1
|
Petrova A, Ageeva M, Kozlova L. Root growth of monocotyledons and dicotyledons is limited by different tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1462-1476. [PMID: 37646760 DOI: 10.1111/tpj.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Plant growth and morphogenesis are determined by the mechanical properties of its cell walls. Using atomic force microscopy, we have characterized the dynamics of cell wall elasticity in different tissues in developing roots of several plant species. The elongation growth zone of roots of all species studied was distinguished by a reduced modulus of elasticity of most cell walls compared to the meristem or late elongation zone. Within the individual developmental zones of roots, there were also significant differences in the elasticity of the cell walls of the different tissues, thus identifying the tissues that limit root growth in the different species. In cereals, this is mainly the inner cortex, whereas in dicotyledons this function is performed by the outer tissues-rhizodermis and cortex. These differences result in a different behaviour of the roots of these species during longitudinal dissection. Modelling of longitudinal root dissection using measured properties confirmed the difference shown. Thus, the morphogenesis of monocotyledonous and dicotyledonous roots relies on different tissues as growth limiting, which should be taken into account when analyzing the localization of associated molecular events. At the same time, no matrix polysaccharide was found whose immunolabelling in type I or type II cell walls would predict their mechanical properties. However, assessment of the degree of anisotropy of cortical microtubules showed a striking correlation with the elasticity of the corresponding cell walls in all species studied.
Collapse
Affiliation(s)
- Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Marina Ageeva
- Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Liudmila Kozlova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
- Mechanics and Civil Engineering Laboratory, University of Montpellier, 860 Rue de St - Priest, 34090, Montpellier, France
| |
Collapse
|
2
|
Wilson LFL, Neun S, Yu L, Tryfona T, Stott K, Hollfelder F, Dupree P. The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan. THE NEW PHYTOLOGIST 2023; 240:2353-2371. [PMID: 37823344 PMCID: PMC10952531 DOI: 10.1111/nph.19305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan β-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and β-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that β-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.
Collapse
Affiliation(s)
- Louis F. L. Wilson
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Stefanie Neun
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Li Yu
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
3
|
Immelmann R, Gawenda N, Ramírez V, Pauly M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. PLANT DIRECT 2023; 7:e514. [PMID: 37502316 PMCID: PMC10368651 DOI: 10.1002/pld3.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Plant cell walls contain the hemicellulose xyloglucan, whose fine structure may vary depending on cell type, tissue, and/or plant species. Most but not all of the glycosyltransferases involved in the biosynthesis of xyloglucan sidechains have been identified. Here, we report the identification of several functional glycosyltransferases from blueberry (Vaccinium corymbosum bluecrop). Among those transferases is a hitherto elusive Xyloglucan:Beta-xylosylTransferase (XBT). Heterologous expression of VcXBT in the Arabidopsis thaliana double mutant mur3 xlt2, where xyloglucan consists only of an unsubstituted xylosylated glucan core structure, results in the production of the xylopyranose-containing "U" sidechain as characterized by mass spectrometry, glycosidic linkage, and NMR analysis. The introduction of the additional xylopyranosyl residue rescues the dwarfed phenotype of the untransformed Arabidopsis mur3 xlt2 mutant to wild-type height. Structural protein analysis using Alphafold of this and other related xyloglucan glycosyltransferase family 47 proteins not only identifies potential domains that might influence the regioselectivity of these enzymes but also gives hints to specific amino acids that might determine the donor-substrate specificity of these glycosyltransferases.
Collapse
Affiliation(s)
- Ronja Immelmann
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Niklas Gawenda
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Vicente Ramírez
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
4
|
Petrova A, Sibgatullina G, Gorshkova T, Kozlova L. Dynamics of cell wall polysaccharides during the elongation growth of rye primary roots. PLANTA 2022; 255:108. [PMID: 35449484 DOI: 10.1007/s00425-022-03887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In cells of growing rye roots, xyloglucans and homogalacturonans demonstrate developmental stage specificity, while different xylans have tissue specificity. Mannans, arabinans and galactans are also detected within the protoplast. Mannans form films on sections of fresh material. The primary cell walls of plants represent supramolecular exocellular structures that are mainly composed of polysaccharides. Cell wall properties and architecture differ between species and across tissues within a species. We revised the distribution of cell wall polysaccharides and their dynamics during elongation growth and histogenesis in rye roots using nonfixed material and the spectrum of antibodies. Rye is a member of the Poaceae family and thus has so-called type II primary cell walls, which are supposed to be low in pectins and xyloglucans and instead have arabinoxylans and mixed-linkage glucans. However, rye cell walls at the earliest stages of cell development were enriched with the epitopes of xyloglucans and homogalacturonans. Mixed-linkage glucan, which is often considered an elongation growth-specific polysaccharide in plants with type II cell walls, did not display such dynamics in rye roots. The cessation of elongation growth and even the emergence of root hairs were not accompanied by the disappearance of mixed-linkage glucans from cell walls. The diversity of xylan motifs recognized by different antibodies was minimal in the meristem zone of rye roots, but this diversity increased and showed tissue specificity during root growth. Antibodies specific for xyloglucans, galactans, arabinans and mannans bound the cell content. When rye root cells were cut, the epitopes of xyloglucans, galactans and arabinans remained within the cell content, while mannans developed net-like or film-like structures on the surface of sections.
Collapse
Affiliation(s)
- Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Gusel Sibgatullina
- The Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Liudmila Kozlova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia.
| |
Collapse
|
5
|
Zhong R, Phillips DR, Ye ZH. A Single Xyloglucan Xylosyltransferase Is Sufficient for Generation of the XXXG Xylosylation Pattern of Xyloglucan. PLANT & CELL PHYSIOLOGY 2021; 62:1589-1602. [PMID: 34264339 DOI: 10.1093/pcp/pcab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Xyloglucan is the most abundant hemicellulose in the primary cell walls of dicots. Dicot xyloglucan is the XXXG type consisting of repeating units of three consecutive xylosylated Glc residues followed by one unsubstituted Glc. Its xylosylation is catalyzed by xyloglucan 6-xylosyltransferases (XXTs) and there exist five XXTs (AtXXT1-5) in Arabidopsis. While AtXXT1 and AtXXT2 have been shown to add the first two Xyl residues in the XXXG repeat, which XXTs are responsible for the addition of the third Xyl residue remains elusive although AtXXT5 was a proposed candidate. In this report, we generated recombinant proteins of all five Arabidopsis XXTs and one rice XXT (OsXXT1) in the mammalian HEK293 cells and investigated their ability to sequentially xylosylate Glc residues to generate the XXXG xylosylation pattern. We found that like AtXXT1/2, AtXXT4 and OsXXT1 could efficiently xylosylate the cellohexaose (G6) acceptor to produce mono- and di-xylosylated G6, whereas AtXXT5 was only barely capable of adding one Xyl onto G6. When AtXXT1-catalyzed products were used as acceptors, AtXXT1/2/4 and OsXXT1, but not AtXXT5, were able to xylosylate additional Glc residues to generate tri- and tetra-xylosylated G6. Further characterization of the tri- and tetra-xylosylated G6 revealed that they had the sequence of GXXXGG and GXXXXG with three and four consecutive xylosylated Glc residues, respectively. In addition, we have found that although tri-xylosylation occurred on G6, cello-oligomers with a degree of polymerization of 3 to 5 could only be mono- and di-xylosylated. Together, these results indicate that each of AtXXT1/2/4 and OsXXT1 is capable of sequentially adding Xyl onto three contiguous Glc residues to generate the XXXG xylosylation pattern and these findings provide new insight into the biochemical mechanism underlying xyloglucan biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Structural characterization and immunostimulatory activity of polysaccharides from Pyrus sinkiangensis Yu. Int J Biol Macromol 2020; 157:444-451. [PMID: 32335112 DOI: 10.1016/j.ijbiomac.2020.04.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 04/19/2020] [Indexed: 11/23/2022]
Abstract
Two neutral polysaccharides (PSNP-1, 104.7 kDa; PSNP-2, 24.5 kDa) were isolated from the pulp of Pyrus sinkiangensis Yu. by using the combined techniques of ion-exchange and gel permeation chromatography. According to the IR, NMR spectra, monosaccharide composition, and methylation analyses, PSNP-1 was mainly composed of glucose and xylose residues, which form a typical xyloglucan. PSNP-2 contained an arabinan region composed of 1,5-linked Araf residues, a xyloglucan region that was mainly composed of t-, 1,2-linked Xylp, and 1,4-, 1,4,6-linked Glcp residues. PSNP-1 and PSNP-2 could stimulate the cell viability, NO release, and cytokine secretion (IL-6 and TNF-α) of RAW264.7 macrophages at the adosage of 250 μg/mL. It was suggested that PSNP-1 and PSNP-2 may increase macrophage-mediated immunostimulatory activity.
Collapse
|
8
|
Zhong R, Cui D, Phillips DR, Richardson EA, Ye ZH. A Group of O-Acetyltransferases Catalyze Xyloglucan Backbone Acetylation and Can Alter Xyloglucan Xylosylation Pattern and Plant Growth When Expressed in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1064-1079. [PMID: 32167545 PMCID: PMC7295396 DOI: 10.1093/pcp/pcaa031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/08/2020] [Indexed: 05/23/2023]
Abstract
Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
10
|
Rubianes D, Valdivia ER, Revilla G, Zarra I, Sampedro J. Xyloglucan exoglycosidases in the monocot model Brachypodium distachyon and the conservation of xyloglucan disassembly in angiosperms. PLANT MOLECULAR BIOLOGY 2019; 100:495-509. [PMID: 31028613 DOI: 10.1007/s11103-019-00875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Brachypodium distachyon has a full set of exoglycosidases active on xyloglucan, including α-xylosidase, β-galactosidase, soluble and membrane-bound β-glucosidases and two α-fucosidases. However, unlike in Arabidopsis, both fucosidases are likely cytosolic. Xyloglucan is present in primary walls of all angiosperms. While in most groups it regulates cell wall extension, in Poaceae its role is still unclear. Five exoglycosidases participate in xyloglucan hydrolysis in Arabidopsis: α-xylosidase, β-galactosidase, α-fucosidase, soluble β-glucosidase and GPI-anchored β-glucosidase. Mutants in the corresponding genes show alterations in xyloglucan composition. In this work putative orthologs in the model grass Brachypodium distachyon were tested for their ability to complement Arabidopsis mutants. Xylosidase and galactosidase mutants were complemented, respectively, by BdXYL1 (Bd2g02070) and BdBGAL1 (Bd2g56607). BdBGAL1, unlike other xyloglucan β-galactosidases, is able to remove both galactoses from XLLG oligosaccharides. In addition, soluble β-glucosidase BdBGLC1 (Bd1g08550) complemented a glucosidase mutant. Closely related BdBGLC2 (Bd2g51280), which has a putative GPI-anchor sequence, was found associated with the plasma membrane and only a truncated version without GPI-anchor complemented the mutant, proving that Brachypodium also has soluble and membrane-bound xyloglucan glucosidases. Both BdXFUC1 (Bd3g25226) and BdXFUC2 (Bd1g28366) can hydrolyze fucose from xyloglucan oligosaccharides but were unable to complement a fucosidase mutant. Fluorescent protein fusions of BdXFUC1 localized to the cytosol and both proteins lack a signal peptide. Signal peptides appear to have evolved only in some eudicot lineages of this family, like the one leading to Arabidopsis. These results could be explained if cytosolic xyloglucan α-fucosidases are the ancestral state in angiosperms, with fucosylated oligosaccharides transported across the plasma membrane.
Collapse
Affiliation(s)
- Diego Rubianes
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Elene R Valdivia
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Gloria Revilla
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Ignacio Zarra
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain
| | - Javier Sampedro
- Dpto. Biología Funcional, Facultad de Biología, Universidade de Santiago, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Brennan M, Fakharuzi D, Harris PJ. Occurrence of fucosylated and non-fucosylated xyloglucans in the cell walls of monocotyledons: An immunofluorescence study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:428-434. [PMID: 30991260 DOI: 10.1016/j.plaphy.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The xyloglucans of monocotyledons are known to vary in the abundance of fucosylated side chains, with most commelinid monocotyledons having xyloglucans with lower proportions than non-commelinid monocotyledons. In many commelinid species, and some non-commelinid species that have lower proportions of fucosylated side chains, these side chains have been shown to be cell-type specific. To determine whether it is just the fucosylated side chains that are cell-type specific, or whether xyloglucan is cell-type specific in these species, we used the monoclonal antibody LM15 in conjunction with immmunofluorescence microscopy. We examined the distribution of cell-wall labelling among cell types in these species. The primary walls of all cell types were shown to contain xyloglucans in all species that had cell-type specific distributions of fucosylated side chains. This indicates that it is the fucosylated side chains of xyloglucans that is cell-type specific. Although the functional significance of xyloglucan fucosylation remains unknown, such cell-type specificity supports hypotheses that the fucosylated side chains may indeed have a functional role within the cell wall.
Collapse
Affiliation(s)
- Maree Brennan
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | - Diyana Fakharuzi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Philip J Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Rouen, France
| |
Collapse
|
13
|
Voiniciuc C, Pauly M, Usadel B. Monitoring Polysaccharide Dynamics in the Plant Cell Wall. PLANT PHYSIOLOGY 2018; 176:2590-2600. [PMID: 29487120 PMCID: PMC5884611 DOI: 10.1104/pp.17.01776] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
New technologies reveal the deposition and remodeling of plant cell wall polysaccharides and their impact on plant development.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, 52074 Aachen, Germany
- Forschungszentum Jülich, IBG-2 Plant Sciences, 52428 Juelich, Germany
| |
Collapse
|
14
|
Zhu L, Dama M, Pauly M. Identification of an arabinopyranosyltransferase from Physcomitrella patens involved in the synthesis of the hemicellulose xyloglucan. PLANT DIRECT 2018; 2:e00046. [PMID: 31245712 PMCID: PMC6508525 DOI: 10.1002/pld3.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
The hemicellulose xyloglucan consists of a backbone of a β-1,4 glucan substituted with xylosyl moieties and many other, diverse side chains that are important for its proper function. Many, but not all glycosyltransferases involved in the biosynthesis of xyloglucan have been identified. Here, we report the identification of an hitherto elusive xyloglucan:arabinopyranosyltransferase. This glycosyltransferase was isolated from the moss Physcomitrella patens, where it acts as a xyloglucan "D"-side chain transferase (XDT). Heterologous expression of PpXDT in the Arabidopsis thaliana double mutant mur3.1 xlt2, where xyloglucan consists of a xylosylated glucan without further glycosyl substituents, results in the production of the arabinopyranose-containing "D" side chain as characterized by oligosaccharide mass profiling, glycosidic linkage analysis, and NMR analysis. In addition, expression of a related Physcomitrella glycosyltransferase ortholog of PpXLT2 leads to the production of the galactose-containing "L" side chain. The presence of the "D" and "L" xyloglucan side chains in the Arabidopsis double mutant Atmur3.1 xlt2 expressing PpXDT and PpXLT2, respectively, rescues the dwarfed phenotype of untransformed Atmur3.1 xlt2 mutants to nearly wild-type height. Expression of PpXDT and PpXLT2 in the Atmur3.1 xlt2 mutant also enhanced root growth.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Murali Dama
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| |
Collapse
|
15
|
Gao H, Zhang Y, Wang W, Zhao K, Liu C, Bai L, Li R, Guo Y. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development. PLANT PHYSIOLOGY 2017; 173:219-239. [PMID: 27872247 PMCID: PMC5210706 DOI: 10.1104/pp.16.01719] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/20/2016] [Indexed: 05/23/2023]
Abstract
Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39 Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39 A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Yinghui Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Keke Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Chunmei Liu
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Lin Bai
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| |
Collapse
|
16
|
Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas D, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. THE PLANT CELL 2017; 29:129-143. [PMID: 28062750 PMCID: PMC5304346 DOI: 10.1105/tpc.16.00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/14/2016] [Accepted: 12/31/2016] [Indexed: 05/17/2023]
Abstract
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Carsten Rautengarten
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Troy Ejsmentewicz
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Omar Sandoval-Ibañez
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Daniela Doñas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Berit Ebert
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Arnaud Lehner
- Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France
| | - Jean-Claude Mollet
- Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Joshua L Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
17
|
Pauly M, Keegstra K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:235-59. [PMID: 26927904 DOI: 10.1146/annurev-arplant-043015-112222] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.
Collapse
Affiliation(s)
- Markus Pauly
- Department of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, DOE Plant Research Laboratory, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
18
|
Lampugnani ER, Ho YY, Moller IE, Koh PL, Golz JF, Bacic A, Newbigin E. A Glycosyltransferase from Nicotiana alata Pollen Mediates Synthesis of a Linear (1,5)-α-L-Arabinan When Expressed in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1962-74. [PMID: 26850276 PMCID: PMC4825119 DOI: 10.1104/pp.15.02005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/04/2016] [Indexed: 05/09/2023]
Abstract
The walls of Nicotiana alata pollen tubes contain a linear arabinan composed of (1,5)-α-linked arabinofuranose residues. Although generally found as a side chain on the backbone of the pectic polysaccharide rhamnogalacturonan I, the arabinan in N. alata pollen tubes is considered free, as there is no detectable rhamnogalacturonan I in these walls. Carbohydrate-specific antibodies detected arabinan epitopes at the tip and along the shank of N. alata pollen tubes that are predominantly part of the primary layer of the bilayered wall. A sequence related to ARABINAN DEFICIENT1 (AtARAD1), a presumed arabinan arabinosyltransferase from Arabidopsis (Arabidopsis thaliana), was identified by searching an N alata pollen transcriptome. Transcripts for this ARAD1-like sequence, which we have named N. alata ARABINAN DEFICIENT-LIKE1 (NaARADL1), accumulate in various tissues, most abundantly in the pollen grain and tube, and encode a protein that is a type II membrane protein with its catalytic carboxyl terminus located in the Golgi lumen. The NaARADL1 protein can form homodimers when transiently expressed in Nicotiana benthamiana leaves and heterodimers when coexpressed with AtARAD1 The expression of NaARADL1 in Arabidopsis led to plants with more arabinan in their walls and that also exuded a guttation fluid rich in arabinan. Chemical and enzymatic characterization of the guttation fluid showed that a soluble, linear α-(1,5)-arabinan was the most abundant polymer present. These results are consistent with NaARADL1 having an arabinan (1,5)-α-arabinosyltransferase activity.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Yin Ying Ho
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Isabel E Moller
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Poh-Ling Koh
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - John F Golz
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Antony Bacic
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Ed Newbigin
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| |
Collapse
|
19
|
Dumont M, Lehner A, Bardor M, Burel C, Vauzeilles B, Lerouxel O, Anderson CT, Mollet JC, Lerouge P. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1137-51. [PMID: 26565655 DOI: 10.1111/tpj.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 05/21/2023]
Abstract
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Boris Vauzeilles
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182, Université de Paris Sud, 91405, Orsay, France
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
- Click4Tag, Zone Luminy Biotech, Case 922, 163 Avenue de Luminy, 13009, Marseille, France
| | - Olivier Lerouxel
- Centre de Recherches sur les Macromolécules Végétales (CERMAV) - CNRS BP 53, 38041, Grenoble Cedex 9, France
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| |
Collapse
|
20
|
Liu L, Paulitz J, Pauly M. The presence of fucogalactoxyloglucan and its synthesis in rice indicates conserved functional importance in plants. PLANT PHYSIOLOGY 2015; 168:549-60. [PMID: 25869654 PMCID: PMC4453794 DOI: 10.1104/pp.15.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 05/17/2023]
Abstract
The predominant structure of the hemicellulose xyloglucan (XyG) found in the cell walls of dicots is a fucogalactoXyG with an XXXG core motif, whereas in the Poaceae (grasses and cereals), the structure of XyG is less xylosylated (XXGGn core motif) and lacks fucosyl residues. However, specialized tissues of rice (Oryza sativa) also contain fucogalactoXyG. Orthologous genes of the fucogalactoXyG biosynthetic machinery of Arabidopsis (Arabidopsis thaliana) are present in the rice genome. Expression of these rice genes, including fucosyl-, galactosyl-, and acetyltransferases, in the corresponding Arabidopsis mutants confirmed their activity and substrate specificity, indicating that plants in the Poaceae family have the ability to synthesize fucogalactoXyG in vivo. The data presented here provide support for a functional conservation of XyG structure in higher plants.
Collapse
Affiliation(s)
- Lifeng Liu
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Jonathan Paulitz
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
21
|
Lehner A, Menu-Bouaouiche L, Dardelle F, Le Mauff F, Driouich A, Lerouge P, Mollet JC. In silico prediction of proteins related to xyloglucan fucosyltransferases in Solanaceae genomes. PLANT SIGNALING & BEHAVIOR 2015; 10:e1026023. [PMID: 26176901 PMCID: PMC4622612 DOI: 10.1080/15592324.2015.1026023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 05/28/2023]
Abstract
Two independent studies have shown that the cell wall of pollen tubes from tobacco and tomato species contained fucosylated xyloglucan (XyG). These findings are intriguing as many reports have shown that XyG of somatic cells of these species is not fucosylated but instead is arabinosylated. In order to produce fucosylated XyG, plants must express a functional galactoside α-2-fucosyltransferase. Here, using a bioinformatics approach, we show that several candidate genes coding for XyG fucosyltransferases are present in the genome of coffee and several Solanaceae species including tomato, tobacco, potato, eggplant and pepper. BLAST and protein alignments with the 2 well-characterized XyG fucosyltransferases from Arabidopsis thaliana and Pisum sativum revealed that at least 6 proteins from different Solanaceae species and from coffee displayed the 3 conserved motifs required for XyG fucosyltransferase activity.
Collapse
Affiliation(s)
- Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| | - Laurence Menu-Bouaouiche
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| | - François Le Mauff
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale EA4358; IRIB; VASI; Normandy University; University of Rouen; Mont-Saint-Aignan cedex, France
| |
Collapse
|