1
|
Ge L, Chen R. Negative gravitropic response of roots directs auxin flow to control root gravitropism. PLANT, CELL & ENVIRONMENT 2019; 42:2372-2383. [PMID: 30968964 DOI: 10.1111/pce.13559] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 04/05/2019] [Indexed: 05/03/2023]
Abstract
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.
Collapse
Affiliation(s)
- Liangfa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| |
Collapse
|
2
|
Dong S, Beckles DM. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:80-93. [PMID: 30685652 DOI: 10.1016/j.jplph.2019.01.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/01/2019] [Accepted: 01/12/2019] [Indexed: 05/21/2023]
Abstract
Starch is a significant store of sugars, and the starch-sugar interconversion in source and sink tissues plays a profound physiological role in all plants. In this review, we discuss how changes in starch metabolism can facilitate adaptive changes in source-sink carbon allocation for protection against environmental stresses. The stress-related roles of starch are described, and published mechanisms by which starch metabolism responds to short- or long-term water deficit, salinity, or extreme temperatures are discussed. Numerous examples of starch metabolism as a stress response are also provided, focusing on studies where carbohydrates and cognate enzymes were assayed in source, sink, or both. We develop a model that integrates these findings with the theoretical and known roles of sugars and starch in various species, tissues, and developmental stages. In this model, localized starch degradation into sugars is vital to the plant cold stress response, with the sugars produced providing osmoprotection. In contrast, high starch accumulation is prominent under salinity stress, and is associated with higher assimilate allocation from source to sink. Our model explains how starch-sugar interconversion can be a convergent point for regulating carbon use in stress tolerance at the whole-plant level.
Collapse
Affiliation(s)
- Shaoyun Dong
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA 95616, USA; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Morohashi K, Okamoto M, Yamazaki C, Fujii N, Miyazawa Y, Kamada M, Kasahara H, Osada I, Shimazu T, Fusejima Y, Higashibata A, Yamazaki T, Ishioka N, Kobayashi A, Takahashi H. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. THE NEW PHYTOLOGIST 2017; 215:1476-1489. [PMID: 28722158 DOI: 10.1111/nph.14689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/28/2017] [Indexed: 05/27/2023]
Abstract
Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity.
Collapse
Affiliation(s)
- Keita Morohashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Miki Okamoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Chiaki Yamazaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Motoshi Kamada
- Advanced Engineering Services Co. Ltd, 1-6-1 Takezono, Tsukuba, 305-0032, Japan
| | - Haruo Kasahara
- Japan Manned Space Systems Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toru Shimazu
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasuo Fusejima
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Akira Higashibata
- JEM Utilization Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, 305-8505, Japan
| | - Takashi Yamazaki
- Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 252-5210, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
5
|
Pernisova M, Prat T, Grones P, Harustiakova D, Matonohova M, Spichal L, Nodzynski T, Friml J, Hejatko J. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. THE NEW PHYTOLOGIST 2016; 212:497-509. [PMID: 27322763 DOI: 10.1111/nph.14049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 05/06/2023]
Abstract
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism.
Collapse
Affiliation(s)
- Marketa Pernisova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Tomas Prat
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Peter Grones
- Institute of Science and Technology (IST), Klosterneuburg, AT-3400, Austria
| | - Danka Harustiakova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Martina Matonohova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Lukas Spichal
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, CZ-78371, Czech Republic
| | - Tomasz Nodzynski
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jiri Friml
- Institute of Science and Technology (IST), Klosterneuburg, AT-3400, Austria
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic.
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
6
|
Kim HJ, Kobayashi A, Fujii N, Miyazawa Y, Takahashi H. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots. PHYSIOLOGIA PLANTARUM 2016; 157:108-18. [PMID: 26565659 DOI: 10.1111/ppl.12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Plant circumnutation is a helical movement of growing organs such as shoots and roots. Gravitropic response is hypothesized to act as an external oscillator in shoot circumnutation, although this is subject to debate. The relationship between circumnutational movement and gravitropic response in roots remains unknown. In this study, we analyzed circumnutation of agravitropic roots using the ageotropum pea (Pisum sativum) mutant, and compared it with that of wild-type (cv. Alaska) pea roots. We further examined the relationship of gravitropic response to circumnutation of Alaska seedling roots by removing the gravisensing tissue (the root cap) and by treating the roots with auxin transport inhibitors. Alaska roots displayed circumnutational movements with a period of approximately 150 min, whereas ageotropum roots did not exhibit distinct circumnutational movement. Removal of the root cap in Alaska roots reduced gravitropic response and circumnutational movements. Treatment of Alaska roots with auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and N-(1-naphthyl)phthalamic acid (NPA), dramatically reduced gravitropic response and circumnutational movements. These results suggest that a gravity-regulated auxin transport is involved in circumnutation of pea seedling roots.
Collapse
Affiliation(s)
- Hye-jeong Kim
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yutaka Miyazawa
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
7
|
Pin1At regulates PIN1 polar localization and root gravitropism. Nat Commun 2016; 7:10430. [PMID: 26791759 PMCID: PMC4736118 DOI: 10.1038/ncomms10430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022] Open
Abstract
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.
Collapse
|
8
|
Ferl RJ, Paul AL. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. NPJ Microgravity 2016; 2:15023. [PMID: 28725721 PMCID: PMC5515520 DOI: 10.1038/npjmgrav.2015.23] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 01/24/2023] Open
Abstract
Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes.
Collapse
Affiliation(s)
- Robert J Ferl
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA.,Interdisciplinary Center for Biotechnology and Research, University of Florida, Gainesville, FL, USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Muratov A, Baulin VA. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress. Biophys Chem 2015; 207:82-9. [PMID: 26422460 DOI: 10.1016/j.bpc.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism.
Collapse
Affiliation(s)
- Alexander Muratov
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain.
| |
Collapse
|
10
|
Raherison ESM, Giguère I, Caron S, Lamara M, MacKay JJ. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. THE NEW PHYTOLOGIST 2015; 207:172-187. [PMID: 25728802 PMCID: PMC5024012 DOI: 10.1111/nph.13343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/18/2015] [Indexed: 05/13/2023]
Abstract
Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.
Collapse
Affiliation(s)
- Elie S M Raherison
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sébastien Caron
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mebarek Lamara
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, UK
| |
Collapse
|
11
|
Smith HC, Niewohner DJ, Dewey GD, Longo AM, Guy TL, Higgins BR, Daehling SB, Genrich SC, Wentworth CD, Durham Brooks TL. Using flatbed scanners to collect high-resolution time-lapsed images of the arabidopsis root gravitropic response. J Vis Exp 2014:e50878. [PMID: 24513680 PMCID: PMC4091038 DOI: 10.3791/50878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Research efforts in biology increasingly require use of methodologies that enable high-volume collection of high-resolution data. A challenge laboratories can face is the development and attainment of these methods. Observation of phenotypes in a process of interest is a typical objective of research labs studying gene function and this is often achieved through image capture. A particular process that is amenable to observation using imaging approaches is the corrective growth of a seedling root that has been displaced from alignment with the gravity vector. Imaging platforms used to measure the root gravitropic response can be expensive, relatively low in throughput, and/or labor intensive. These issues have been addressed by developing a high-throughput image capture method using inexpensive, yet high-resolution, flatbed scanners. Using this method, images can be captured every few minutes at 4,800 dpi. The current setup enables collection of 216 individual responses per day. The image data collected is of ample quality for image analysis applications.
Collapse
|
12
|
Zou N, Li B, Chen H, Su Y, Kronzucker HJ, Xiong L, Baluška F, Shi W. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. THE NEW PHYTOLOGIST 2013; 200:97-111. [PMID: 23782229 DOI: 10.1111/nph.12365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/11/2013] [Indexed: 05/22/2023]
Abstract
Gravitropism plays a critical role in plant growth and development, plant stability and acclimation to changes in water and nutrient availability. Ammonium (NH4(+)) is well known to have profound effects on root growth, but its impacts on gravitropism are poorly understood. To determine which genes are essential for the maintenance of root gravitropism under NH4(+) stress, we isolated and identified an NH4 (+)-sensitive mutant, gsa-1 (gravitropism sensitive to ammonium-1), in Arabidopsis thaliana, using an agar plate root reorientation assay. We found that, under NH4(+) stress, gsa-1 displayed increased loss of root gravitropism. Gene cloning and sequencing revealed that gsa-1 contains a G to C transversion mutation at the highly conserved 5'-GT splice position of intron 10 of ARG1 (ALTERED RESPONSE TO GRAVITY1), known to participate in the transduction of the root gravity signal. Genetic complement tests established the locus of GSA-1/ARG1 and its role in resistance to NH4 (+) inhibition on root gravitropism. GSA-1/ARG1 is required for normal AUX1 expression and basipetal auxin transport in root apices. In addition, PIN-FORMED2 (PIN2) is proposed as a target in the reduction of root gravitropism under NH4(+) stress, a response which can be antagonized by the GSA-1/ARG1-dependent pathway. These results suggest that GSA-1/ARG1 protects root gravitropism in Arabidopsis thaliana under ammonium stress.
Collapse
Affiliation(s)
- Na Zou
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Baohai Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Hao Chen
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Liming Xiong
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
13
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013; 4:186. [PMID: 23785372 PMCID: PMC3685011 DOI: 10.3389/fpls.2013.00186] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
14
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
15
|
Smith CM, Desai M, Land ES, Perera IY. A role for lipid-mediated signaling in plant gravitropism. AMERICAN JOURNAL OF BOTANY 2013; 100:153-60. [PMID: 23258369 DOI: 10.3732/ajb.1200355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitropism is a universal plant response. It is initiated by the sensing of the primary signal (mass or pressure), which is then converted into chemical signals that are transduced and propagated in a precise spatial and temporal fashion, resulting in a differential growth response. Our thesis is that membrane lipids and lipid-mediated signaling pathways play critical roles in the initial signaling and in the establishment of polarity. In this review, we highlight results from recent literature and discuss the major questions that remain unanswered.
Collapse
Affiliation(s)
- Caroline M Smith
- Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
16
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.00186/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
17
|
Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:25-34. [PMID: 23263156 DOI: 10.3732/ajb.1200419] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Roots show positive hydrotropism in response to moisture gradients, which is believed to contribute to plant water acquisition. This article reviews the recent advances of the physiological and molecular genetic studies on hydrotropism in seedling roots of Arabidopsis thaliana. We identified MIZU-KUSSEI1 (MIZ1) and MIZ2, essential genes for hydrotropism in roots; the former encodes a protein of unknown function, and the latter encodes an ARF-GEF (GNOM) protein involved in vesicle trafficking. Because both mutants are defective in hydrotropism but not in gravitropism, these mutations might affect a molecular mechanism unique to hydrotropism. MIZ1 is expressed in the lateral root cap and cortex of the root proper. It is localized as a soluble protein in the cytoplasm and in association with the cytoplasmic face of endoplasmic reticulum (ER) membranes in root cells. Light and ABA independently regulate MIZ1 expression, which influences the ultimate hydrotropic response. In addition, MIZ1 overexpression results in an enhancement of hydrotropism and an inhibition of lateral root formation. This phenotype is likely related to the alteration of auxin content in roots. Specifically, the auxin level in the roots decreases in the MIZ1 overexpressor and increases in the miz1 mutant. Unlike most gnom mutants, miz2 displays normal morphology, growth, and gravitropism, with normal localization of PIN proteins. It is probable that MIZ1 plays a crucial role in hydrotropic response by regulating the endogenous level of auxin in Arabidopsis roots. Furthermore, the role of GNOM/MIZ2 in hydrotropism is distinct from that of gravitropism.
Collapse
Affiliation(s)
- Teppei Moriwaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
18
|
Miyazawa Y, Moriwaki T, Uchida M, Kobayashi A, Fujii N, Takahashi H. Overexpression of MIZU-KUSSEI1 enhances the root hydrotropic response by retaining cell viability under hydrostimulated conditions in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1926-1933. [PMID: 23012350 DOI: 10.1093/pcp/pcs129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Because of their sessile nature, plants evolved several mechanisms to tolerate or avoid conditions where water is scarce. The molecular mechanisms contributing to drought tolerance have been studied extensively, whereas the molecular mechanism underlying drought avoidance is less understood despite its importance. Several lines of evidence showed that the roots sense the moisture gradient and grow toward the wet area: so-called hydrotropism. We previously identified MIZU-KUSSEI (MIZ) 1 and MIZ2/GNOM as genes responsible for this process. To gain new insight into the molecular mechanism of root hydrotropism, we generated overexpressors of MIZ1 (MIZ1OEs) and analyzed their hydrotropic response. MIZ1OEs had a remarkable enhancement of root hydrotropism. Furthermore, a greater number of MIZ1OE root cells remained viable under hydrostimulated conditions than those of the wild type, which might contribute to retaining root growth under hydrostimulated conditions. Although overexpression of MIZ1 also caused a slight decrease in the root gravitropic response, it was not attributable to the enhanced hydrotropic response. In addition, miz2 mutation or the auxin response inhibitor nullified the enhanced hydrotropic response in MIZ1OEs. Furthermore, the expression of MIZ1 did not alter the expression of typical genes involved in drought tolerance. These results suggest that MIZ1 positively regulates hydrotropism at an early stage and its overexpression results in an enhancement of signal transduction unique to root hydrotropism to increase the degree of hydrotropic root bending.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku Unievrsity, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577 Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Zou N, Li B, Dong G, Kronzucker HJ, Shi W. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3777-88. [PMID: 22407650 DOI: 10.1093/jxb/ers068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.
Collapse
Affiliation(s)
- Na Zou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | | | | | | |
Collapse
|
20
|
Du J, Yin H, Zhang S, Wei Z, Zhao B, Zhang J, Gou X, Lin H, Li J. Somatic embryogenesis receptor kinases control root development mainly via brassinosteroid-independent actions in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:388-399. [PMID: 22525267 DOI: 10.1111/j.1744-7909.2012.01124.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Brassinosteroids (BRs), a group of plant steroidal hormones, play critical roles in many aspects of plant growth and development. Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones. Arabidopsis somatic embryogenesis receptor-like kinases (SERKs), as co-receptors of BRI1, were found to play a fundamental role in an early activation step of BR signaling pathway. Here we report a novel function of SERKs in regulating Arabidopsis root development. Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway. Although BR signaling pathway is completely disrupted in the serk1 bak1 bkk1 triple mutant, the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants. More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport, cell cycle, endodermis development and root meristem differentiation, which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bri1-701.
Collapse
Affiliation(s)
- Junbo Du
- School of Life Sciences, Sichuan University, Sichuan 610064, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ. Spaceflight transcriptomes: unique responses to a novel environment. ASTROBIOLOGY 2012; 12:1-2. [PMID: 22221117 DOI: 10.1089/ast.2011.0745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock-related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ. Spaceflight transcriptomes: unique responses to a novel environment. ASTROBIOLOGY 2012; 12:40-56. [PMID: 22221117 PMCID: PMC3264962 DOI: 10.1089/ast.2011.0696] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/08/2011] [Indexed: 05/20/2023]
Abstract
The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock-related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, Florida
| | | | | | | | - Yijun Sun
- University of Florida, Gainesville, Florida
| | | | | | | | | | - Robert J. Ferl
- Interdisciplinary Center for Biotechnology and Research, Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Millar KDL, Johnson CM, Edelmann RE, Kiss JZ. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. ASTROBIOLOGY 2011; 11:787-97. [PMID: 21970704 PMCID: PMC3233217 DOI: 10.1089/ast.2011.0699] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010. Seedlings were grown on nutrient agar in Petri dishes in BRIC hardware under dark conditions and then fixed in flight with paraformaldehyde, glutaraldehyde, or RNAlater. Although the long-term objective was to study the role of the actin cytoskeleton in gravity perception, in this article we focus on the analysis of morphology of seedlings that developed in microgravity. While previous spaceflight studies noted deleterious morphological effects due to the accumulation of ethylene gas, no such effects were observed in seedlings grown with the BRIC system. Seed germination was 89% in the spaceflight experiment and 91% in the ground control, and seedlings grew equally well in both conditions. However, roots of space-grown seedlings exhibited a significant difference (compared to the ground controls) in overall growth patterns in that they skewed to one direction. In addition, a greater number of adventitious roots formed from the axis of the hypocotyls in the flight-grown plants. Our hypothesis is that an endogenous response in plants causes the roots to skew and that this default growth response is largely masked by the normal 1 g conditions on Earth.
Collapse
|
24
|
Paul AL, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. ASTROBIOLOGY 2011; 11:743-58. [PMID: 21970703 DOI: 10.1089/ast.2011.0659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mei Y, Jia WJ, Chu YJ, Xue HW. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 2011; 22:581-97. [PMID: 21894193 DOI: 10.1038/cr.2011.150] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.
Collapse
Affiliation(s)
- Yu Mei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
26
|
Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:817-26. [PMID: 21569134 DOI: 10.1111/j.1365-313x.2011.04636.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.
Collapse
Affiliation(s)
- Hana Rakusová
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee Y, Park CH, Ram Kim A, Chang SC, Kim SH, Lee WS, Kim SK. The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:909-16. [PMID: 21696975 DOI: 10.1016/j.plaphy.2011.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/31/2011] [Indexed: 05/09/2023]
Abstract
The effects of ascorbic acid (AA) and dehydroascorbic acid (DHA), one of products of the disproportionation of monodehydroascorbate (MDHA) by AA oxidase (AAO, EC 1.10.3.3), on the gravitropic curvature of Arabidopsis roots were characterized by biochemical and genetic approaches. Exogenously applied AA and DHA both stimulated root gravitropic responses in a concentration-dependent fashion. AA also changed the Indole-3-acetic acid (IAA) distribution in the roots after gravistimulation. In an effort to determine the relationship between AA and DHA in the gravitropic response, changes in the amount of reduced AA were evaluated in Arabidopsis under a variety of conditions. The expression level of an AAO gene (AAO1) was increased upon gravistimulation. Brassinolide (BL), indole-3-acetic acid (IAA), and AA also increased the transcript levels of this gene. Root elongation and the gravitropic response were both suppressed in the AA biosynthesis mutant, vtc1, which has a greatly reduced level of total AA. Furthermore, the line of AAO double mutants (aao1-1 X aao3-1, 41-21) showed a reduced gravitropic response and reduced root elongation. Taken together, the results of this study imply that both AA and DHA help to determine the redox environment for the root gravitropic response, but DHA, rather than AA, is a major player in the regulation of the gravitropic response mediated by AA in the roots of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yew Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Wolverton C, Paya AM, Toska J. Root cap angle and gravitropic response rate are uncoupled in the Arabidopsis pgm-1 mutant. PHYSIOLOGIA PLANTARUM 2011; 141:373-82. [PMID: 21143486 DOI: 10.1111/j.1399-3054.2010.01439.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sedimentation of starch-filled plastids is thought to be the primary mechanism by which gravity is perceived in roots. Following gravity perception, auxin redistribution toward the lower flank of roots, initiated in the root cap, is believed to play a role in regulation of the gravity response. Amyloplast sedimentation and auxin flux, however, have never been directly linked. The overall aim of this study was to investigate the relationship among plastid sedimentation, gravitropism and auxin flux. Our data show that pgm-1 roots respond to gravity at one-third the rate of wild-type (WT) roots. Maintaining the root tip at a constant angle using image analysis coupled to a rotating stage resulted in a constant rate of response regardless of the angle of tip orientation in pgm-1 mutants, in contrast to the responses of WT and pin3-1 mutants, which showed increasing response rates as the tip was constrained at greater angles. To indirectly visualize auxin flux following reorientation, we generated a pgm-1 mutant line expressing the DR5::GFPm reporter gene. In WT roots a GFP gradient was observed with a maximum along the lower flank, whereas pgm-1 roots formed a GFP maximum in the central columella but lacked any observable gradient up to 6 h following reorientation. Our study suggests that the relationship between root cap angle and gravitropic response depends upon plastid sedimentation-based gravity sensing and supports the idea that there are multiple, overlapping sensory response networks involved in gravitropism.
Collapse
Affiliation(s)
- Chris Wolverton
- Department of Botany & Microbiology, Ohio Wesleyan University, Delaware, OH 43015, USA.
| | | | | |
Collapse
|
29
|
Shi JH, Hao X, Wu ZC, Wu P. A new genetic factor for root gravitropism in rice (Oryza sativa L.). J Zhejiang Univ Sci B 2009; 10:777-83. [PMID: 19817003 DOI: 10.1631/jzus.b0920132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Root gravitropism is one of the important factors to determine root architecture. To understand the mechanism underlying root gravitropism, we isolated a rice (Xiushui63) mutant defective in root gravitropism, designated as gls1. Vertical sections of root caps revealed that gls1 mutant displayed normal distribution of amyloplast in the columella cells compared with the wild type. The gls1 mutant was less sensitive to 2,4-dichlorophenoxyacetic acid (2,4-D) and alpha-naphthaleneacetic acid (NAA) than the wild type. Genetic analysis indicated that the phenotype of gls1 mutant was caused by a single recessive mutation, which is mapped in a 255-kb region between RM16253 and CAPS1 on the short arm of chromosome 4.
Collapse
Affiliation(s)
- Jiang-hua Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
30
|
Stanga J, Baldwin K, Masson PH. Joining forces: the interface of gravitropism and plastid protein import. PLANT SIGNALING & BEHAVIOR 2009; 4:933-41. [PMID: 19826232 PMCID: PMC2801356 DOI: 10.4161/psb.4.10.9470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In flowering plants, gravity perception appears to involve the sedimentation of starch-filled plastids, called amyloplasts, within specialized cells (the statocytes) of shoots (endodermal cells) and roots (columella cells). Unfortunately, how the physical information derived from amyloplast sedimentation is converted into a biochemical signal that promotes organ gravitropic curvature remains largely unknown. Recent results suggest an involvement of the Translocon of the Outer Envelope of (Chloro)plastids (TOC) in early phases of gravity signal transduction within the statocytes. This review summarizes our current knowledge of the molecular mechanisms that govern gravity signal transduction in flowering plants and summarizes models that attempt to explain the contribution of TOC proteins in this important behavioral plant growth response to its mechanical environment.
Collapse
Affiliation(s)
- John Stanga
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
31
|
Shevchenko GV. Interaction of microtubules and microfilaments in the zone of distal elongation of Arabidopsis thaliana roots. CYTOL GENET+ 2009. [DOI: 10.3103/s009545270904001x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Takahashi H, Miyazawa Y, Fujii N. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. PLANT MOLECULAR BIOLOGY 2009; 69:489-502. [PMID: 19083152 DOI: 10.1007/s11103-008-9438-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/17/2008] [Indexed: 05/09/2023]
Abstract
Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny-Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
33
|
Barjaktarović Ž, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R. Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:779-89. [PMID: 19129159 PMCID: PMC2652066 DOI: 10.1093/jxb/ern324] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 05/04/2023]
Abstract
In a recent study it was shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly in amount (P <0.05) after 2 h of hypergravity (18 up-regulated, 10 down-regulated) could be identified. The corresponding proteins were largely involved in stress responses, including the detoxification of reactive oxygen species (ROS). In the present study, these investigations are extended to phosphorylated proteins. For this purpose, callus cell cultures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded the most reliable data. The first changes, however, were visible as early as 10 min after the start of treatment. In comparison to 1 g controls, exposure to hypergravity resulted in 18 protein spots, and random positioning in 25, respectively, with increased/decreased signal intensity by at least 2-fold (P <0.05). Only one spot (alanine aminotransferase) responded the same way under both treatments. After 30 min of RP, four spots appeared, which could not be detected in control samples. Among the protein spots altered in phosphorylation, it was possible to identify 24 from those responding to random positioning and 12 which responded to 8 g. These 12 proteins (8 g) are partly (5 out of 12) the same as those changed in expression after exposure to 2 h of hypergravity. The respective proteins are involved in scavenging and detoxification of ROS (32%), primary metabolism (20.5%), general signalling (14.7%), protein translation and proteolysis (14.7%), and ion homeostasis (8.8%). Together with our recent data on protein expression, it is assumed that changes in gravitational fields induce the production of ROS. Our data further indicate that responses toward RP are more by post-translational protein modulation (most changes in the degree of phosphorylation occur under RP-treatment) than by protein expression (hypergravity).
Collapse
Affiliation(s)
- Žarko Barjaktarović
- University of Tübingen, Botany Institute, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Wolfgang Schütz
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Johannes Madlung
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Claudia Fladerer
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Alfred Nordheim
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Rüdiger Hampp
- University of Tübingen, Botany Institute, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| |
Collapse
|
34
|
Yang X, Song L, Xue HW. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. MOLECULAR PLANT 2008; 1:1077-87. [PMID: 19825605 DOI: 10.1093/mp/ssn071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Overexpression of membrane steroid binding protein 1 (MSBP1) stimulates the root gravitropism and anti-gravitropism of hypocotyl, which is mainly due to the enhanced auxin redistribution in the bending regions of hypocotyls and root tips. The inhibitory effects by 1-N-naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, are suppressed under the MSBP1 overexpression, suggesting the positive effects of MSBP1 on polar auxin transport. Interestingly, sub-cellular localization studies showed that MSBP1 is also localized in endosomes and observations of the membrane-selective dye FM4-64 revealed the enhanced vesicle trafficking under MSBP1 overexpression. MSBP1-overexpressing seedlings are less sensitive to brefeldin A (BFA) treatment, whereas the vesicle trafficking was evidently reduced by suppressed MSBP1 expression. Enhanced MSBP1 does not affect the polar localization of PIN2, but stimulates the PIN2 cycling and enhances the asymmetric PIN2 redistribution under gravi-stimulation. These results suggest that MSBP1 could enhance the cycling of PIN2-containing vesicles to stimulate the auxin redistribution under gravi-stimulation, providing informative hints on interactions between auxin and steroid binding protein.
Collapse
Affiliation(s)
- Xi Yang
- Chinese Academy of Sciences, 200032 Shanghai, China
| | | | | |
Collapse
|
35
|
Harrison B, Masson PH. ARG1 and ARL2 form an actin-based gravity-signaling chaperone complex in root statocytes? PLANT SIGNALING & BEHAVIOR 2008; 3:650-3. [PMID: 19704815 PMCID: PMC2634546 DOI: 10.4161/psb.3.9.5749] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 05/20/2023]
Abstract
Plants are acutely sensitive to the directional information provided by gravity. They have evolved statocytes, which are specialized cells that sense gravity and, upon integration of the corresponding information with that of other environmental stimuli, control the growth behavior of their organs. The cellular mechanisms that allow statocytes to sense and transduce gravitational information likely involve detecting the sedimentation of, or the tension/pressure exerted by, starch-filled amyloplasts-the presumptive statoliths-within their cytoplasm. Gravity signaling in root statocytes controls the direction of transport of signaling compounds, especially auxin, across the root cap, establishing a lateral gradient that is transmitted to cells in the elongation zone and results in gravitropic curvature. The Arabidopsis J-domain proteins ARG1 and ARL2 function as gravity-signal transducers in root statocytes. In the January issue of The Plant Journal, we reported that ARG1 and ARL2 function non-redundantly in a common gravity signaling pathway required for accumulation of the auxin efflux facilitator PIN3 on the new bottom side of statocytes following gravity stimulation, and lateral redistribution of auxin toward the new lower flank of stimulated roots. Here we present data suggesting that ARG1 physically associates with ARL2, the J-domain co-chaperone HSC70, and actin in vivo. We briefly discuss potential mechanisms by which ARG1 and ARL2 might function in gravity signaling in light of this information.
Collapse
|
36
|
Lee Y, Jung JW, Kim SK, Hwang YS, Lee JS, Kim SH. Ethylene-induced opposite redistributions of calcium and auxin are essential components in the development of tomato petiolar epinastic curvature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:685-693. [PMID: 18504135 DOI: 10.1016/j.plaphy.2008.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Indexed: 05/26/2023]
Abstract
Calcium has been suggested as an important mediator of gravity signaling transduction within the root cap statocyte. In a horizontally-placed root, it is redistributed in the direction of the gravity vector (i.e. it moves downward) and its redistribution is closely correlated with auxin downward movement. However, the involvement of calcium in the regulation of ethylene-induced epinasty and auxin movement is not known. In this report, we examined the involvement of calcium in lateral auxin transport during ethylene-induced epinasty in an effort to understand the relationship among calcium, auxin, and ethylene. Ethylene-induced epinasty was further stimulated by exogenously applied Ca2+, the calcium effect being the strongest among divalent cations tested. Pretreatment with NPA, an auxin transport inhibitor, negated the promotive effect of calcium ions on the petiolar epinasty. Ethylene caused redistribution/differential accumulation of 45Ca2+ toward the morphologically lower (abaxial) side of the leaf petioles, an effect opposite to that of 14C-IAA redistribution. Verapamil, a Ca2+ channel blocker, inhibited ethylene-induced epinasty, as well as the redistribution of 14C-IAA and 45Ca2+. When the petiole was inverted in the presence or absence of ethylene, the direction of 45Ca2+ differential accumulation was still toward the morphologically abaxial side of the petiole during epinastic movement regardless of gravitational direction. These results suggest that gravity-insensitive, ethylene-induced Ca2+ redistribution and accumulation toward the abaxial side are closely coupled to the adaxial auxin redistribution/accumulation and, in turn, to the petiolar epinasty.
Collapse
Affiliation(s)
- Yew Lee
- Department of Life Science, Yonsei University, Wonju 220-710, Republic of Korea
| | - Jin-Woo Jung
- Department of Life Science, Yonsei University, Wonju 220-710, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Yong-Sic Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - June-Seung Lee
- Department of Biological Science, Ewha Woman's University, Seoul 120-750, Republic of Korea
| | - Soo-Hwan Kim
- Department of Life Science, Yonsei University, Wonju 220-710, Republic of Korea
| |
Collapse
|
37
|
Pandey S, Monshausen GB, Ding L, Assmann SM. Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:311-22. [PMID: 18397373 DOI: 10.1111/j.1365-313x.2008.03506.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Heterotrimeric G proteins composed of alpha, beta and gamma subunits regulate a number of fundamental processes concerned with growth and development in plants. In addition to the canonical heterotrimeric G proteins, plants also contain a small family of extra large G proteins (XLGs) that show significant similarity to the G-protein alpha subunit in their C-terminal regions. In this paper we show that one of the three XLG genes, XLG3, and the Gbeta subunit (AGB1) of the Arabidopsis G-protein heterotrimer are specifically involved in the regulation of a subset of root morphological and growth responses. Based on analysis of T-DNA insertional mutant phenotypes, XLG3 and AGB1 each positively regulate root waving and root skewing. Since these responses are regulated by physical as well as physiological cues, we assessed the roles of AGB1 and XLG3 in gravitropism, thigmotropism and hormonal responses. Our data show that mutants lacking either XLG3 or AGB1 genes are hypersensitive to ethylene and show growth responses consistent with alterations in auxin transport, while maintaining an essentially wild-type response to the physical cues of gravity and touch. These results suggest that XLG3 and AGB1 proteins regulate the hormonal determinants of root-waving and root-skewing responses in plants and possibly interact in a tissue-specific or signal-specific manner. Because plants harboring knockout mutations in the Galpha subunit gene, GPA1, exhibit wild-type root waving and skewing, our results may indicate that the AGB1 subunit functions in these processes without formation of a classic Galphabetagamma heterotrimer.
Collapse
Affiliation(s)
- Sona Pandey
- Biology Department, Penn State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
38
|
Holmes P, Goffard N, Weiller GF, Rolfe BG, Imin N. Transcriptional profiling of Medicago truncatula meristematic root cells. BMC PLANT BIOLOGY 2008; 8:21. [PMID: 18302802 PMCID: PMC2277415 DOI: 10.1186/1471-2229-8-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 02/27/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip(R) to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate genes. RESULTS Using mRNA from root meristem and non-meristem we were able to identify 324 and 363 transcripts differentially expressed from the two regions. With bioinformatics tools developed to functionally annotate the Medicago genome array we could identify significant changes in metabolism, signalling and the differentially expression of 55 transcription factors in meristematic and non-meristematic roots. CONCLUSION This is the first comprehensive analysis of M. truncatula root meristem cells using this genome array. This data will facilitate the mapping of regulatory and metabolic networks involved in the open root meristem of M. truncatula and provides candidates for functional analysis.
Collapse
Affiliation(s)
- Peta Holmes
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Nicolas Goffard
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
- Institut Louis Malardé, GP Box 30, 98713 Papeete Tahiti, French Polynesia
| | - Georg F Weiller
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Barry G Rolfe
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Nijat Imin
- ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
39
|
Shiva Kumar N, Stevens MHH, Kiss JZ. Plastid movement in statocytes of the arg1 (altered response to gravity) mutant. AMERICAN JOURNAL OF BOTANY 2008; 95:177-184. [PMID: 21632343 DOI: 10.3732/ajb.95.2.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ability of a plant to respond to gravity is crucial for growth and development throughout the life cycle. A key player in the cellular mechanisms of gravitropism is ARG1 (altered response to gravity), a DnaJ-like protein that associates with components of the vesicular trafficking pathway and carries a C-terminal domain with similarities to cytoskeleton-associated proteins. The arg1-2 mutant of Arabidopsis thaliana has reduced and delayed gravitropism in roots, shoots, and inflorescence stems when grown in the light or dark. We performed light microscopic studies of plastid movement in the gravity-perceiving statocytes (endodermal cells) of hypocotyls of arg1-2 and WT light-grown seedlings following reorientation to better characterize the role of ARG1 in gravitropism. Cryofixation/freeze substitution procedures were used because they provide a reliable indication of rapid cellular events within the statocytes. Our results suggest that ARG1 affects gravitropism by reducing plastid movement/sedimentation, a process known to be essential for early phases of signaling cascades in the statocytes.
Collapse
|
40
|
Ponce G, Rasgado FA, Cassab GI. Roles of amyloplasts and water deficit in root tropisms. PLANT, CELL & ENVIRONMENT 2008; 31:205-217. [PMID: 18047572 DOI: 10.1111/j.1365-3040.2007.01752.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Directed growth of roots in relation to a moisture gradient is called hydrotropism. The no hydrotropic response (nhr1) mutant of Arabidopsis lacks a hydrotropic response, and shows a stronger gravitropic response than that of wild type (wt) in a medium with an osmotic gradient. Local application of abscisic acid (ABA) to seeds or root tips of nhr1 increased root downward growth, indicating the critical role of ABA in tropisms. Wt roots germinated and treated with ABA in this system were strongly gravitropic, even though they had almost no starch amyloplasts in the root-cap columella cells. Hydrotropically stimulated nhr1 roots, with or without ABA, maintained starch in the amyloplasts, as opposed to those of wt. Hence, the near-absence (wt) or abundant presence (nhr1) of starch granules does not influence the extent of downward gravitropism of the roots in an osmotic gradient medium. Starch degradation in the wt might help the root sustain osmotic stress and carry out hydrotropism, instead of reducing gravity responsiveness. nhr1 roots might be hydrotropically inactive because they maintain this starch reserve in the columella cells, sustaining both their turgor and growth, and in effect minimizing the need for hydrotropism and at least partially disabling its mechanism. We conclude that ABA and water stress are critical regulators of root tropic responses.
Collapse
Affiliation(s)
- Georgina Ponce
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal. 510-3, Cuernavaca, Mor. 62250, México
| | | | | |
Collapse
|
41
|
Harrison BR, Masson PH. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:380-92. [PMID: 18047472 DOI: 10.1111/j.1365-313x.2007.03351.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ALTERED RESPONSE TO GRAVITY1 (ARG1) and its paralog ARG1-LIKE2 (ARL2) are J-domain proteins that are required for normal root and hypocotyl gravitropism. In this paper, we show that both ARL2 and ARG1 function in a gravity signal transduction pathway with PIN3, an auxin efflux facilitator that is expressed in the statocytes. In gravi-stimulated roots, PIN3 relocalizes to the lower side of statocytes, a process that is thought to, in part, drive the asymmetrical redistribution of auxin toward the lower flank of the root. We show that ARL2 and ARG1 are required for PIN3 relocalization and asymmetrical distribution of auxin upon gravi-stimulation. ARL2 is expressed specifically in the root statocytes, where it localizes to the plasma membrane. Upon ectopic expression, ARL2 is also found at the cell plate of dividing cells during cytokinesis, an area of intense membrane dynamics. Mutations in ARL2 and ARG1 also result in auxin-related expansion of the root cap columella, consistent with a role for ARL2 and ARG1 in regulating auxin flux through the root tip. Together these data suggest that ARL2 and ARG1 functionally link gravity sensation in the statocytes to auxin redistribution through the root cap.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Peer WA, Murphy AS. Flavonoids and auxin transport: modulators or regulators? TRENDS IN PLANT SCIENCE 2007; 12:556-63. [PMID: 18198522 DOI: 10.1016/j.tplants.2007.10.003] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonoids are polyphenolic compounds found in all vascular and non-vascular plants. Although nonessential for plant growth and development, flavonoids have species-specific roles in nodulation, fertility, defense and UV protection. Flavonoids have been shown to modulate transport of the phytohormone auxin in addition to auxin-dependent tropic responses. However, flavonoids are not essential regulators of these processes because transport and tropic responses occur in their absence. Flavonoids modulate the activity of auxin-transporting P-glycoproteins and seem to modulate the activity of regulatory proteins such as phosphatases and kinases. Phylogenetic analysis suggests that auxin transport mechanisms evolved in the presence of flavonoid compounds produced for the scavenging of reactive oxygen species and defense from herbivores and pathogens.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| | | |
Collapse
|
43
|
Taramino G, Sauer M, Stauffer JL, Multani D, Niu X, Sakai H, Hochholdinger F. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:649-59. [PMID: 17425722 DOI: 10.1111/j.1365-313x.2007.03075.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Maize has a complex root system composed of different root types formed during different stages of development. The rtcs (rootless concerning crown and seminal roots) mutant is impaired in the initiation of the embryonic seminal roots and the post-embryonic shoot-borne root system. The primary root of the mutant shows a reduced gravitropic response, while its elongation, lateral root density and reaction to exogenously applied auxin is not affected. We report here the map-based cloning of the RTCS gene which encodes a 25.5 kDa LOB domain protein located on chromosome 1S. The RTCS gene has been duplicated during evolution. The RTCS-LIKE (RTCL) gene displays 72% sequence identity on the protein level. Both genes are preferentially expressed in roots. Expression of RTCS in coleoptilar nodes is confined to emerging shoot-borne root primordia. Sequence analyses of the RTCS and RTCL upstream genomic regions identified auxin response elements. Reverse transcriptase-PCR revealed that both genes are auxin induced. Microsynteny analyses between maize and rice genomes revealed co-linearity of 14 genes in the RTCS region. We conclude from our data that RTCS and RTCL are auxin-responsive genes involved in the early events that lead to the initiation and maintenance of seminal and shoot-borne root primordia formation.
Collapse
Affiliation(s)
- Graziana Taramino
- DuPont Crop Genetics Research, Experimental Station, PO Box 80353, Wilmington, DE 19880-0353, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 2007; 17:402-10. [PMID: 17468779 DOI: 10.1038/cr.2007.38] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.
Collapse
Affiliation(s)
- Peijin Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vieten A, Sauer M, Brewer PB, Friml J. Molecular and cellular aspects of auxin-transport-mediated development. TRENDS IN PLANT SCIENCE 2007; 12:160-8. [PMID: 17369077 DOI: 10.1016/j.tplants.2007.03.006] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/06/2007] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
The plant hormone auxin is frequently observed to be asymmetrically distributed across adjacent cells during crucial stages of growth and development. These auxin gradients depend on polar transport and regulate a wide variety of processes, including embryogenesis, organogenesis, vascular tissue differentiation, root meristem maintenance and tropic growth. Auxin can mediate such a perplexing array of developmental processes by acting as a general trigger for the change in developmental program in cells where it accumulates and by providing vectorial information to the tissues by its polar intercellular flow. In recent years, a wealth of molecular data on the mechanism of auxin transport and its regulation has been generated, providing significant insights into the action of this versatile coordinative signal.
Collapse
Affiliation(s)
- Anne Vieten
- Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 3, University Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
46
|
Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H. A gene essential for hydrotropism in roots. Proc Natl Acad Sci U S A 2007; 104:4724-9. [PMID: 17360591 PMCID: PMC1810325 DOI: 10.1073/pnas.0609929104] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Roots display hydrotropism in response to moisture gradients, which is thought to be important for controlling their growth orientation, obtaining water, and establishing their stand in the terrestrial environment. However, the molecular mechanism underlying hydrotropism remains unknown. Here, we report that roots of the Arabidopsis mutant mizu-kussei1 (miz1), which are impaired in hydrotropism, show normal gravitropism and elongation growth. The roots of miz1 plants showed reduced phototropism and a modified wavy growth response. There were no distinct differences in morphological features and root structure between miz1 and wild-type plants. These results suggest that the pathway inducing hydrotropism is independent of the pathways used in other tropic responses. The phenotype results from a single recessive mutation in MIZ1, which encodes a protein containing a domain (the MIZ domain) that is highly conserved among terrestrial plants such as rice and moss. The MIZ domain was not found in known genomes of organisms such as green algae, red algae, cyanobacteria, or animals. We hypothesize that MIZ1 has evolved to play an important role in adaptation to terrestrial life because hydrotropism could contribute to drought avoidance in higher plants. In addition, a pMIZ1::GUS fusion gene was expressed strongly in columella cells of the root cap but not in the elongation zone, suggesting that MIZ1 functions in the early phase of the hydrotropic response.
Collapse
Affiliation(s)
- Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akiko Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yoko Kakimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Basu P, Zhang YJ, Lynch JP, Brown KM. Ethylene modulates genetic, positional, and nutritional regulation of root plagiogravitropism. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:41-51. [PMID: 32689330 DOI: 10.1071/fp06209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/17/2006] [Indexed: 06/11/2023]
Abstract
Plagiogravitropic growth of roots strongly affects root architecture and topsoil exploration, which are important for the acquisition of water and nutrients. Here we show that basal roots of Phaseolus vulgaris L. develop from 2-3 definable whorls at the root-shoot interface and exhibit position-dependent plagiogravitropic growth. The whorl closest to the shoot produces the shallowest roots, and lower whorls produce deeper roots. Genotypes vary in both the average growth angles of roots within whorls and the range of growth angles, i.e. the difference between the shallowest and deepest basal roots within a root system. Since ethylene has been implicated in both gravitropic and edaphic stress responses, we studied the role of ethylene and its interaction with phosphorus availability in regulating growth angles of genotypes with shallow or deep basal roots. There was a weak correlation between growth angle and ethylene production in the basal rooting zone, but ethylene sensitivity was strongly correlated with growth angle. Basal roots emerging from the uppermost whorl were more responsive to ethylene treatment than the lower-most whorl, displaying shallower angles and inhibition of growth. Ethylene sensitivity is greater for shallow than for deep genotypes and for plants grown with low phosphorus compared with those supplied with high phosphorus. Ethylene exposure increased the range of angles, although deep genotypes grown in low phosphorus were less affected. Our results identify basal root whorl number as a novel architectural trait, and show that ethylene mediates regulation of growth angle by position of origin, genotype and phosphorus availability.
Collapse
Affiliation(s)
- Paramita Basu
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuan-Ji Zhang
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P Lynch
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kathleen M Brown
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
48
|
|
49
|
Palme K, Dovzhenko A, Ditengou FA. Auxin transport and gravitational research: perspectives. PROTOPLASMA 2006; 229:175-81. [PMID: 17180499 DOI: 10.1007/s00709-006-0216-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/01/2006] [Indexed: 05/07/2023]
Abstract
Gravity is a fundamental factor which affects all living organisms. Plant development is well adapted to gravity by directing roots downward and shoots upwards. For more than a century, plant biologists have been fascinated to describe the molecular mechanisms underlying the gravitropic response of plants. Important progress towards signal perception, transduction, and response has been made, but new tools are beginning to uncover the regulatory networks for gravitropic control. We summarise recent progress in study of gravitropism and discuss strategies to identify the molecular basis of the gravity response in Arabidopsis thaliana. This will put us on a road towards the molecular systems biology of the Arabidopsis gravitropic response.
Collapse
Affiliation(s)
- K Palme
- Institute of Biology II, University of Freiburg, Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
50
|
Schurr U, Walter A, Rascher U. Functional dynamics of plant growth and photosynthesis--from steady-state to dynamics--from homogeneity to heterogeneity. PLANT, CELL & ENVIRONMENT 2006; 29:340-52. [PMID: 17080590 DOI: 10.1111/j.1365-3040.2005.01490.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants are much more dynamic than we usually expect them to be. This dynamic behaviour is of paramount importance for their performance under natural conditions, when resources are distributed heterogeneously in space and time. However, plants are not only the cue ball of their physical and chemical environment. Endogenous rhythms and networks controlling photosynthesis and growth buffer plant processes from external fluctuations. This review highlights recent evidence of the importance of dynamic temporal and spatial organization of photosynthesis and of growth in leaves and roots. These central processes for plant performance differ strongly in their dependence on environmental impact and endogenous properties, respectively. Growth involves a wealth of processes ranging from the supply of resources from external and internal sources to the growth processes themselves. In contrast, photosynthesis can only take place when light and CO2 are present and thus clearly requires 'input from the environment'. Nevertheless, growth and photosynthesis are connected to each other via mechanisms that are still not fully understood. Recent advances in imaging technology have provided new insights into the dynamics of plant-environment interactions. Such processes do not only play a crucial role in understanding stress response of plants under extreme environmental conditions. Dynamics of plants under modest growth conditions rise from endogenous mechanisms as well as exogenous impact too. It is thus an important task for future research to identify how dynamic external conditions interact with plant-internal signalling networks to optimize plant behaviour in real time and to understand how plants have adapted to characteristic spatial and temporal properties of the resources from their environment, on which they depend on.
Collapse
Affiliation(s)
- U Schurr
- ICG-III (Phytosphere), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|