1
|
Wang T, Guo T, Sun J, Zang X, Dong L, Zhang J, Chen S, Chen G, Ma S, Zhai X, Chu C, Wang C, Wang X, Xu D, Tan M. Loss of OBSCN expression promotes bladder cancer progression but enhances the efficacy of PD-L1 inhibitors. Cell Biosci 2025; 15:40. [PMID: 40149008 PMCID: PMC11948897 DOI: 10.1186/s13578-025-01379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND As the objective overall response rate to immune checkpoint inhibitors (ICIs) is less than 30% in late stage or metastatic bladder cancer (BLCA), elucidating the intrinsic mechanisms of immune evasion is of great importance for the discovery of predictive and prognostic biomarkers and the exploration of novel targets for intervention. Recent studies have shown that OBSCN and the cytoskeletal protein it encodes, obscurin, play an important role in tumour progression. However, no studies have reported the role of OBSCN in BLCA. METHODS RNA sequencing and clinical data were downloaded from multiple public databases including The Cancer Genome Atlas and the Gene Expression Omnibus. Immunohistochemistry (IHC) was performed on tissue microarrays including 80 BLCA patients from Shuguang Hospital. Kaplan-Meier curves with log-rank test, univariate and multivariate COX regression were performed to evaluate the prognostic efficacy of OBSCN expression. In vitro experiments were conducted to determine the role of OBSCN deficiency in promoting BLCA progression. Pan-cancer tumour immune microenvironment (TIME) analysis was performed to explore the potential correlation between OBSCN deficiency and immune evasion. RESULTS Pan-cancers and single-cell sequencing analysis revealed that the expression level and proportion of OBSCN was significantly decreased in BLCA cells compared to normal urothelium. Survival curves showed that BLCA patients with low OBSCN expression had a worse prognosis, yet a better clinical response to PD-L1 ICIs. Gene set variation analysis and Gene set enrichment analysis revealed that epithelial-mesenchymal transition (EMT) and immune-related processes were significantly enriched in BLCA samples with low OBSCN expression. In vitro experiments identified that OBSCN-deficient BLCA cells enhanced invasion, migration and EMT. Pan-cancer analysis of TIME revealed that neoantigen, tumor mutation burden, CD8+T cells and immune checkpoints were significantly negatively associated with OBSCN expression. IHC and Western blot assay identified that BLCA samples with low OBSCN expression had more CD8+ T-cell infiltration and higher PD-L1 expression. CONCLUSIONS This study confirmed that BLCA patients with low OBSCN expression had a worse prognosis but a superior response to ICIs, providing a reference for individualised treatment of BLCA patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Sun
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Zang
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Urology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sicong Ma
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhai
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanmin Chu
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongliang Xu
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Surgical Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med 2024; 24:162. [PMID: 39026109 PMCID: PMC11258158 DOI: 10.1007/s10238-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.
Collapse
Affiliation(s)
- Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Sholl LM, Awad M, Basu Roy U, Beasley MB, Cartun RW, Hwang DM, Kalemkerian G, Lopez-Rios F, Mino-Kenudson M, Paintal A, Reid K, Ritterhouse L, Souter LA, Swanson PE, Ventura CB, Furtado LV. Programmed Death Ligand-1 and Tumor Mutation Burden Testing of Patients With Lung Cancer for Selection of Immune Checkpoint Inhibitor Therapies: Guideline From the College of American Pathologists, Association for Molecular Pathology, International Association for the Study of Lung Cancer, Pulmonary Pathology Society, and LUNGevity Foundation. Arch Pathol Lab Med 2024; 148:757-774. [PMID: 38625026 DOI: 10.5858/arpa.2023-0536-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT.— Rapid advancements in the understanding and manipulation of tumor-immune interactions have led to the approval of immune therapies for patients with non-small cell lung cancer. Certain immune checkpoint inhibitor therapies require the use of companion diagnostics, but methodologic variability has led to uncertainty around test selection and implementation in practice. OBJECTIVE.— To develop evidence-based guideline recommendations for the testing of immunotherapy/immunomodulatory biomarkers, including programmed death ligand-1 (PD-L1) and tumor mutation burden (TMB), in patients with lung cancer. DESIGN.— The College of American Pathologists convened a panel of experts in non-small cell lung cancer and biomarker testing to develop evidence-based recommendations in accordance with the standards for trustworthy clinical practice guidelines established by the National Academy of Medicine. A systematic literature review was conducted to address 8 key questions. Using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach, recommendations were created from the available evidence, certainty of that evidence, and key judgments as defined in the GRADE Evidence to Decision framework. RESULTS.— Six recommendation statements were developed. CONCLUSIONS.— This guideline summarizes the current understanding and hurdles associated with the use of PD-L1 expression and TMB testing for immune checkpoint inhibitor therapy selection in patients with advanced non-small cell lung cancer and presents evidence-based recommendations for PD-L1 and TMB testing in the clinical setting.
Collapse
Affiliation(s)
- Lynette M Sholl
- From the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Sholl)
| | - Mark Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (Awad)
| | - Upal Basu Roy
- Translational Science Research Program, LUNGevity Foundation, Chicago, Illinois (Basu Roy)
| | - Mary Beth Beasley
- the Department of Anatomic Pathology and Clinical Pathology, Mt. Sinai Medical Center, New York, New York (Beasley)
| | - Richard Walter Cartun
- the Department of Anatomic Pathology, Hartford Hospital, Hartford, Connecticut (Cartun)
| | - David M Hwang
- the Department of Laboratory Medicine & Pathobiology, Sunnybrook Health Science Centre, Toronto, Ontario, Canada (Hwang)
| | - Gregory Kalemkerian
- the Department of Medical Oncology and Internal Medicine, University of Michigan Health, Ann Arbor (Kalemkerian)
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain (Lopez-Rios)
| | - Mari Mino-Kenudson
- the Department of Pathology, Massachusetts General Hospital, Boston (Mino-Kenudson)
| | - Ajit Paintal
- the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Paintal)
| | - Kearin Reid
- Governance (Reid) and the Pathology and Laboratory Quality Center for Evidence-based Guidelines, College of American Pathologists, Northfield, Illinois(Ventura)
| | - Lauren Ritterhouse
- the Department of Pathology, Foundation Medicine, Cambridge, Massachusetts (Ritterhouse)
| | | | - Paul E Swanson
- the Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle (Swanson)
| | - Christina B Ventura
- Governance (Reid) and the Pathology and Laboratory Quality Center for Evidence-based Guidelines, College of American Pathologists, Northfield, Illinois(Ventura)
| | - Larissa V Furtado
- the Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee (Furtado)
| |
Collapse
|
4
|
Khoury LM, Sheehan KN, Mariencheck WI, Gershner KA, Maslonka M, Niehaus AG, Isom S, Bellinger CR. Endobronchial Ultrasound Guided Transbronchial Needle Aspiration and PD-L1 Yields. Lung 2024; 202:325-330. [PMID: 38637361 PMCID: PMC11143017 DOI: 10.1007/s00408-024-00692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Immunotherapy is a leading approach for treating advanced non-small cell lung cancer (NSCLC) by targeting the PD-1/PD-L1 checkpoint signaling pathway, particularly in tumors expressing high levels of PD-L1 (Jug et al. in J Am Soc Cytopathol 9:485-493, 2020; Perrotta et al. in Chest 158: 1230-1239, 2020). Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive method to obtain tissue for molecular studies, including PD-L1 analysis, in unresectable tumors (Genova et al. in Front Immunol 12: 799455, 2021; Wang et al. in Ann Oncol 29: 1417-1422, 2018). This study aimed to assess the adequacy of PD-L1 assessment in EBUS-TBNA cytology specimens. METHODS Data was collected retrospectively from patients who underwent EBUS-TBNA between 2017 and 2021 for suspected lung cancer biopsy. Samples positive for NSCLC were examined for PD-L1 expression. EBUS was performed by experienced practitioners, following institutional guidelines of a minimum of five aspirations from positively identified lesions. Sample adequacy for molecular testing was determined by the pathology department. RESULTS The analysis involved 387 NSCLC cases (149 squamous cell, 191 adenocarcinoma, 47 unspecified). Of the 263 EBUS-TBNA specimens tested for PD-L1, 237 (90.1%) were deemed adequate. While 84% adhered to the protocol, adherence did not yield better results. Significantly higher PD-L1 adequacy was observed in squamous cell carcinomas (93.2%) compared to adenocarcinoma (87.6%). The number of aspirations and sedation type did not correlate with PD-L1 adequacy in either cancer type, but lesion size and location had a significant impact in adenocarcinomas. Adenocarcinoma exhibited higher PD-L1 expression (68%) compared to squamous cell carcinoma (48%). CONCLUSION EBUS-TBNA offers high yields for assessing immunotherapy markers like PD-L1, with satisfactory adequacy regardless of NSCLC subtype, lesion size, or location.
Collapse
Affiliation(s)
- Lara M Khoury
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Kristin N Sheehan
- Department of Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - William I Mariencheck
- Department of Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Katherine A Gershner
- Department of Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew Maslonka
- Department of Pulmonary and Critical Care Medicine, Nebraska Pulmonary Specialties, Lincoln, NE, USA
| | - Angela G Niehaus
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Scott Isom
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christina R Bellinger
- Department of Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Laberiano-Fernandez C, Gan Q, Wang SM, Tamegnon A, Wistuba I, Yoon E, Roy-Chowdhuri S, Parra ER. Exploratory pilot study to characterize the immune landscapes of malignant pleural effusions and their corresponding primary tumors from patients with breast carcinoma and lung adenocarcinoma. J Am Soc Cytopathol 2024; 13:161-173. [PMID: 38519275 PMCID: PMC11969369 DOI: 10.1016/j.jasc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Malignant pleural effusion (MPE) is a frequent complication of advanced malignancies. In this pilot study, we characterized the immune landscapes of MPEs, compared them to their primary tumor (PT) samples from breast carcinoma (BC) and lung adenocarcinoma (LADC), and tested the utility of multiplexed image technology in cytological samples. MATERIALS AND METHODS We evaluated the immune contexture of 6 BC and 5 LADC MPEs and their PTs using 3 multiplex immunofluorescence panels. We explored the associations between sample characteristics and pleural effusion-free survival. RESULTS No MPE samples had positive programmed death-ligand 1 expression in malignant cells, although 3 of 11 PTs has positive programmed death-ligand 1 expression (more than 1% expression in malignant cells). Overall, in LADC samples, cluster of differentiation 3 (CD3)+ T cells and CD3+CD8+ cytotoxic T cells predominated (median percentages for MPEs versus PTs: 45.6% versus 40.7% and 4.7% versus 6.6%, respectively) compared with BC. CD68+ macrophages predominated in the BC samples (medians for MPEs 61.2% versus PTs for 57.1%) but not in the LADC samples. Generally in PTs, CD3+CD8+ forkhead box P3+ T cells and the median distances from the malignant cells to CD3+CD8+Ki67+ and CD3+ programmed cell death protein 1 + T cells correlated to earlier MPE after PT diagnosis. CONCLUSIONS The immune cell phenotypes in the MPEs and PTs were similar within each cancer type but different between BC versus LADC. An MPE analysis can potentially be used as a substitute for a PT analysis, but an expanded study of this topic is essential.
Collapse
Affiliation(s)
- Caddie Laberiano-Fernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qiong Gan
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sophia Mei Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Auriole Tamegnon
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Esther Yoon
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sinchita Roy-Chowdhuri
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Xiong J, Cheng S, Gao X, Yu SH, Dai YT, Huang XY, Zhong HJ, Wang CF, Yi HM, Zhang H, Cao WG, Li R, Tang W, Zhao Y, Xu PP, Wang L, Zhao WL. Anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab for first-line treatment in advanced natural killer T cell lymphoma. Signal Transduct Target Ther 2024; 9:62. [PMID: 38448403 PMCID: PMC10917752 DOI: 10.1038/s41392-024-01782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Natural killer T cell lymphoma (NKTCL) is highly aggressive, with advanced stage patients poorly responding to intensive chemotherapy. To explore effective and safe treatment for newly diagnosed advanced stage NKTCL, we conducted a phase II study of anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab (NCT04096690). Twenty-two patients with a median age of 51 years (range, 24-74) were enrolled and treated with induction treatment of pegaspargase 2500 IU/m2 intramuscularly on day 1 and sintilimab 200 mg intravenously on day 2 for 6 cycles of 21 days, followed by maintenance treatment of sintilimab 200 mg for 28 cycles of 21 days. The complete response and overall response rate after induction treatment were 59% (95%CI, 43-79%) and 68% (95%CI, 47-84%), respectively. With a median follow-up of 30 months, the 2 year progression-free and overall survival rates were 68% (95%CI, 45-83%) and 86% (95%CI, 63-95%), respectively. The most frequently grade 3/4 adverse events were neutropenia (32%, n = 7) and hypofibrinogenemia (18%, n = 4), which were manageable and led to no discontinuation of treatment. Tumor proportion score of PD-L1, peripheral blood high-density lipoprotein cholesterol, and apolipoprotein A-I correlated with good response, while PD-1 on tumor infiltrating lymphocytes and peripheral Treg cells with poor response to pegaspargase plus sintilimab treatment. In conclusion, the chemo-free regimen pegaspargase plus sintilimab was effective and safe in newly diagnosed, advanced stage NKTCL. Dysregulated lipid profile and immunosuppressive signature contributed to treatment resistance, providing an alternative therapeutic approach dual targeting fatty acid metabolism and CTLA-4 in NKTCL.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Yun Huang
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guo Cao
- Department of Radiation, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- Department of Hematology, Navy Medical Center of PLA, Shanghai, China
| | - Wei Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
7
|
Lou SSK, Ruff H, MacDonald S, Smith SM, Cheung CC. PD-L1 expression in fine-needle aspiration cell blocks of head and neck squamous-cell carcinoma and its cytohistological concordance. Diagn Cytopathol 2024; 52:163-170. [PMID: 38095142 DOI: 10.1002/dc.25264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND PD-L1 immunoexpression in head and neck squamous-cell carcinoma (HNSCC) determines immunotherapy eligibility. Patients are often diagnosed using fine-needle aspiration (FNA) of metastatic lymph nodes, however, the cytohistologic correlation of the combined positive score (CPS) is largely unknown. METHODS This study retrospectively identified 96 paired histologic (HS) and cytologic specimens (CyS), between 2016 and 2020, diagnosed with HNSCC. Cases with <100 tumor cells (n = 54) or missing block(s) (n = 8) were excluded. All 34 case pairs were scored with CPS using the PD-L1 22C3 pharmDx assay at clinically relevant cut-offs of <1%, 1%-19%, and ≥20% independently by three observers blinded to the case pairs (CyS with corresponding HS). RESULTS The CPS (<1/1-19/≥20) for CyS and HS were as follows: 10(29.4%)/10(29.4%)/14(41.2%) and 2(5.9%)/13(38.2%)/19(55.9%), respectively. There was fair overall cytohistologic agreement (OA) of 76.5% (k = 0.261) at the CPS cut-off of 1. The OA did not differ significantly between site-matched (n = 13) and -unmatched (n = 21) case pairs (p = .4653). CyS has a specificity and positive predictive value (PPV) of 100% but a negative predictive value (NPV) of only 20% as compared to its paired HS. CONCLUSIONS Our study demonstrates fair CPS cytohistologic correlation in HNSCC specimens using the PD-L1 IHC 22C3 pharmDx assay with high PPV but low NPV. This suggest that determining PD-L1 status in FNA specimens can play an important role in the clinical management of HNSCC patients.
Collapse
Affiliation(s)
- Sandy Si Kei Lou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Heather Ruff
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
- Department of Pathology, Oregon Health Science University, Portland, Oregon, USA
| | - Scott MacDonald
- Division of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Stephen M Smith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Carol C Cheung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Nikas IP, Park SY, Song MJ, Lee C, Ryu HS. Expression of EGFR, PD-L1, and the mismatch repair proteins before and following therapy in malignant serous effusions with metastatic high-grade serous tubo-ovarian carcinoma. Diagn Cytopathol 2024; 52:69-75. [PMID: 37937321 DOI: 10.1002/dc.25248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
AIM To compare the immunochemical expression of EGFR, PD-L1, and the mismatch repair (MMR) proteins MLH1, PMS2, MSH2, and MSH6 between matched malignant effusions obtained before and following the administration of chemotherapy in patients with high-grade serous tubo-ovarian carcinoma (HGSC). METHODS In the enrolled HGSCs, matched formalin-fixed and paraffin-embedded cell blocks (CBs) from effusions sampled before (treatment-naïve patients) and during recurrence (following chemotherapy administration), in addition to their matched HGSC tissues obtained from the ovaries at initial diagnosis (treatment-naïve patients), were subjected to EGFR, PD-L1, and MMR immunochemical analysis. RESULTS EGFR was more often overexpressed in effusions obtained after chemotherapy administration compared to both effusions (100% vs. 57.1%) and their matched tubo-ovarian tumors (100% vs. 7.1%) from treatment-naïve patients, respectively. EGFR immunochemistry was concordant in just 9.1% of the effusions sampled during recurrence and their paired ovarian samples before recurrence. Whereas all HGSC treatment-naïve samples (ovarian lesions and effusions) were PD-L1 negative, 3/11 (27.3%) malignant effusions obtained during recurrence showed PD-L1 overexpression. Lastly, none of the tested HGSC samples exhibited MMR deficiency. CONCLUSION Measuring biomarkers using CBs from malignant effusions may provide clinicians with significant information related to HGSC prognosis and therapy selection, especially in patients with resistance to chemotherapy.
Collapse
Affiliation(s)
- Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Soo-Young Park
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Ji Song
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Tajarernmuang P, Aliaga F, Alwakeel AJ, Tavaziva G, Turner K, Menzies D, Wang H, Ofiara L, Benedetti A, Gonzalez AV. Accuracy of Cytologic vs Histologic Specimens for Assessment of Programmed Cell Death Ligand-1 Expression in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Chest 2024; 165:461-474. [PMID: 37739030 DOI: 10.1016/j.chest.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Programmed cell death ligand-1 (PD-L1) expression on tumor cells, evaluated by immunohistochemistry, guides the use of immunotherapy in advanced non-small cell lung cancer (NSCLC). RESEARCH QUESTION What is the sensitivity and specificity of PD-L1 testing performed in cytologic vs paired histologic specimens in patients with NSCLC? STUDY DESIGN AND METHODS The MEDLINE, Embase, Web of Science, and Cochrane Library databases were searched through June 1, 2021. The primary outcome was pooled sensitivity and specificity of PD-L1 testing performed on cytologic specimens compared with the reference standard of histologic specimens, analyzed at the PD-L1 expression cutoffs (tumor proportion score) ≥ 1% and ≥ 50%. Pooled sensitivity and specificity, and associated 95% CIs, were estimated using bivariate generalized linear mixed models. RESULTS Twenty-six articles were included, encompassing a total of 1,064 pairs of histology specimens and cytology cell blocks, and 267 pairs of histology specimens and direct smears. Among these, 946 paired specimens were acquired without interval treatment between the collection of histology and cytology samples. The pooled sensitivity and specificity of cytology specimens compared with paired histology specimens at the PD-L1 expression cutoff ≥ 1% were 0.84 (95% CI, 0.77-0.89) and 0.88 (95% CI, 0.82-0.93), respectively, whereas the pooled sensitivity and specificity at cutoff ≥ 50% were 0.78 (95% CI, 0.69-0.86) and 0.94 (95% CI, 0.91-0.96), respectively. When only paired specimens acquired without interval treatment were considered, the pooled sensitivity and specificity of cytology specimens at PD-L1 expression cutoff ≥ 1% were 0.84 (95% CI, 0.76-0.90) and 0.89 (95% CI, 0.82-0.94), respectively, whereas the pooled sensitivity and specificity at cutoff ≥ 50% were 0.80 (95% CI, 0.71-0.89) and 0.94 (95% CI, 0.91-0.96), respectively. INTERPRETATION Cytologic specimens provide an accurate assessment of PD-L1 expression in most patients with NSCLC, at both ≥ 1% and ≥ 50% cutoffs, when compared with histologic specimens. TRIAL REGISTRATION PROSPERO; No.: CRD42020153279; URL: https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Pattraporn Tajarernmuang
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; Respiratory, Critical Care and Allergy Division, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Felipe Aliaga
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; Facultad de Medicina Clínica Alemana, Universidad del Desarrollo (CAS-UDD), Santiago, Chile
| | - Amr J Alwakeel
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; Pulmonary Medicine Division, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Gamuchirai Tavaziva
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Kimberly Turner
- Department of Psychiatry, McGill University Health Centre, Montreal, QC, Canada
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; Respiratory Division, McGill University Health Centre, Montreal, QC, Canada
| | - Hangjun Wang
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Linda Ofiara
- Department of Psychiatry, McGill University Health Centre, Montreal, QC, Canada
| | - Andrea Benedetti
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; Departments of Epidemiology, Biostatistics & Occupational Health, Medicine, McGill University, Montreal, QC, Canada
| | - Anne V Gonzalez
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada; Respiratory Division, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
10
|
Gosney JR, Peake MD, Kerr KM. Improving practice in PD-L1 testing of non-small cell lung cancer in the UK: current problems and potential solutions. J Clin Pathol 2024; 77:135-139. [PMID: 36604178 PMCID: PMC10850646 DOI: 10.1136/jcp-2022-208643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
AIMS Programmed cell death ligand 1 (PD-L1) expression, used universally to predict response of non-small cell lung cancer (NSCLC) to immune-modulating drugs, is a fragile biomarker due to biological heterogeneity and challenges in interpretation. The aim of this study was to assess current PD-L1 testing practices in the UK, which may help to define strategies to improve its reliability and consistency. METHODS A questionnaire covering NSCLC PD-L1 testing practice was devised and members of the Association of Pulmonary Pathologists were invited to complete this online. RESULTS Of 44 pathologists identified as involved in PD-L1 testing, 32 (73%) responded. There was good consistency in practice and approach, but there was wide variability in the distribution of PD-L1 scoring. Although the proportions of scores falling into the three groups (negative, low and high) defined by the 1% and 50% 'cut-offs' (38%, 33% and 27%, respectively) reflect the general experience, the range within each group was wide at 23-70%, 10-60% and 15-36%, respectively. CONCLUSIONS There is inconsistency in the crucial endpoint of PD-L1 testing of NSCLC, the expression score that guides management. Addressing this requires formal networking of individuals and laboratories to devise a strategy for its reduction.
Collapse
Affiliation(s)
- John R Gosney
- Cellular Pathology, Royal Liverpool and Broadgreen Hospitals NHS Trust, Liverpool, UK
| | - Michael D Peake
- Center for Cancer Outcomes, North Central and North East London Cancer Alliances, UCLH, London, UK
- Groby Road Hospital, University of Leicester, Leicester, UK
| | | |
Collapse
|
11
|
Dehem A, Mazieres J, Chour A, Guisier F, Ferreira M, Boussageon M, Girard N, Moro-Sibilot D, Cadranel J, Zalcman G, Ricordel C, Wislez M, Munck C, Poulet C, Gauvain C, Descarpentries C, Wasielewski E, Cortot AB, Baldacci S. Characterization of 164 patients with NRAS mutated non-small cell lung cancer (NSCLC). Lung Cancer 2023; 186:107393. [PMID: 37839252 DOI: 10.1016/j.lungcan.2023.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND NRAS mutations are observed in less than 1% of non-small cell lung cancer (NSCLC). Clinical data regarding this rare subset of lung cancer are scarce and response to systemic treatment such as chemotherapy or immune checkpoint inhibitors (ICI) has never been reported. METHODS All consecutive patients with an NRAS mutated NSCLC, diagnosed between August 2014 and November 2020 in 14 French centers, were included. Clinical and molecular data were collected and reviewed from medical records. RESULTS Out of the 164 included patients, 106 (64.6%) were men, 150 (91.5%) were current or former smokers, and 104 (63.4%) had stage IV NSCLC at diagnosis. The median age was 62 years, and the most frequent histology was adenocarcinoma (81.7%). NRAS activating mutations were mostly found in codon 61 (70%), while codon 12 and 13 alterations were observed in 16.5% and 4.9% of patients, respectively. Programmed death ligand-1 expression level <1%/1-49%/≥50% were respectively found in 30.8%/27.1%/42.1% of tumors. With a median follow-up of 12.5 months, median overall survival (OS) of stage IV patients was 15.3 months (95% CI 9.9-27.6). No significant difference in OS was found according to the type of mutation (codon 61 vs. other), HR = 1.12 (95% CI 0.65-1.95). Among stage IV patients treated with platinum-based doublet (n = 66), ICI (n = 48), or combination of both (n = 10), objective response rate, and median progression free survival were respectively 45% and 5.8 months, 35% and 6.9 months, 70% and 8.6 months. CONCLUSION NRAS mutated NSCLC are characterized by a high frequency of smoking history and codon 61 mutations. Further studies are needed to confirm the encouraging outcome of immunotherapy in combination with chemotherapy.
Collapse
Affiliation(s)
- Agathe Dehem
- Univ. Lille, CHU Lille, Thoracic Oncology Department, F-59000 Lille, France
| | - Julien Mazieres
- Thoracic Oncology, Respiratory Department, Centre Hospitalier Universitaire de Toulouse - Hôpital Larrey, Toulouse, France
| | - Ali Chour
- Respiratory Department, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; Oncopharmacology Laboratory, Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Lyon, France; Université Claude Bernard, Université de Lyon, Lyon, France
| | - Florian Guisier
- Department of Pneumology, Hôpital Charles-Nicolle - CHU de Rouen, Rouen, France
| | - Marion Ferreira
- Department of Pneumology and Respiratory Functional Exploration, University Hospital of Tours, Tours, France
| | | | - Nicolas Girard
- Thorax Institute, Institut Curie, Paris, France and Paris Saclay, UVSQ, UFR Simone Veil, Versailles, France
| | | | - Jacques Cadranel
- Pneumology and Thoracic Oncology department, APHP Paris - Hôpital Tenon and Sorbonne University, Paris, France
| | - Gérard Zalcman
- Université Paris Cité, Institut du Cancer AP-HP.Nord, Thoracic Oncology Department, CIC INSERM 1425, Hôpital Bichat Claude Bernard, Paris, France
| | | | - Marie Wislez
- Oncology Thoracic Unit Pulmonology Department, Hôpital Cochin, APHP, Paris, France
| | - Camille Munck
- Pneumologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Claire Poulet
- Pneumology department, CHU Amiens-Picardie - Site Sud, Amiens, France
| | - Clément Gauvain
- Univ. Lille, CHU Lille, Thoracic Oncology Department, F-59000 Lille, France
| | - Clotilde Descarpentries
- Department of Biochemistry and Molecular Biology « Hormonology Metabolism Nutrition Oncology », CHU lille, F-59000 Lille, France
| | - Eric Wasielewski
- Univ. Lille, CHU Lille, Thoracic Oncology Department, F-59000 Lille, France
| | - Alexis B Cortot
- Univ. Lille, CHU Lille, Thoracic Oncology Department, CNRS, Inserm, Institut Pasteur de Lille, UMR9020 - UMR-S 1277 - Canther, F-59000 Lille, France
| | - Simon Baldacci
- Univ. Lille, CHU Lille, Thoracic Oncology Department, CNRS, Inserm, Institut Pasteur de Lille, UMR9020 - UMR-S 1277 - Canther, F-59000 Lille, France.
| |
Collapse
|
12
|
Russell PA, Farrall AL, Prabhakaran S, Asadi K, Barrett W, Cooper C, Cooper W, Cotton S, Duhig E, Egan M, Fox S, Godbolt D, Gupta S, Hassan A, Leslie C, Leong T, Moffat D, Qiu MR, Sivasubramaniam V, Skerman J, Snell C, Walsh M, Whale K, Klebe S. Real-world prevalence of PD-L1 expression in non-small cell lung cancer: an Australia-wide multi-centre retrospective observational study. Pathology 2023; 55:922-928. [PMID: 37833206 DOI: 10.1016/j.pathol.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 10/15/2023]
Abstract
An investigator-initiated, Australia-wide multi-centre retrospective observational study was undertaken to investigate the real-world prevalence of programmed death ligand-1 (PD-L1) expression in non-small cell lung carcinoma (NSCLC). Multiple centres around Australia performing PD-L1 immunohistochemistry (IHC) were invited to participate. Histologically confirmed NSCLC of any stage with a PD-L1 IHC test performed for persons aged ≥18 years between 1 January 2018 and 1 January 2020, and eligible for review, were identified at each centre, followed by data extraction and de-identification, after which data were submitted to a central site for collation and analysis. In total data from 6690 eligible PD-L1 IHC tests from histologically (75%) or cytologically (24%) confirmed NSCLC of any stage were reviewed from persons with a median age of 70 years, 43% of which were female. The majority (81%) of tests were performed using the PD-L1 IHC SP263 antibody with the Ventana BenchMark Ultra platform and 19% were performed using Dako PD-L1 IHC 22C3 pharmDx assay. Reported PD-L1 tumour proportion score (TPS) was ≥50% for 30% of all tests, with 62% and 38% scoring PD-L1 ≥1% and <1%, respectively. Relative prevalence of clinicopathological features with PD-L1 scores dichotomised to <50% and ≥50%, or to <1% and ≥1%, were examined. Females scored ≥1% slightly more often than males (64% vs 61%, respectively, p=0.013). However, there was no difference between sexes or age groups (<70 or ≥70 years) where PD-L1 scored ≥50%. Specimens from patients with higher stage (III/IV) scored ≥1% or ≥50% marginally more often compared to specimens from patients with lower stage (I/II) (p≤0.002). Proportions of primary and metastatic specimens did not differ where PD-L1 TPS was ≥1%, however more metastatic samples scored TPS ≥50% than primary samples (metastatic vs primary; 34% vs 27%, p<0.001). Cytology and biopsy specimens were equally reported, at 63% of specimens, to score TPS ≥1%, whereas cytology samples scored TPS ≥50% slightly more often than biopsy samples (34% vs 30%, respectively, p=0.004). Resection specimens (16% of samples tested) were reported to score TPS ≥50% or ≥1% less often than either biopsy or cytology samples (p<0.001). There was no difference in the proportion of tests with TPS ≥1% between PD-L1 IHC assays used, however the proportion of tests scored at TPS ≥50% was marginally higher for 22C3 compared to SP263 (34% vs 29%, respectively, p<0.001). These real-world Australian data are comparable to some previously published global real-world data, with some differences noted.
Collapse
Affiliation(s)
- Prudence A Russell
- LifeStrands Genomics and, TissuPath Pathology, Mount Waverley, Vic, Australia
| | - Alexandra L Farrall
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Sarita Prabhakaran
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Wade Barrett
- Anatomical Pathology, St Vincent's Hospital Sydney, NSW, Australia
| | - Caroline Cooper
- Pathology Queensland, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Wendy Cooper
- Anatomical Pathology, Royal Prince Alfred Hospital, NSW, Australia
| | - Samuel Cotton
- Anatomical Pathology, Royal Hobart Hospital, Tas, Australia
| | - Edwina Duhig
- Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - Matthew Egan
- Anatomical Pathology, St Vincent's Hospital Melbourne, Vic, Australia
| | - Stephen Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - David Godbolt
- Pathology Queensland, Prince Charles Hospital, Brisbane, Qld, Australia
| | - Shilpa Gupta
- Pathology Queensland, Prince Charles Hospital, Brisbane, Qld, Australia
| | - Aniza Hassan
- SA Pathology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Connull Leslie
- Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| | - Trishe Leong
- Anatomical Pathology, St Vincent's Hospital Melbourne, Vic, Australia
| | - David Moffat
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; SA Pathology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Min Ru Qiu
- Anatomical Pathology, St Vincent's Hospital Sydney, NSW, Australia
| | - Vanathi Sivasubramaniam
- Anatomical Pathology, St Vincent's Hospital Sydney, NSW, Australia; Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Joanna Skerman
- Pathology Queensland, Prince Charles Hospital, Brisbane, Qld, Australia
| | - Cameron Snell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Michael Walsh
- Sullivan Nicolaides Pathology, Brisbane, Qld, Australia
| | - Karen Whale
- Anatomical Pathology, Royal Hobart Hospital, Tas, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; SA Pathology, Flinders Medical Centre, Bedford Park, SA, Australia.
| |
Collapse
|
13
|
Polanco D, Pinilla L, Gracia-Lavedan E, Gatius S, Zuil M, Pardina M, Gómez S, Barbé F. Performance of endobronchial ultrasound transbronchial needle aspiration as the first nodal staging procedure for the determination of programmed death ligand-1 expression in non-small cell lung cancer patients. J Cancer Res Clin Oncol 2023; 149:12459-12468. [PMID: 37450028 DOI: 10.1007/s00432-023-05039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE The determination of the programmed death ligand-1 (PD-L1) expression is part of the diagnostic algorithm for advanced non-small cell lung cancer (NSCLC) patients. We aimed to analyze the diagnostic performance of EBUS-TBNA performed as first-choice nodal staging procedure for the determination of PD-L1 expression in NSCLC patients. METHODS Longitudinal-prospective study including NSCLC patients diagnosed between January 2018 and October 2019, for whom a primary tumor biopsy sample and an EBUS-TBNA cytological malignant sample were available. Samples with fewer than 100 malignant cells were considered inadequate. PDL-1 IHC 22C3 pharmDx antibody was used. The percentage of tumor cells expressing PD-L1, setting 1% and 50% as cutoff points, was collected. The weighted kappa coefficient was used to assess the concordance of PD-L1 expression. The PD-L1 expression was compared in precision terms. RESULTS From a total of 43 patients, 53 pairs of samples were obtained, of which 23 (43.4%) were adequate and included for analysis. The weighted kappa coefficient for PD-L1 expression was 0.41 (95% CI 0.15-0.68) and 0.56 (95% CI 0.23-0.9) for cutoff values ≥ 1% and ≥ 50%, respectively. In advanced stages, the weighted kappa coefficient was 0.6 (95% CI 0.3-0.9) and 1 (95% CI 1-1) for PD-L1 expression cutoff values ≥ 1% and ≥ 50%, respectively. EBUS-TBNA showed a sensitivity, specificity, positive predictive value, and negative predictive value of 1 to detect PDL-1 expression ≥ 50% in advanced stages. CONCLUSION EBUS-TBNA performed as first nodal staging procedure in advanced NSCLC patients provides reliable specimens for the detection of PD-L1 expression ≥ 50% and could guide immunotherapy.
Collapse
Affiliation(s)
- Dinora Polanco
- Group of Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
| | - Lucía Pinilla
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Esther Gracia-Lavedan
- Group of Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sonia Gatius
- Pathology Department, University Hospital Arnau de Vilanova, Lleida, Spain
| | - María Zuil
- Group of Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
| | - Marina Pardina
- Radiology Department, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Silvia Gómez
- Group of Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ferrán Barbé
- Group of Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
14
|
Anderson SA, Harbi D, Oramas Mogrovejo D, Floyd AD, Eltoum IE, Fatima H, Rosenblum F, Lora Gonzalez M, Lin D, Mackinnon AC, Siegal GP, Winokur T, Yalniz C, Huo L, Harada S, Huang X. PD-L1 (22C3) Expression Correlates with Clinical and Molecular Features of Lung Adenocarcinomas in Cytological Samples. Acta Cytol 2023; 67:507-518. [PMID: 37494911 DOI: 10.1159/000532036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION PD-L1 expression is the most widely used predictive marker for immune checkpoint inhibitor (ICI) therapy in patients with lung adenocarcinoma. However, the current understanding of the association between PD-L1 expression and treatment response is suboptimal. A significant percentage of patients have only a cytological specimen available for clinical management. Therefore, it is relevant to examine the impact of molecular features on PD-L1 expression in cytological samples and how it might correlate with a therapeutic response. METHODS We evaluated patients diagnosed with adenocarcinoma of the lung who had both in-house targeted next-generation sequencing analysis and paired PD-L1 (22C3) immunohistochemical staining performed on the same cell blocks. We explored the association between molecular features and PD-L1 expression. In patients who underwent ICIs therapy, we assessed how a specific gene mutation impacted a therapeutic response. RESULTS 145 patients with lung adenocarcinoma were included in this study. PD-L1-high expression was found to be more common in pleural fluid than in other sample sites. Regional lymph node samples showed a higher proportion of PD-L1-high expression (29%) compared with lung samples (6%). The predictive value of PD-L1 expression was retained in cytological samples. Mutations in KRAS were also associated with a PD-L1-high expression. However, tumors with TP53 or KRAS mutations showed a lower therapy response rate regardless of the PD-L1 expression. CONCLUSION Cytological samples maintain a predictive value for PD-L1 expression in patients with lung adenocarcinoma as regards the benefit of ICI treatment. Specific molecular alterations additionally impact PD-L1 expression and its predictive value.
Collapse
Affiliation(s)
- Sarah A Anderson
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Djamel Harbi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Diana Oramas Mogrovejo
- Department of Laboratory Medicine and Pathology, The University of Minnesota, Minneapolis, Minnesota, USA
| | - Antoinette D Floyd
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Isam-Eldin Eltoum
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huma Fatima
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frida Rosenblum
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manuel Lora Gonzalez
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Diana Lin
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexander C Mackinnon
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas Winokur
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ceren Yalniz
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lei Huo
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuko Harada
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiao Huang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Isla D, Lozano MD, Paz-Ares L, Salas C, de Castro J, Conde E, Felip E, Gómez-Román J, Garrido P, Belén Enguita A. [New update to the guidelines on testing predictive biomarkers in non-small-cell lung cancer: a National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2023; 56:97-112. [PMID: 37061248 DOI: 10.1016/j.patol.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 04/17/2023]
Abstract
Non-small cell lung cancer (NSCLC) presents the greatest number of identified therapeutic targets, some of which have therapeutic utility. Currently, detecting EGFR, BRAF, KRAS and MET mutations, ALK, ROS1, NTRK and RET translocations, and PD-L1 expression in these patients is considered essential. The use of next-generation sequencing (NGS) facilitates precise molecular diagnosis and allows the detection of other emerging mutations, such as the HER2 mutation and predictive biomarkers for immunotherapy responses. In this consensus, a group of experts in the diagnosis and treatment of NSCLC selected by the Spanish Society of Pathology (SEAP) and the Spanish Society of Medical Oncology (SEOM) have evaluated currently available information and propose a series of recommendations to optimize the detection and use of biomarkers in daily clinical practice.
Collapse
Affiliation(s)
- Dolores Isla
- Hospital Clínico Universitario Lozano Blesa, IIS Aragón, Sociedad Española de Oncología Médica (SEOM), Zaragoza, España
| | - María D Lozano
- Clínica Universidad de Navarra, Sociedad Española de Citología (SEC), Sociedad Española de Anatomía Patológica (SEAP), Pamplona, España
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Sociedad Española de Oncología Médica (SEOM), Madrid, España
| | - Clara Salas
- Hospital Universitario Puerta de Hierro, Sociedad Española de Anatomía Patológica (SEAP), Madrid, España
| | - Javier de Castro
- Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Sociedad Española de Oncología Médica (SEOM), Madrid, España
| | - Esther Conde
- Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital Universitario 12 de Octubre (i+12), Sociedad Española de Anatomía Patológica (SEAP), Madrid, España
| | - Enriqueta Felip
- Hospital Universitario Vall d'Hebron, Sociedad Española de Oncología Médica (SEOM), Barcelona, España
| | - Javier Gómez-Román
- Universidad de Cantabria, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Sociedad Española de Anatomía Patológica (SEAP), Santander, España
| | - Pilar Garrido
- Hospital Universitario Ramón y Cajal, Sociedad Española de Oncología Médica (SEOM), Madrid, España
| | - Ana Belén Enguita
- Hospital Universitario 12 de Octubre, Sociedad Española de Anatomía Patológica (SEAP), Madrid, España.
| |
Collapse
|
16
|
Diagnostic Accuracy of Slow-Capillary Endobronchial Ultrasound Needle Aspiration in Determining PD-L1 Expression in Non-Small Cell Lung Cancer. Adv Respir Med 2023; 91:1-8. [PMID: 36648877 PMCID: PMC9844495 DOI: 10.3390/arm91010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The role of EBUS-TBNA in the diagnosis and staging of lung cancer is well established. EBUS-TBNA can be performed using different aspiration techniques. The most common aspiration technique is known as "suction". One alternative to the suction technique is the slow-pull capillary aspiration. To the best of our knowledge, no studies have assessed the diagnostic yield of slow-pull capillary EBUS-TBNA in PD-L1 amplification assessment in NSCLC. Herein, we conducted a single-centre retrospective study to establish the diagnostic yield of slow-pull capillary EBUS-TBNA in terms of PD-L1 in patients with NSCLC and hilar/mediastinal lymphadenopathies subsequent to NSCLC. MATERIALS AND METHODS Patients with hilar and/or mediastinal lymph node (LN) NSCLC metastasis, diagnosed by EBUS-TBNA between January 2021 and April 2022 at Pulmonology Unit of "Ospedali Riuniti di Ancona" (Ancona, Italy) were enrolled. We evaluated patient characteristics, including demographic information, CT scan/ FDG-PET features and final histological diagnoses, including PD-L1 assessment. RESULTS A total of 174 patients underwent EBUS-TBNA for diagnosis of hilar/mediastinal lymphadenopathies between January 2021 and April 2022 in the Interventional Pulmonology Unit of the "Ospedali Riuniti di Ancona". Slow-pull capillary aspiration was adopted in 60 patients (34.5%), and in 30/60 patients (50.0%) NSCLC was diagnosed. EBUS-TBNA with slow-pull capillary aspiration provided adequate sampling for molecular biology and PD-L1 testing in 96.7% of patients (29/30); in 15/29 (51.7%) samples with more than 1000 viable cells/HPF were identified, whereas in 14/29 (48.3%) samples contained 101-1000 viable cells/HPF. CONCLUSION These retrospective study shows that slow-pull capillary aspiration carries an excellent diagnostic accuracy, almost equal to that one reported in literature, supporting its use in EBUS-TBNA for PD-L1 testing in NSCLC.
Collapse
|
17
|
Layfield LJ, Zhang T, Esebua M. PD-L1 immunohistochemical testing: A review with reference to cytology specimens. Diagn Cytopathol 2023; 51:51-58. [PMID: 36053989 DOI: 10.1002/dc.25043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunotherapy based on disruption of the PD-1/PD-L1 axis is standard of care for many high stage malignancies including melanomas, non-small cell carcinomas of the lung, triple negative breast carcinomas, and squamous cell carcinomas of the head and neck. Eligibility for immunotherapy requires immunohistochemical assessment of PD-L1 expression. Currently, many high stage malignancies are diagnosed by cytology and cytologic material is the only specimen available for ancillary testing. Formal guidelines do not currently exist defining the optimal specimen type, antibody to be used or the best scoring system for cytologic material. Significant information has been published for PD-L1 testing of pulmonary specimens but much less data exists for the reproducibility, accuracy and best practices for material obtained from other body sites and types of malignancy. METHODS We searched the PubMed data base for manuscripts relating to PD-L1 testing of cytologic specimens. The search period was between 2016 and 2022. The search terms used were PD-L1, cytology, FNA, immunotherapy, immunohistochemistry, immunocytochemistry, cytology-histology correlation. Cross referencing techniques were used to screen for the most relevant manuscripts. The abstracts of these were then reviewed for final data collection and analysis. RESULTS A total of 86 studies were identified conforming to study relevancy. These were reviewed in their entirety by two authors (LJL, TZ) for extraction of data. The majority of studies involved pulmonary specimens (79) with three relating to PD-L1 testing of head and neck cytologic specimens and one each for PD-L1 testing of cytology specimens from melanomas, pancreas, pleural fluids, and triple negative breast carcinomas. While smears could be used, most studies found cell blocks optimal for testing. SUMMARY Currently, four drugs are approved for immunotherapy based on PD-L1 status. These drugs require specific antibody clones as well as scoring systems. Scoring systems and cut points vary with the type of neoplasm being treated. Cytology specimens from the lung, head and neck and melanomas can all be used for PD-L1 testing with good agreement with corresponding histology specimens.
Collapse
Affiliation(s)
- Lester J Layfield
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Tao Zhang
- Department of Surgical Pathology, M.D. Anderson, Houston, Texas, USA
| | - Magda Esebua
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Schmitt F, Lozano MD. Molecular/biomarker testing in lung cytology: A practical approach. Diagn Cytopathol 2023; 51:59-67. [PMID: 36098379 DOI: 10.1002/dc.25054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022]
Abstract
The increasing comprehension of molecular mechanisms underlying lung cancer and the discovery of targetable genomic alterations has dramatically change the pathological approach to lung cancer, especially non-small cell lung cancer (NSCLC). This unstoppable knowledge has taken pathologists to the leading front on lung cancer management. This is especially relevant in the world of cytopathology where "doing more with less" is a daily challenge. Nowadays with a growing number of predictive biomarkers needed to manage patients with NSCLC, there has been a paradigm shift in care and handling of diagnostic samples. One of the main emphasis and interest relies on the utilization of cytologic samples and small biopsies for not only diagnostic purposes but also for ancillary testing. Moreover, lung cytopathology is in continuous evolutions with implementation of new diagnostic techniques, new tools, and facing new challenges. The goal of this paper will be to provide the reader with the necessary concepts than can be used to exploit the cytological samples in order to use these samples for comprehensive diagnosis and relevant ancillary testing purposes.
Collapse
Affiliation(s)
- Fernando Schmitt
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Cintesis@RISE, Health Research Network, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Maria D Lozano
- Department of Pathology, Clinica University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
19
|
Turner SA, Abou Shaar R, Yang Z. The basics of commonly used molecular techniques for diagnosis, and application of molecular testing in cytology. Diagn Cytopathol 2023; 51:83-94. [PMID: 36345929 PMCID: PMC10098847 DOI: 10.1002/dc.25067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Molecular diagnostics has expanded to become the standard of care for a variety of solid tumor types. With limited diagnostic material, it is often desirable to use cytological preparations to provide rapid and accurate molecular results. This review covers important pre-analytic considerations and limitations, and a description of common techniques that the modern cytopathologist should understand when ordering and interpreting molecular tests in practice.
Collapse
Affiliation(s)
- Scott A Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rand Abou Shaar
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhongbo Yang
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
20
|
Lozano MD, Benito A, Labiano T, Pijuan L, Tejerina E, Torres H, Gómez-Román J. Recommendations for optimizing the use of cytology in the diagnosis and management of patients with lung cancer. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2023; 56:58-68. [PMID: 36599601 DOI: 10.1016/j.patol.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 01/31/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the oncological entities with the greatest evolution in molecular diagnosis due to the large number of diagnostic biomarkers and new treatments approved by international regulatory agencies. An accurate, early diagnosis using the least amount of tissue is the goal for the establishing and developing precision medicine for these patients. Rapid on-site evaluation (ROSE) provides cytological samples of optimal quantity and quality for a complete diagnosis of NSCLC. The usefulness of cytological samples has been demonstrated, not only for massive parallel sequencing but also for the quantification of the expression of programmed death-ligand 1 (PD-L1) and tumour mutational burden (TMB). Pre-analytical, analytical, and post-analytical recommendations are made for the management and appropriate use of cytological samples in order to obtain all the information necessary for the diagnosis and treatment of patients with NSCLC according to current quality parameters.
Collapse
Affiliation(s)
| | | | | | - Lara Pijuan
- Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Eva Tejerina
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Héctor Torres
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Javier Gómez-Román
- Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
21
|
New update to the guidelines on testing predictive biomarkers in non-small-cell lung cancer: a National Consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 2022; 25:1252-1267. [PMID: 36571695 PMCID: PMC10119050 DOI: 10.1007/s12094-022-03046-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022]
Abstract
Non-small cell lung cancer (NSCLC) presents the greatest number of identified therapeutic targets, some of which have therapeutic utility. Currently, detecting EGFR, BRAF, KRAS and MET mutations, ALK, ROS1, NTRK and RET translocations, and PD-L1 expression in these patients is considered essential. The use of next-generation sequencing facilitates precise molecular diagnosis and allows the detection of other emerging mutations, such as the HER2 mutation and predictive biomarkers for immunotherapy responses. In this consensus, a group of experts in the diagnosis and treatment of NSCLC selected by the Spanish Society of Pathology and the Spanish Society of Medical Oncology have evaluated currently available information and propose a series of recommendations to optimize the detection and use of biomarkers in daily clinical practice.
Collapse
|
22
|
Mahajan S, Nambirajan A, Gupta I, Gupta N, Gupta P, Jain D. Malignant pleural effusion cell blocks are reliable resources for PD-L1 analysis in advanced lung adenocarcinomas: a concordance study with matched histologic samples. J Am Soc Cytopathol 2022; 11:253-263. [PMID: 35589508 DOI: 10.1016/j.jasc.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION In lung cancer patients presenting with malignant pleural effusion (MPE), cytology might represent the only source of tumor tissue for diagnosis and predictive biomarker testing. Programmed death ligand 1 (PD-L1) expression in tumor cells is a predictive biomarker for immunotherapy in non-small cell lung carcinomas and is tested using immunohistochemistry. However, knowledge of the validity of PD-L1 testing on MPE samples is limited. We evaluated the feasibility of immunocytochemistry (ICC) for PD-L1 in MPE cell blocks (CBs) and assessed the concordance in expression with patient-matched histologic samples. MATERIALS AND METHODS ICC for PD-L1 was performed on formalin-fixed paraffin-embedded CBs of MPE and patient-matched histologic samples, if available, using the automated Ventana PD-L1 SP263 assay. The tumor proportion score (TPS), based on partial or complete membranous tumor cell staining, was categorized as negative (<1%), low (≥1% to <50%), and high (≥50%). In CBs with any degree of PD-L1 expression, ICC for CD163 highlighting macrophages was performed to exclude nonspecific PD-L1 expression in macrophages. The CB PD-L1 TPS was compared with the TPS obtained from the patient-matched histologic samples. RESULTS Of 43 MPE CBs available, 25 were positive for PD-L1 (25 of 42; 59%), and 1 sample was inadequate. Of the 11 patient-matched histologic samples tested, the PD-L1 TPS categories were concordant for 10 of the 11 (91% concordance) cases. CONCLUSIONS PD-L1 expression in MPE CBs showed good concordance with expression in histologic samples and is feasible as a source for PD-L1 testing. The concurrent use of CD163 immunostains will aid in the manual assessment of PD-L1 TPS.
Collapse
Affiliation(s)
- Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ishan Gupta
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Nalini Gupta
- Department of Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Parikshaa Gupta
- Department of Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
23
|
Specimen Considerations in Molecular Oncology Testing. Clin Lab Med 2022; 42:367-383. [DOI: 10.1016/j.cll.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Shao RG, Xie QW, Pan LH, Lin F, Qin K, Ming SP, Li JJ, Du XK. Necrostatin-1 attenuates Caspase-1-dependent pyroptosis induced by the RIPK1/ZBP1 pathway in ventilator-induced lung injury. Cytokine 2022; 157:155950. [PMID: 35780712 DOI: 10.1016/j.cyto.2022.155950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a complex pathophysiological process leading to acute respiratory distress syndrome (ARDS) and poor outcomes in affected patients. As a form of programmed cell death, pyroptosis is proposed to play an important role in the development of ARDS. Here we investigated whether treating mice with the specific RIPK1 inhibitor Necrostatin-1 (Nec-1) before mechanical ventilation could inhibit pyroptosis and alleviate lung injury in a mouse model. METHODOLOGYS Anesthetized C57BL/6J mice received a transtracheal injection of Nec-1 (5 mg/kg) or vehicle (DMSO) 30 min before the experiment which was ventilated for up to 4 h. Lung damage was assessed macroscopically and histologically with oedema measured as the wet/dry ratio of lung tissues. The release of inflammatory mediators into bronchoalveolar lavage fluid (BALF) was assessed by ELISA measurements of TNF-α,interleukin-1β (IL-1β), and IL-6. The expression of RIPK1, ZBP1, caspase-1, and activated (cleaved) caspase-1 were analyzed using western blot and immunohistochemistry, and the levels of gasdermin-D (GSDMD) and IL-1β were analyzed by immunofluorescence staining. RESULTS High tidal ventilation produced time-dependent inflammation and lung injury in mice which could be significantly reduced by pretreatment with Nec-1. Notably, Nec-1 reduced the expression of key pyroptosis mediator proteins in lung tissues exposed to mechanical ventilation, including caspase-1, cleaved caspase-1, and GSDMD together with inhibiting the release of inflammatory cytokines. CONCLUSION Nec-1 pretreatment alleviates pulmonary inflammatory responses and protects the lung from mechanical ventilation damage. The beneficial effects were mediated at least in part by inhibiting caspase-1-dependent pyroptosis through the RIPK1/ZBP1 pathway.
Collapse
Affiliation(s)
- Rong-Ge Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiu-Wen Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Ling-Hui Pan
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Fei Lin
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Shao-Peng Ming
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Jin-Ju Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xue-Ke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China; Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| |
Collapse
|
25
|
Satturwar S, Girolami I, Munari E, Ciompi F, Eccher A, Pantanowitz L. Program death ligand-1 immunocytochemistry in lung cancer cytological samples: A systematic review. Diagn Cytopathol 2022; 50:313-323. [PMID: 35293692 PMCID: PMC9310737 DOI: 10.1002/dc.24955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
Abstract
In this era of personalized medicine, targeted immunotherapies like immune checkpoint inhibitors (ICI) blocking the programmed death-1 (PD-1)/program death ligand-1 (PD-L1) axis have become an integral part of treating advanced stage non-small cell lung carcinoma (NSCLC) and many other cancer types. Multiple monoclonal antibodies are available commercially to detect PD-L1 expression in tumor cells by immunohistochemistry (IHC). As most clinical trials initially required tumor biopsy for PD-L1 detection by IHC, many of the currently available PD-1/PD-L1 assays have been developed and validated on formalin fixed tissue specimens. The majority (>50%) of lung cancer cases do not have a surgical biopsy or resection specimen available for ancillary testing and instead must rely primarily on fine needle aspiration biopsy specimens for diagnosis, staging and ancillary tests. Review of the literature shows multiple studies exploring the feasibility of PD-L1 IHC on cytological samples. In addition, there are studies addressing various aspects of IHC validation on cytology preparations including pre-analytical (e.g., different fixatives), analytical (e.g., antibody clone, staining platforms, inter and intra-observer agreement, cytology-histology concordance) and post-analytical (e.g., clinical outcome) issues. Although promising results in this field have emerged utilizing cytology samples, many important questions still need to be addressed. This review summarizes the literature of PD-L1 IHC in lung cytology specimens and provides practical tips for optimizing analysis.
Collapse
Affiliation(s)
- Swati Satturwar
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | | | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Francesco Ciompi
- Computational Pathology Group, Department of PathologyRadboud University Medical CenterNijmegenNetherlands
| | - Albino Eccher
- Department of Pathology and DiagnosticsUniversity and Hospital Trust of VeronaVeronaItaly
| | | |
Collapse
|
26
|
PD-L1 Expression in Non-Small Cell Lung Cancer Specimens: Association with Clinicopathological Factors and Molecular Alterations. Int J Mol Sci 2022; 23:ijms23094517. [PMID: 35562908 PMCID: PMC9101150 DOI: 10.3390/ijms23094517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting programmed cell death-1 or its ligand (PD-L1) have improved outcomes in non-small cell lung cancer (NSCLC). High tumor PD-L1 expression, detected by immunohistochemistry (IHC) typically on formalin-fixed paraffin-embedded (FFPE) histological specimens, is linked to better response. Following our previous investigation on PD-L1 in cytological samples, the aim of this study was to further explore the potential impacts of various clinicopathological and molecular factors on PD-L1 expression. Two retrospective NSCLC cohorts of 1131 and 651 specimens, respectively, were investigated for PD-L1 expression (<1%/1−49%/≥50%), sample type, sample site, histological type, and oncogenic driver status. In both cohorts, PD-L1 was positive (≥1%) in 55% of the cases. Adenocarcinomas exhibited lower PD-L1 expression than squamous cell carcinomas (p < 0.0001), while there was no difference between sample types, tumor locations, or between the two cohorts in multivariate analysis (all p ≥ 0.28). Mutational status correlated significantly with PD-L1 expression (p < 0.0001), with the highest expression for KRAS-mutated cases, the lowest for EGFR-mutated, and the KRAS/EGFR wild-type cases in between. There was no difference in PD-L1 levels between different prevalent KRAS mutations (all p ≥ 0.44), while mucinous KRAS-mutated adenocarcinomas exhibited much lower PD-L1 expression than non-mucinous (p < 0.0001). Our data indicate that cytological and histological specimens are comparable for PD-L1 evaluation. Given the impact of KRAS mutations and the mucinous growth pattern on PD-L1 expression, these factors should be further investigated in studies on ICI response.
Collapse
|
27
|
Heidarian A, Wenig BM, Hernandez-Prera JC. Evaluation of programmed death ligand 1 immunohistochemistry in cytology specimens of head and neck squamous cell carcinoma. Cancer Cytopathol 2022; 130:91-95. [PMID: 34411441 DOI: 10.1002/cncy.22500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Liu and colleagues provide important and practical observations that can be incorporated into clinical practice. Moreover, their study can serve as the foundation for further investigations to establish evidence‐based clinical practice guidelines to optimize programmed death ligand 1 testing in patients with head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Amin Heidarian
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | | |
Collapse
|
28
|
Gasparini S, Mei F, Bonifazi M, Zuccatosta L. Bronchoscopic diagnosis of peripheral lung lesions. Curr Opin Pulm Med 2022; 28:31-36. [PMID: 34750298 DOI: 10.1097/mcp.0000000000000842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Over the last decades, in addition to the traditional fluoroscopy, various and innovative guidance systems have been adopted in clinical practice for transbronchial approach to peripheral pulmonary lesions (PPLs). The aim of this article is to summarize the most recent data on available guidance systems and sampling tools, evaluating also advantages and limitations of each technique. RECENT FINDINGS Although several studies have been published over the last years, large randomized studies comparing the different techniques are scanty. Fluoroscopy is the traditional and still most widely utilized guidance system. New guidance systems (electromagnetic navigation bronchoscopy, ultrasound miniprobe, cone beam computed tomography) seems to provide a better sensitivity, especially for small lesions not visualized by fluoroscopy. Among the sampling instruments, there is a good evidence that flexible transbronchial needle provides the better diagnostic yield and that sensitivity may increase if more than one sampling instrument is used. SUMMARY Even if great progress has been done since the first articles on the transbronchial approach to PPLs, better scientific evidence and more reliable randomized trials are needed to guide interventional pulmonologists in choosing the best technique according to different clinical scenarios and source availability.
Collapse
Affiliation(s)
- Stefano Gasparini
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche
- Pulmonary Disease Unit, Department of Internal Medicine, Azienda Ospedali Riuniti, Ancona, Italy
| | - Federico Mei
- Pulmonary Disease Unit, Department of Internal Medicine, Azienda Ospedali Riuniti, Ancona, Italy
| | - Martina Bonifazi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche
- Pulmonary Disease Unit, Department of Internal Medicine, Azienda Ospedali Riuniti, Ancona, Italy
| | - Lina Zuccatosta
- Pulmonary Disease Unit, Department of Internal Medicine, Azienda Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
29
|
Wu Z, Ma Q, Cai S, Sun Y, Zhang Y, Yi J. Rhus chinensis Mill. Fruits Ameliorate Hepatic Glycolipid Metabolism Disorder in Rats Induced by High Fat/High Sugar Diet. Nutrients 2021; 13:nu13124480. [PMID: 34960032 PMCID: PMC8708379 DOI: 10.3390/nu13124480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic glycolipid metabolism disorder is considered as one of the key factors in the pathogenesis of many chronic diseases. The objective of this study was to investigate the protective effect and underlying mechanisms of Rhus chinensis Mill. fruits against hepatic glycolipid metabolic disorders in rats induced by a high fat/high sugar diet. Results showed that ethanol extract, especially at a dose of 600 mg/kg b.w., could effectively ameliorate glycolipid metabolic disorders in rats. The biochemical indexes, including CAT, GSH and HOMA-IR, were significantly improved by the administration of ethanol extract. Immunohistochemistry and Western blot analysis revealed that ethanol extract up-regulated the expression levels of PI3K/AKT, PPAR-α, and the phosphorylation of IRS1 and AMPK proteins, and down-regulated the expressions of SREBP-1 and FAS proteins in the liver, which are closely related to hepatic glycolipid metabolism. Those findings suggested that R. chinensis Mill. fruits could be developed as functional foods and/or nutraceuticals for preventing or controlling some chronic diseases related to hepatic glycolipid metabolism disorder.
Collapse
Affiliation(s)
- Zihuan Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.W.); (S.C.); (Y.S.); (Y.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Qingqing Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.W.); (S.C.); (Y.S.); (Y.Z.)
| | - Yilin Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.W.); (S.C.); (Y.S.); (Y.Z.)
| | - Yuanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.W.); (S.C.); (Y.S.); (Y.Z.)
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.W.); (S.C.); (Y.S.); (Y.Z.)
- Correspondence: ; Tel.: +86-15810687441
| |
Collapse
|
30
|
Fan Y, Shan Q, Gong J, Qin J, Lu H. Molecular and Clinical Characteristics of Primary Pulmonary Lymphoepithelioma-Like Carcinoma. Front Mol Biosci 2021; 8:736940. [PMID: 34760925 PMCID: PMC8573970 DOI: 10.3389/fmolb.2021.736940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives: Primary pulmonary lymphoepithelioma-like carcinoma (PPLELC) is an extremely rare subtype of non-small cell lung cancer (NSCLC). Currently, there are no established treatment protocols due to rarity of the cancer. Thus, this study aimed to explore the molecular and clinical characteristics of PPLELC. Study design and setting: Data from patients with PPLELC who were admitted to Zhejiang Cancer Hospital from August 2009 to September 2020 were retrospectively collected. Next-generation sequencing was performed to obtain a genomic profile and tumor mutation burden (TMB) value of patients with adequate tissue and divided them into two groups according to the expression level of PD-L1. The correlation of PD-L1 expression and the clinicopathological characteristics was evaluated by Pearson Chi-square test. Kaplan-Meier curves was applied to present the probability of survival between PD-L1 expression level and overall survival (OS). Moreover, the literature on the immunotherapy of advanced PPLELC published in PubMed between 2016 and 2020 were reviewed and the efficacy of immunotherapy were analyzed. Results: A total of 18 patients pathologically diagnosed as PPLELC were included. After a follow-up period of 8.8–138 months, 14 patients survived, three patients died and one patient lost, the median OS was 45.3 months Seven samples (tissue-available) tested by NGS and the median TMB was 2.5 mutations/Mb. 19 somatic mutated genes were recognized and TP53 (43%) and CYLD (43%) were the two most commonly mutated genes. Only seven patients who underwent NGS were tested for PD-L1. Three patients with high PD-L1 expression (PD-L1≥ 50%) and four patients with low PD-L1 expression (PD-L1 <50%) were included. No significant correlation was observed between PD-L1 expression and clinical characteristics (age, gender, smoking status, tumor stage, lymph node metastasis) (p > 0.05) and OS (p = 1). What’s more, 10 PPLELC patients involved in previous studies and one patient received nivolumab in the current study were collected retrospectively. 4/11 (36.4%) patients achieved PR, 6/11 (54.5%) patients achieved SD, and 1/11 (9.1%) patients achieved PD and the disease control rate (DCR) was 90.9%. Conclusions: The prognosis of PPLELC is better than that of other NSCLC, and immunotherapy may be a promising treatment to prolong the survival of advanced PPLELC patients. Whether the immunotherapy efficacy of PPLELC can be predicted by PD-L1 and TMB needs further clinical investigation. CYLD genetic alterations may participate in Epstein–Barr virus-mediated tumorigenesis in PPLELC, providing a novel therapeutic target.
Collapse
Affiliation(s)
- Ying Fan
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Qianyun Shan
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Gong
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Qin
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hongyang Lu
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Fjaellegaard K, Koefod Petersen J, Andersen G, Biagini M, Bhatnagar R, Laursen CB, Clementsen PF, Bodtger U. The prevalence of tumour markers in malignant pleural effusions associated with primary pulmonary adenocarcinoma: a retrospective study. Eur Clin Respir J 2021; 8:1984375. [PMID: 34745460 PMCID: PMC8567952 DOI: 10.1080/20018525.2021.1984375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Oncological treatment of primary pulmonary adenocarcinoma (AC) includes drugs targeting the pathways involving programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK). The aim of the study was to report the prevalence of these tumour markers in pleural fluid with cytology positive for pulmonary AC and the potential influence of volume pleural fluid tested. Methods We retrospectively reviewed all thoracenteses performed in a two-year period at our interventional unit at Department of Respiratory Medicine at Zealand University Hospital Naestved, Denmark. ALK and PD-L1 testing was done using immunohistochemistry and EGFR testing using next-generation sequencing. We included pleural fluid specimens containing malignant cells originating from primary pulmonary AC and with at least one tumour marker requested by the clinicians. Results When screening 927 pleural fluid specimens, we identified 57 in accordance with the inclusion criteria. PD-L1, ALK and EGFR were obtained in 35/55 (64%), 38/57 (67%) and 26/47 (55%), respectively. The prevalence did not increase when analysing volumes > 50 mL (p = 0.21–0.58) Conclusion Tumour markers in pleural fluid specimens containing cells from pulmonary AC can be demonstrated in more than half of the cases. Therefore, supplementary invasive procedures than thoracentesis could potentially await these analyses.
Collapse
Affiliation(s)
- Katrine Fjaellegaard
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Koefod Petersen
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Gitte Andersen
- Department of Pathology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Matteo Biagini
- Department of Pathology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Rahul Bhatnagar
- Department of Respiratory Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, UK.,Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Christian B Laursen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark.,Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Paul Frost Clementsen
- Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark.,Copenhagen Academy for Medical Education and Simulation (CAMES), Rigshospitalet, University of Copenhagen and the Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Bodtger
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
32
|
Koomen BM, Vreuls W, de Boer M, de Ruiter EJ, Hoelters J, Vink A, Willems SM. False-negative programmed death-ligand 1 immunostaining in ethanol-fixed endobronchial ultrasound-guided transbronchial needle aspiration specimens of non-small-cell lung cancer patients. Histopathology 2021; 79:480-490. [PMID: 33772818 PMCID: PMC8519150 DOI: 10.1111/his.14373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/06/2021] [Accepted: 03/27/2021] [Indexed: 12/22/2022]
Abstract
AIMS Programmed death-ligand 1 (PD-L1) immunostaining is used to predict which non-small-cell lung cancer (NSCLC) patients will respond best to treatment with programmed cell death protein 1/PD-L1 inhibitors. PD-L1 immunostaining is sometimes performed on alcohol-fixed cytological specimens instead of on formalin-fixed paraffin-embedded (FFPE) biopsies or resections. We studied whether ethanol prefixation of clots from endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) results in diminished PD-L1 immunostaining as compared with formalin fixation. METHODS AND RESULTS FFPE cell blocks from EBUS-TBNA specimens of 54 NSCLC patients were identified. For each case, paired samples were available, consisting of clots directly immersed in formalin and clots prefixed in Fixcyt (50% ethanol). Serial sections were immunostained for PD-L1 by use of the standardised SP263 assay and the 22C3 antibody as a laboratory-developed test (LDT). PD-L1 positivity was determined with two cut-offs (1% and 50%). Concordance of PD-L1 positivity between the formalin-fixed (gold standard) and ethanol-prefixed material was assessed. When the 22C3 LDT was used, 30% and 36% of the ethanol-prefixed specimens showed false-negative results at the 1% and 50% cut-offs, respectively (kappa 0.64 and 0.68). When SP263 was used, 22% of the ethanol-prefixed specimens showed false-negative results at the 1% cut-off (kappa 0.67). At the 50% cut-off, concordance was higher (kappa 0.91), with 12% of the ethanol-prefixed specimens showing false-negative results. CONCLUSION Ethanol fixation of EBUS-TBNA specimens prior to formalin fixation can result in a considerable number of false-negative PD-L1 immunostaining results when a 1% cut-off is used and immunostaining is performed with SP263 or the 22C3 LDT. The same applies to use of the 50% cut-off when immunostaining is performed with the 22C3 LDT.
Collapse
Affiliation(s)
- Bregje M Koomen
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Willem Vreuls
- Department of PathologyCanisius‐Wilhelmina HospitalNijmegenthe Netherlands
| | - Mirthe de Boer
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Emma J de Ruiter
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Juergen Hoelters
- Department of PulmonologyCanisius‐Wilhelmina HospitalNijmegenthe Netherlands
| | - Aryan Vink
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Stefan M Willems
- Department of PathologyUniversity Medical Centre UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| |
Collapse
|
33
|
PD-L1 Dependent Immunogenic Landscape in Hot Lung Adenocarcinomas Identified by Transcriptome Analysis. Cancers (Basel) 2021; 13:cancers13184562. [PMID: 34572789 PMCID: PMC8469831 DOI: 10.3390/cancers13184562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Lung cancer, with non-small-cell lung cancer as its most common form, is the leading cause of cancer-related mortality and shows a poor prognosis. Despite recent advantages in the field of immunotherapy, there is still a great need for an improved understanding of PD-1/PD-L1 checkpoint blockade-responsive biology. Since immune cell infiltration is regarded as an important parameter in this field, we aimed to identify the immunogenic landscape in primary lung adenocarcinoma on the transcriptomic level in context with tumoral PD-L1 expression (positive vs. negative) and extent of immune infiltration (“hot” vs. “cold” phenotype). Our results reveal that genes that are related to the tumor microenvironment are differentially expressed based on tumoral PD-L1 expression indicating novel aspects of PD-L1 regulation, with potential biological relevance, as well as relevance for immunotherapy response stratification. Abstract Background: Lung cancer is the most frequent cause of cancer-related deaths worldwide. The clinical development of immune checkpoint blockade has dramatically changed the treatment paradigm for patients with lung cancer. Yet, an improved understanding of PD-1/PD-L1 checkpoint blockade-responsive biology is warranted. Methods: We aimed to identify the landscape of immune cell infiltration in primary lung adenocarcinoma (LUAD) in the context of tumoral PD-L1 expression and the extent of immune infiltration (“hot” vs. “cold” phenotype). The study comprises LUAD cases (n = 138) with “hot” (≥150 lymphocytes/HPF) and “cold” (<150 lymphocytes/HPF) tumor immune phenotype and positive (>50%) and negative (<1%) tumor PD-L1 expression, respectively. Tumor samples were immunohistochemically analyzed for expression of PD-L1, CD4, and CD8, and further investigated by transcriptome analysis. Results: Gene set enrichment analysis defined complement, IL-JAK-STAT signaling, KRAS signaling, inflammatory response, TNF-alpha signaling, interferon-gamma response, interferon-alpha response, and allograft rejection as significantly upregulated pathways in the PD-L1-positive hot subgroup. Additionally, we demonstrated that STAT1 is upregulated in the PD-L1-positive hot subgroup and KIT in the PD-L1-negative hot subgroup. Conclusion: The presented study illustrates novel aspects of PD-L1 regulation, with potential biological relevance, as well as relevance for immunotherapy response stratification.
Collapse
|
34
|
Cronin-Fenton D, Dalvi T, Movva N, Pedersen L, Hansen H, Fryzek J, Hedgeman E, Mellemgaard A, Rasmussen TR, Shire N, Hamilton-Dutoit S, Nørgaard M. PD-L1 expression, EGFR and KRAS mutations and survival among stage III unresected non-small cell lung cancer patients: a Danish cohort study. Sci Rep 2021; 11:16892. [PMID: 34413420 PMCID: PMC8377072 DOI: 10.1038/s41598-021-96486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Programmed cell death receptor ligand-1 (PD-L1) expression, KRAS (KRASm) and EGFR (EGFRm) mutations may influence non-small cell lung cancer (NSCLC) prognosis. We aimed to evaluate PD-L1 expression, KRASm, and EGFRm and survival among stage III unresected NSCLC patients. Using Danish registries, we collected data on stage III unresected NSCLC patients diagnosed 2001–2012 and paraffin-embedded tumor tissue from pathology archives. We assessed PD-L1 expression in tumors and tumor-infiltrating immune cells (ICs) by immunohistochemistry (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 1% threshold for PD-L1+). We genotyped KRAS and EGFR. Follow-up extended from 120 days post-diagnosis to death, emigration, or 31/12/2014. We computed median survival using Kaplan–Meier methods, and hazard ratios (HRs) using Cox regression associating the biomarkers with death, adjusting for confounders. Among 305 patients, 48% had adenocarcinoma; 38% squamous cell carcinoma. Forty-nine percent had PD-L1+ tumors—51% stage IIIA and 26% KRASm. Few (2%) patients had EGFRm. Median survival in months was 14.7 (95% CI = 11.8–17.9) and 13.4 (95% CI = 9.5–16.3) in PD-L1+ and PD-L1− tumors, respectively. KRASm was not associated with death (HR = 1.06, 95% CI = 0.74–1.51 versus wildtype). PD-L1+ tumors yielded a HR = 0.83 (95% CI = 0.63–1.10); PD-L1+ ICs a HR = 0.51 (95% CI = 0.39–0.68). Tumor expression of PD-L1 did not influence survival. PD-L1+ ICs may confer survival benefit in stage III unresected NSCLC patients.
Collapse
Affiliation(s)
- Deirdre Cronin-Fenton
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University & Aarhus University Hospital, Olof Palmes Alle 43-45, 8200, Aarhus N, Denmark.
| | | | | | - Lars Pedersen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University & Aarhus University Hospital, Olof Palmes Alle 43-45, 8200, Aarhus N, Denmark
| | - Hanh Hansen
- Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Torben R Rasmussen
- Danish Lung Cancer Group, Odense, Denmark.,Department of Respiratory Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mette Nørgaard
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University & Aarhus University Hospital, Olof Palmes Alle 43-45, 8200, Aarhus N, Denmark
| |
Collapse
|
35
|
Sampling Instruments for the Transbronchial Approach to Peripheral Pulmonary Lesions: Which Tool? Are Many Better Than a FEW? J Bronchology Interv Pulmonol 2021; 28:169-171. [PMID: 34151897 DOI: 10.1097/lbr.0000000000000777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Veale N, Succony L, Rassl DM, Rintoul RC. Respiratory cytology in malignant lung disease - The thoracic oncologist's perspective. Cytopathology 2021; 33:39-43. [PMID: 34143551 DOI: 10.1111/cyt.13021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Respiratory cytology continues to play a central role in the diagnosis and staging of thoracic malignancy, although over time indications have changed. Historically, sputum cytology and endobronchial brushings and washings figured prominently, but with the advent of endobronchial and endoscopic ultrasound much greater emphasis is placed on fine needle aspirates from lymph nodes. The advent of targeted sequencing panels for genomic profiling to identify driver mutations and PD-L1 directed immunotherapy means that there is a need to extract increasing amounts of diagnostic and predictive information from ever smaller amounts of diagnostic material. Recent work has demonstrated that cytology samples are well suited to delivering the information required, but in order to understand the limitations of clinical and laboratory techniques, a close working relationship between pathologist and thoracic oncologist is needed to optimise sample procurement and utilisation.
Collapse
Affiliation(s)
- Niki Veale
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK
| | - Laura Succony
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK
| | - Doris M Rassl
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK.,Department of Pathology, Royal Papworth Hospital, Cambridge, UK
| | - Robert C Rintoul
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK.,Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Tejerina E, Garca Tobar L, Echeveste JI, de Andrea CE, Vigliar E, Lozano MD. PD-L1 in Cytological Samples: A Review and a Practical Approach. Front Med (Lausanne) 2021; 8:668612. [PMID: 34026795 PMCID: PMC8139418 DOI: 10.3389/fmed.2021.668612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
With a growing number of predictive biomarkers needed to manage patients with non-small cell lung cancer (NSCLC), there has been a paradigm shift in care and handling of diagnostic samples. Among the various testing methods, immunohistochemistry (IHC) is the most cost- effective and widely available. Furthermore, over the past decade immunotherapy has emerged as one of the most promising cancer treatments. In this scenario IHC is the most used testing method available for PDL-1/PD1 immunotherapy. Several monoclonal antibodies targeting programmed death 1 (PD-1)/programmed death ligand-1 (PD-L1) pathways have been integrated into standard-of-care treatments of a wide range of cancer types, once provided evidence of PD-L1 expression in tumor cells by immunohistochemistry (IHC). Since currently available PD-L1 assays have been developed on formalin-fixed paraffin embedded (FFPE) histological specimens, a growing body of research is being dedicated to confirm the feasibility of applying PDL-1 assays also to cytological samples. Albeit promising results have been reported, several important issues still need to be addressed. Among these are the type of cytological samples, pre-analytical issues, cyto-histological correlation, and inter-observer agreement. This review briefly summarizes the knowledge of the role of cytopathology in the analysis of PD-L1 by immunocytochemistry (ICC) and future directions of cytopathology in the immunotherapy setting.
Collapse
Affiliation(s)
- Eva Tejerina
- Department of Pathology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Laura Garca Tobar
- Department of Pathology, Clinica University of Navarra, Pamplona, Spain
| | - Jos I Echeveste
- Department of Pathology, Clinica University of Navarra, Pamplona, Spain
| | | | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mara D Lozano
- Department of Pathology, Clinica University of Navarra, Pamplona, Spain
| |
Collapse
|
38
|
Iaccarino A, Salatiello M, Migliatico I, De Luca C, Gragnano G, Russo M, Bellevicine C, Malapelle U, Troncone G, Vigliar E. PD-L1 and beyond: Immuno-oncology in cytopathology. Cytopathology 2021; 32:596-603. [PMID: 33955097 PMCID: PMC8453493 DOI: 10.1111/cyt.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising cancer treatments. Several monoclonal antibodies targeting the programmed death 1 (PD-1)/ programmed death ligand-1 (PD-L1) pathway have been integrated into standard-of-care treatments for a wide range of cancer types. Although all the available PD-L1 immunohistochemistry (IHC) assays have been developed on formalin-fixed histological specimens, a growing body of research has recently suggested the feasibility of PD-L1 testing on cytological samples. Although promising results have been reported, several important issues still need to be addressed. Among these are pre-analytical issues, cyto-hystological correlation, and inter-observer agreement. This review will briefly summarise the knowledge gaps and future directions of cytopathology in the immuno-oncology scenario.
Collapse
Affiliation(s)
- Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Salatiello
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ilaria Migliatico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Testing EGFR with Idylla on Cytological Specimens of Lung Cancer: A Review. Int J Mol Sci 2021; 22:ijms22094852. [PMID: 34063720 PMCID: PMC8125729 DOI: 10.3390/ijms22094852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
The current standard of care for advanced non-small-cell lung cancer is based on detecting actionable mutations that can benefit from targeted therapy. Comprehensive genetic tests can have long turn-around times, and because EGFR mutations are the most prevalent actionable mutation, a quick detection would enable a prompt initiation of targeted therapy. Furthermore, the scarcity of diagnostic material means that sometimes only cytologic material is available. The Idylla™ EGFR assay is a real-time PCR–based method able to detect 51 EGFR mutations in 2.5 h. Idylla is validated for use only on FFPE sections, but some researchers described their experiences with cytological material. We reviewed the relevant literature, finding four articles describing 471 cases and many types of cytological input material: smears, cell-block sections, suspensions, and extracted DNA. The sensitivity, specificity, and limit of detection appear comparable to those obtained with histological input material, with one exception: the usage of scraped stained smears as input may reduce the accuracy of the test. In conclusion, usage of cytological material as input to the Idylla EGFR test is possible. A workflow where common mutations are tested first and fast, leaving rarer mutations for subsequent comprehensive profiling, seems the most effective approach.
Collapse
|
40
|
Hwang DM, Albaqer T, Santiago RC, Weiss J, Tanguay J, Cabanero M, Leung Y, Pal P, Khan Z, Lau SCM, Sacher A, Torlakovic E, Cheung C, Tsao MS. Prevalence and Heterogeneity of PD-L1 Expression by 22C3 Assay in Routine Population-Based and Reflexive Clinical Testing in Lung Cancer. J Thorac Oncol 2021; 16:1490-1500. [PMID: 33915250 DOI: 10.1016/j.jtho.2021.03.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Programmed death-ligand 1 (PD-L1) is used as a biomarker for anti-programmed cell death protein-1 (PD-1) or anti-PD-L1 immunotherapies in NSCLC. We report here the results of population-based PD-L1 testing using the 22C3 IHC pharmDx Assay (Agilent Technologies) in a large Canadian regional reference pathology laboratory. METHODS Testing was conducted reflexively on biopsies and resections for NSCLC during an 8-month period. Tumor proportion score (TPS) cutoffs for low and high expression were 1% and 50%, respectively. RESULTS Altogether, 2031 PD-L1 tests were performed on specimens from 1795 patients, with 107 inconclusive results (5.3%). Excluding cases with inconclusive/missing data, proportions for the remaining 1713 patients were 41.6% for TPS less than 1%, 28.6% for TPS 1% to 49%, and 29.8% for TPS greater than or equal to 50%. Higher PD-L1 expression rates were noted in EGFR wild-type versus mutant tumors (p < 0.001), squamous versus adenocarcinoma (p < 0.001), and metastatic versus primary tumors (p < 0.001). PD-L1 among 103 patients with paired biopsy and resection specimens revealed moderate concordance (κ = 0.67). A total of 52% (25 of 48) of biopsies with TPS less than 1% had TPS greater than 1% in resection, whereas 84.6% (22 of 26) of biopsies with TPS greater than or equal to 50% were concordant in resected tumors. Discordance rates between biopsy and resection were 71.4% for biopsies with less than 8 mm2 total area, compared with 33.3% for biopsies with greater than or equal to 8 mm2 area (p < 0.026). Concordance among 27 patients with paired primary lung and metastatic tumor biopsies revealed only weak concordance (κ = 0.48). CONCLUSIONS Intratumoral heterogeneity of PD-L1 expression may result in misclassification of PD-L1 status in a substantial proportion of PD-L1-negative small biopsy samples. Biopsy of metastatic site may increase proportion of patients with high PD-L1 expression.
Collapse
Affiliation(s)
- David M Hwang
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Tahani Albaqer
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Kuwait Cancer Control Center, Kuwait City, Kuwait
| | - Rex C Santiago
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Institute of Pathology, St. Luke's Medical Center, Quezon City, Philippines
| | - Jessica Weiss
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Tanguay
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael Cabanero
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yuki Leung
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Prodipto Pal
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Zanobia Khan
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sally C M Lau
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Adrian Sacher
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emina Torlakovic
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Carol Cheung
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Wu Z, Xian X, Wang K, Cheng D, Li W, Chen B. Immune Checkpoint Blockade Therapy May Be a Feasible Option for Primary Pulmonary Lymphoepithelioma-like Carcinoma. Front Oncol 2021; 11:626566. [PMID: 33981599 PMCID: PMC8110193 DOI: 10.3389/fonc.2021.626566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Primary pulmonary lymphoepithelioma-like carcinoma (PPLELC) is a rare subtype of non-small cell lung cancer (NSCLC) for which there is currently no recognized treatment. Recently, favorable immune checkpoint blockade responses have been observed in PPLELC. This study aimed to review the effects of this regimen in patients with advanced PPLELC. PPLELC patients treated with immune checkpoint inhibitors at West China Hospital between January 2008 and December 2019 were retrospectively identified. Demographic parameters and antitumor treatment details were retrieved and reviewed. Among 128 patients diagnosed with PPLELC, 5 who received immune checkpoint inhibitors at advanced stages were included in the analysis. All of these patients were female nonsmokers with a median age of 55.6 (range 53-58) years at diagnosis. Their median PD-L1 expression was 40% (range, 30-80%). Although the patients underwent surgeries, chemotherapy and radiotherapy, all the treatments failed. Immune checkpoint inhibitors were administered palliatively, and three patients responded favorably, with the best overall response being partial remission (PR). Thus, immune checkpoint inhibitors may be a promising treatment for advanced PPLELC, and large clinical trials are warranted to obtain more evidence regarding this regimen.
Collapse
Affiliation(s)
- Zuohong Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xinghong Xian
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Bojiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Koomen BM, van der Starre‐Gaal J, Vonk JM, von der Thüsen JH, van der Meij JJC, Monkhorst K, Willems SM, Timens W, ’t Hart NA. Formalin fixation for optimal concordance of programmed death-ligand 1 immunostaining between cytologic and histologic specimens from patients with non-small cell lung cancer. Cancer Cytopathol 2021; 129:304-317. [PMID: 33108706 PMCID: PMC8246726 DOI: 10.1002/cncy.22383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Immunohistochemical staining of programmed death-ligand 1 (PD-L1) is used to determine which patients with non-small cell lung cancer (NSCLC) may benefit most from immunotherapy. Therapeutic management of many patients with NSCLC is based on cytology instead of histology. In this study, concordance of PD-L1 immunostaining between cytology cell blocks and their histologic counterparts was analyzed. Furthermore, the effect of various fixatives and fixation times on PD-L1 immunoreactivity was studied. METHODS Paired histologic and cytologic samples from 67 patients with NSCLC were collected by performing fine-needle aspiration on pneumonectomy/lobectomy specimens. Formalin-fixed, agar-based or CytoLyt/PreservCyt-fixed Cellient cell blocks were prepared. Sections from cell blocks and tissue blocks were stained with SP263 (standardized assay) and 22C3 (laboratory-developed test) antibodies. PD-L1 scores were compared between histology and cytology. In addition, immunostaining was compared between PD-L1-expressing human cell lines fixed in various fixatives at increasing increments in fixation duration. RESULTS Agar cell blocks and tissue blocks showed substantial agreement (κ = 0.70 and κ = 0.67, respectively), whereas fair-to-moderate agreement was found between Cellient cell blocks and histology (κ = 0.28 and κ = 0.49, respectively). Cell lines fixed in various alcohol-based fixatives showed less PD-L1 immunoreactivity compared with those fixed in formalin. In contrast to SP263, additional formalin fixation after alcohol fixation resulted in preserved staining intensity using the 22C3 laboratory-developed test and the 22C3 pharmDx assay. CONCLUSIONS Performing PD-L1 staining on cytologic specimens fixed in alcohol-based fixatives could result in false-negative immunostaining results, whereas fixation in formalin leads to higher and more histology-concordant PD-L1 immunostaining. The deleterious effect of alcohol fixation could be reversed to some degree by postfixation in formalin.
Collapse
Affiliation(s)
- Bregje M. Koomen
- Department of PathologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | | | - Judith M. Vonk
- Department of EpidemiologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | | | | | - Kim Monkhorst
- Department of PathologyNetherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamthe Netherlands
| | - Stefan M. Willems
- Department of PathologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Wim Timens
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Nils A. ’t Hart
- Department of PathologyIsala HospitalsZwollethe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
43
|
Significance of PD-L1 expression in the cytological samples of non-small cell lung cancer patients treated with immune checkpoint inhibitors. J Cancer Res Clin Oncol 2021; 147:3749-3755. [PMID: 33779840 DOI: 10.1007/s00432-021-03615-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) in tumor tissue samples is an established clinical biomarker for non-small cell lung cancer (NSCLC). However, the significance of PD-L1 expression in other types of samples has not been fully investigated. PATIENTS AND METHODS We conducted a multicenter retrospective cohort study of advanced NSCLC patients who received ICI treatment during the clinical course and investigated the effects of ICIs according to PD-L1 expression in cytology samples, including cell block and endobronchial ultrasound-guided (EBUS) transbronchial needle aspiration (TBNA) samples. RESULTS A total of 264 patients were included in this study: PD-L1 expression was determined in cell block or TBNA specimens in 55 patients, and in tissue samples in 209 patients. Among the former patients, the median progression-free survival (PFS) of those with a TPS for PD-L1 ≥ 50% was significantly longer compared to that of those with a TPS < 50% (6.5 vs. 1.9 months, respectively, p = 0.008). When the cutoff value was set at 1%, the median PFS was 4.2 months in patients with a TPS ≥ 1% and 1.5 months in patients with a TPS < 1% (p < 0.001). CONCLUSION PD-L1 expression determined using cytology specimens predicts the efficacy of ICIs.
Collapse
|
44
|
Hagmeyer L, Schäfer S, Engels M, Pietzke-Calcagnile A, Treml M, Herkenrath SD, Heldwein M, Hekmat K, Matthes S, Scheel A, Wolf J, Büttner R, Randerath W. High sensitivity of PD-L1 analysis from pleural effusion in nonsmall cell lung cancer. ERJ Open Res 2021; 7:00787-2020. [PMID: 33778051 PMCID: PMC7983225 DOI: 10.1183/23120541.00787-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) immune checkpoint inhibitors have been approved for monotherapy of metastatic nonsmall cell lung cancer (mNSCLC) depending on tumour cells' PD-L1 expression. Pleural effusion is common in mNSCLC. The significance of immunocytochemistry PD-L1 analysis from pleural effusion samples is unclear. Aim: The aim of the study was to analyse the sensitivity regarding immunocytochemistry PD-L1 analysis of pleural effusion in NSCLC as compared to immunohistochemistry of pleural biopsies. Patients and Methods: Fifty consecutive subjects (17 female, median age 72.5 years, seven never-smokers) were enrolled in this prospective controlled two-centre study. Inclusion criteria were pleural effusion, suspected or known lung cancer, indication for pleural puncture and thoracoscopy, and written informed consent. Immunocytochemistry and immunohistochemistry PD-L1 analyses were performed with the Dako-PDL1-IHC-22C3pharmDx assay. Analysis for sensitivity, specificity, and positive and negative predictive value was performed for PD-L1 detection from pleural effusion. Results: 50 subjects underwent pleural puncture and thoracoscopy. Pathological diagnoses were lung cancer (48), lymphoma (1) and mesothelioma (1). Sensitivity, specificity, positive predictive value and negative predictive value of PD-L1-testing with expression ≥50% defined as positive were 100% (95% CI 46-100%), 63% (36-84%), 45% (18-75%) and 100% (66-100%), and with expression ≥1% defined as positive 86% (56-97%), 43% (12-80%), 75% (47-92%) and 60% (17-93%). Conclusion: PD-L1 analysis in tumour-positive pleural effusion samples shows a very high sensitivity and negative predictive value, especially regarding PD-L1 expression levels ≥50% (European Medicines Agency approval). Negative results are reliable and help in the decision against a first-line checkpoint inhibitor monotherapy. However, a 1% cut-off level (United States Food and Drug Administration approval) leads to a markedly lower negative predictive value, making other invasive procedures necessary (NCT02855281).
Collapse
Affiliation(s)
- Lars Hagmeyer
- Institute of Pneumology, University of Cologne, Solingen, Germany.,Hospital Bethanien Solingen, Clinic of Pneumology and Allergology, Center for Sleep Medicine and Respiratory Care, Solingen, Germany
| | - Stephan Schäfer
- University of Cologne, Institute of Pathology, Cologne, Germany
| | - Marianne Engels
- University of Cologne, Institute of Pathology, Cologne, Germany
| | | | - Marcel Treml
- Institute of Pneumology, University of Cologne, Solingen, Germany
| | - Simon-Dominik Herkenrath
- Institute of Pneumology, University of Cologne, Solingen, Germany.,Hospital Bethanien Solingen, Clinic of Pneumology and Allergology, Center for Sleep Medicine and Respiratory Care, Solingen, Germany
| | - Matthias Heldwein
- University Hospital Cologne, Clinic for Cardiac and Thoracic Surgery, Cologne, Germany
| | - Khosro Hekmat
- University Hospital Cologne, Clinic for Cardiac and Thoracic Surgery, Cologne, Germany
| | - Sandhya Matthes
- Hospital Bethanien Solingen, Clinic of Pneumology and Allergology, Center for Sleep Medicine and Respiratory Care, Solingen, Germany
| | - Andreas Scheel
- University of Cologne, Institute of Pathology, Cologne, Germany
| | - Jürgen Wolf
- University Hospital of Cologne, Lung Cancer Group Cologne, Department I of Internal Medicine, Cologne, Germany
| | | | - Winfried Randerath
- Institute of Pneumology, University of Cologne, Solingen, Germany.,Hospital Bethanien Solingen, Clinic of Pneumology and Allergology, Center for Sleep Medicine and Respiratory Care, Solingen, Germany
| |
Collapse
|
45
|
De Marchi P, Leal LF, Duval da Silva V, da Silva ECA, Cordeiro de Lima VC, Reis RM. PD-L1 expression by Tumor Proportion Score (TPS) and Combined Positive Score (CPS) are similar in non-small cell lung cancer (NSCLC). J Clin Pathol 2021; 74:735-740. [PMID: 33589532 DOI: 10.1136/jclinpath-2020-206832] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND For non-small cell lung cancer (NSCLC) the most used method for analysing programmed cell death ligand 1 (PD-L1) expression is the Tumor Proportion Score (TPS). Nevertheless, for other tumour types, the Combined Positive Score (CPS) has been the method of choice. AIM Evaluate and compare the predictive value of both CPS and TPS as predictors of immunotherapy response in NSCLC, and to evaluate the agreement intra-observer between both methods and inter-observer between two expert lung pathologists. METHODS 56 NSCLC patients who were treated with anti-programmed cell death 1 (PD-1)/PD-L1 therapy were included. Two pathologists evaluated all cases independently, considering the sample's adequacy for analysis, and the PD-L1 expression by TPS and CPS. RESULTS The Kappa coefficient for adequacy was 0.82 (95% CI 0.67 to 0.97). There was a high agreement between TPS and CPS and a high agreement between pathologists concerning the two methods. The Kappa coefficient between TPS and CPS was 0.85 for both pathologists, and between pathologists was 0.94 and 0.93 for TPS and CPS, respectively. CONCLUSIONS Both methods proved to be equally predictive of response to anti-PD-1/PD-L1 therapy. There was both a high intra-observer agreement between the two methods and a high inter-observer agreement between pathologists. This study suggests that CPS could also be used in a routine setting for immunotherapy decision in NSCLC.
Collapse
Affiliation(s)
- Pedro De Marchi
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil .,Oncoclinicas - Lung Cancer Branch, Rio de Janeiro, Brazil
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Vinicius Duval da Silva
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, Brazil.,Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
46
|
Yang X, Jiang L, Jin Y, Li P, Hou Y, Yun J, Wu C, Sun W, Fan X, Kuang D, Wang W, Ni J, Mao A, Tang W, Liu Z, Wang J, Xiao S, Li Y, Lin D. PD-L1 Expression in Chinese Patients with Advanced Non-Small Cell Lung Cancer (NSCLC): A Multi-Center Retrospective Observational Study. J Cancer 2021; 12:7390-7398. [PMID: 35003359 PMCID: PMC8734414 DOI: 10.7150/jca.63003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: This study aimed to investigate the prevalence of tumor programmed death-ligand 1 (PD-L1) expression in Chinese patients with advanced Non-Small Cell Lung Cancer (NSCLC). Methods: Tumor tissues with histologically confirmed stage IIIB/IV NSCLC were retrospectively obtained from 10 centers in China. PD-L1 expression was determined using the PD-L1 IHC 22C3 pharmDx kit (Agilent, Santa Clara, CA, USA) and the samples were repetitively assayed with the PD-L1 IHC 22C3 Ab concentrate (Agilent, Santa Clara, CA, USA). Results: Out of 901 patients who met the inclusion criteria, 879 (97.6%) had evaluable PD-L1 data. The number of patients with a PD-L1 tumor proportion score (TPS) < 1%, 1-49%, and ≥ 50% (corresponding to PD-L1 non-expression, low expression, and high expression) was 424 (48.2%), 266 (30.3%), and 189 (21.5%), respectively. PD-L1 expression was more likely to be found in patients younger than 75 years, men, current or former smokers, those with good performance status (PS) scores, and those with a wild-type epidermal growth factor receptor (EGFR). PD-L1 TPS ≥ 50% and ≥ 1% were respectively 28.0% and 50.2% among patients negative for both EGFR mutation and anaplastic lymphoma kinase (ALK) rearrangement. PD-L1 expression determined using the 22C3 antibody concentrate and pharmDx kit had comparable results. Conclusions: The prevalence of PD‑L1 expression in advanced NSCLC was consistent with that reported in the global EXPRESS study. Age, gender, smoking history, PS scores, and EGFR/ALK mutation status affected PD-L1 expression. The 22C3 antibody concentrate appears to be an alternative reagent for the PD-L1 assay.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Jin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peng Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingyong Hou
- Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jingping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyong Sun
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xiangshan Fan
- Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinsong Ni
- The first hospital of Jilin University - The Eastern Division, Changchun, Jilin, China
| | - Anhua Mao
- Medical Affairs Department, MSD China, Shanghai, China
| | - Wenmin Tang
- Medical Affairs Department, MSD China, Shanghai, China
| | - Zhenhua Liu
- Medical Affairs Department, MSD China, Shanghai, China
| | - Jiali Wang
- Medical Affairs Department, MSD China, Shanghai, China
| | - Suijun Xiao
- Medical Affairs Department, MSD China, Shanghai, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- ✉ Corresponding authors: Prof. Dongmei Lin, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China; Prof. Yuan Li, Fudan University Cancer Hospital. 270 Dongan Road, Xuhui District, Shanghai, China;
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
- ✉ Corresponding authors: Prof. Dongmei Lin, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China; Prof. Yuan Li, Fudan University Cancer Hospital. 270 Dongan Road, Xuhui District, Shanghai, China;
| |
Collapse
|
47
|
Ricci C, Capizzi E, Giunchi F, Casolari L, Gelsomino F, Rihawi K, Natali F, Livi V, Trisolini R, Fiorentino M, Ardizzoni A. Reliability of programmed death ligand 1 (PD-L1) tumor proportion score (TPS) on cytological smears in advanced non-small cell lung cancer: a prospective validation study. Ther Adv Med Oncol 2020; 12:1758835920954802. [PMID: 33299472 PMCID: PMC7711224 DOI: 10.1177/1758835920954802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) assessment is
mandatory for the single agent pembrolizumab treatment of patients with
advanced non-small cell lung cancer (NSCLC). PD-L1 testing has been
validated and is currently certified only on formalin-fixed
paraffin-embedded materials but not on cytological smears. Unfortunately, a
significant proportion of patients, having only cytological material
available, cannot be tested for PD-L1 and treated with pembrolizumab. In
this study, we aimed to validate PD-L1 IHC on cytological smears
prospectively by comparing clone SP263 staining in 150 paired histological
samples and cytological smears of NSCLC patients. Methods: We prospectively enrolled 150 consecutive advanced NSCLC patients. The clone
SP263 was selected as, in a previous study of our group, it showed higher
accuracy compared with clones 28-8 and 22-C3, with good cyto-histological
agreement using a cut-off of 50%. For cyto-histological concordance, we
calculated the kappa coefficient using two different cut-offs according to
the percentage of PD-L1 positive neoplastic cells (<1%, 1–49% and ⩾50%;
<50%, ⩾50%). Results: The overall agreement between histological samples and cytological smears was
moderate (kappa = 0.537). However, when the cyto-histological concordance
was calculated using the cut-off of 50%, the agreement was good
(kappa = 0.740). With the same cut-off, and assuming as gold-standard the
results on formalin-fixed paraffin-embedded materials, PD-L1 evaluation on
smears showed specificity and negative predictive values of 98.1% and 93.9%,
respectively. Conclusion: Cytological smears can be used in routine clinical practice for PD-L1
assessment with a cut-off of 50%, expanding the potential pool of NSCLC
patients as candidates for first-line single agent pembrolizumab
therapy.
Collapse
Affiliation(s)
| | - Elisa Capizzi
- Department of Pathology, Department of Specialistic, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Department of Pathology, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | | | - Francesco Gelsomino
- Department of Medical Oncology, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Karim Rihawi
- Department of Specialistic, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Filippo Natali
- Department of Interventional Pulmunology , Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Vanina Livi
- Unit of Interventional Pulmonology, Agostino Gemelli Hospital, Largo Agostino Gemelli, Roma, Italy
| | - Rocco Trisolini
- Unit of Interventional Pulmonology, Agostino Gemelli Hospital, Largo Agostino Gemelli, Roma, Italy
| | | | | |
Collapse
|
48
|
Jing J, Konopka KE. Diagnosis of Lung Carcinoma on Small Biopsy. Surg Pathol Clin 2020; 13:1-15. [PMID: 32005427 DOI: 10.1016/j.path.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Given the growing desire in clinical practice to detect lung carcinoma early, small biopsies are becoming more common and vital to the diagnostic process. Accurately diagnosing lung carcinoma on small biopsies is challenging but can significantly affect patient management. The challenge is due in part to the overlapping features between benign, reactive, and malignant processes and the lack of discriminating biomarkers. Specimen preservation for ancillary tests is also increasingly important to provide targeted precision medicine. We focuses on the morphologic features and diagnostic pitfalls of the most common lung carcinoma seen in small biopsies and the appropriate specimen handling practice.
Collapse
Affiliation(s)
- Jian Jing
- Department of Pathology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Kristine E Konopka
- Department of Pathology and Clinical Laboratories, Michigan Medicine, University of Michigan, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Chauhan A, Siegel L, Freese R, Racila E, Stewart J, Amin K. Performance of Ventana SP263 PD-L1 assay in endobronchial ultrasound guided-fine-needle aspiration derived non-small-cell lung carcinoma samples. Diagn Cytopathol 2020; 49:355-362. [PMID: 33142053 DOI: 10.1002/dc.24654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Introduction of programmed death-ligand 1 (PD-L1) inhibitors has significantly changed the treatment landscape of non-small-cell lung carcinomas (NSCLC). Since endobronchial ultrasound guided fine-needle aspiration (EBUS FNA) has become the primary diagnostic and staging modality for NSCLC, this study was pursued to determine the adequacy of Ventana SP263 PD-L1 assay in cytology cell blocks. DESIGN Fifty NSCLC cases with cytology and corresponding histology specimens obtained between 2014 and 2018 were identified. After assessing for adequacy (100 or more tumor cells), forty cases were selected for Ventana SP263 PD-L1 immunohistochemistry (IHC) assay and assessed for tumor proportion scores (TPS) and staining intensity scores (SIS) and analyzed for concordance. RESULTS Of the 40 matched pairs 33 (82.5%) showed concordant PD-L1 expression. On cytology, 32 cases were positive (8 high-expressors and 24 low-expressors) of which 27 were concordant and 5 discordant with matched histology specimens. On histology, 29 cases were positive (7 high-expressor and 22 low-expressors) while 11 cases were negative for PD-L1 expression of which 6 had concordant negative cytology. The intraclass correlation coefficients (ICC) for TPS was 0.81 with 95% confidence interval (0.68, 0.9) and for the SIS, it was 0.78 with 95% CI (0.62, 0.88), both considered as having excellent agreement. CONCLUSION With an overall concordance rate of 82.5% between cytology and histology specimen, this study demonstrates the feasibility of PD-L1 IHC with SP263 clone on cytology samples of NSCLC and adds to a growing body of evidence validating the use of cytology cell blocks for PD-L1 expression testing.
Collapse
Affiliation(s)
- Aastha Chauhan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lianne Siegel
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca Freese
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jimmie Stewart
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
50
|
Vrankar M, Kern I, Stanic K. Prognostic value of PD-L1 expression in patients with unresectable stage III non-small cell lung cancer treated with chemoradiotherapy. Radiat Oncol 2020; 15:247. [PMID: 33121520 PMCID: PMC7594267 DOI: 10.1186/s13014-020-01696-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background Expression of PD-L1 is the most investigated predictor of benefit from immune checkpoint blockade in advanced NSCLC but little is known about the association of PD-L1 expression and clinicopathological parameters of patients with unresectable stage III NSCLC. Methods National registry data was searched for medical records of consecutive inoperable stage III NSCLC patients treated with ChT and RT from January 2012 to December 2017. Totally 249 patients were identified that met inclusion criteria and of those 117 patients had sufficient tissue for PD-L1 immunohistochemical staining. Results Eighty patients (68.4%) expressed PD-L1 of ≥ 1% and 29.9% of more than 50%. Median PFS was 15.9 months in PD-L1 negative patients and 16.1 months in patients with PD-L1 expression ≥ 1% (p = 0.696). Median OS in PD-L1 negative patients was 29.9 months compared to 28.5 months in patients with PD-L1 expression ≥ % (p = 0.888). There was no difference in median OS in patients with high PD-L1 expression (≥ 50%) with 29.8 months compared to 29.9 months in those with low (1–49%) or no PD-L1 expression (p = 0.694). We found that patients who received a total dose of 60 Gy or more had significantly better median OS (32 months vs. 17.5 months, p < 0.001) as well as patients with PS 0 (33.2 vs. 20.3 months, p = 0.005). Conclusions In our patients PD-L1 expression had no prognostic value regarding PFS and OS. Patients with good performance status and those who received a total radiation dose of more than 60 Gy had significantly better mOS.
Collapse
Affiliation(s)
- Martina Vrankar
- Department of Radiotherapy, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Izidor Kern
- Department of Pathology, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4202, Golnik, Slovenia
| | - Karmen Stanic
- Department of Radiotherapy, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|