1
|
Martinez-Sañudo I, Perotti MA, Carofano I, Santoiemma G, Marri L, Mazzon L. The biogeographic patterns of the olive fly and its primary symbiont Candidatus Erwinia dacicola across the distribution area of the olive tree. Sci Rep 2024; 14:22483. [PMID: 39341904 PMCID: PMC11438859 DOI: 10.1038/s41598-024-73055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The olive fly, Bactrocera oleae (Rossi, 1790), is the major insect pest of olives attacking both cultivated and wild olive. Bactrocera oleae carries a primary and vertically transmitted symbiont, the bacterium Candidatus Erwinia dacicola. As any primary symbiont, it plays an important role in the reproduction and lifespan of the fly. The genetic 16S rRNA diversity of the primary symbiont and the mitochondrial haplotype variation of the insect host were simultaneously examined in 54 olive fly populations. The aim was to unravel the biogeographic patterns of this economically relevant host-bacteria interaction across a wide distribution area. Three symbiont haplotypes were identified. The primary symbiont showed a lower haplotype diversity than that of its host, a characteristic indicative of a long-term interaction. A significant genetic and geographic association between host and primary symbiont was observed, with an East-West genetic differentiation pattern in the Mediterranean basin, coinciding with the historical genetic distribution of the olive tree. The study shows promise, informing and aiding the development of future tools for the control of the olive fly.
Collapse
Affiliation(s)
- Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, GB, Great Britain
| | - Ivana Carofano
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Laura Marri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
2
|
Raimondeau P, Ksouda S, Marande W, Fuchs AL, Gryta H, Theron A, Puyoou A, Dupin J, Cheptou PO, Vautrin S, Valière S, Manzi S, Baali-Cherif D, Chave J, Christin PA, Besnard G. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr Biol 2024; 34:1977-1986.e8. [PMID: 38626764 DOI: 10.1016/j.cub.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France; Yale Institute of Biospheric Studies, New Haven, CT 06520, USA
| | - Sayam Ksouda
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Anne-Laure Fuchs
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hervé Gryta
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anthony Theron
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Aurore Puyoou
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julia Dupin
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pierre-Olivier Cheptou
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, EPHE, IRD, 34293 Montpellier, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Sophie Manzi
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/ENSA, 16000 Alger, Algeria
| | - Jérôme Chave
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
3
|
Zunino L, Cubry P, Sarah G, Mournet P, El Bakkali A, Aqbouch L, Sidibé-Bocs S, Costes E, Khadari B. Genomic evidence of genuine wild versus admixed olive populations evolving in the same natural environments in western Mediterranean Basin. PLoS One 2024; 19:e0295043. [PMID: 38232071 DOI: 10.1371/journal.pone.0295043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Crop-to-wild gene flow is a mechanism process widely documented, both in plants and animals. This can have positive or negative impacts on the evolution of admixed populations in natural environments, yet the phenomenon is still misunderstood in long-lived woody species, contrary to short-lived crops. Wild olive Olea europaea L. occurs in the same eco-geographical range as domesticated olive, i.e. the Mediterranean Basin (MB). Moreover, it is an allogamous and anemophilous species whose seeds are disseminated by birds, i.e. factors that drive gene flow between crops and their wild relatives. Here we investigated the genetic structure of western MB wild olive populations in natural environments assuming a homogenous gene pool with limited impact of cultivated alleles, as previously suggested. We used a target sequencing method based on annotated genes from the Farga reference genome to analyze 27 western MB olive tree populations sampled in natural environments in France, Spain and Morocco. We also target sequenced cultivated olive tree accessions from the Worldwide Olive Germplasm Bank of Marrakech and Porquerolles and from an eastern MB wild olive tree population. We combined PCA, sNMF, pairwise FST and TreeMix and clearly identified genuine wild olive trees throughout their natural distribution range along a north-south gradient including, for the first time, in southern France. However, contrary to our assumption, we highlighted more admixed than genuine wild olive trees. Our results raise questions regarding the admixed population evolution pattern in this environment, which might be facilitated by crop-to-wild gene flow.
Collapse
Affiliation(s)
- Lison Zunino
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Philippe Cubry
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Gautier Sarah
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre Mournet
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Ahmed El Bakkali
- INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknes, Morocco
| | - Laila Aqbouch
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Stéphanie Sidibé-Bocs
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Evelyne Costes
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bouchaib Khadari
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Conservatoire Botanique National Méditerranéen (CBNMed), UMR AGAP Institut, Montpellier, France
| |
Collapse
|
4
|
Tourvas N, Ganopoulos I, Koubouris G, Kostelenos G, Manthos I, Bazakos C, Stournaras V, Molassiotis A, Aravanopoulos F. Wild and cultivated olive tree genetic diversity in Greece: a diverse resource in danger of erosion. Front Genet 2023; 14:1298565. [PMID: 38111682 PMCID: PMC10725918 DOI: 10.3389/fgene.2023.1298565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The genetic relationships between Greek wild olive tree populations and cultivars were investigated. A total of 219 wild genotypes and 67 cultivar genotypes were analyzed by employing 10 SSR markers. Data evidenced that the wild populations exhibited high levels of genetic diversity and exclusively host 40% of the total number of alleles detected. Inbreeding was observed within populations, probably as a consequence of their fragmented spatial distribution. The genetic differentiation between cultivars and wild individuals, as well as within wild populations, was low. Nevertheless, three gene pools of wild trees were detected, corresponding to the geographical areas of Northeastern Greece, Peloponnese-Crete and Epirus. Most cultivars clustered in a separate group, while the rest of them formed a heterogenous group with membership coefficients akin to the three wild olive clusters. Regarding the history of olive cultivation in Greece, bidirectional gene flow was detected between populations of Peloponnese-Crete and the gene pool that composes some of Greece's most important cultivars, such as "Koroneiki" and "Mastoidis", which is inferred as an indication of a minor domestication event in the area. A strategy for the protection of Greek-oriented olive genetic resources is proposed, along with suggestions for the utilization of the genetically diverse wild resources with regard to the introgression of traits of agronomical interest to cultivars.
Collapse
Affiliation(s)
- Nikolaos Tourvas
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thessaloniki-Thermi, Greece
| | - Georgios Koubouris
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, Greece
| | | | - Ioannis Manthos
- Department of Nut Trees, Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Neo Krikello-Lamia, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thessaloniki-Thermi, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Vasileios Stournaras
- Department of Olive and Horticultural Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Kalamata, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, Greece
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Mariotti R, Belaj A, de la Rosa R, Muleo R, Cirilli M, Forgione I, Valeri MC, Mousavi S. Genealogical tracing of Olea europaea species and pedigree relationships of var. europaea using chloroplast and nuclear markers. BMC PLANT BIOLOGY 2023; 23:452. [PMID: 37749509 PMCID: PMC10521521 DOI: 10.1186/s12870-023-04440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Olive is one of the most cultivated species in the Mediterranean Basin and beyond. Despite being extensively studied for its commercial relevance, the origin of cultivated olive and the history of its domestication remain open questions. Here, we present a genealogical and kinship relationships analysis by mean of chloroplast and nuclear markers of different genera, subgenus, species, subspecies, ecotypes, cultivated, ancient and wild types, which constitutes one of the most inclusive research to date on the diversity within Olea europaea species. A complete survey of the variability across the nuclear and plastid genomes of different genotypes was studied through single nucleotide polymorphisms, indels (insertions and deletions), and length variation. RESULTS Fifty-six different chlorotypes were identified among the Oleaceae family including Olea europaea, other species and genera. The chloroplast genome evolution, within Olea europaea subspecies, probably started from subsp. cuspidata, which likely represents the ancestor of all the other subspecies and therefore of wild types and cultivars. Our study allows us to hypothesize that, inside the subspecies europaea containing cultivars and the wild types, the ancestral selection from var. sylvestris occurred both in the eastern side of the Mediterranean and in the central-western part of Basin. Moreover, it was elucidated the origin of several cultivars, which depends on the introduction of eastern cultivars, belonging to the lineage E1, followed by crossing and replacement of the autochthonous olive germplasm of central-western Mediterranean Basin. In fact, our study highlighted that two main 'founders' gave the origin to more than 60% of analyzed olive cultivars. Other secondary founders, which strongly contributed to give origin to the actual olive cultivar diversity, were already detected. CONCLUSIONS The application of comparative genomics not only paves the way for a better understanding of the phylogenetic relationships within the Olea europaea species but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance and parentage inside olive cultivars, opening new scenarios for further research such as the association studies and breeding programs.
Collapse
Affiliation(s)
- Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, Perugia, 06128, Italy.
| | | | | | - Rosario Muleo
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, 01100, Italy
| | - Marco Cirilli
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milan, Italy
| | - Ivano Forgione
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, 01100, Italy
| | - Maria Cristina Valeri
- Institute of Biosciences and Bioresources, National Research Council, Perugia, 06128, Italy
| | - Soraya Mousavi
- Institute of Biosciences and Bioresources, National Research Council, Perugia, 06128, Italy.
| |
Collapse
|
6
|
Julca I, Vargas P, Gabaldón T. Phylogenomics of the Olea europaea complex using 15 whole genomes supports recurrent genetic admixture together with differentiation into seven subspecies. BMC Biol 2023; 21:85. [PMID: 37069619 PMCID: PMC10111821 DOI: 10.1186/s12915-023-01583-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The last taxonomic account of Olea recognises six subspecies within Olea europaea L., including the Mediterranean olive tree (subsp. europaea) and five other subspecies (laperrinei, guanchica, maroccana, cerasiformis, and cuspidata) distributed across the Old World, including Macaronesian islands. The evolutionary history of this monophyletic group (O. europaea complex) has revealed a reticulated scenario involving hybridization and polyploidization events, leading to the presence of a polyploid series associated with the subspecies. However, how the polyploids originated, and how the different subspecies contributed to the domestication of the cultivated olive are questions still debated. Tracing the recent evolution and genetic diversification of the species is key for the management and preservation of its genetic resources. To study the recent history of the O. europaea complex, we compared newly sequenced and available genomes for 27 individuals representing the six subspecies. RESULTS Our results show discordance between current subspecies distributions and phylogenomic patterns, which support intricate biogeographic patterns. The subspecies guanchica, restricted to the Canary Islands, is closely related to subsp. europaea, and shows a high genetic diversity. The subsp. laperrinei, restricted now to high mountains of the Sahara desert, and the Canarian subsp. guanchica contributed to the formation of the allotetraploid subsp. cerasiformis (Madeira islands) and the allohexaploid subsp. maroccana (western Sahara region). Our phylogenomic data support the recognition of one more taxon (subsp. ferruginea) for the Asian populations, which is clearly segregated from the African subsp. cuspidata. CONCLUSIONS In sum, the O. europaea complex underwent several processes of hybridization, polyploidy, and geographical isolation resulting in seven independent lineages with certain morphological traits recognised into subspecies.
Collapse
Affiliation(s)
- Irene Julca
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid, Calle Claudio Moyano 1, 28014, Madrid, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Barazani O, Dag A, Dunseth Z. The history of olive cultivation in the southern Levant. FRONTIERS IN PLANT SCIENCE 2023; 14:1131557. [PMID: 36909452 PMCID: PMC9996078 DOI: 10.3389/fpls.2023.1131557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important crops across the Mediterranean, particularly the southern Levant. Its regional economic importance dates at least to the Early Bronze Age (~3600 BCE) and its cultivation contributed significantly to the culture and heritage of ancient civilizations in the region. In the southern Levant, pollen, pits and wood remains of wild olives (O. europaea subsp. europaea var. sylvestris) has been found in Middle Pleistocene sediments dating to approximately 780 kya, and are present in numerous palynological sequences throughout the Pleistocene and into the Holocene. Archeological evidence indicates the olive oil production from at least the Pottery Neolithic to Chalcolithic transition (~7600-7000 BP), and clear evidence for cultivation by, 7000 BP. It is hypothesized that olive cultivation began through the selection of local genotypes of the wild var. sylvestris. Local populations of naturally growing trees today have thus been considered wild relatives of the olive. However, millennia of cultivation raises questions about whether genuine populations of var. sylvestris remain in the region. Ancient olive landraces might thus represent an ancient genetic stock closer to the ancestor gene pool. This review summarizes the evidence supporting the theory that olives were first cultivated in the southern Levant and reviews our genetic work characterizing local ancient cultivars. The significance and importance of old cultivars and wild populations are discussed, given the immediate need to adapt agricultural practices and crops to environmental degradation and global climate change.
Collapse
Affiliation(s)
- Oz Barazani
- Agricultural Research Organization, Institute of Plant Sciences, Department of Vegetables and Field Crops, Rishon LeZion, Israel
| | - Arnon Dag
- Agricultural Research Organization, Institute of Plant Sciences, Department of Fruit Tree Sciences, Gilat Research Center, Gilat, Israel
| | - Zachary Dunseth
- Joukowsky Institute for Archaeology and the Ancient World, Brown University, Providence, RI, United States
| |
Collapse
|
8
|
The Status of Genetic Resources and Olive Breeding in Tunisia. PLANTS 2022; 11:plants11131759. [PMID: 35807711 PMCID: PMC9268818 DOI: 10.3390/plants11131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022]
Abstract
The olive tree, an iconic symbol of the Mediterranean basin, is the object of growing international interest in the production of olive oil for the world food market. In Tunisia, which is the fourth-largest producer of olive oil in the world, the production of olives and olive oil is of great socio-economic importance. Cultivation is widespread from north to south, but it is carried out using traditional techniques that results in extremely irregular production levels. To maintain their competitiveness on the international market, Tunisian producers must improve the quality of the oil through breeding plans that enhance the rich genetic heritage that is still not adequately exploited. The objective of this review is to present the state of olive breeding in Tunisia, illustrating the opportunities available for a better use of the rich Tunisian genetic heritage, the challenges it must face, and the need to multiply the efforts for sustainability, even in the light of the challenges posed by climate changes.
Collapse
|
9
|
Fanelli V, Mascio I, Falek W, Miazzi MM, Montemurro C. Current Status of Biodiversity Assessment and Conservation of Wild Olive (Olea europaea L. subsp. europaea var. sylvestris). PLANTS 2022; 11:plants11040480. [PMID: 35214813 PMCID: PMC8877956 DOI: 10.3390/plants11040480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
Abstract
Oleaster (Olea europaea L. subsp. europaea var. sylvestris) is the ancestor of cultivated olive (Olea europaea L. subsp. europaea var. europaea) and it is spread through the whole Mediterranean Basin, showing an overlapping distribution with cultivated olive trees. Climate change and new emerging diseases are expected to severely affect the cultivations of olive in the future. Oleaster presents a higher genetic variability compared to the cultivated olive and some wild trees were found adapted to particularly harsh conditions; therefore, the role of oleaster in the future of olive cultivation may be crucial. Despite the great potential, only recently the need to deeply characterize and adequately preserve the wild olive resources drew the attention of researchers. In this review, we summarized the most important morphological and genetic studies performed on oleaster trees collected in different countries of the Mediterranean Basin. Moreover, we reviewed the strategies introduced so far to preserve and manage the oleaster germplasm collections, giving a future perspective on their role in facing the future agricultural challenges posed by climatic changes and new emerging diseases.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (I.M.); (C.M.)
- Correspondence: (V.F.); (M.M.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (I.M.); (C.M.)
| | - Wahiba Falek
- Ecole Nationale Superieure de Biotechnologie, Constantine 251000, Algeria;
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (I.M.); (C.M.)
- Correspondence: (V.F.); (M.M.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (I.M.); (C.M.)
- Spin Off Sinagri s.r.l., University of Bari Aldo Moro, 70125 Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), 70125 Bari, Italy
| |
Collapse
|
10
|
Genome-wide exploration of oil biosynthesis genes in cultivated olive tree varieties (Olea europaea): insights into regulation of oil biosynthesis. Funct Integr Genomics 2022; 22:171-178. [PMID: 34997394 DOI: 10.1007/s10142-021-00824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Genome-wide oil biosynthesis was explored by de novo sequencing two cultivated olive tree (Olea europaea) varieties (cv. Ayvalik and Picual). This is the first report of the former variety sequencing. As outgroups, raw reads of cv. Leccino and scaffold-level assembly of cv. Farga were also retrieved. Each of these four cultivars was chromosome-scale assembled into 23 pseudochromosomes, with 1.31 Gbp (Farga), 0.93 Gbp (Ayvalik), 0.7 Gbp (Picual), and 0.54 Gbp (Leccino) in size. Ab initio gene finding was performed on these assemblies, using wild olive tree (oleaster)-trained parameters. High numbers of gene models were predicted and anchored to the pseudochromosomes: 69,028 (Ayvalik), 55,073 (Picual), 63,785 (Farga), and 40,449 (Leccino). Using previously reported oil biosynthesis genes from wild olive tree genome project, the following homologous sequences were identified: 1,355 (Ayvalik), 1,269 (Farga), 812 (Leccino), and 774 (Picual). Of these, 358 sequences were commonly shared by all cultivars. Besides, some sequences were cultivar unique: Ayvalik (126), Farga (118), Leccino (46), and Picual (52). These putative sequences were assigned to various GO terms, ranging from lipid metabolism to stress tolerance, from signal transactions to development, and to many others, implicating that oil biosynthesis is synergistically regulated with involvement of various other pathways.
Collapse
|
11
|
Elucidation of the Origin of the Monumental Olive Tree of Vouves in Crete, Greece. PLANTS 2021; 10:plants10112374. [PMID: 34834737 PMCID: PMC8620074 DOI: 10.3390/plants10112374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The olive tree of Vouves in Crete, is considered the oldest producing olive tree in the world with an estimated age exceeding 4000 years. In the present study, we sequenced two samples (from the bottom and the top of the tree) to elucidate the genetic relation of this ancient tree with other olive cvs as well as to gain some insights about its origin. Our results showed that both samples have different genetic origins, proving that this ancient tree has been grafted at least one time. On the basis of whole genome sequences the sample from the top of the Vouves tree showed relation of the same order than half-siblings to one accession corresponding to the present-day Greek cv ‘Mastoidis’. Nevertheless, in the framework of a microsatellite analysis it was found to cluster with the ‘Mastoidis’ samples. The Vouves rootstock (bottom sample) showed a clear grouping with the oleaster samples in a similar way to that of ‘Megaritiki’ Greek cv although it does not show any signal of introgression from them. The genomic analyses did not show a strong relation of this sample with the present-day Greek cvs analyzed in this study so it cannot be proved that it has been used as a source for cultivated olive tree populations represented by available genome sequences. Nevertheless, on the basis of microsatellite analyses, the Vouves rootstock showed affinity with two present-day Greek cvs, one “ancient” rootstock from continental Greece as well as monumental trees from Cyprus. The analysis of the impact of the variants in the gene space revealed an enrichment of genes associated to pathways related with carbohydrate and amino acid metabolism. This is in agreement with what has been found before in the sweep regions related with the process of domestication. The absence of oleaster gene flow, its old age and its variant profile, similar to other cultivated populations, makes it an excellent reference point for domestication studies.
Collapse
|
12
|
How to Choose a Good Marker to Analyze the Olive Germplasm ( Olea europaea L.) and Derived Products. Genes (Basel) 2021; 12:genes12101474. [PMID: 34680869 PMCID: PMC8535536 DOI: 10.3390/genes12101474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
The olive tree (Olea europaea L.) is one of the most cultivated crops in the Mediterranean basin. Its economic importance is mainly due to the intense production of table olives and oil. Cultivated varieties are characterized by high morphological and genetic variability and present a large number of synonyms and homonyms. This necessitates the introduction of a rapid and accurate system for varietal identification. In the past, the recognition of olive cultivars was based solely on analysis of the morphological traits, however, these are highly influenced by environmental conditions. Therefore, over the years, several methods based on DNA analysis were developed, allowing a more accurate and reliable varietal identification. This review aims to investigate the evolving history of olive tree characterization approaches, starting from the earlier morphological methods to the latest technologies based on molecular markers, focusing on the main applications of each approach. Furthermore, we discuss the impact of the advent of next generation sequencing and the recent sequencing of the olive genome on the strategies used for the development of new molecular markers.
Collapse
|
13
|
Yadav S, Carvalho J, Trujillo I, Prado M. Microsatellite Markers in Olives ( Olea europaea L.): Utility in the Cataloging of Germplasm, Food Authenticity and Traceability Studies. Foods 2021; 10:foods10081907. [PMID: 34441688 PMCID: PMC8394707 DOI: 10.3390/foods10081907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
The olive fruit, a symbol of Mediterranean diets, is a rich source of antioxidants and oleic acid (55–83%). Olive genetic resources, including cultivated olives (cultivars), wild olives as well as related subspecies, are distributed widely across the Mediterranean region and other countries. Certain cultivars have a high commercial demand and economical value due to the differentiating organoleptic characteristics. This might result in economically motivated fraudulent practices and adulteration. Hence, tools to ensure the authenticity of constituent olive cultivars are crucial, and this can be achieved accurately through DNA-based methods. The present review outlines the applications of microsatellite markers, one of the most extensively used types of molecular markers in olive species, particularly referring to the use of these DNA-based markers in cataloging the vast olive germplasm, leading to identification and authentication of the cultivars. Emphasis has been given on the need to adopt a uniform platform where global molecular information pertaining to the details of available markers, cultivar-specific genotyping profiles (their synonyms or homonyms) and the comparative profiles of oil and reference leaf samples is accessible to researchers. The challenges of working with microsatellite markers and efforts underway, mainly advancements in genotyping methods which can be effectively incorporated in olive oil varietal testing, are also provided. Such efforts will pave the way for the development of more robust microsatellite marker-based olive agri-food authentication platforms.
Collapse
Affiliation(s)
- Shambhavi Yadav
- Genetics and Tree Improvement Division, Forest Research Institute, P.O. New Forest, Dehradun 248001, India
- Correspondence: (S.Y.); (I.T.)
| | - Joana Carvalho
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (J.C.); (M.P.)
- Department of Analytical Chemistry, Nutrition and Food Science, Campus Vida, College of Pharmacy/School of Veterinary Sciences, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Isabel Trujillo
- Excellence Unit of Maria de Maeztu, Department of Agronomy, Rabanales Campus, International Campus of Excellence on Agrofood (ceiA3), University of Córdoba, 14014 Córdoba, Spain
- Correspondence: (S.Y.); (I.T.)
| | - Marta Prado
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (J.C.); (M.P.)
| |
Collapse
|
14
|
Besnard G, Gorrilliot O, Raimondeau P, Génot B, El Bakkali A, Anthelme F, Baali-Cherif D. Contrasting Genetic Footprints among Saharan Olive Populations: Potential Causes and Conservation Implications. PLANTS 2021; 10:plants10061207. [PMID: 34198539 PMCID: PMC8231981 DOI: 10.3390/plants10061207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
The Laperrine's olive is endemic to the Saharan Mountains. Adapted to arid environments, it may constitute a valuable genetic resource to improve water-stress tolerance in the cultivated olive. However, limited natural regeneration coupled with human pressures make it locally endangered in Central Sahara. Understanding past population dynamics is thus crucial to define management strategies. Nucleotide sequence diversity was first investigated on five nuclear genes and compared to the Mediterranean and African olives. These data confirm that the Laperrine's olive has a strong affinity with the Mediterranean olive, but it shows lower nucleotide diversity than other continental taxa. To investigate gene flows mediated by seeds and pollen, polymorphisms from nuclear and plastid microsatellites from 383 individuals from four Saharan massifs were analyzed. A higher genetic diversity in Ahaggar (Hoggar, Algeria) suggests that this population has maintained over the long term a larger number of individuals than other massifs. High-to-moderate genetic differentiation between massifs confirms the role of desert barriers in limiting gene flow. Yet contrasting patterns of isolation by distance were observed within massifs, and also between plastid and nuclear markers, stressing the role of local factors (e.g., habitat fragmentation, historical range shift) in seed and pollen dispersal. Implications of these results in the management of the Laperrine's olive genetic resources are discussed.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, CEDEX 9, 31062 Toulouse, France; (O.G.); (P.R.); (B.G.)
- Correspondence:
| | - Océane Gorrilliot
- CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, CEDEX 9, 31062 Toulouse, France; (O.G.); (P.R.); (B.G.)
| | - Pauline Raimondeau
- CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, CEDEX 9, 31062 Toulouse, France; (O.G.); (P.R.); (B.G.)
| | - Benoit Génot
- CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, CEDEX 9, 31062 Toulouse, France; (O.G.); (P.R.); (B.G.)
| | | | - Fabien Anthelme
- AMAP, University Montpellier, IRD, CIRAD, CNRS, INRA, 34398 Montpellier, France;
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/INA, BP44, Alger 16000, Algeria;
| |
Collapse
|
15
|
Atrouz K, Bousba R, Marra FP, Marchese A, Conforti FL, Perrone B, Harkat H, Salimonti A, Zelasco S. Algerian Olive Germplasm and Its Relationships with the Central-Western Mediterranean Varieties Contributes to Clarify Cultivated Olive Diversification. PLANTS (BASEL, SWITZERLAND) 2021; 10:678. [PMID: 33916098 PMCID: PMC8066573 DOI: 10.3390/plants10040678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022]
Abstract
Olive tree with its main final product, olive oil, is an important element of Mediterranean history, considered the emblematic fruit of a civilization. Despite its wide diffusion and economic and cultural importance, its evolutionary and phylogenetic history is still difficult to clarify. As part of the Mediterranean basin, Algeria was indicated as a secondary diversification center. However, genetic characterization studies from Maghreb area, are currently underrepresented. In this context, we characterized 119 endemic Algerian accessions by using 12 microsatellite markers with the main goal to evaluate the genetic diversity and population structure. In order to provide new insights about the history of olive diversification events in the Central-Western Mediterranean basin, we included and analyzed a sample of 103 Italian accessions from Sicily and, a set of molecular profiles of cultivars from the Central-Western Mediterranean area. The phylogenetic investigation let us to evaluate genetic relationships among Central-Mediterranean basin olive germplasm, highlight new synonymy cases to support the importance of vegetative propagation in the cultivated olive diffusion and consolidate the hypothesis of more recent admixture events occurrence. This work provided new information about Algerian germplasm biodiversity and contributed to clarify olive diversification process.
Collapse
Affiliation(s)
- Kamel Atrouz
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (K.A.); (A.S.)
- Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, Frères, Mentouri University, Constantine 25000, Algeria; (R.B.); (H.H.)
| | - Ratiba Bousba
- Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, Frères, Mentouri University, Constantine 25000, Algeria; (R.B.); (H.H.)
| | | | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.L.C.); (B.P.)
| | - Benedetta Perrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.L.C.); (B.P.)
| | - Hamza Harkat
- Department of Biology and Plant Ecology, Faculty of Natural Sciences and Life, Frères, Mentouri University, Constantine 25000, Algeria; (R.B.); (H.H.)
| | - Amelia Salimonti
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (K.A.); (A.S.)
| | - Samanta Zelasco
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (K.A.); (A.S.)
| |
Collapse
|
16
|
Applications of Microsatellite Markers for the Characterization of Olive Genetic Resources of Tunisia. Genes (Basel) 2021; 12:genes12020286. [PMID: 33670559 PMCID: PMC7922852 DOI: 10.3390/genes12020286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Among the countries of the Mediterranean Basin, Tunisia is located at the crossroad for the immigration of several civilizations over the last two millennia, becoming a strategic place for gene flow, and a secondary center of diversity for olive species. Olive is one of the principal crop species in Tunisia and now it strongly characterizes the rural landscape of the country. In recent years, collecting missions on farm and in situ were carried out by various institutes, with special emphasis given to ex situ collections serving as a reference for the identification of olive germplasm. Simple Sequence Repeats (SSRs) represent the easiest and cheapest markers for olive genetic fingerprinting and have been the tool of choice for studying the genetic diversity of this crop in Tunisia, to resolve cases of homonymy and synonymy among the commercialized varieties, to identify rare cultivars, to improve knowledge about the genetic variability of this crop, to identify a hot spot of olive biodiversity in the Tunisian oasis of Degache, and to enrich the national reference collection of olive varieties. The present review describes the state of the art of the genetic characterization of the Tunisian olive germplasm and illustrate the progress obtained through the SSR markers, in individuating interesting genotypes that could be used for facing incoming problems determined by climate changes.
Collapse
|
17
|
Sales H, Šatović Z, Alves ML, Fevereiro P, Nunes J, Vaz Patto MC. Accessing Ancestral Origin and Diversity Evolution by Net Divergence of an Ongoing Domestication Mediterranean Olive Tree Variety. FRONTIERS IN PLANT SCIENCE 2021; 12:688214. [PMID: 34249057 PMCID: PMC8265600 DOI: 10.3389/fpls.2021.688214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 05/17/2023]
Abstract
Olea europaea 'Galega vulgar' variety is a blend of West and Central Mediterranean germplasm with cultivated-wild admixture characteristics. 'Galega vulgar' is known for its high rusticity and superior-quality olive oil, being the main Portuguese variety with high impact for bioeconomy. Nevertheless, it has been replaced by higher-yielding and more adapted to intensive production foreign varieties. To clarify the potential ancestral origin, genetic diversity evolution, and existing genetic relationships within the national heritage of 'Galega vulgar', 595 trees, belonging to ancient and centenary age groups and prospected among ten traditional production regions, were characterized using 14 SSR markers after variety validation by endocarp measurements. Ninety-five distinguishable genets were identified, revealing the presence of a reasonable amount of intra-genetic and morphological variability. A minimum spanning tree, depicting the complete genealogy of all identified genets, represented the 'Galega vulgar' intra-varietal diversity, with 94% of the trees showing only a two-allele difference from the most frequent genet (C001). Strong correlations between the number of differentiating alleles from C001, the clonal size, and their net divergence suggested an ancestral monoclonal origin of the 'Galega vulgar', with the most frequent genet identified as the most likely origin of all the genets and phenotypic diversification occurring through somatic mutations. Genetic erosion was detected through the loss of some allele combinations across time. This work highlights the need to recover the lost diversity in this traditional olive variety by including ancient private genets (associated with potential adaptation traits) in future breeding programs and investing in the protection of these valuable resources in situ by safeguarding the defined region of origin and dispersion of 'Galega vulgar'. Furthermore, this approach proved useful on a highly diverse olive variety and thus applicable to other diverse varieties due either to their intermediate nature between different gene pools or to the presence of a mixture of cultivated and wild traits (as is the case of 'Galega vulgar').
Collapse
Affiliation(s)
- Hélia Sales
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Centre Bio R&D Unit, Association BLC3 – Technology and Innovation Campus, Lagares, Oliveira do Hospital, Portugal
- *Correspondence: Hélia Sales
| | - Zlatko Šatović
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| | - Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro Fevereiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- InnovPlantProtect - Collaborative Laboratory, Estrada de Gil Vaz, Elvas, Portugal
| | - João Nunes
- Centre Bio R&D Unit, Association BLC3 – Technology and Innovation Campus, Lagares, Oliveira do Hospital, Portugal
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Julca I, Marcet-Houben M, Cruz F, Gómez-Garrido J, Gaut BS, Díez CM, Gut IG, Alioto TS, Vargas P, Gabaldón T. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol 2020; 18:148. [PMID: 33100219 PMCID: PMC7586694 DOI: 10.1186/s12915-020-00881-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/27/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Olive tree (Olea europaea L. subsp. europaea, Oleaceae) has been the most emblematic perennial crop for Mediterranean countries since its domestication around 6000 years ago in the Levant. Two taxonomic varieties are currently recognized: cultivated (var. europaea) and wild (var. sylvestris) trees. However, it remains unclear whether olive cultivars derive from a single initial domestication event followed by secondary diversification, or whether cultivated lineages are the result of more than a single, independent primary domestication event. To shed light into the recent evolution and domestication of the olive tree, here we analyze a group of newly sequenced and available genomes using a phylogenomics and population genomics framework. RESULTS We improved the assembly and annotation of the reference genome, newly sequenced the genomes of twelve individuals: ten var. europaea, one var. sylvestris, and one outgroup taxon (subsp. cuspidata)-and assembled a dataset comprising whole genome data from 46 var. europaea and 10 var. sylvestris. Phylogenomic and population structure analyses support a continuous process of olive tree domestication, involving a major domestication event, followed by recurrent independent genetic admixture events with wild populations across the Mediterranean Basin. Cultivated olives exhibit only slightly lower levels of genetic diversity than wild forms, which can be partially explained by the occurrence of a mild population bottleneck 3000-14,000 years ago during the primary domestication period, followed by recurrent introgression from wild populations. Genes associated with stress response and developmental processes were positively selected in cultivars, but we did not find evidence that genes involved in fruit size or oil content were under positive selection. This suggests that complex selective processes other than directional selection of a few genes are in place. CONCLUSIONS Altogether, our results suggest that a primary domestication area in the eastern Mediterranean basin was followed by numerous secondary events across most countries of southern Europe and northern Africa, often involving genetic admixture with genetically rich wild populations, particularly from the western Mediterranean Basin.
Collapse
Affiliation(s)
- Irene Julca
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Present address: Barcelona Supercomputing Centre (BSC-CNS), and Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Brandon S Gaut
- Department Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Ivo G Gut
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Tyler S Alioto
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Pablo Vargas
- Royal Botanical Garden of Madrid. Consejo Superior de Investigaciones Científicas (CSIC), 28014, Madrid, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Present address: Barcelona Supercomputing Centre (BSC-CNS), and Institute for Research in Biomedicine (IRB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
19
|
Abstract
Tunisia is one of the world’s largest producers of olive oil, and it preserves pools of olive genetic diversity that are still unexplored. A recent prospection and collection program of the National Gene Bank of Tunisia (NGBT) focused on the vast oasis of Degache, in the south west part of Tunisia, where 47 samples were collected and genetically characterized through simple sequence repeat (SSR) markers. Identification and authentication of genotypes were obtained through comparison with reference cultivars belonging to the Olive National Collection of Tunisia (IOC) and with cultivars from Algeria, Italia, Syria and Lebanon. Degache olive genotypes showed large genetic variability, a significant diversity from the reference germplasm, and a clear differentiation from modern varieties. The population structure analysis identified four gene pools characterizing genotypes from different area of origin. Two gene pools appear to be more represented in germplasm from southern Tunisia, where environmental conditions at critical plant development phases, are harsher. This suggests that this germplasm might present traits of adaptation useful for breeding to improve resilience to abiotic stresses. Our results will support ex situ and in situ conservation activities of Tunisian olive germplasm pursued by the National Gene Bank of Tunisia.
Collapse
|
20
|
Mariotti R, Belaj A, De La Rosa R, Leòn L, Brizioli F, Baldoni L, Mousavi S. EST-SNP Study of Olea europaea L. Uncovers Functional Polymorphisms between Cultivated and Wild Olives. Genes (Basel) 2020; 11:E916. [PMID: 32785094 PMCID: PMC7465833 DOI: 10.3390/genes11080916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The species Olea europaea includes cultivated varieties (subsp. europaea var. europaea), wild plants (subsp. europaea var. sylvestris), and five other subspecies spread over almost all continents. Single nucleotide polymorphisms in the expressed sequence tag able to underline intra-species differentiation are not yet identified, beyond a few plastidial markers. METHODS In the present work, more than 1000 transcript-specific SNP markers obtained by the genotyping of 260 individuals were studied. These genotypes included cultivated, oleasters, and samples of subspecies guanchica, and were analyzed in silico, in order to identify polymorphisms on key genes distinguishing different Olea europaea forms. RESULTS Phylogeny inference and principal coordinate analysis allowed to detect two distinct clusters, clearly separating wilds and guanchica samples from cultivated olives, meanwhile the structure analysis made possible to differentiate these three groups. Sequences carrying the polymorphisms that distinguished wild and cultivated olives were analyzed and annotated, allowing to identify 124 candidate genes that have a functional role in flower development, stress response, or involvement in important metabolic pathways. Signatures of selection that occurred during olive domestication, were detected and reported. CONCLUSION This deep EST-SNP analysis provided important information on the genetic and genomic diversity of the olive complex, opening new opportunities to detect gene polymorphisms with potential functional and evolutionary roles, and to apply them in genomics-assisted breeding, highlighting the importance of olive germplasm conservation.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Angjelina Belaj
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Raul De La Rosa
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Lorenzo Leòn
- IFAPA—Centro Alameda del Obispo, Avda Menendez Pidal, s/n, E-14004 Cordoba, Spain; (A.B.); (R.D.L.R.); (L.L.)
| | - Federico Brizioli
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Luciana Baldoni
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| | - Soraya Mousavi
- CNR—Institute of Biosciences and Bioresources, Via Madonna Alta 130, 06128 Perugia, Italy; (R.M.); (F.B.); (S.M.)
| |
Collapse
|
21
|
Díaz-Rueda P, Franco-Navarro JD, Messora R, Espartero J, Rivero-Núñez CM, Aleza P, Capote N, Cantos M, García-Fernández JL, de Cires A, Belaj A, León L, Besnard G, Colmenero-Flores JM. SILVOLIVE, a Germplasm Collection of Wild Subspecies With High Genetic Variability as a Source of Rootstocks and Resistance Genes for Olive Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:629. [PMID: 32547577 PMCID: PMC7270354 DOI: 10.3389/fpls.2020.00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Wild subspecies of Olea europaea constitute a source of genetic variability with huge potential for olive breeding to face global changes in Mediterranean-climate regions. We intend to identify wild olive genotypes with optimal adaptability to different environmental conditions to serve as a source of rootstocks and resistance genes for olive breeding. The SILVOLIVE collection includes 146 wild genotypes representative of the six O. europaea subspecies and early-generations hybrids. These genotypes came either from olive germplasm collections or from direct prospection in Spain, continental Africa and the Macaronesian archipelago. The collection was genotyped with plastid and nuclear markers, confirming the origin of the genotypes and their high genetic variability. Morphological and architectural parameters were quantified in 103 genotypes allowing the identification of three major groups of correlative traits including vigor, branching habits and the belowground-to-aboveground ratio. The occurrence of strong phenotypic variability in these traits within the germplasm collection has been shown. Furthermore, wild olive relatives are of great significance to be used as rootstocks for olive cultivation. Thus, as a proof of concept, different wild genotypes used as rootstocks were shown to regulate vigor parameters of the grafted cultivar "Picual" scion, which could improve the productivity of high-density hedgerow orchards.
Collapse
Affiliation(s)
- Pablo Díaz-Rueda
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| | - Juan D. Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| | - Rita Messora
- Plant Physiology Laboratory, Dipartimento Sci Vita, Univ Modena & Reggio Emilia, Modena, Italy
| | - Joaquín Espartero
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| | - Carlos M. Rivero-Núñez
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Nieves Capote
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) Centro Las Torres, Seville, Spain
| | - Manuel Cantos
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| | - Jose L. García-Fernández
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| | - Alfonso de Cires
- Departamento de Biología Vegetal y Ecología, Fac Biología, Univ de Sevilla, Seville, Spain
| | - Angjelina Belaj
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) Centro Alameda del Obispo, Córdoba, Spain
| | - Lorenzo León
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) Centro Alameda del Obispo, Córdoba, Spain
| | - Guillaume Besnard
- CNRS-UPS-IRD, EDB, UMR 5174, Université Paul Sabatier, Toulouse, France
| | - Jose M. Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Seville, Spain
| |
Collapse
|
22
|
Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krška B, Remay A, D’Onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon JM. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species' Center of Origin. FRONTIERS IN PLANT SCIENCE 2020; 11:638. [PMID: 32523597 PMCID: PMC7261834 DOI: 10.3389/fpls.2020.00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The characterization of the largest worldwide representative data set of apricot (Prunus armeniaca L.) germplasm was performed using molecular markers. Genetic diversity and structure of the cultivated apricot genetic resources were analyzed to decipher the history of diffusion of this species around the world. A common set of 25 microsatellite markers was used for genotyping a total of 890 apricot accessions in different collections from the center of origin to the more recent regions of apricot culture. Using a Bayesian model-based clustering approach, the apricot genotypes can be structured into five different genetic clusters (FST = 0.174), correlated with the geographical regions of origin of the accessions. Accessions from China and Central Asia were clustered together and exhibited the highest levels of diversity, confirming an origin in this region. A loss of genetic diversity was observed from the center of origin to both western and eastern zones of recent apricot culture. Altogether, our results revealed that apricot spread from China and Central Asia, defined as the center of origin, following three major diffusion routes with a decreasing gradient of genetic variation in each geographical group. The identification of specific alleles outside the center of origin confirmed the existence of different secondary apricot diversification centers. The present work provides more understanding of the worldwide history of apricot species diffusion as well as the field of conservation of the available genetic resources. Data have been used to define an apricot core collection based on molecular marker diversity which will be useful for further identification of genomic regions associated with commercially important horticultural traits through genome-wide association studies to sustain apricot breeding programs.
Collapse
Affiliation(s)
- Hedia Bourguiba
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ivan Scotti
- INRA Centre PACA, UR 629 URFM, Avignon, France
| | | | - Tetyana Zhebentyayeva
- Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Craig Ledbetter
- San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests & Genetics, Parlier, CA, United States
| | - Boris Krška
- Department of Fruit Growing, Faculty of Horticulture, Mendel University, Lednice, Czechia
| | | | - Claudio D’Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Pisa, Italy
| | - Hiroyuki Iketani
- National Agriculture and Food Research Organization (NARO) Institute of Fruit Tree Science, Tsukuba, Japan
| | - Danilo Christen
- Département Fédéral de L’économie DFE, Station de Recherche Agroscope Changins-Wädenswil ACW, Centre de Recherche Conthey, Conthey, Switzerland
| | - Lamia Krichen
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Neila Trifi-Farah
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou City, China
| | - Guillaume Roch
- INRA Centre PACA, UR 1052 GAFL, Montfavet, France
- CEP Innovation, Lyon, France
| | | |
Collapse
|
23
|
Recovery, Assessment, and Molecular Characterization of Minor Olive Genotypes in Tunisia. PLANTS 2020; 9:plants9030382. [PMID: 32244853 PMCID: PMC7154912 DOI: 10.3390/plants9030382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022]
Abstract
Olive is one of the oldest cultivated species in the Mediterranean Basin, including Tunisia, where it has a wide diversity, with more than 200 cultivars, of both wild and feral forms. Many minor cultivars are still present in marginal areas of Tunisia, where they are maintained by farmers in small local groves, but they are poorly characterized and evaluated. In order to recover this neglected germplasm, surveys were conducted in different areas, and 31 genotypes were collected, molecularly characterized with 12 nuclear microsatellite (simple sequence repeat (SSR)) markers, and compared with 26 reference cultivars present in the Tunisian National Olive collection. The analysis revealed an overall high genetic diversity of this olive's germplasm, but also discovered the presence of synonymies and homonymies among the commercialized varieties. The structure analysis showed the presence of different gene pools in the analyzed germplasm. In particular, the marginal germplasm from Ras Jbal and Azmour is characterized by gene pools not present in commercial (Nurseries) varieties, pointing out the very narrow genetic base of the commercialized olive material in Tunisia, and the need to broaden it to avoid the risk of genetic erosion of this species in this country.
Collapse
|
24
|
Haddad B, Gristina AS, Mercati F, Saadi AE, Aiter N, Martorana A, Sharaf A, Carimi F. Molecular Analysis of the Official Algerian Olive Collection Highlighted a Hotspot of Biodiversity in the Central Mediterranean Basin. Genes (Basel) 2020; 11:E303. [PMID: 32183122 PMCID: PMC7140851 DOI: 10.3390/genes11030303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic diversity and population structure studies of local olive germplasm are important to safeguard biodiversity, for genetic resources management and to improve the knowledge on the distribution and evolution patterns of this species. In the present study Algerian olive germplasm was characterized using 16 nuclear (nuSSR) and six chloroplast (cpSSR) microsatellites. Algerian varieties, collected from the National Olive Germplasm Repository (ITAFV), 10 of which had never been genotyped before, were analyzed. Our results highlighted the presence of an exclusive genetic core represented by 13 cultivars located in a mountainous area in the North-East of Algeria, named Little Kabylie. Comparison with published datasets, representative of the Mediterranean genetic background, revealed that the most Algerian varieties showed affinity with Central and Eastern Mediterranean cultivars. Interestingly, cpSSR phylogenetic analysis supported results from nuSSRs, highlighting similarities between Algerian germplasm and wild olives from Greece, Italy, Spain and Morocco. This study sheds light on the genetic relationship of Algerian and Mediterranean olive germplasm suggesting possible events of secondary domestication and/or crossing and hybridization across the Mediterranean area. Our findings revealed a distinctive genetic background for cultivars from Little Kabylie and support the increasing awareness that North Africa represents a hotspot of diversity for crop varieties and crop wild relative species.
Collapse
Affiliation(s)
- Benalia Haddad
- Département de Productions Végétales, Laboratoire Amélioration Intégrative Des Productions Végétales (AIPV, C2711100), Ecole Nationale Supérieure Agronomique (ENSA), Hassan Badi, El Harrach, Algiers 16000, Algeria;
| | - Alessandro Silvestre Gristina
- Institute of Biosciences and BioResources, National Research Council (CNR), Research Division of Palermo, Corso Calatafimi 414, 90129 Palermo, Italy; (F.M.); (A.M.); (A.S.); (F.C.)
| | - Francesco Mercati
- Institute of Biosciences and BioResources, National Research Council (CNR), Research Division of Palermo, Corso Calatafimi 414, 90129 Palermo, Italy; (F.M.); (A.M.); (A.S.); (F.C.)
| | - Abd Elkader Saadi
- University Hassiba Benbouali, Faculty of Science of Nature and Life, Plant Biotechnology Laboratory, BP 151, Chlef 02000, Algeria;
| | - Nassima Aiter
- Université Saad Dahleb-Blida 1, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biotechnologie des Productions Végétales, Département de Biotechnologies, Blida 09000, Algeria
- Laboratoire de culture in vitro, Département central, Institut Technique de l’Arboriculture Fruitière et de la Vigne, ITAFV, Algiers 16000, Algeria
| | - Adriana Martorana
- Institute of Biosciences and BioResources, National Research Council (CNR), Research Division of Palermo, Corso Calatafimi 414, 90129 Palermo, Italy; (F.M.); (A.M.); (A.S.); (F.C.)
| | - Abdoallah Sharaf
- Institute of Biosciences and BioResources, National Research Council (CNR), Research Division of Palermo, Corso Calatafimi 414, 90129 Palermo, Italy; (F.M.); (A.M.); (A.S.); (F.C.)
- Institute of Molecular Biology of Plants, Biology Centre, CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Francesco Carimi
- Institute of Biosciences and BioResources, National Research Council (CNR), Research Division of Palermo, Corso Calatafimi 414, 90129 Palermo, Italy; (F.M.); (A.M.); (A.S.); (F.C.)
| |
Collapse
|
25
|
Jiménez-Ruiz J, Ramírez-Tejero JA, Fernández-Pozo N, Leyva-Pérez MDLO, Yan H, Rosa RDL, Belaj A, Montes E, Rodríguez-Ariza MO, Navarro F, Barroso JB, Beuzón CR, Valpuesta V, Bombarely A, Luque F. Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.). THE PLANT GENOME 2020; 13:e20010. [PMID: 33016633 DOI: 10.1002/tpg2.20010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/15/2020] [Indexed: 05/25/2023]
Abstract
The primary domestication of olive (Olea europaea L.) in the Levant dates back to the Neolithic period, around 6,000-5,500 BC, as some archeological remains attest. Cultivated olive trees are reproduced clonally, with sexual crosses being the sporadic events that drive the development of new varieties. In order to determine the genomic changes which have occurred in a modern olive cultivar, the genome of the Picual cultivar, one of the most popular olive varieties, was sequenced. Additional 40 cultivated and 10 wild accessions were re-sequenced to elucidate the evolution of the olive genome during the domestication process. It was found that the genome of the 'Picual' cultivar contains 79,667 gene models, of which 78,079 were protein-coding genes and 1,588 were tRNA. Population analyses support two independent events in olive domestication, including an early possible genetic bottleneck. Despite genetic bottlenecks, cultivated accessions showed a high genetic diversity driven by the activation of transposable elements (TE). A high TE gene expression was observed in presently cultivated olives, which suggests a current activity of TEs in domesticated olives. Several TEs families were expanded in the last 5,000 or 6,000 years and produced insertions near genes that may have been involved in selected traits during domestication as reproduction, photosynthesis, seed development, and oil production. Therefore, a great genetic variability has been found in cultivated olive as a result of a significant activation of TEs during the domestication process.
Collapse
Affiliation(s)
- Jaime Jiménez-Ruiz
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, University. Jaén, Jaén, 23071, Spain
| | - Jorge A Ramírez-Tejero
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, University. Jaén, Jaén, 23071, Spain
| | - Noé Fernández-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - María de la O Leyva-Pérez
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, University. Jaén, Jaén, 23071, Spain
| | - Haidong Yan
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Raúl de la Rosa
- Centro de Investigación y Formación Agraria de Alameda del Obispo, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Córdoba, Spain
| | - Angjelina Belaj
- Centro de Investigación y Formación Agraria de Alameda del Obispo, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Córdoba, Spain
| | - Eva Montes
- Instituto Universitario de Investigación en Arqueología Ibérica, University. Jaén, Jaén, 23071, Spain
| | - Mª Oliva Rodríguez-Ariza
- Instituto Universitario de Investigación en Arqueología Ibérica, University. Jaén, Jaén, 23071, Spain
| | - Francisco Navarro
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, University. Jaén, Jaén, 23071, Spain
| | - Juan Bautista Barroso
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, University. Jaén, Jaén, 23071, Spain
| | - Carmen R Beuzón
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Aureliano Bombarely
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- present address, Department of Bioscience, Universita degli Studi di Milano, Milan, 20133, Italy
| | - Francisco Luque
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, University. Jaén, Jaén, 23071, Spain
| |
Collapse
|
26
|
Besnard G, Cheptou P, Debbaoui M, Lafont P, Hugueny B, Dupin J, Baali‐Cherif D. Paternity tests support a diallelic self-incompatibility system in a wild olive ( Olea europaea subsp. laperrinei, Oleaceae). Ecol Evol 2020; 10:1876-1888. [PMID: 32128122 PMCID: PMC7042767 DOI: 10.1002/ece3.5993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
Self-incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S-alleles from two distinct taxa, the possible artificial selection of self-compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross-genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self-fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.
Collapse
Affiliation(s)
| | - Pierre‐Olivier Cheptou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valery Montpellier 3MontpellierFrance
| | - Malik Debbaoui
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Pierre Lafont
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Bernard Hugueny
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | - Julia Dupin
- EDBUMR 5174CNRS‐IRD‐UPSUniversité Paul SabatierToulouse cedexFrance
| | | |
Collapse
|
27
|
Cavaca LA, López-Coca IM, Silvero G, Afonso CA. The olive-tree leaves as a source of high-added value molecules: Oleuropein. BIOACTIVE NATURAL PRODUCTS 2020. [DOI: 10.1016/b978-0-12-817903-1.00005-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Khadari B, El Bakkali A, Essalouh L, Tollon C, Pinatel C, Besnard G. Cultivated Olive Diversification at Local and Regional Scales: Evidence From the Genetic Characterization of French Genetic Resources. FRONTIERS IN PLANT SCIENCE 2019; 10:1593. [PMID: 31921243 PMCID: PMC6937215 DOI: 10.3389/fpls.2019.01593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/13/2019] [Indexed: 05/11/2023]
Abstract
Molecular characterization of crop genetic resources is a powerful approach to elucidate the origin of varieties and facilitate local cultivar management. Here we aimed to decipher the origin and diversification of French local olive germplasm. The 113 olive accessions of the ex situ collection of Porquerolles were characterized with 20 nuclear microsatellites plus their plastid haplotype. We then compared this collection to Mediterranean olive varieties from the Worldwide Olive Germplasm Bank of Marrakech, Morocco. High genetic diversity was observed within local French varieties, indicating a high admixture level, with an almost equal contribution from the three main Mediterranean gene pools. Nearly identical and closely related genotypes were observed among French and Italian/Spanish varieties. A high number of parent-offspring relationships were also detected among French varieties and between French and two Italian varieties ('Frantoio' and 'Moraiolo') and the Spanish variety ('Gordal Sevillana'). Our investigations indicated that French olive germplasm resulted from the diffusion of material from multiple origins followed by diversification based on parentage relationships between varieties. We strongly suggest that farmers have been actively selecting olives based on local French varieties. French olive agroecosystems more affected by unexpected frosts than southernmost regions could also be seen as incubators and as a bridge between Italy and Spain that has enhanced varietal olive diversification.
Collapse
Affiliation(s)
- Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- Conservatoire Botanique National Méditerranéen de Porquerolles (CBNMed), UMR AGAP, Montpellier, France
| | - Ahmed El Bakkali
- INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknès, Morocco
| | - Laila Essalouh
- AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- Établissement Public Local d’Enseignement et de Formation Professionnelle Agricoles Nîmes-Rodilhan-CFPPA du Gard, Rodilhan, France
| | - Christine Tollon
- AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christian Pinatel
- Centre Technique de l’Olivier, Maison des Agriculteurs, Aix-en-Provence, France
| | - Guillaume Besnard
- CNRS-IRD-UPS EDB, UMR 5174, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
29
|
Liu S, Cornille A, Decroocq S, Tricon D, Chague A, Eyquard JP, Liu WS, Giraud T, Decroocq V. The complex evolutionary history of apricots: Species divergence, gene flow and multiple domestication events. Mol Ecol 2019; 28:5299-5314. [PMID: 31677192 DOI: 10.1111/mec.15296] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Domestication is an excellent model to study diversification and this evolutionary process can be different in perennial plants, such as fruit trees, compared to annual crops. Here, we inferred the history of wild apricot species divergence and of apricot domestication history across Eurasia, with a special focus on Central and Eastern Asia, based on microsatellite markers and approximate Bayesian computation. We significantly extended our previous sampling of apricots in Europe and Central Asia towards Eastern Asia, resulting in a total sample of 271 cultivated samples and 306 wild apricots across Eurasia, mainly Prunus armeniaca and Prunus sibirica, with some Prunus mume and Prunus mandshurica. We recovered wild Chinese species as genetically differentiated clusters, with P. sibirica being divided into two clusters, one possibly resulting from hybridization with P. armeniaca. Central Asia also appeared as a diversification centre of wild apricots. We further revealed at least three domestication events, without bottlenecks, that gave rise to European, Southern Central Asian and Chinese cultivated apricots, with ancient gene flow among them. The domestication event in China possibly resulted from ancient hybridization between wild populations from Central and Eastern Asia. We also detected extensive footprints of recent admixture in all groups of cultivated apricots. Our results thus show that apricot is an excellent model for studying speciation and domestication in long-lived perennial fruit trees.
Collapse
Affiliation(s)
- Shuo Liu
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Yingkou City, China
| | - Amandine Cornille
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - David Tricon
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France
| | - Aurélie Chague
- UMR BFP, INRA-Université de Bordeaux, Villenave d'Ornon, France
| | | | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | | |
Collapse
|
30
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
31
|
Kassout J, Terral JF, Hodgson JG, Ater M. Trait-based plant ecology a flawed tool in climate studies? The leaf traits of wild olive that pattern with climate are not those routinely measured. PLoS One 2019; 14:e0219908. [PMID: 31314789 PMCID: PMC6636763 DOI: 10.1371/journal.pone.0219908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Climate-related studies have generally focussed upon physiologically well-defined 'mechanistic' traits rather than 'functional' ones relating indirectly to resource capture. Nevertheless, field responses to climate are likely to typically include both 'mechanistic' specialization to climatic extremes and 'functional' strategies that optimize resource acquisition during less climatically-severe periods. Here, this hypothesis was tested. Seventeen traits (six 'functional', six 'mechanistic' and five 'intermediate') were measured from 19 populations of oleaster (wild olive) along a climatic gradient in Morocco. Principal components analysis of the trait dataset identified size and the 'worldwide leaf economics spectrum' as PCA axes 1 and 2. However, contrary to our prediction, these axes, and commonly-measured 'functional' traits, were little correlated with climate. Instead, PCA 3, perhaps relating to water-use and succulence, together stomatal density, specific leaf water content and leaf shape, patterned with altitude, aridity, rainfall and temperature. We concluded that, at least for slow-growing species, such as oleaster, 'mechanistic' traits are key to identifying mechanisms of climatic restriction. Meaningful collaboration between 'mechanistic' and 'functional' disciplines provides the best way of improving our understanding of the global impacts of climate change on species distribution and performance.
Collapse
Affiliation(s)
- Jalal Kassout
- Equipe bio-Agrodiversité, Laboratoire Botanique Appliquée, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- Associated International Laboratory EVOLEA, INEE-CNRS- CNRST, Montpellier, France
- Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Equipe Dynamique de la Biodiversité, Anthropo-Ecologie, Université de Montpellier, Montpellier, France
| | - Jean-Frederic Terral
- Associated International Laboratory EVOLEA, INEE-CNRS- CNRST, Montpellier, France
- Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Equipe Dynamique de la Biodiversité, Anthropo-Ecologie, Université de Montpellier, Montpellier, France
| | - John G. Hodgson
- Unit of Comparative Plant Ecology, University of Sheffield, Sheffield, United Kingdom
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Mohammed Ater
- Equipe bio-Agrodiversité, Laboratoire Botanique Appliquée, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- Associated International Laboratory EVOLEA, INEE-CNRS- CNRST, Montpellier, France
| |
Collapse
|
32
|
Olofsson JK, Cantera I, Van de Paer C, Hong-Wa C, Zedane L, Dunning LT, Alberti A, Christin PA, Besnard G. Phylogenomics using low-depth whole genome sequencing: A case study with the olive tribe. Mol Ecol Resour 2019; 19:877-892. [PMID: 30934146 DOI: 10.1111/1755-0998.13016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Species trees have traditionally been inferred from a few selected markers, and genome-wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historical species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these data sets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference-based methods to infer phylogenies of large taxonomic groups from such data sets. Using the example of the Oleeae tribe, a worldwide-distributed group, we build phylogenies based on single nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of distance to the reference on the amount of missing data. To limit this issue, genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing us to combine SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome-wide phylogenetic trees can be inferred from low-depth sequence data sets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large-scale phylogenomics and biogeographical analyses covering both the extant and the historical diversity stored in museum collections.
Collapse
Affiliation(s)
- Jill K Olofsson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Isabel Cantera
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| | - Céline Van de Paer
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| | - Cynthia Hong-Wa
- Claude E. Phillips Herbarium, Delaware State University, Dover, Delaware
| | - Loubab Zedane
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Adriana Alberti
- Genoscope, CEA - Institut de biologie François-Jacob, Evry Cedex, France
| | | | - Guillaume Besnard
- Laboratoire Évolution and Diversité Biologique (EDB, UMR5174), CNRS, UPS, IRD, Université de Toulouse, Toulouse, France
| |
Collapse
|
33
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|
34
|
Viruel J, Haguenauer A, Juin M, Mirleau F, Bouteiller D, Boudagher‐Kharrat M, Ouahmane L, La Malfa S, Médail F, Sanguin H, Nieto Feliner G, Baumel A. Advances in genotyping microsatellite markers through sequencing and consequences of scoring methods for Ceratonia siliqua (Leguminosae). APPLICATIONS IN PLANT SCIENCES 2018; 6:e01201. [PMID: 30598859 PMCID: PMC6303155 DOI: 10.1002/aps3.1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/28/2018] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Simple sequence repeat (SSR) or microsatellite markers have been used in a broad range of studies mostly scoring alleles on the basis of amplicon size as a proxy for the number of repeat units of an SSR motif. However, additional sources of variation within the SSR or in the flanking regions have largely remained undetected. METHODS In this study, we implemented a next-generation sequencing-based genotyping approach in a newly characterized set of 18 nuclear SSR markers for the carob tree, Ceratonia siliqua. Our aim was to evaluate the effect of three different methods of scoring molecular variation present within microsatellite markers on the genetic diversity and structure results. RESULTS The analysis of the sequences of 77 multilocus genotypes from four populations revealed SSR variation and additional sources of polymorphism in 87% of the loci analyzed (42 single-nucleotide polymorphisms and five insertion/deletion polymorphisms), as well as divergent paralog copies in two loci. Ignoring sequence variation under standard amplicon size genotyping resulted in incorrect identification of 69% of the alleles, with important effects on the genetic diversity and structure estimates. DISCUSSION Next-generation sequencing allows the detection and scoring of SSRs, single-nucleotide polymorphisms, and insertion/deletion polymorphisms to increase the resolution of population genetic studies.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Anne Haguenauer
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Marianick Juin
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Fatma Mirleau
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Delphine Bouteiller
- Institut du Cerveau et de la Moelle épinière (ICM)Hôpital Pitié Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
| | - Magda Boudagher‐Kharrat
- Laboratoire Caractérisation Génétique des PlantesFaculté des sciencesUniversité Saint‐JosephB.P. 11‐514 Riad El SolhBeirut1107 2050Lebanon
| | - Lahcen Ouahmane
- Laboratoire d'Ecologie et EnvironnementFaculté des Sciences SemlaliaUniversité Cadi AyyadMarrakeshMorocco
| | - Stefano La Malfa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A)Università degli Studi di CataniaVia Valdisavoia 595123CataniaItaly
| | - Frédéric Médail
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Hervé Sanguin
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD)Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)MontpellierFrance
- LSTM [LSTM is sponsored by University of Montpellier, CIRAD, IRD, INRA, Montpellier SupAgro]TA A‐82/J Campus International de BaillarguetFR‐34398Montpellier CEDEX 5France
| | | | - Alex Baumel
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| |
Collapse
|
35
|
Besnard G, Terral JF, Cornille A. On the origins and domestication of the olive: a review and perspectives. ANNALS OF BOTANY 2018; 121:385-403. [PMID: 29293871 PMCID: PMC5838823 DOI: 10.1093/aob/mcx145] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Background Unravelling domestication processes is crucial for understanding how species respond to anthropogenic pressures, forecasting crop responses to future global changes and improving breeding programmes. Domestication processes for clonally propagated perennials differ markedly from those for seed-propagated annual crops, mostly due to long generation times, clonal propagation and recurrent admixture with local forms, leading to a limited number of generations of selection from wild ancestors. However, additional case studies are required to document this process more fully. Scope The olive is an iconic species in Mediterranean cultural history. Its multiple uses and omnipresence in traditional agrosystems have made this species an economic pillar and cornerstone of Mediterranean agriculture. However, major questions about the domestication history of the olive remain unanswered. New paleobotanical, archeological, historical and molecular data have recently accumulated for olive, making it timely to carry out a critical re-evaluation of the biogeography of wild olives and the history of their cultivation. We review here the chronological history of wild olives and discuss the questions that remain unanswered, or even unasked, about their domestication history in the Mediterranean Basin. We argue that more detailed ecological genomics studies of wild and cultivated olives are crucial to improve our understanding of olive domestication. Multidisciplinary research integrating genomics, metagenomics and community ecology will make it possible to decipher the evolutionary ecology of one of the most iconic domesticated fruit trees worldwide. Conclusion The olive is a relevant model for improving our knowledge of domestication processes in clonally propagated perennial crops, particularly those of the Mediterranean Basin. Future studies on the ecological and genomic shifts linked to domestication in olive and its associated community will provide insight into the phenotypic and molecular bases of crop adaptation to human uses.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENSFEA-IRD, EDB, UMR 5174, Université Paul Sabatier, Toulouse Cedex , France
| | - Jean-Frédéric Terral
- ISEM, UMR 5554, CNRS-Université de Montpellier-IRD-EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Montpellier Cedex, France
- International Associated Laboratory (LIA, CNRS) EVOLea, Zürich, Switzerland
| | - Amandine Cornille
- Center for Adaptation to a Changing Environment, ETH Zürich, Zürich, Switzerland
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
36
|
Garcia-Cisneros A, Palacín C, Ventura CRR, Feital B, Paiva PC, Pérez-Portela R. Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol Ecol 2018; 27:752-772. [PMID: 29218784 DOI: 10.1111/mec.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/28/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species' distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria-Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo-Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations' genetic divergence could be observed between some populations.
Collapse
Affiliation(s)
- Alex Garcia-Cisneros
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Research Institute of Biodiversity (IRBIO), Barcelona, Spain.,Center for Advanced Studies of Blanes (CEAB-CSIC), Accès a la Cala Sant Francesc, Girona, Spain
| | - Creu Palacín
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Research Institute of Biodiversity (IRBIO), Barcelona, Spain
| | - Carlos Renato Rezende Ventura
- Invertebrate Department, National Museum, Federal University of Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, Brazil
| | - Barbara Feital
- Invertebrate Department, National Museum, Federal University of Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, Brazil.,Department of Zoology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cesar Paiva
- Department of Zoology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rocío Pérez-Portela
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accès a la Cala Sant Francesc, Girona, Spain
| |
Collapse
|
37
|
Anestiadou K, Nikoloudakis N, Hagidimitriou M, Katsiotis A. Monumental olive trees of Cyprus contributed to the establishment of the contemporary olive germplasm. PLoS One 2017; 12:e0187697. [PMID: 29112969 PMCID: PMC5675381 DOI: 10.1371/journal.pone.0187697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/24/2017] [Indexed: 01/21/2023] Open
Abstract
Even though Cyprus was an important crossing point for the westward spread of olive, and one of the primary regions of domestication, its genetic recourses remain uncharted at a great extent. Throughout the centuries, a number of ancient olive trees remain in the same orchards, contributing to Cypriot oleiculture and society. In an attempt to explore this monumental genetic pool, a survey was conducted to identify centennial olive trees in rural provinces of Cyprus. Microsatellites were employed in order to study their genetic composition (including rootstocks when feasible) and to establish possible associations among genotypes. High numbers of specific alleles, suggestive of the distinctiveness of this germplasm, were detected, and both grafting and rootstock propagation was verified. Moreover, it was determined by Bayesian structural and network reticulate analysis that centennial olives can be divided in two discrete genetic clusters having intermediate admixed accessions. Furthermore, it was determined that all contemporary Cypriot cultivars, that were included in the present study, were highly affiliated exclusively to one genetic group, a strong evidence of selection among elite clones. The information acquired from the current study reveals the genetic rareness of this material and its contribution to the current olive germplasm.
Collapse
Affiliation(s)
- Katerina Anestiadou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | | | - Andreas Katsiotis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
38
|
Sebastiani L, Busconi M. Recent developments in olive (Olea europaea L.) genetics and genomics: applications in taxonomy, varietal identification, traceability and breeding. PLANT CELL REPORTS 2017; 36:1345-1360. [PMID: 28434019 DOI: 10.1007/s00299-017-2145-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The latest results in DNA markers application and genomic studies in olive. Olive (Olea europaea L.) is among the most ancient tree crops worldwide and the source of oil beneficial for human health. Despite this, few data on olive genetics are available in comparison with other cultivated plant species. Molecular information is mainly linked to molecular markers and their application to the study of DNA variation in the Olea europaea complex. In terms of genomic research, efforts have been made in sequencing, heralding the era of olive genomic. The present paper represents an update of a previous review work published in this journal in 2011. The review is again mainly focused on DNA markers, whose application still constitutes a relevant percentage of the most recently published researches. Since the olive genomic era has recently started, the latest results in this field are also being discussed.
Collapse
Affiliation(s)
- L Sebastiani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| | - M Busconi
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
39
|
Kassa A, Konrad H, Geburek T. Landscape genetic structure of Olea europaea subsp. cuspidata in Ethiopian highland forest fragments. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0993-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Mousavi S, Mariotti R, Bagnoli F, Costantini L, Cultrera NGM, Arzani K, Pandolfi S, Vendramin GG, Torkzaban B, Hosseini-Mazinani M, Baldoni L. The eastern part of the Fertile Crescent concealed an unexpected route of olive (Olea europaea L.) differentiation. ANNALS OF BOTANY 2017; 119:1305-1318. [PMID: 28387783 PMCID: PMC5604562 DOI: 10.1093/aob/mcx027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/28/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Olive is considered a native plant of the eastern side of the Mediterranean basin, from where it should have spread westward along the Mediterranean shores, while little is known about its diffusion in the eastern direction. METHODS Genetic diversity levels and population genetic structure of a wide set of olive ecotypes and varieties collected from several provinces of Iran, representing a high percentage of the entire olive resources present in the area, was screened with 49 chloroplast and ten nuclear simple sequence repeat markers, and coupled with archaeo-botanical and historical data on Mediterranean olive varieties. Approximate Bayesian Computation was applied to define the demographic history of olives including Iranian germplasm, and species distribution modelling was performed to understand the impact of the Late Quaternary on olive distribution. KEY RESULTS The results of the present study demonstrated that: (1) the climatic conditions of the last glacial maximum had an important role on the actual olive distribution, (2) all Iranian olive samples had the same maternal inheritance as Mediterranean cultivars, and (3) the nuclear gene flow from the Mediterranean basin to the Iranian plateau was almost absent, as well as the contribution of subspecies cuspidata to the diversity of Iranian olives. CONCLUSIONS Based on this evidence, a new scenario for the origin and distribution of this important fruit crop has been traced. The evaluation of olive trees growing in the eastern part of the Levant highlighted a new perspective on the spread and distribution of olive, suggesting two routes of olive differentiation, one westward, spreading along the Mediterranean basin, and another moving towards the east and reaching the Iranian plateau before its domestication.
Collapse
Affiliation(s)
- Soraya Mousavi
- CNR - Institute for Agricultural and Forest Systems in the Mediterranean, via Madonna Alta, 128, 06128 Perugia, Italy
- Tarbiat Modares University, Department of Horticultural Science, Jalal Ale Ahmad Highway, PO Box 14115111, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
- Co-first authors: These authors contributed equally to this work
| | - Roberto Mariotti
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
- Co-first authors: These authors contributed equally to this work
| | - Francesca Bagnoli
- CNR - Institute of Biosciences and Bioresources, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Costantini
- ISMEO - International Association of Mediterranean and Oriental Studies, Corso Vittorio Emanuele II, 244, 00186 Rome, Italy
| | - Nicolò G. M. Cultrera
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
| | - Kazem Arzani
- Tarbiat Modares University, Department of Horticultural Science, Jalal Ale Ahmad Highway, PO Box 14115111, Tehran, Iran
| | - Saverio Pandolfi
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
| | - Giovanni Giuseppe Vendramin
- CNR - Institute of Biosciences and Bioresources, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Bahareh Torkzaban
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
| | - Mehdi Hosseini-Mazinani
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, Km 15, Tehran - Karaj Highway, PO Box 14965161, Tehran, Iran
- For correspondence. E-mail or
| | - Luciana Baldoni
- CNR - Institute of Biosciences and Bioresources, via Madonna Alta, 130, 06128 Perugia, Italy
- For correspondence. E-mail or
| |
Collapse
|
41
|
Beghè D, Piotti A, Satovic Z, de la Rosa R, Belaj A. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris. ANNALS OF BOTANY 2017; 119:671-679. [PMID: 28028015 PMCID: PMC5571374 DOI: 10.1093/aob/mcw246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/26/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. METHODS The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. KEY RESULTS The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. CONCLUSIONS Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources.
Collapse
Affiliation(s)
- D. Beghè
- Department of Food Science, Parco Area delle Scienze, 95/a, 43124 Parma, Italy
- Institute of Tree and Timber (IVALSA), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - A. Piotti
- Institute of Biosciences and BioResources (IBBR), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Z. Satovic
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - R. de la Rosa
- Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - A. Belaj
- Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
42
|
Hardion L, Dumas PJ, Abdel-Samad F, Bou Dagher Kharrat M, Surina B, Affre L, Médail F, Bacchetta G, Baumel A. Geographical isolation caused the diversification of the Mediterranean thorny cushion-like Astragalus L. sect. Tragacantha DC. (Fabaceae). Mol Phylogenet Evol 2016; 97:187-195. [PMID: 26804816 DOI: 10.1016/j.ympev.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Understanding the origin and evolution of Mediterranean vascular flora within the long-term context of climate change requires a continuous study of historical biogeography supported by molecular phylogenetic approaches. Here we provide new insights into the fascinating but often overlooked diversification of Mediterranean xerophytic plants. Growing in some of the most stressing Mediterranean environments, i.e. coastal and mountainous opened habitats, the circum-Mediterranean Astragalus L. sect. Tragacantha DC. (Fabaceae) gathers several thorny cushion-like taxa. These have been the subjects of recent taxonomical studies, but they have not yet been investigated within a comprehensive molecular framework. Bayesian phylogenetics applied to rDNA ITS sequences reveal that the diversification of A. sect. Tragacantha has roots dating back to the Pliocene, and the same data also indicate an eastern-western split giving rise to the five main lineages that exist today. In addition, AFLP fingerprinting supports an old east-west pattern of vicariance that completely rules out the possibility of a recent eastern origin for western taxa. The observed network of genetic relationships implies that contrary to what is widely claimed in the taxonomic literature, it is range fragmentation, as opposed to a coastal-to-mountain ecological shift, that is likely the main driver of diversification.
Collapse
Affiliation(s)
- Laurent Hardion
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Marseille, France; Laboratoire Image Ville Environnement (LIVE), Université de Strasbourg, CNRS, Strasbourg, France.
| | - Pierre-Jean Dumas
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Marseille, France
| | - Farah Abdel-Samad
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Marseille, France; Laboratoire Caractérisation Génomique des Plantes, Faculté des Sciences, Université Saint-Joseph, Mar Roukoz, Mkalles, Lebanon
| | - Magda Bou Dagher Kharrat
- Laboratoire Caractérisation Génomique des Plantes, Faculté des Sciences, Université Saint-Joseph, Mar Roukoz, Mkalles, Lebanon
| | - Bostjan Surina
- Natural History Museum Rijeka, Lorenzov prolaz 1, 51000 Rijeka, Croatia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Laurence Affre
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Marseille, France
| | - Frédéric Médail
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Marseille, France
| | - Gianluigi Bacchetta
- Centro Conservazione Biodiversità, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Alex Baumel
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Marseille, France
| |
Collapse
|
43
|
Besnard G, Rubio de Casas R. Single vs multiple independent olive domestications: the jury is (still) out. THE NEW PHYTOLOGIST 2016; 209:466-70. [PMID: 26555218 DOI: 10.1111/nph.13518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, 31062, Toulouse Cedex 9, France
| | - Rafael Rubio de Casas
- Estación Experimental de Zonas Áridas, EEZA-CSIC, Carretera de Sacramento s/n, 04120, Almería, Spain
- UMR 5175 CEFE-Centre d'Ecologie Fonctionnelle et Evolutive (CNRS), 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| |
Collapse
|
44
|
Díez CM, Gaut BS. The jury may be out, but it is important that it deliberates: a response to Besnard and Rubio de Casas about olive domestication. THE NEW PHYTOLOGIST 2016; 209:471-3. [PMID: 26599353 DOI: 10.1111/nph.13780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio C4, Campus de Rabanales, 14014, Córdoba, Spain
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
45
|
Besnard G, El Bakkali A. Sequence analysis of single-copy genes in two wild olive subspecies: nucleotide diversity and potential use for testing admixture. Genome 2014; 57:145-53. [PMID: 24884690 DOI: 10.1139/gen-2014-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The wild olive distribution extends from the Mediterranean region to south Asia and Austral Africa. The species is also invasive, particularly in Australia. Here, we investigated the sequence variation at five nuclear single-copy genes in 41 native and invasive accessions of the Mediterranean and African olive subspecies. The nucleotide diversity was assessed and the phylogenetic relationships between alleles were depicted with haplotype networks. A Bayesian clustering method (STRUCTURE) was applied to identify the main gene pools. We found an average of 18.4 alleles per locus. Native Mediterranean and African olives only share one allele, which testifies for ancient admixture on the Red Sea hills. The presence of divergent alleles in the Mediterranean olive, as well as the identification of two main genetic clusters, suggests a complex origin with two highly differentiated gene pools from the eastern and western Mediterranean that recently admixed. In the invasive range, relatively high nucleotide diversity is observed as a consequence of the introduction of alleles from two subspecies. Our data confirm that four invasive individuals are early-generation hybrids. Finally, the utility of single-copy gene sequences in olive population genomic and phylogenetic studies is briefly discussed.
Collapse
Affiliation(s)
- G Besnard
- a CNRS-UPS-ENFA, EDB, UMR 5174, Bât. 4R1, 31062 Toulouse cedex 9, France
| | | |
Collapse
|