food polyphenol extracts were considered separately. None of the intervention materials significantly affected LDL-cholesterol, HDL-cholesterol, FBG, IL-6, and CRP. When both whole food and extracts were pooled together, there was a significant reduction in SBP, DBP, FMD, TGs, and total cholesterol. These findings suggest that polyphenols both as whole food and purified extracts can be efficacious in reducing cardiometabolic risks. However, these results must be interpreted with caution because of high heterogeneity and risk of bias among RCTs. This study was registered on PROSPERO as CRD42021241807.
Collapse
Affiliation(s)
- Tonny Kiyimba
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda; Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Peter Yiga
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda; Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Michael Bamuwamye
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda
| | - Patrick Ogwok
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Pushpass RAG, Alzoufairi S, Mancini A, Quilter K, Fava F, Delaiti S, Vrhovsek U, Christensen C, Joyce SA, Tuohy KM, Jackson KG, Lovegrove JA. Chronic consumption of probiotics, oats, and apples has differential effects on postprandial bile acid profile and cardiometabolic disease risk markers compared with an isocaloric control (cornflakes): a randomized trial. Am J Clin Nutr 2023; 117:252-265. [PMID: 36811563 DOI: 10.1016/j.ajcnut.2022.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dietary components that impact the gut microbiota may beneficially affect cardiometabolic health, possibly by altered bile acid metabolism. However, impacts of these foods on postprandial bile acids, gut microbiota, and cardiometabolic risk markers are unclear. OBJECTIVES The aim of this study was to determine the chronic effects of probiotics, oats, and apples on postprandial bile acids, gut microbiota, and cardiometabolic health biomarkers. METHODS Using an acute within chronic parallel design, 61 volunteers (mean ± SD: age 52 ± 12 y; BMI 24.8 ± 3.4 kg/m2) were randomly assigned to consume 40 g cornflakes (control), 40 g oats or 2 Renetta Canada apples each with 2 placebo capsules per day or 40 g cornflakes with 2 Lactobacillus reuteri capsules (>5 × 109 CFU) per day, for 8 wk. Fasting and postprandial serum/plasma bile acids and cardiometabolic health biomarkers, fecal bile acids, and gut microbiota composition were determined. RESULTS At week 0, oats and apples significantly decreased postprandial serum insulin [area under the curve (AUC): 25.6 (17.4, 33.8) and 23.4 (15.4, 31.4) vs. 42.0 (33.7, 50.2) pmol/L × min and incremental AUC (iAUC): 17.8 (11.6, 24.0) and 13.7 (7.7, 19.8) vs. 29.6 (23.3, 35.8) pmol/L × min] and C-peptide responses [AUC: 599 (514, 684) and 550 (467, 632) vs. 750 (665, 835) ng/mL × min], whereas non-esterified fatty acids were increased [AUC 135 (117, 153) vs. 86.3 (67.9, 105) and iAUC 96.2 (78.8, 114) vs. 60 (42.1, 77.9) mmol/L × min] after the apples vs. control (P ≤ 0.05). Postprandial unconjugated [AUC: predicted means (95% CI) 1469 (1101, 1837) vs. 363 (-28, 754) μmol/L × min and iAUC: 923 (682, 1165) vs. 22.0 (-235, 279) μmol/L × min)] and hydrophobic [iAUC: 1210 (911, 1510) vs. 487 (168, 806) μmol/L × min] bile acid responses were increased after 8 wk probiotic intervention vs. control (P ≤ 0.049). None of the interventions modulated the gut microbiota. CONCLUSIONS These results support beneficial effects of apples and oats on postprandial glycemia and the ability of the probiotic Lactobacillus reuteri to modulate postprandial plasma bile acid profiles compared with control (cornflakes), with no relationship evident between circulating bile acids and cardiometabolic health biomarkers.
Collapse
Affiliation(s)
- Rose-Anna Grace Pushpass
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Harry Nursten Building, Reading, UK
| | - Shouq Alzoufairi
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Harry Nursten Building, Reading, UK
| | - Andrea Mancini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Karena Quilter
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Francesca Fava
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Simone Delaiti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Camilla Christensen
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Harry Nursten Building, Reading, UK
| | - Susan A Joyce
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Kieran M Tuohy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Harry Nursten Building, Reading, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Harry Nursten Building, Reading, UK.
| |
Collapse
|
23
|
Rahn C, Bakuradze T, Stegmüller S, Galan J, Niesen S, Winterhalter P, Richling E. Polyphenol-Rich Beverage Consumption Affecting Parameters of the Lipid Metabolism in Healthy Subjects. Int J Mol Sci 2023; 24:ijms24010841. [PMID: 36614281 PMCID: PMC9821765 DOI: 10.3390/ijms24010841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Polyphenols are a diverse and widely distributed class of secondary metabolites, which possess numerous beneficial properties including a modulation of glucose and lipid metabolism. This placebo-controlled human intervention study was performed to explore effects of polyphenol-rich beverage (PRB) uptake on lipid metabolism, as well as DNA integrity. In this case, 36 healthy men were randomly divided to consume either 750 mL of a PRB (containing 51% chokeberry, cranberry, and pomegranate) or a placebo drink daily for eight weeks. Only PRB consumption was found to decrease fat and protein intakes significantly compared to the preceding one-week washout period. During the intervention with PRB an increased fat-free mass was shown after four weeks, whereas a significant elevation in body weight and leptin was observed in placebo group. Blood lipids were not significantly altered after PRB consumption, while triglyceride levels increased after placebo drink intake. In platelets, a significant inhibition of phosphodiesterase (PDE) activity was observed, more pronounced in test group. Consuming the PRB decreased total DNA strand breaks in whole blood as well as H2O2-induced breaks in isolated lymphocytes. Overall, our study suggested beneficial effects on lipid metabolism by reduced energy intake, modulation of biomarkers such as PDE activity and improved DNA integrity associated with PRB consumption.
Collapse
Affiliation(s)
- Celina Rahn
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Tamara Bakuradze
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Simone Stegmüller
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Jens Galan
- Medical Institute, Hochgewanne 19, D-67269 Grünstadt, Germany
| | - Sonja Niesen
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| | - Elke Richling
- Division of Food Chemistry and Toxicology, Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
- Correspondence: ; Tel.: +49-631-205-4061
| |
Collapse
|
24
|
Polyphenols: a route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch Toxicol 2023; 97:3-38. [PMID: 36260104 DOI: 10.1007/s00204-022-03391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Chronic pathologies or non-communicable diseases (NCDs) include cardiovascular diseases, metabolic syndrome, neurological diseases, respiratory disorders and cancer. They are the leading global cause of human mortality and morbidity. Given their chronic nature, NCDs represent a growing social and economic burden, hence urging the need for ameliorating the existing preventive strategies, and for finding novel tackling therapies. NCDs are highly correlated with unhealthy lifestyle habits (such as high-fat and high-glucose diet, or sedentary life). In general, lifestyle approaches that might improve these habits, including dietary consumption of fresh vegetables, fruits and fibers, may contrast NCD symptoms and prolong life expectancy of affected people. Polyphenols (PPLs) are plant-derived molecules with demonstrated biological activities in humans, which include: radical scavenging and anti-oxidant activities, capability to modulate inflammation, as well as human enzymes, and even to bind nuclear receptors. For these reasons, PPLs are currently tested, both preclinically and clinically, as dietary adjuvants for the prevention and treatment of NCDs. In this review, we describe the human metabolism and bioactivity of PPLs. Also, we report what is currently known about PPLs interaction with gastro-intestinal enzymes and gut microbiota, which allows their biotransformation in many different metabolites with several biological functions. The systemic bioactivity of PPLs and the newly available PPL-delivery nanosystems are also described in detail. Finally, the up-to-date clinical studies assessing both safety and efficacy of dietary PPLs in individuals with different NCDs are hereby reported. Overall, the clinical results support the notion that PPLs from fruits, vegetables, but also from leaves or seeds extracts, are safe and show significant positive results in ameliorating symptoms and improving the whole quality of life of people with NCDs.
Collapse
|
25
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Habanova M, Holovicova M, Scepankova H, Lorkova M, Gazo J, Gazarova M, Pinto CA, Saraiva JA, Estevinho LM. Modulation of Lipid Profile and Lipoprotein Subfractions in Overweight/Obese Women at Risk of Cardiovascular Diseases through the Consumption of Apple/Berry Juice. Antioxidants (Basel) 2022; 11:2239. [PMID: 36421425 PMCID: PMC9686658 DOI: 10.3390/antiox11112239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Polyphenol-rich foods protect the cellular systems of the human body from oxidative damage, thereby reducing the risk of chronic diseases such as cardiovascular disease (CVD). We investigated the effect of phenolic-rich apple/berry juice (chokeberry, blueberry, and cranberry) on lipidemic profiles in overweight/obese women. The 6 week single-arm pre-post intervention study involved 20 women (mean age 52.95 ± 5.8 years, body mass index ≥25 kg/m2, and ≥1 CVD risk factors) consuming 300 mL/day of the apple/berry juice. Lipid profile, low-density lipoprotein (LDL) subfractions assessed using Lipoprint® electrophoresis, and other parameters related to cardiovascular risk (C-reactive protein, glucose, blood pressure) were analyzed before and again after the intervention in the monitored group of women. High-density lipoprotein cholesterol (HDL-C) increased from 1.30 ± 0.29 to 1.55 ± 0.32, magnesium from 0.85 ± 0.03 to 0.90 ± 0.05, and total antioxidant status from 1.68 ± 0.08 to 1.81 ± 0.10. The LDL/HDL ratio significantly decreased from 3.40 ± 0.99 to 2.66 ± 0.63 mmol/L, and the glucose from 5.50 ± 0.72 to 5.24 ± 0.74 mmol/L. However, the hs-CRP did not change significantly. Women with atherogenic subfractions LDL3-7 at baseline (n = 6) showed a significant reduction from 0.45 ± 0.19 to 0.09 ± 0.07 mmol/L. Overweight/obese women may benefit from apple/berry juice as part of a healthy lifestyle to improve their lipid profile, and thus, contribute to cardiovascular health.
Collapse
Affiliation(s)
- Marta Habanova
- The Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Maria Holovicova
- The AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Hana Scepankova
- LAQV-REQUIMTE, Chemistry Department, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Marta Lorkova
- The AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Jan Gazo
- The Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Martina Gazarova
- The Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Chemistry Department, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Chemistry Department, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leticia M. Estevinho
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
27
|
Khan A, Korban SS. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3961-3985. [PMID: 35441862 DOI: 10.1007/s00122-022-04093-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Climate change, large monocultures of disease-susceptible cultivars, overuse of pesticides, and the emergence of new pathogens or pathogenic strains causing economic losses are all major threats to our environment, health, food, and nutritional supply. Temperate tree fruit crops belonging to the Rosaceae family are the most economically important and widely grown fruit crops. These long-lived crops are under attack from many different pathogens, incurring major economic losses. Multiple chemical sprays to control various diseases annually is a common practice, resulting in significant input costs, as well as environmental and health concerns. Breeding for disease resistance has been undertaken primarily in pome fruit crops (apples and pears) for a few fungal and bacterial diseases, and to a lesser extent in some stone fruit crops. These breeding efforts have taken multiple decades due to the biological constraints and complex genetics of these tree fruit crops. Over the past couple of decades, major advances have been made in genetic and physical mapping, genomics, biotechnology, genome sequencing, and phenomics, along with accumulation of large germplasm collections in repositories. These valuable resources offer opportunities to make significant advances in greatly reducing the time needed to either develop new cultivars or modify existing economic cultivars for enhanced resistance to multiple diseases. This review will cover current knowledge, challenges, and opportunities in breeding for disease resistance in temperate tree fruit crops.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| | - Schuyler S Korban
- Department of Natural Sciences and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
28
|
Agri-Food Waste from Apple, Pear, and Sugar Beet as a Source of Protective Bioactive Molecules for Endothelial Dysfunction and Its Major Complications. Antioxidants (Basel) 2022; 11:antiox11091786. [PMID: 36139860 PMCID: PMC9495678 DOI: 10.3390/antiox11091786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial damage is recognized as the initial step that precedes several cardiovascular diseases (CVD), such as atherosclerosis, hypertension, and coronary artery disease. It has been demonstrated that the best treatment for CVD is prevention, and, in the frame of a healthy lifestyle, the consumption of vegetables, rich in bioactive molecules, appears effective at reducing the risk of CVD. In this context, the large amount of agri-food industry waste, considered a global problem due to its environmental and economic impact, represents an unexplored source of bioactive compounds. This review provides a summary regarding the possible exploitation of waste or by-products derived by the processing of three traditional Italian crops-apple, pear, and sugar beet-as a source of bioactive molecules to protect endothelial function. Particular attention has been given to the bioactive chemical profile of these pomaces and their efficacy in various pathological conditions related to endothelial dysfunction. The waste matrices of apple, pear, and sugar beet crops can represent promising starting material for producing "upcycled" products with functional applications, such as the prevention of endothelial dysfunction linked to cardiovascular diseases.
Collapse
|
29
|
Gout and Diet: A Comprehensive Review of Mechanisms and Management. Nutrients 2022; 14:nu14173525. [PMID: 36079783 PMCID: PMC9459802 DOI: 10.3390/nu14173525] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Gout is well known as an inflammatory rheumatic disease presenting with arthritis and abnormal metabolism of uric acid. The recognition of diet-induced systemic metabolic pathways have provided new mechanistic insights and potential interventions on gout progression. However, the dietary recommendations for gouty patients generally focus on food categories, with few simultaneous considerations of nutritional factors and systemic metabolism. It is worthwhile to comprehensively review the mechanistic findings and potential interventions of diet-related nutrients against the development of gout, including purine metabolism, urate deposition, and gouty inflammation. Although piecemeal modifications of various nutrients often provide incomplete dietary recommendations, understanding the role of nutritional factors in gouty development can help patients choose their healthy diet based on personal preference and disease course. The combination of dietary management and medication may potentially achieve enhanced treatment effects, especially for severe patients. Therefore, the role of dietary and nutritional factors in the development of gout is systematically reviewed to propose dietary modification strategies for gout management by: (1) reducing nutritional risk factors against metabolic syndrome; (2) supplementing with beneficial nutrients to affect uric acid metabolism and gouty inflammation; and (3) considering nutritional modification combined with medication supplementation to decrease the frequency of gout flares.
Collapse
|
30
|
Polyphenols from Thinned Young Apples: HPLC-HRMS Profile and Evaluation of Their Anti-Oxidant and Anti-Inflammatory Activities by Proteomic Studies. Antioxidants (Basel) 2022; 11:antiox11081577. [PMID: 36009298 PMCID: PMC9405250 DOI: 10.3390/antiox11081577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The qualitative profile of thinned apple polyphenols (TAP) fraction (≈24% of polyphenols) obtained by purification through absorbent resin was fully investigated by LC-HRMS in positive and negative ion mode and using ESI source. A total of 68 polyphenols were identified belonging to six different classes: flavanols, flavonols, dihydrochalchones, flavanones, flavones and organic and phenolic acids. The antioxidant and anti-inflammatory activities were then investigated in cell models with gene reporter for NRF2 and NF-κB and by quantitative proteomic (label-free and SILAC) approaches. TAP dose-dependently activated NRF2 and in the same concentration range (10–250 µg/mL) inhibited NF-κB nuclear translocation induced by TNF-α and IL-1α as pro-inflammatory promoters. Proteomic studies elucidated the molecular pathways evoked by TAP treatment: activation of the NRF2 signaling pathway, which in turn up-regulates protective oxidoreductases and their nucleophilic substrates such as GSH and NADPH, the latter resulting from the up-regulation of the pentose phosphate pathway. The increase in the enzymatic antioxidant cellular activity together with the up-regulation of the heme-oxygenase would explain the anti-inflammatory effect of TAP. The results suggest that thinned apples can be considered as a valuable source of apple polyphenols to be used in health care products to prevent/treat oxidative and inflammatory chronic conditions.
Collapse
|
31
|
Liu Y, Sun R, Lin X, Wu L, Chen H, Shen S, Li Y, Wei Y, Deng G. Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP3 inflammasome pathway. Biomed Pharmacother 2022; 151:113078. [PMID: 35567986 DOI: 10.1016/j.biopha.2022.113078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) has an effect on the health of pregnant women and fetuses. Procyanidins (PA) is a flavonoid with anti-diabetic activity, but its effects and mechanisms on GDM have not been defined. Herein, we studied further the functions and mechanisms of PA on insulin resistance (IR) in GDM mice, as well as on postpartum and offspring mice. GDM mice model was built by feeding a high-fat-high-sucrose diet, and PA intervention (27.8 mg/kg/d) was performed from 4 weeks before pregnancy to delivery. Intestinal flora deficient (IFD) mice model was established by broad spectrum antibiotics. PA decreased the gestational weight gain, and the levels of fasting blood glucose, insulin, homeostasis model of assessment for IR index, yet increased the levels of HOMA for insulin sensitivity index. Interestingly, in IFD mice the effect of PA on improving IR was significantly weakened. PA inhibited inflammation by decreasing the levels of IL-6, TNF-α, IL-17 and CRP, which also been blocked in the IFD mice. Moreover, PA improved glycometabolism and reduced the secretion of inflammatory factors and hepatic inflammation infiltration of mice at 4 weeks postpartum, but had no significant effect on offspring mice. Mechanistically, PA treatment suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide-binding domain like receptor protein 3 (NLRP3) inflammasome activation. In vitro studies, 4-hydroxyphenylacetic acid and 3-(4-hydroxyphenyl) propionic acid, main intestinal flora metabolites of PA restrained NF-κB/NLRP3 activation. In conclusions, PA improved IR via NF-κB/NLRP3 pathway in GDM and postpartum mice, which partly through its metabolites by gut microbiome.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - XiaoPing Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanlan Wu
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Siwen Shen
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Clinical Nutrition, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China
| | - Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospitalof Huazhong University of Science and Technology, Shenzhen, China.
| |
Collapse
|
32
|
Li H, Liang J, Han M, Wang X, Ren Y, Wang Y, Huang J, Li S, Liu C, Wang Z, Yue T, Gao Z. Sequentially fermented dealcoholized apple juice intervenes fatty liver induced by high-fat diets via modulation of intestinal flora and gene pathways. Food Res Int 2022; 156:111180. [DOI: 10.1016/j.foodres.2022.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022]
|
33
|
El-Ashmawy NE, Khedr EG, Alfeky NH, Ibrahim AO. Upregulation of GLUT4 and PI3K, and downregulation of GSK3 mediate the anti-hyperglycemic effects of proanthocyanidins. MEDICINE INTERNATIONAL 2022; 2:14. [PMID: 36698506 PMCID: PMC9829200 DOI: 10.3892/mi.2022.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/08/2022] [Indexed: 01/28/2023]
Abstract
Diabetes mellitus is the most common chronic metabolic disorder worldwide. The present study was designed to investigate the potential role of cinnamon bark extract oligomeric proanthocyanidins (OPCs) in controlling streptozotocin (STZ)-induced hyperglycemia and to clarify the underlying molecular mechanisms underlying its effects. For this purpose, 60 male rats were equally divided into six groups as follows: The normal control group; OPC control group (non-diabetic rats treated with OPC at 300 mg/kg orally for 21 days); the untreated diabetic control group; the wortmannin control group [diabetic rats treated with wortmannin at 1 mg/kg, intraperitoneal (i.p.) on the final day of the experiment]; the OPC diabetic group (diabetic rats treated with OPC at 300 mg/kg orally for 21 days); and the OPC diabetic + wortmannin co-treated group (diabetic rats treated with OPC at 300 mg/kg/day for 21 consecutive days and then 24 h after the final OPC dose treated with a single wortmannin injection at 1 mg/kg, i.p.). The results indicated that OPC ameliorated the diabetic state, as evidenced by a significant decrease in serum glucose levels, and a significant increase in the levels of insulin, amylin, insulin receptor phosphorylation, glycogen and glucose transporter-4 translocation; it also improved the lipid profile in STZ-diabetic rats. On the whole, the findings of the present study provide biochemical evidence that OPC treatment is effective as an anti-diabetic and anti-hyperlipidemic agent by enhancing glucose uptake through the activation of insulin receptor kinase activity and the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Nahla E. El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Gharbia 31111, Egypt
| | - Eman G. Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Gharbia 31111, Egypt
| | - Nehal H. Alfeky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Gharbia 31111, Egypt
| | - Amera O. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Gharbia 31111, Egypt,Correspondence to: Dr Amera O. Ibrahim, Department of Biochemistry, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta, Gharbia 31111, Egypt
| |
Collapse
|
34
|
Kim SJ, Anh NH, Jung CW, Long NP, Park S, Cho YH, Yoon YC, Lee EG, Kim M, Son EY, Kim TH, Deng Y, Lim J, Kwon SW. Metabolic and Cardiovascular Benefits of Apple and Apple-Derived Products: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Nutr 2022; 9:766155. [PMID: 35449537 PMCID: PMC9016272 DOI: 10.3389/fnut.2022.766155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Quantitative evidence of the metabolic and cardiovascular effects of apples (Malus domestica) is lacking in interventional studies. This study aimed to summarize the available evidence of the beneficial effects of apples and apple-derived products (ADPs) on metabolic and cardiovascular markers. Methods Peer-reviewed randomized controlled trials (RCTs) were identified from four databases on May 3, 2021 and regularly updated until the end of May 2021. Demographic characteristics, intervention types, and evaluation parameters were extracted. A meta-analysis on the mean difference of change scores was conducted on commonly presented outcomes in the RCTs. Results The metabolic and cardiovascular effects of diverse regimens, including whole apple, apple extract, and apple juice, were examined in 18 eligible RCTs. Nine common evaluation outcomes were eventually introduced to the meta-analysis, including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride, glucose, insulin, C-reactive protein, and systolic/diastolic blood pressures. The levels of TC (-2.69 mg/dL; 95% CI: -5.43, 0.04 mg/dL) and LDL (-2.80 mg/dL; 95% CI: -5.78, 0.17 mg/dL) showed a non-significant decreasing tendency after at least a week of apple consumption. Further subgroup analysis, particularly, a comparison with placebo as a control, showed a significant reduction in TC and LDL levels. When stratified by the baseline level, subjects with high TC and LDL level were shown to have more benefits from the apple intake. Intriguingly, apple and ADPs significantly reduced HDL levels to a small extent (-1.04 mg/dL; 95% CI: -1.79, -0.29 mg/dL). The other markers were mostly unaffected by the intervention. Conclusion Our investigation revealed that apples could improve blood cholesterol levels. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/], identifier [CRD42020215977].
Collapse
Affiliation(s)
- Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Seongoh Park
- Department of Statistics, Sungshin Women’s University, Seoul, South Korea
| | - Young Hyun Cho
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Eun Goo Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Mina Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Eui Young Son
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Tae Ha Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yingqian Deng
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Luna-Castillo KP, Olivares-Ochoa XC, Hernández-Ruiz RG, Llamas-Covarrubias IM, Rodríguez-Reyes SC, Betancourt-Núñez A, Vizmanos B, Martínez-López E, Muñoz-Valle JF, Márquez-Sandoval F, López-Quintero A. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022; 14:nu14051104. [PMID: 35268076 PMCID: PMC8912493 DOI: 10.3390/nu14051104] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Approximately 25–50% of the population worldwide exhibits serum triglycerides (TG) (≥150 mg/dL) which are associated with an increased level of highly atherogenic remnant-like particles, non-alcoholic fatty liver disease, and pancreatitis risk. High serum TG levels could be related to cardiovascular disease, which is the most prevalent cause of mortality in Western countries. The etiology of hypertriglyceridemia (HTG) is multifactorial and can be classified as primary and secondary causes. Among the primary causes are genetic disorders. On the other hand, secondary causes of HTG comprise lifestyle factors, medical conditions, and drugs. Among lifestyle changes, adequate diets and nutrition are the initial steps to treat and prevent serum lipid alterations. Dietary intervention for HTG is recommended in order to modify the amount of macronutrients. Macronutrient distribution changes such as fat or protein, low-carbohydrate diets, and caloric restriction seem to be effective strategies in reducing TG levels. Particularly, the Mediterranean diet is the dietary pattern with the most consistent evidence for efficacy in HTG while the use of omega-3 supplements consumption is the dietary component with the highest number of randomized clinical trials (RCT) carried out with effective results on reducing TG. The aim of this review was to provide a better comprehension between human nutrition and lipid metabolism.
Collapse
Affiliation(s)
- Karla Paulina Luna-Castillo
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Xochitl Citlalli Olivares-Ochoa
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Rocío Guadalupe Hernández-Ruiz
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Iris Monserrat Llamas-Covarrubias
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Saraí Citlalic Rodríguez-Reyes
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Alejandra Betancourt-Núñez
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
| | - Barbara Vizmanos
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Erika Martínez-López
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Investigación en Ciencias Biomédicas, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
| | - Fabiola Márquez-Sandoval
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (F.M.-S.); (A.L.-Q.); Tel.: +52-(33)1058-5200 (ext. 33644 or 33704) (F.M.-S.)
| | - Andres López-Quintero
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (K.P.L.-C.); (X.C.O.-O.); (R.G.H.-R.); (I.M.L.-C.); (S.C.R.-R.); (A.B.-N.); (B.V.); (E.M.-L.); (J.F.M.-V.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, CUCS, UdeG, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (F.M.-S.); (A.L.-Q.); Tel.: +52-(33)1058-5200 (ext. 33644 or 33704) (F.M.-S.)
| |
Collapse
|
36
|
Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int J Biol Macromol 2022; 206:567-579. [PMID: 35247420 DOI: 10.1016/j.ijbiomac.2022.03.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/09/2023]
Abstract
Compromised carbohydrate metabolism leading to hyperglycemia is the primary metabolic disorder of non-insulin-dependent diabetes mellitus. Reformed digestion and altered absorption of carbohydrates, exhaustion of glycogen stock, enhanced gluconeogenesis and overproduced hepatic glucose, dysfunction of β-cell, resistance to insulin in peripheral tissue, and impaired insulin signaling pathways are essential reasons for hyperglycemia. Although oral anti-diabetic drugs like α-glucosidase inhibitors, sulfonylureas and insulin therapies are commonly used to manage Type 2 Diabetes (T2D) and hyperglycemia, natural compounds in diet also play a significant role in combating the effect of diabetes. Due to their vast bioavailability and anti-hyperglycemic effect with least or no side effects, polyphenolic compounds have gained wide popularity. Polyphenols such as flavonoids and tannins play a significant role in carbohydrate metabolism by inhibiting key enzymes responsible for the digestion of carbohydrates to glucose like α-glucosidase and α-amylase. Several polyphenols such as resveratrol, epigallocatechin-3-gallate (EGCG) and quercetin enhanced glucose uptake in the muscle and adipocytes by translocating GLUT4 to plasma membrane mainly by the activation of the AMP-activated protein kinase (AMPK) pathway. This review provides an insight into the protective role of polyphenols in T2D, highlighting the aspects of insulin resistance.
Collapse
Affiliation(s)
- Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prince M Z Hasan
- Centre of Nanotechnology, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
37
|
Physiological Effects of Red-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a major global cause of disease and mortality. CVDs are a group of disorders of the heart and blood vessels and include coronary artery disease, cerebrovascular disease, heart failure, and other conditions. The most important behavioral risk factors for heart disease and stroke are diet, physical activity, smoking, and drinking. Increased intake of fruits and vegetables is associated with reducing the risk of metabolic syndrome and CVDs. Red-colored foods align with cardiovascular health by protecting the heart and blood vessels. Red fruits and vegetables include tomatoes, strawberries, raspberries, cranberries, cherries, red apples, beets, and pomegranate. In vitro and in vivo studies, as well as clinical trials, show that the components of red foods demonstrate various potential health benefits against disease. In conclusion, there are many advantages to eating vegetable foods, especially red fruits and vegetables.
Collapse
|
38
|
Comparison of chemometric strategies for potential exposure marker discovery and false-positive reduction in untargeted metabolomics: application to the serum analysis by LC-HRMS after intake of Vaccinium fruit supplements. Anal Bioanal Chem 2022; 414:1841-1855. [PMID: 35028688 DOI: 10.1007/s00216-021-03815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
Abstract
Untargeted liquid chromatographic-high-resolution mass spectrometric (LC-HRMS) metabolomics for potential exposure marker (PEM) discovery in nutrikinetic studies generates complex outputs. The correct selection of statistically significant PEMs is a crucial analytical step for understanding nutrition-health interactions. Hence, in this paper, different chemometric selection workflows for PEM discovery, using multivariate or univariate parametric or non-parametric data analyses, were comparatively tested and evaluated. The PEM selection protocols were applied to a small-sample-size untargeted LC-HRMS study of a longitudinal set of serum samples from 20 volunteers after a single intake of (poly)phenolic-rich Vaccinium myrtillus and Vaccinium corymbosum supplements. The non-parametric Games-Howell test identified a restricted group of significant features, thus minimizing the risk of false-positive retention. Among the forty-seven PEMs exhibiting a statistically significant postprandial kinetics, twelve were successfully annotated as purine pathway metabolites, benzoic and benzodiol metabolites, indole alkaloids, and organic and fatty acids, and five (i.e. octahydro-methyl-β-carboline-dicarboxylic acid, tetrahydro-methyl-β-carboline-dicarboxylic acid, citric acid, caprylic acid, and azelaic acid) were associated to Vaccinium berry consumption for the first time. The analysis of the area under the curve of the longitudinal dataset highlighted thirteen statistically significant PEMs discriminating the two interventions, including four intra-intervention relevant metabolites (i.e. abscisic acid glucuronide, catechol sulphate, methyl-catechol sulphate, and α-hydroxy-hippuric acid). Principal component analysis and sample classification through linear discriminant analysis performed on PEM maximum intensity confirmed the discriminating role of these PEMs.
Collapse
|
39
|
Horie K, Maeda H, Nanashima N, Oey I. Potential Vasculoprotective Effects of Blackcurrant ( Ribes nigrum) Extract in Diabetic KK-A y Mice. Molecules 2021; 26:molecules26216459. [PMID: 34770868 PMCID: PMC8587626 DOI: 10.3390/molecules26216459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Polyphenols are bioactive compounds found naturally in fruits and vegetables; they are widely used in disease prevention and health maintenance. Polyphenol-rich blackcurrant extract (BCE) exerts beneficial effects on vascular health in menopausal model animals. However, the vasculoprotective effects in diabetes mellitus (DM) and atherosclerotic vascular disease secondary to DM are unknown. Therefore, we investigated whether BCE is effective in preventing atherosclerosis using KK-Ay mice as a diabetes model. The mice were divided into three groups and fed a high-fat diet supplemented with 1% BCE (BCE1), 3% BCE (BCE2), or Control for 9 weeks. The mice in the BCE2 group showed a considerable reduction in the disturbance of elastic lamina, foam cell formation, and vascular remodeling compared to those in the BCE1 and Control groups. Immunohistochemical staining indicated that the score of endothelial nitric oxide synthase staining intensity was significantly higher in both BCE2 (2.9) and BCE1 (1.9) compared to that in the Control (1.1). Furthermore, the score for the percentage of alpha-smooth muscle actin was significantly lower in the BCE2 (2.9%) than in the Control (2.1%). Our results suggest that the intake of anthocyanin-rich BCE could have beneficial effects on the blood vessels of diabetic patients.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
- Correspondence: ; Tel.: +81-172-39-5527
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
| | - Indrawati Oey
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
40
|
Liddle DM, Lin X, Cox LC, Ward EM, Ansari R, Wright AJ, Robinson LE. Daily apple consumption reduces plasma and peripheral blood mononuclear cell-secreted inflammatory biomarkers in adults with overweight and obesity: a 6-week randomized, controlled, parallel-arm trial. Am J Clin Nutr 2021; 114:752-763. [PMID: 33964852 DOI: 10.1093/ajcn/nqab094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Obesity-associated low-grade inflammation contributes to the development of cardiovascular disease (CVD). Apples are rich in anti-inflammatory bioactives including polyphenols and fiber. OBJECTIVES We aimed to determine the effects of regular apple consumption on fasting plasma biomarkers of inflammation (primary outcome), endotoxemia, carbohydrate and lipid metabolism (glucose, insulin, triacylglycerol; secondary outcomes), and peripheral blood mononuclear cell (PBMC)-secreted cytokines (secondary outcome) in individuals with overweight and obesity. METHODS A randomized, controlled, parallel-arm trial was conducted with n = 46 participants. After avoiding foods and beverages rich in polyphenols and fiber for 2 wk, participants consumed 3 whole Gala apples (∼200 g edible parts)/d as part of their habitual diet (n = 23) or avoided apples (control, n = 23) for 6 wk. All participants limited consumption of polyphenols and fiber during the 6-wk trial. Fasting blood samples were collected before and after 6 wk for analysis of plasma biomarkers and isolation of PBMCs, which were cultured for 24 h unstimulated or stimulated with LPS (10 ng/mL). RESULTS Forty-four participants completed the trial (30 female, 14 male; mean ± SEM age: 45.4 ± 2.2 y; BMI: 33.4 ± 0.9 kg/m2). After ANCOVA and correcting for multiple comparisons, apples decreased fasting plasma C-reactive protein by 17.0% (range: 14.3%-19.6%, P = 0.005), IL-6 by 12.4% (range: 6.7%-17.5%, P < 0.001), and LPS-binding protein by 20.7% (range: 14.1%-26.4%, P < 0.001) compared with control. Apples also decreased PBMC-secreted IL-6 by 28.3% (range: 22.4%-33.5%, P < 0.001) and IL-17 by 11.0% (range 5.8-15.6%, P = 0.003) in the unstimulated condition compared with control. Exploratory analysis showed apples also increased plasma total antioxidant capacity by 9.6% (range: 1.7-18.9%, P = 0.002) compared with control. However, apples had no effect on anthropometric or other CVD risk markers. CONCLUSIONS Six-week daily whole Gala apple consumption may be an effective dietary strategy to mitigate the obesity-associated inflammation that exacerbates CVD risk, without weight loss. This trial was registered at clinicaltrials.gov as NCT03523403.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Xinjie Lin
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Liam C Cox
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Emily M Ward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rufaida Ansari
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amanda J Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
42
|
Li D, Cui Y, Wang X, Liu F, Li X. Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6829-6841. [PMID: 34124904 DOI: 10.1021/acs.jafc.1c02532] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Our previous study showed that apple polyphenol extract (APE) ameliorated high-fat diet-induced hepatic steatosis in C57BL/6 mice by targeting the LKB1/AMPK pathway; to investigate whether other mechanisms are involved in APE induction of improved hepatic steatosis, especially the roles of bile acid (BA) metabolism and gut microbiota, we conducted this study. Thirty-three C57BL/6 male mice were fed with high-fat diet for 12 weeks and concomitantly treated with sterilized water (CON) or 125 or 500 mg/(kg·bw·day) APE (low-dose APE, LAP; high-dose APE, HAP) by intragastric administration. APE treatment decreased total fecal BA contents, especially fecal primary BA levels, mainly including cholic acid, chenodeoxycholic acid, and muricholic acid. An upregulated hepatic Farnesoid X receptor (FXR) protein level and downregulated protein levels of cholesterol 7α-hydroxylase (CYP7A1) and cholesterol 7α-hydroxylase (CYP27A1) were observed after APE treatment, which resulted in the suppressed BA synthesis. Meanwhile, APE had no significant effects on mucosal injury and FXR expression in the jejunum. APE regulated the diversity of gut microbiota and microbiota composition, characterized by significantly increased relative abundance of Akkermansia and decreased relative abundance of Lactobacillus. Furthermore, APE might affect the reverse cholesterol transport in the ileum, evidenced by the changed mRNA levels of NPC1-like intracellular cholesterol transporter 1 (Npc1l1), liver X receptor (Lxr), ATP binding cassette subfamily A member 1 (Abca1), and ATP binding cassette subfamily G member 1 (Abcg1). However, APE did not affect the dihydroxylation and taurine metabolism of BA. The correlation analysis deduced no obvious interactions between BA and gut microbiota. In summary, APE, especially a high dose of APE, could alleviate hepatic steatosis, and the mechanisms were associated with inhibiting BA synthesis and modulating gut microbiota.
Collapse
Affiliation(s)
- Deming Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xinjing Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
43
|
Metabolomic Characterization of Commercial, Old, and Red-Fleshed Apple Varieties. Metabolites 2021; 11:metabo11060378. [PMID: 34208114 PMCID: PMC8230845 DOI: 10.3390/metabo11060378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, a metabolomic investigation was presented to correlate single polyphenolic compounds in apple pulp with quality characteristics such as antioxidant activity and content of phenolic compounds and anthocyanins in apple skin. Since the concentration of these compounds is influenced by environmental factors, the twenty-two apple cultivars originate from the same site. The polyphenolic compounds were analyzed by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). The antioxidant activity, phenolic content, and anthocyanins were evaluated on the sunny and the shady sides of apple skin by spectrometric assays. In old apple varieties, the measured parameters were higher than in the commercial and red-fleshed varieties. By contrast, the profile of flavan-3-ols and anthocyanins was variable amongst commercial and red-fleshed varieties. The partial least square (PLS) method was applied to investigate the association between the skin proprieties and the metabolic profile of the pulp. The highest coefficients of determination in prediction (Q2) were obtained for compounds quantified in old cultivars. These results provided information to define the old apple varieties as a reliable group based on the pathway of the antioxidant compounds and anthocyanins content. Our results show the possibility to find cultivars with promising health features based on their content of polyphenols suitable for commercialization or breeding.
Collapse
|
44
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
45
|
Da Porto A, Cavarape A, Colussi G, Casarsa V, Catena C, Sechi LA. Polyphenols Rich Diets and Risk of Type 2 Diabetes. Nutrients 2021; 13:nu13051445. [PMID: 33923263 PMCID: PMC8146556 DOI: 10.3390/nu13051445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023] Open
Abstract
Type 2 diabetes is an increasing health concern worldwide. Both genetic and environmental risk factors as improper dietary habits or physical inactivity are known to be crucial in the pathogenesis of type 2 diabetes. Polyphenols are a group of plant-derived compounds with anti-inflammatory and antioxidant properties that are associated with a low prevalence of metabolic conditions characterized by insulin resistance, including obesity, diabetes, and hypertension. Moreover, there is now full awareness that foods that are rich in phytochemicals and polyphenols could play an important role in preserving human cardiovascular health and substantial clinical evidence indicates that regular dietary consumption of such foods affects favorably carbohydrate metabolism. This review briefly summarizes the evidence relating dietary patterns rich in polyphenols with glucose metabolism and highlights the potential benefits of these compounds in the prevention of type 2 diabetes.
Collapse
|
46
|
Basu A, Izuora K, Betts NM, Kinney JW, Salazar AM, Ebersole JL, Scofield RH. Dietary Strawberries Improve Cardiometabolic Risks in Adults with Obesity and Elevated Serum LDL Cholesterol in a Randomized Controlled Crossover Trial. Nutrients 2021; 13:1421. [PMID: 33922576 PMCID: PMC8145532 DOI: 10.3390/nu13051421] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background and aims: Dietary berries, such as strawberries, are rich in bioactive compounds and have been shown to lower cardiometabolic risk. We examined the effects of two dietary achievable doses of strawberries on glycemic control and lipid profiles in obese adults with elevated serum LDL cholesterol (LDL-C). Methods: In this 14-week randomized controlled crossover study, participants were assigned to one of the three arms for four weeks separated by a one-week washout period: control powder, one serving (low dose: 13 g strawberry powder/day), or two-and-a -half servings (high dose: 32 g strawberry powder/day). Participants were instructed to follow their usual diet and lifestyle while refraining from consuming other berries and related products throughout the study interval. Blood samples, anthropometric measures, blood pressure, and dietary and physical activity data were collected at baseline and at the end of each four-week phase of intervention. Results: In total, 33 participants completed all three phases of the trial [(mean ± SD): Age: 53 ± 13 y; BMI: 33 ± 3.0 kg/m2). Findings revealed significant reductions in fasting insulin (p = 0.0002) and homeostatic model of assessment of insulin resistance (p = 0.0003) following the high dose strawberry phase when compared to the low dose strawberry and control phases. Glucose and conventional lipid profiles did not differ among the phases. Nuclear magnetic resonance-determined particle concentrations of total VLDL and chylomicrons, small VLDL, and total and small LDL were significantly decreased after the high dose strawberry phase, compared to control and low dose phases (all p < 0.0001). Among the biomarkers of inflammation and adipokines measured, only serum PAI-1 showed a decrease after the high dose strawberry phase (p = 0.002). Conclusions: These data suggest that consuming strawberries at two-and-a-half servings for four weeks significantly improves insulin resistance, lipid particle profiles, and serum PAI-1 in obese adults with elevated serum LDL-C.
Collapse
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Kenneth Izuora
- Section of Endocrinology, School of Medicine, University of Nevada, Las Vegas, NV 89154, USA;
| | - Nancy M. Betts
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jefferson W. Kinney
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (J.W.K.); (A.M.S.)
| | - Arnold M. Salazar
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (J.W.K.); (A.M.S.)
| | | | - R. Hal Scofield
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Ren J, An J, Chen M, Yang H, Ma Y. Effect of proanthocyanidins on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2021; 165:105329. [PMID: 33465473 DOI: 10.1016/j.phrs.2020.105329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypertension is a common chronic disease that can lead to serious health problems. Previous studies have not drawn a consistent conclusion about the effect of proanthocyanidins (PCs) on blood pressure (BP). This systematic review and meta-analysis aims to evaluate the effect of PCs supplementation on blood pressure (BP). METHODS A comprehensive literature search was performed in 6 databases (Pubmed, Scopus, ISI Web of Science, the Cochrane Library, Embase and Google Scholar) to identify the randomized controlled trials (RCTs) that evaluated the BP-lowering effect of PCs. Subgroup and sensitivity analyses were conducted to evaluate the potential heterogeneity. Meta-regression analysis was used to evaluate dose effects of PCs on BP. RESULTS A total of 6 studies comprising 376 subjects were included in our meta-analysis to estimate the pooled effect size. This meta-analysis suggested that PCs supplementation could significantly reduce systolic blood pressure (SBP) (WMD: -4.598 mmHg; 95 % CI: -8.037, -1.159; I2 = 33.7 %; p = 0.009), diastolic blood pressure (DBP) (WMD: -2.750 mmHg; 95 % CI: -5.087, -0.412; I2 = 0.0 %; p = 0.021) and mean arterial pressure (MAP) (WMD: -3.366 mmHg; 95 % CI: -6.719, -0.041 mmHg; I2 = 0.0 %; p = 0.049), but had no significant effect on pulse pressure (PP) (WMD: -2.131 mmHg; 95 % CI: -6.292, 2.030; I2 = 0.0 %; p = 0.315). When the studies were stratified according to the duration of the study, there was a significant reduction on SBP in the subset of the trials with <12 weeks of duration. On the contrary, there was a significant reduction on DBP in the subset of the trials with ≥12 weeks of duration. The Subgroup analysis by BMI indicated that a significant reduction on SBP for people with a higher BMI (BMI ≥ 25) and a significant reduction on DBP for people with a lower BMI (BMI < 25). Additional subgroup analysis revealed low-dose-PCs (<245 mg/day) could significantly reduce SBP, DBP and MAP. The meta-regression analyses did not indicate the dose effects of PCs on SBP, DBP, PP and MAP. CONCLUSION Based on the current findings, PCs supplementation may be a useful treatment of hypertensive patients as well as a preventive measure in the prehypertensive and healthy subjects. However, further investigation is needed to confirm these results.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jiaqi An
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengyuan Chen
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Haiyue Yang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
48
|
The effect of probiotic, prebiotic, and polyphenol interventions on cardiovascular disease risk markers: findings from the CABALA study. Proc Nutr Soc 2021. [DOI: 10.1017/s0029665121003256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Pretorius RA, Palmer DJ. High-Fiber Diet during Pregnancy Characterized by More Fruit and Vegetable Consumption. Nutrients 2020; 13:nu13010035. [PMID: 33374192 PMCID: PMC7824257 DOI: 10.3390/nu13010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Higher dietary fiber intakes during pregnancy may have the potential health benefits of increasing gut microbiome diversity, lowering the risk of glucose intolerance and pre-eclampsia, achieving appropriate gestational weight gain, and preventing constipation. In this observational cohort study, we have assessed the dietary fiber intakes of 804 women in late pregnancy, using a semi-quantitative food frequency questionnaire (SQ-FFQ). Overall, the median (interquartile range) dietary fiber intake was 24.1 (19.0–29.7) grams per day (g/day). Only 237/804 (29.5%) women met the recommended Adequate Intake (AI) of dietary fiber during pregnancy of 28 g/day. Women consuming the highest quartile of fiber intakes (34.8 (IQR 32.1–39.5) g/day) consumed more fruit, especially apples and bananas, than women consuming the lowest quartile of fiber intakes (15.9 (IQR 14.4–17.5) g/day). These women in the highest fiber-intake quartile were older (p < 0.01), more had completed further education after secondary school (p = 0.04), and they also consumed more vegetables (67 g/day) compared to the women in the lowest fiber consumption quartile (17 g vegetables/day). Bread intakes of 39–42 g/day were consistent in quantities consumed across all four fiber-intake quartiles. Our findings suggest that antenatal education advice targeting increased fruit and vegetable consumption before and during pregnancy may be a simple strategy to achieve increased total dietary fiber intakes to reach recommended quantities.
Collapse
Affiliation(s)
- Rachelle A. Pretorius
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
| | - Debra J. Palmer
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
- Telethon Kids Institute, University of Western Australia, 15 Hospital Ave, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1750
| |
Collapse
|
50
|
Proanthocyanidins Should Be a Candidate in the Treatment of Cancer, Cardiovascular Diseases and Lipid Metabolic Disorder. Molecules 2020; 25:molecules25245971. [PMID: 33339407 PMCID: PMC7766935 DOI: 10.3390/molecules25245971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The conventional view of using medicines as routine treatment of an intractable disease is being challenged in the face of extensive and growing evidence that flavonoids in foods, especially proanthocyanidins (PAs), can participate in tackling fatal diseases like cancer, cardiovascular and lipid metabolic diseases, both as a precautionary measure or as a dietary treatment. Although medical treatment with medicines will remain necessary in some cases, at least in the short term, PAs’ function as antioxidant, anti-inflammatory drugs, signal pathway regulators remain critical in many diseases. This review article demonstrates the physical and biological properties of PAs, summarizes the health benefits of PAs found by researchers previously, and shows the possibility and importance of being a dietary treatment substance.
Collapse
|