1
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 PMCID: PMC11881735 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Sierra J, de León UAP, Padilla-Longoria P. Tumor microenvironment noise-induced polarization: the main challenge in macrophages' immunotherapy for cancer. Mol Cell Biochem 2025; 480:3735-3747. [PMID: 39827422 PMCID: PMC12095459 DOI: 10.1007/s11010-025-05205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Disturbance of epigenetic processes can lead to altered gene function and malignant cellular transformation. In particular, changes in the epigenetic landscape are a central topic in cancer biology. The initiation and progression of cancer are now recognized to involve both epigenetic and genetic alterations. In this paper, we study the epigenetic mechanism (related to the tumor microenvironment) responsible for increasing tumor-associated macrophages that promote the occurrence and metastasis of tumor cells, support tumor angiogenesis, inhibit T-cell-mediated anti-tumor immune response, and lead to tumor progression. We show that the tumor benefits from the macrophages' high degree of plasticity and larger epigenetic basins corresponding to phenotypes that favor cancer development through a process that we call noise-induced polarization. Moreover, we propose a mechanism to promote the appropriate epigenetic stability for immunotherapies involving macrophages, which includes p53 and APR-246 (eprenetapopt). Our results show that a combination therapy may be necessary to ensure the proper epigenetic stability of macrophages, which otherwise will contribute to cancer progression. On the other hand, we conclude that macrophages may remain in the anti-tumoral state in types of cancer that exhibit less TP53 mutation, like colorectal cancer; in these cases, macrophages' immunotherapy may be more suitable. We finally mention the relevance of the epigenetic potential (Waddington's landscape) as the backbone for our study, which encapsulates the biological information of the system.
Collapse
Affiliation(s)
- Jesus Sierra
- CIMAT, De Jalisco s/n, Gto., 36023, Guanajuato, Mexico
| | - Ugo Avila-Ponce de León
- Schiffer Group, Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pablo Padilla-Longoria
- IIMAS, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Ogger PP, Murray PJ. Dissecting inflammation in the immunemetabolomic era. Cell Mol Life Sci 2025; 82:182. [PMID: 40293552 PMCID: PMC12037969 DOI: 10.1007/s00018-025-05715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
The role of immune metabolism, specific metabolites and cell-intrinsic and -extrinsic metabolic states across the time course of an inflammatory response are emerging knowledge. Targeted and untargeted metabolomic analysis is essential to understand how immune cells adapt their metabolic program throughout an immune response. In addition, metabolomic analysis can aid to identify pathophysiological patterns in inflammatory disease. Here, we discuss new metabolomic findings within the transition from inflammation to resolution, focusing on three key programs of immunity: Efferocytosis, IL-10 signaling and trained immunity. Particularly the tryptophan-derived metabolite kynurenine was identified as essential for efferocytosis and inflammation resolution as well as a potential biomarker in diverse inflammatory conditions. In summary, metabolomic analysis and integration with transcriptomic and proteomic data, high resolution imaging and spatial information is key to unravel metabolic drivers and dependencies during inflammation and progression to tissue-repair.
Collapse
Affiliation(s)
- Patricia P Ogger
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Peter J Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
4
|
Mancino S, Boraso M, Galmozzi A, Serafini MM, De Fabiani E, Crestani M, Viviani B. Dose-dependent dual effects of HDAC inhibitors on glial inflammatory response. Sci Rep 2025; 15:12262. [PMID: 40211035 PMCID: PMC11986048 DOI: 10.1038/s41598-025-96241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Neuroinflammation is defined as a process that includes cellular responses designed to protect the central nervous system from external influences, and it initiates in cases of extreme deviations from homeostasis. While it serves a protective role, excessive immune activation can lead to the release of neurotoxic factors, worsening disease progression. Histone deacetylases (HDACs) have been shown to modulate the expression of inflammatory genes by remodeling chromatin through the process of histone deacetylation. HDAC inhibitors (HDACi) alter histone acetylation and affect the transcription of genes involved in inflammatory pathways, making them promising therapeutic tools for the modulation of a variety of inflammatory diseases. However, their use is limited due to non-specific targeting and contradictory results. This study aimed to reconcile conflicting results and share insights on relevant HDACi in the inflammatory response induced by lipopolysaccharide (LPS), considering different exposure scenarios, cellular models, and associated molecular pathways. Specifically, the study evaluated the dose-dependent effects of two broad-spectrum HDACi, Trichostatin A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA, Vorinostat), alongside selective inhibitors-MS-275 (Entinostat, class I), and MC1568 (class II)-on the expression and release of pro- and anti-inflammatory cytokines. Broad-spectrum HDAC inhibitors TSA and SAHA exhibited dose-dependent modulation of LPS-induced cytokine release. Co-treatment with TSA and LPS enhanced pro-inflammatory cytokines (TNF-α, IL-1β) and decreased IL10 in a dose-dependent manner at lower doses (≤ 10 nM), while high concentrations (100 nM) induced the anti-inflammatory IL-10. Pre-treatment with TSA led to a reduction in TNF-α levels induced by LPS, without affecting IL-1β or IL-10 levels. In contrast, the presence of TSA in LPS-triggered alveolar macrophages resulted in a decline in the production of both pro- and anti-inflammatory cytokine, irrespective of the TSA concentration. SAHA exhibited dual effects, enhancing TNF-α and IL-1β at nanomolar levels but suppressing TNF-α at micromolar doses in co-treated glial cells with LPS. Class-selective inhibitors highlighted distinct HDAC roles on LPS modulation: MS-275 reduced, while MC1568 enhanced, TNF-α release, alongside varied IL-1β and IL-10 modulation. To better understand the dual effects of SAHA, transcriptomic analysis of glial cells was conducted in the presence of LPS and low and high SAHA concentrations (100 nM or 5 µM). This analysis revealed a dose-dependent alteration in gene expression and pathway enrichment associated with cytokine signaling and immune regulation (e.g., JAK-STAT). Altogether, these findings reveal insights on the subtle, dose- and context-dependent role of HDACi in modulating glia inflammation.
Collapse
Affiliation(s)
- Samantha Mancino
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
- Departamento de Bioengenharia E Instituto de Bioengenharia E Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mariaserena Boraso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Andrea Galmozzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
- Department of Biomolecular Chemistry School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Emma De Fabiani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
5
|
Hong G, Li J, Wei W, Wu Y, Li L, Chen Y, Xie D, Qu Q, Rojas OJ, Hu G, Li Y, Guo J. Starfish-Inspired Synergistic Reinforced Hydrogel Wound Dressing: Dual Responsiveness and Enhanced Bioactive Compound Delivery for Advanced Skin Regeneration and Management. ACS NANO 2025; 19:10180-10198. [PMID: 40048360 DOI: 10.1021/acsnano.4c17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Effective wound management demands advanced dressings that protect while actively supporting healing. Traditional wound dressings often fall short of meeting the complex needs of skin repair. Inspired by the regenerative abilities of starfish, we developed a bionically engineered hydrogel designed to enhance wound healing. The hydrogel is synthesized through the coassembly of dopamine-modified cellulose nanofibers, chitosan, (3-aminobenzeneboronic acid)-grafted oxidized dextran, and poly(vinyl alcohol), utilizing dynamic Schiff base and boronic ester linkages. This innovative design imparts multifunctional properties, including injectability, 3D printability, antibacterial activity, self-adhesion, self-healing, antioxidant protection, and hemostasis, which emulate the defense mechanisms and regenerative processes of starfish. These characteristics work synergistically to reduce infection and oxidative stress and improve healing efficiency. Additionally, the hydrogel incorporates mangiferin and Vitamin C, which are released in a controlled manner in response to the wound's microenvironment (pH and reactive oxygen species), promoting tissue regeneration and reducing inflammation. In vitro tests confirmed its dual responsiveness, while finite element modeling validated the controlled release of bioactive compounds. In vivo testing on a rat full-thickness wound model showed a 100% healing rate by day 13, significantly outperforming commercial alternatives. The hydrogel's nontoxicity and advanced healing capabilities make it a promising solution for patients with critical healing needs, offering a comprehensive integration of natural biological processes and cutting-edge engineering.
Collapse
Affiliation(s)
- Gonghua Hong
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiawen Li
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenqi Wei
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yue Wu
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Yubao Chen
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Delong Xie
- The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Orlando J Rojas
- Department of Chemical and Biological Engineering, V6T 1Z3; Department of Chemistry, BC V6T 1Z1; Department of Wood Science, Bioproduct Institute, The University of British Columbia, V6T 1Z4 Vancouver, Canada
- Department of Chemistry and Department of Wood Science, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo FI-00076, Finland
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yifei Li
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junling Guo
- College of Biomass Science and Engineering, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610065, China
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, V6T 1Z3; Department of Chemistry, BC V6T 1Z1; Department of Wood Science, Bioproduct Institute, The University of British Columbia, V6T 1Z4 Vancouver, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
6
|
El-Shemi AG, Alqurashi A, Abdulrahman JA, Alzahrani HD, Almwalad KS, Felfilan HH, Alomiri WS, Aloufi JA, Madkhali GH, Maqliyah SA, Alshahrani JB, Kamal HT, Daghistani SH, Refaat B, Minshawi F. IL-10-Directed Cancer Immunotherapy: Preclinical Advances, Clinical Insights, and Future Perspectives. Cancers (Basel) 2025; 17:1012. [PMID: 40149345 PMCID: PMC11940594 DOI: 10.3390/cancers17061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Interleukin-10 (IL-10) is a dimeric cytokine encoded by the IL-10 gene on chromosome 1 [...].
Collapse
Affiliation(s)
- Adel G. El-Shemi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Jihan Abdullah Abdulrahman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hanin Dhaifallah Alzahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Khawlah Saad Almwalad
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hadeel Hisham Felfilan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Wahaj Saud Alomiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Jana Ahmed Aloufi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Ghadeer Hassn Madkhali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Hematology, Dr. Sulaiman Al-Habib Medical Diagnostic Laboratory, Olaya District, Riyadh 12234-3785, Saudi Arabia
| | - Sarah Adel Maqliyah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Blood Bank and Laboratory, Saudi German Hospital, Makkah 24242, Saudi Arabia
| | - Jood Bandar Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Huda Taj Kamal
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Sawsan Hazim Daghistani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| |
Collapse
|
7
|
Saati AA. Naringenin's Neuroprotective Effect on Diazino-Induced Cerebellar Damage in Male Albino Rats, with Modulation of Acetylcholinesterase. Brain Sci 2025; 15:242. [PMID: 40149763 PMCID: PMC11940817 DOI: 10.3390/brainsci15030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Diazinon, a well-known organophosphorus compound, is recognized for its neurotoxic effects, primarily through the inhibition of acetylcholinesterase (AChE) and induction of oxidative stress. AIM This study evaluates the neuroprotective effects of naringenin, a citrus flavonoid, against diazinon-induced cerebellar damage in male albino rats. MATERIALS AND METHODS Twenty-four rats were divided into four groups: control, naringenin, diazinon, and diazinon with naringenin. RESULTS Histological examination revealed altered structures of Purkinje cells in the cerebellum of the diazinon group. Naringenin co-treatment significantly improved cerebellar histology and modulated oxidative stress markers by decreasing malondialdehyde (MDA) and increasing glutathione (GSH) and glutathione peroxidase (GPx) levels. Additionally, naringenin exhibited anti-inflammatory effects by decreasing nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) levels, while increasing interleukin-10 (IL-10). It also reduced apoptotic markers, including p53, Bax, caspase-9, caspase-8, and caspase-3, while increasing the anti-apoptotic marker Bcl-2. Furthermore, naringenin modulated AChE activity, leading to decreased acetylcholine levels and reduced neurotoxicity. CONCLUSIONS These findings suggest that naringenin's antioxidant, anti-inflammatory, and anti-apoptotic properties contribute to its neuroprotective role against diazinon-induced cerebellar damage.
Collapse
Affiliation(s)
- Abdullah A Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
8
|
Ciurus S, Elewa MAF, Palmer MA, Wolf A, Hector M, Fuhrmann DC, Thomas D, Gurke R, Schwalm MP, Berger L, Zech TJ, Burgers LD, Marschalek R, Geisslinger G, Knapp S, Langmann T, Bracher F, Weigert A, Fürst R. Inhibition of DYRK1B BY C81 impedes inflammatory processes in leukocytes by reducing STAT3 activity. Cell Mol Life Sci 2025; 82:85. [PMID: 39985685 PMCID: PMC11846820 DOI: 10.1007/s00018-025-05579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 01/05/2025] [Indexed: 02/24/2025]
Abstract
Chronic inflammatory diseases are a significant global burden and are associated with dysregulated resolution of inflammation. Therefore, promoting the process of resolution is a promising therapeutic approach. This study presents the potent anti-inflammatory and pro-resolving effects of a natural product-derived compound called C81. Administration of C81 in a therapeutic window resolved inflammation in the murine imiquimod-induced psoriasis model, and reduced microglial infiltration in a laser-induced choroidal neovascularisation model. Investigations into the underlying mechanisms of C81 identified the DYRK1B/STAT3 axis as a new regulator of inflammatory processes in leukocytes. The inhibition of DYRK1B by C81 resulted in attenuated STAT3 phosphorylation. The depletion of STAT3-regulated gene expression led to the inhibition of leukocyte adhesion and migration due to reduced integrin activation, and in addition to the inhibition of the release of pro-inflammatory mediators such as cytokines and eicosanoids. Importantly, the pro-resolving effects of C81 included the cell type-specific induction of apoptosis in neutrophils and a subsequent increase in efferocytosis. In conclusion, we report the DYRK1B/STAT3 axis as a novel and promising therapeutic target for activating the resolution of inflammation.
Collapse
Affiliation(s)
- Sarah Ciurus
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Mohammed A F Elewa
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Department of Biochemistry, Faculty of Pharmacy, Kafr El-Sheikh University, Karf El-Sheikh, Egypt
| | - Megan A Palmer
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lena Berger
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas J Zech
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Luisa D Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franz Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany.
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
9
|
Floyd BM, Schmidt EL, Till NA, Yang JL, Liao P, George BM, Flynn RA, Bertozzi CR. Mapping the nanoscale organization of the human cell surface proteome reveals new functional associations and surface antigen clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637979. [PMID: 40027624 PMCID: PMC11870420 DOI: 10.1101/2025.02.12.637979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The cell surface is a dynamic interface that controls cell-cell communication and signal transduction relevant to organ development, homeostasis and repair, immune reactivity, and pathologies driven by aberrant cell surface phenotypes. The spatial organization of cell surface proteins is central to these processes. High-resolution fluorescence microscopy and proximity labeling have advanced studies of surface protein associations, but the spatial organization of the complete surface proteome remains uncharted. In this study, we systematically mapped the surface proteome of human T-lymphocytes and B-lymphoblasts using proximity labeling of 85 antigens, identified from over 100 antibodies tested for binding to surface-exposed proteins. These experiments were coupled with an optimized data-independent acquisition mass spectrometry workflow to generate a robust dataset. Unsupervised clustering of the resulting interactome revealed functional modules, including well-characterized complexes such as the T-cell receptor and HLA class I/II, alongside novel clusters. Notably, we identified mitochondrial proteins localized to the surface, including the transcription factor TFAM, suggesting previously unappreciated roles for mitochondrial proteins at the plasma membrane. A high-accuracy machine learning classifier predicted over 6,000 surface protein associations, highlighting functional associations such as IL10RB's role as a negative regulator of type I interferon signaling. Spatial modeling of the surface proteome provided insights into protein dispersion patterns, distinguishing widely distributed proteins, such as CD45, from localized antigens, such as CD226 pointing to active mechanisms of regulating surface organization. This work provides a comprehensive map of the human surfaceome and a resource for exploring the spatial and functional dynamics of the cell membrane proteome.
Collapse
Affiliation(s)
- Brendan M Floyd
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
- Lead contact
| | - Elizabeth L Schmidt
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Nicholas A Till
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jonathan L Yang
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pinyu Liao
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H and Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Lead contact
| |
Collapse
|
10
|
Liu S, Li J, Zhang Y, Wang C, Zhang L. IL-10: the master immunomodulatory cytokine in allergen immunotherapy. Expert Rev Clin Immunol 2025; 21:17-28. [PMID: 39323099 DOI: 10.1080/1744666x.2024.2406894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Allergen immunotherapy (AIT) is the only disease-modifying treatment for patients with IgE-mediated allergic diseases. Successful AIT can induce long-term immune tolerance to the common allergen, which provides clinical benefits for years after discontinuation. The cytokine interleukin (IL)-10, as a key anti-inflammatory mediator with strong immunoregulatory functions, has drawn increasing attention over the past decades. AREAS COVERED After an extensive search of PubMed, EMBASE, and Web of Science databases, covering articles published from 1989 to 2024, our review aims to emphasize the key common information from previous reviews on the crucial involvement of IL-10 in allergen immunotherapy (AIT) induced immunological tolerance. In this review, we discuss the regulation of IL-10 expression and the molecular pathways associated with IL-10 function. We also further summarize mechanisms of immune tolerance induced by AIT, especially the indispensable role of IL-10 in AIT. EXPERT OPINION IL-10 plays an indispensable role in immune tolerance induced by AIT. Understanding the importance of the role of IL-10 in AIT would help us comprehend the mechanisms thoroughly and develop targeted therapeutics for allergic diseases.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Inyang KE, Sim J, Clark KB, Geron M, Monahan K, Evans C, O'Connell P, Laumet S, Peng B, Ma J, Heijnen CJ, Dantzer R, Scherrer G, Kavelaars A, Bernard M, Aldhamen YA, Folger JK, Bavencoffe A, Laumet G. Upregulation of delta opioid receptor by meningeal interleukin-10 prevents relapsing pain. Brain Behav Immun 2025; 123:399-410. [PMID: 39349285 PMCID: PMC11624093 DOI: 10.1016/j.bbi.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Chronic pain often includes periods of transient amelioration and even remission that alternate with severe relapsing pain. While most research on chronic pain has focused on pain development and maintenance, there is a critical unmet need to better understand the mechanisms that underlie pain remission and relapse. We found that interleukin (IL)-10, a pain resolving cytokine, is produced by resident macrophages in the spinal meninges during remission from pain and signaled to IL-10 receptor-expressing sensory neurons. Using unbiased RNA-sequencing, we identified that IL-10 upregulated expression and antinociceptive activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of either IL-10 signaling or δOR triggered relapsing pain. Overall, our findings, from electrophysiology, genetic manipulation, flow cytometry, pharmacology, and behavioral approaches, indicate that remission of pain is not simply a return to the naïve state. Instead, remission is an adapted homeostatic state associated with lasting pain vulnerability resulting from persisting neuroimmune interactions within the nociceptive system. Broadly, this sheds light on the elusive mechanisms underlying recurrence a common aspect across various chronic pain conditions.
Collapse
Affiliation(s)
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Kimberly B Clark
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Karli Monahan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Christine Evans
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Bo Peng
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiacheng Ma
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J Heijnen
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, Department of Pharmacology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina, Chapel Hill, NC, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Bernard
- Flow Cytometry Core, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI, USA; Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Yadav S, Gowda S, Agrawal-Rajput R. CSF-1R blockade to alleviate azithromycin mediated immunosuppression in a mouse model of intracellular infection. Int Immunopharmacol 2024; 143:113477. [PMID: 39476565 DOI: 10.1016/j.intimp.2024.113477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Colony Stimulating Factor-1 Receptor (CSF-1R) signalling plays an important role in maturation, differentiation and activation of macrophages. Apposite generation and activation of macrophage phenotypes and subsequent adaptive immune response against any infection is decisive for a positive disease outcome. Antibiotic therapy is imperative for treating bacterial infections however antibiotics have off-target effects on host immune-cells. These effects could either be contextually beneficial or harmful and could potentially aid generation of infection persistence and antimicrobial resistance (AMR) via host immunosuppression. We had recently reported the immunosuppressive-mechanism of azithromycin-induced increased CSF-1R expression on murine-macrophages and bacterial-persistence in Balb/c model of intracellular infection. We further wanted to explore the molecular-mechanism behind these observations and tested GW2580-mediated CSF-1R blockade before azithromycin treatment during S. flexneri induced intracellular infection. In the presented study, we report that the azithromycin alters the protein expression or phosphorylation of transcription-factors ERK1/2, P38, AKT1, STAT3, STAT6, and EGR2 that are involved in macrophage polarisatoin and also take part in CSF-1R signalling pathways. Intrestingly, CSF-1R blockade using GW2580 abrogated or reversed the azithromycin-induced up- or down-regulated expression or phosphorylation of ERK1/2, P38, AKT1, STAT3, STAT6, and EGR2. We further validated our results in Balb/c model of S. flexneri infection. Intrestingly, the CSF-1R blocker and azithromycin treated mice showed batter recovery than the azithromycin alone treated mice and hence we report the aftermath of GW2580 with azithromycin treatment on disease and immunological outcome of an intracellular infection caused by Shigella flexneri.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biotechnology and Bioengineering, Immunology Lab, Indian Institute of Advanced Research, Gandhinagar 382421, Gujarat, India
| | - Sharath Gowda
- Department of Biotechnology and Bioengineering, Immunology Lab, Indian Institute of Advanced Research, Gandhinagar 382421, Gujarat, India
| | - Reena Agrawal-Rajput
- Department of Biotechnology and Bioengineering, Immunology Lab, Indian Institute of Advanced Research, Gandhinagar 382421, Gujarat, India.
| |
Collapse
|
13
|
Tsai CM, Hajam IA, Caldera JR, Chiang AW, Gonzalez C, Du X, Choudhruy B, Li H, Suzuki E, Askarian F, Clark T, Lin B, Wierzbicki IH, Riestra AM, Conrad DJ, Gonzalez DJ, Nizet V, Lewis NE, Liu GY. Pathobiont-driven antibody sialylation through IL-10 undermines vaccination. J Clin Invest 2024; 134:e179563. [PMID: 39680460 DOI: 10.1172/jci179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024] Open
Abstract
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Austin Wt Chiang
- Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - Cesia Gonzalez
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Xin Du
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Biswa Choudhruy
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Haining Li
- Department of Bioengineering, University of California, La Jolla, California, USA
| | - Emi Suzuki
- Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
- Division of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Ty'Tianna Clark
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brian Lin
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Igor H Wierzbicki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Angelica M Riestra
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
14
|
Grotra R, Karri PS, Gupta A, Malik R, Gupta AK, Meena JP, Seth R. Matched Unrelated Donor Hematopoietic Stem Cell Transplant as Successful Curative Therapy for IL10RB Mutation-Associated Very Early Onset IBD. Pediatr Transplant 2024; 28:e14891. [PMID: 39539152 DOI: 10.1111/petr.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Inflammatory bowel diseases are complex chronic disorders with a relapsing-remitting course that affect the gut due to dysregulated immune response. The incidence of these disorders is increasing globally along with an increase in the incidence in pediatric population. Very early onset inflammatory bowel diseases are seen in children with age less than 6 years, where monogenic causes predominate. With the advent of next-generation sequencing methods, these disorders are being diagnosed more. Interleukin-10 receptor mutation-associated inflammatory bowel diseases is one such monogenic disorder where immunosuppression shows poor response. METHODS We report the case of an 8-month-old child of Indian origin who presented with severe enterocolitis and rectovaginal fistulas. She was evaluated on lines of a very early onset inflammatory bowel disease. She was found to have a mutation in the interleukin-10 receptor causing severe enterocolitis. She underwent a diversion colostomy. She was admitted at 25 months of age for the hematopoietic-stem-cell-transplant (HSCT). The conditioning regimen used consisted of busulfan, fludarabine, and anti-thymocyte-globulin (ATG). The child received a 10/10 human leukocyte antigen (HLA) matched from a matched-unrelated adult female donor with bone marrow stem cell product at a dose of 5.6 million CD34+ cells per kg. RESULTS She was treated successfully by a matched unrelated donor HSCT. At present, she is 2 years and 4 months posttransplant and is cured. CONCLUSIONS Early recognition and prompt genetic testing can help in diagnosing and establishing the cause of a very early onset inflammatory bowel disease. Very early onset inflammatory bowel disease caused due to interleukin-10 receptor mutations can be cured by HSCT.
Collapse
Affiliation(s)
- Rohan Grotra
- Division of Pediatric Gastroenterology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Padma Sagarika Karri
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Malik
- Division of Pediatric Gastroenterology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Asgari A, Franczak A, Herchen A, Jickling GC, Jurasz P. Elevated levels of pro-thrombotic eNOS-negative platelets in COVID-19 patients. Thromb Res 2024; 244:109178. [PMID: 39369655 DOI: 10.1016/j.thromres.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Platelet-rich microvascular thrombi are common in severe COVID-19. Endogenous nitric oxide (NO)-signaling limits thrombus formation and previously we identified platelet subpopulations with a differential ability to produce NO based on the presence or absence of endothelial nitric oxide synthase (eNOS). eNOS expression is counter-regulated by cytokines, and COVID-19-associated immune/inflammatory responses may affect the transcriptome profile of megakaryocytes and their platelet progeny. OBJECTIVES We investigated whether the percentage of eNOS-negative to eNOS-positive platelets increases in COVID-19 patients and whether this change may be due to the actions of pro-inflammatory cytokines on megakaryocytes. METHODS Platelets were isolated from hospitalized COVID-19 patients and COVID-19-negative controls. Platelet eNOS was measured by flow cytometry and plasma inflammatory cytokines by ELISA. Megakaryocytes from eNOS-GFP transgenic mice and the Meg-01 cell line were characterized to identify an appropriate model to study eNOS-based platelet subpopulation formation in response to inflammatory cytokines. RESULTS COVID-19 patients demonstrated a significant increase in eNOS-negative and a concomitant decrease in eNOS-positive platelets compared to controls, and this change was associated with disease severity as assessed by ICU admission. A higher eNOS-negative to -positive platelet percentage was associated with enhanced platelet activation as measured by surface CD62P. Accordingly, COVID-19 patients demonstrated higher TNF-α, IL-6, and IL-1β plasma concentrations than controls. Inflammatory cytokines associated with COVID-19 promoted eNOS-negative Meg-01 formation and enhanced subsequent eNOS-negative platelet-like particle formation. CONCLUSIONS COVID-19 patients have a higher percentage of eNOS-negative to -positive platelets, likely as a result of inflammatory response reducing megakaryocyte eNOS expression, which predisposes to thrombosis.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Aleksandra Franczak
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Alex Herchen
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Glen C Jickling
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Nie Z, Fan Q, Jiang W, Wei S, Luo R, Hu H, Liu G, Lei Y, Xie S. Placental mesenchymal stem cells suppress inflammation and promote M2-like macrophage polarization through the IL-10/STAT3/NLRP3 axis in acute lung injury. Front Immunol 2024; 15:1422355. [PMID: 39620220 PMCID: PMC11604576 DOI: 10.3389/fimmu.2024.1422355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/29/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a clinically severe respiratory disorder that currently lacks specific and effective pharmacotherapy. The imbalance of M1/M2 macrophage polarization is pivotal in the initiation and progression of ALI. Shifting macrophage polarization from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype could be a potential therapeutic strategy. The intratracheal administration of placental mesenchymal stem cells (pMSCs) has emerged as a novel and effective treatment for ALI. This study aimed to investigate the role and downstream mechanisms of pMSCs in reprogramming macrophage polarization to exert anti-inflammatory effects in ALI. METHODS The study used lipopolysaccharide (LPS) to induce inflammation in both cell and rat models of ALI. Intratracheal administration of pMSCs was tested as a therapeutic intervention. An expression dataset for MSCs cultured with LPS-treated macrophages was collected from the Gene Expression Omnibus database to predict downstream regulatory mechanisms. Experimental validation was conducted through in vitro and in vivo assays to assess pMSCs effects on macrophage polarization and inflammation. RESULTS Both in vitro and in vivo experiments validated that pMSCs promoted M2 macrophage polarization and reduced the release of inflammatory factors. Further analyses revealed that pMSCs activated the signal transducer and activator of transcription (STAT)3 signaling pathway by secreting interleukin (IL)-10, leading to increased STAT3 phosphorylation and nuclear translocation. This activation inhibited NLRP3 inflammasome activation, promoting M2 macrophage polarization and suppressing the inflammatory response. CONCLUSION The study concluded that pMSCs alleviated lung injury in an LPS-induced ALI model by inhibiting M1 macrophage polarization and proinflammatory factor secretion, while promoting M2 macrophage polarization. This effect was mediated via the IL-10/STAT3/NLRP3 axis, presenting a novel therapeutic pathway for ALI treatment.
Collapse
Affiliation(s)
- Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shujian Wei
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renwei Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haifeng Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufei Lei
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Liu H, Zhao Y, Du H, Hao P, Tian H, Wang K, Qiu Y, Dong H, Du Q, Tong D, Huang Y. IL-10 upregulates SOCS3 to inhibit type I interferon signaling to promote PoRVA replication in intestinal epithelial cells. Vet Microbiol 2024; 298:110259. [PMID: 39332165 DOI: 10.1016/j.vetmic.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Porcine group A rotavirus (PoRVA) is one of the common enteric viruses causing severe diarrhea in piglets. Although PoRVA infection has been identified to promote IL-10 production, the role of IL-10 during viral infection remains unclear. In this study, we found that elevated IL-10 levels during PoRVA infection promote viral replication by inhibiting type I interferon production and response. IL-10 treatment upregulated the expression of SOCS3 in PoRVA-infected IPEC-J2 cells, which inhibited IFN-I production by preventing the degradation of IκB and nuclear translocation of NF-κB, thereby significantly promoting PoRVA replication. Furthermore, we determined that SOCS3 also inhibited type Ⅰ interferon signaling pathway, which led to a significantly reduced ISGs after IFN-α stimulation. In PoRVA-infected cells, overexpression of SOCS3 significantly inhibits phosphorylation and heterodimerization of STAT1, thereby promoting viral replication. Finally, we demonstrated the effect of IL-10 on PoRVA replication in vivo by murine models of PoRVA infection. PoRVA replication levels were lower in the ileum of IL-10 knockout (IL-10-/-) mice than that in PoRVA-infected wild-type mice, but PoRVA replication levels were higher in the ileum of IFNAR knockout (IFNAR-/-) mice than that in PoRVA-infected wild-type mice. Taken together, our findings provide information to understand the strategies of PoRVA to evade host innate antiviral immunity.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongpan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Shaanxi Animal Husbandry Experimental and Demonstration Center, China
| | - Huimin Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Pengcheng Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haiying Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| |
Collapse
|
18
|
Tsai SH, Cheng HC, Little JP, Islam H, Liu HW. Elevated Plasma IL-6 Coincides with Activation of STAT3 in PBMC After Acute Resistance Exercise. Med Sci Sports Exerc 2024; 56:2117-2124. [PMID: 39475859 DOI: 10.1249/mss.0000000000003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Changes in plasma concentrations of anti-inflammatory cytokines, such as interleukin-6 (IL-6) and IL-10, after acute resistance exercise (RE) have been widely explored. Whether observed changes in plasma cytokine concentration correspond to the activation of anti-inflammatory signaling pathways in immune cells after acute RE is unknown. This study aimed to determine if changes in plasma cytokines after acute RE resulted in the activation of anti-inflammatory signaling pathways in peripheral blood mononuclear cells (PBMC). METHODS Healthy young males (N = 16; age = 23.5 ± 2.7 yr; BMI = 22.4 ± 1.7 kg·m-2) participated in a single session of whole-body RE (4 sets of 4 different exercises at 70% 1-repetition maximum with the last set to failure) and a sedentary control (CON) condition in a randomized crossover design. Blood samples were collected at several time points before and after the exercise bout. RESULTS Higher plasma IL-6, IL-10, and IL-1 RA concentrations were observed after RE compared with CON. Phosphorylation of STAT3 and protein expression of SOCS3 in PBMC were increased in RE compared with CON. The elevation of plasma IL-6, but not IL-10, coincided with the activation of STAT3 signaling in PBMC. CONCLUSIONS These results highlight a potential mechanism by which RE may exert anti-inflammatory actions in circulating immune cells.
Collapse
Affiliation(s)
- Shun-Hsi Tsai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, TAIWAN
| | - Hao-Chien Cheng
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, TAIWAN
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, CANADA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, CANADA
| | - Hung-Wen Liu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, TAIWAN
| |
Collapse
|
19
|
Jana B, Kaczmarek MM, Całka J, Romaniewicz M, Palus K. Profile of mRNA expression in the myometrium after intrauterine Escherichia coli injections in pigs. Theriogenology 2024; 228:93-103. [PMID: 39128182 DOI: 10.1016/j.theriogenology.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Endometritis and metritis are common reproductive diseases in domestic animals, causing a reduction in reproductive performance and economic losses. A previous study revealed the alterations in the transcriptome of the inflamed porcine endometrium. Data on molecular signatures in the myometrium under inflammatory conditions are limited. The current study analyzed the transcriptomic profile of porcine myometrium after intrauterine Escherichia coli (E.coli) administration. On day 3 of the estrous cycle (Day 0 of the study), 50 ml of either saline (group CON, n = 7) or E. coli suspension (109 colony-forming units/ml, group E. coli, n = 5) were injected into each uterine horn. After eight days, the gilts were euthanized, and the uteri were removed for further analysis. In the myometrium of the CON group versus the E. coli group, microarray analysis revealed 167 differentially expressed genes (DEGs, 78 up- and 89 down-regulated). After intrauterine E. coli administration, among the DEGs of the inflammatory response set, the highest expressed were mRNA for CXCL6, S100A8, S100A12, SLC11A1, S100A9, CCL15, CCR1, CD163, THBS1 and SOCS3, while the most suppressed was mRNA expression for FFAR4, KL, SLC7A2 and MOAB. Furthermore, a comparison of the present results on myometrial transcriptome with the authors' earlier published data on the endometrial transcriptome shows the partial differences in mRNA expression between both layers after intrauterine E.coli injections. This study, for the first time, presents changes in the transcriptome of porcine myometrium after intrauterine E.coli administration, which may be important for myometrial homeostasis and functions and, as a result, for the uterine inflammation course. Data provide a valuable resource for further studies on genes and pathways regulating uterine inflammation and functions.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Monika M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Marta Romaniewicz
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| |
Collapse
|
20
|
Ozola L, Pilmane M. Characterization of Tissue Immunity Defense Factors of the Lip in Primary Dentition Children with Bilateral Cleft Lip Palate. J Pers Med 2024; 14:965. [PMID: 39338219 PMCID: PMC11433168 DOI: 10.3390/jpm14090965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bilateral cleft lip palate is a severe congenital birth defect of the mouth and face. Immunity factors modulate immune response, inflammation, and healing; therefore, they are vital in the assessment of the immunological status of the patient. The aim of this study is to assess the distribution of Gal-10, CD-163, IL-4, IL-6, IL-10, HBD-2, HBD-3, and HBD-4 in tissue of the bilateral cleft lip palate in primary dentition children. METHODS Five patients underwent cheiloplasty surgery, where five tissue samples of lip were obtained. Immunohistochemical staining, semi-quantitative evaluation, and non-parametric statistical analysis were used. RESULTS A statistically significant increase in HBD-2, HBD-3, and HBD-4 was found in skin and mucosal epithelium, hair follicles, and blood vessels. A notable increase was also noted in IL-4, IL-6, and IL-10 in the mucosal epithelium and CD163 in blood vessels. The connective tissue of patients presented with a statistically significant decrease in Gal-10, IL-10, and HBD-3. Spearman's rank correlation revealed multiple significant positive and negative correlations between the factors. CONCLUSIONS Upregulation of CD163 points to increased angiogenesis but the increase in IL-4 and IL-10 as well as the decrease in Gal-10 points to suppression of excessive inflammatory damage. Decreased connective tissue healing and excessive scarring are suggested by the decrease in HBD-3 and IL-10 and the increase in IL-6.
Collapse
Affiliation(s)
- Laura Ozola
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
- Children’s Clinical University Hospital, Vienības Gatve 45, LV-1004 Riga, Latvia
| |
Collapse
|
21
|
Lee PJ, Papachristou GI, Speake C, Lacy-Hulbert A. Immune markers of severe acute pancreatitis. Curr Opin Gastroenterol 2024; 40:389-395. [PMID: 38967941 PMCID: PMC11305979 DOI: 10.1097/mog.0000000000001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Acute pancreatitis is a common acute inflammatory disorder of the pancreas, and its incidence has been increasing worldwide. Approximately 10% of acute pancreatitis progresses to severe acute pancreatitis (SAP), which carries significant morbidity and mortality. Disordered immune response to pancreatic injury is regarded as a key event that mediates systemic injury in SAP. In this article, we review recent developments in immune biomarkers of SAP and future directions for research. RECENT FINDINGS Given the importance of the NLRP3-inflammasome pathway in mediating systemic inflammatory response syndrome and systemic injury, recent studies have investigated associations of SAP with systemic levels of activators of NLRP3, such as the damage associated molecular patterns (DAMPs) for the first time in human SAP. For example, circulating levels of histones, mitochondrial DNAs, and cell free DNAs have been associated with SAP. A panel of mechanistically relevant immune markers (e.g., panel of Angiopoeitin-2, hepatocyte growth factor, interleukin-8 (IL-8), resistin and sTNF-α R1) carried higher predictive accuracies than existing clinical scores and individual immune markers. Of the cytokines with established relevance to SAP pathogenesis, phase 2 trials of immunotherapies, including tumor necrosis factor (TNF)-alpha inhibition and stimulation of IL-10 production, are underway to determine if altering the immunologic response can reduce the severity of acute pancreatitis (AP). SUMMARY Circulating systemic levels of various DAMPs and a panel of immune markers that possibly reflect activities of different pathways that drive SAP appear promising as predictive biomarkers for SAP. But larger multicenter studies are needed for external validation. Studies investigating immune cellular pathways driving SAP using immunophenotyping techniques are scarce. Interdisciplinary efforts are also needed to bring some of the promising biomarkers to the bedside for validation and testing for clinical utility. Studies investigating the role of and characterization of altered gut-lymph and gut-microbiota in severe AP are needed.
Collapse
Affiliation(s)
- Peter J Lee
- Division of Gastroenterology, Hepatology, and Nutrition. Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition. Ohio State University Wexner Medical Center, Columbus, OH
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Adam Lacy-Hulbert
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
22
|
Naidoo SJ, Naicker T. The Enigmatic Interplay of Interleukin-10 in the Synergy of HIV Infection Comorbid with Preeclampsia. Int J Mol Sci 2024; 25:9434. [PMID: 39273381 PMCID: PMC11395227 DOI: 10.3390/ijms25179434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cytokines coordinate the intricate choreography of the immune system, directing cellular activities that mediate inflammation, pathogen defense, pathology and tissue repair. Within this spectrum, the anti-inflammatory prowess of interleukin-10 (IL-10) predominates in immune homeostasis. In normal pregnancy, the dynamic shift of IL-10 across trimesters maintains maternal immune tolerance ensuring fetal development and pregnancy success. Unravelling the dysregulation of IL-10 in pregnancy complications is vital, particularly in the heightened inflammatory condition of preeclampsia. Of note, a reduction in IL-10 levels contributes to endothelial dysfunction. In human immunodeficiency virus (HIV) infection, a complex interplay of IL-10 occurs, displaying a paradoxical paradigm of being immune-protective yet aiding viral persistence. Genetic variations in the IL-10 gene further modulate susceptibility to HIV infection and preeclampsia, albeit with nuanced effects across populations. This review outlines the conceptual framework underlying the role of IL-10 in the duality of normal pregnancy and preeclampsia together with HIV infection, thus highlighting its regulatory mechanisms and genetic influences. Synthesizing these findings in immune modulation presents avenues for therapeutic interventions in pregnancy complications comorbid with HIV infection.
Collapse
Affiliation(s)
| | - Thajasvarie Naicker
- Department of Optics and Imaging, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
23
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 PMCID: PMC11352477 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| |
Collapse
|
24
|
Juarez D, Handal-Silva A, Morán-Perales JL, Torres-Cifuentes DM, Flores G, Treviño S, Moreno-Rodriguez A, Guevara J, Diaz A. New insights into sodium phenylbutyrate as a pharmacotherapeutic option for neurological disorders. Synapse 2024; 78:e22301. [PMID: 38819491 DOI: 10.1002/syn.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jose Luis Morán-Perales
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Diana M Torres-Cifuentes
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Samuel Treviño
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Albino Moreno-Rodriguez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
25
|
Rechtman A, Zveik O, Haham N, Brill L, Vaknin-Dembinsky A. A protective effect of lower MHC-II expression in MOGAD. J Neuroimmunol 2024; 391:578351. [PMID: 38703720 DOI: 10.1016/j.jneuroim.2024.578351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) is a demyelinating central nervous system disorder. We aimed to uncover immune pathways altered in MOGAD to predict disease progression. Using nanostring nCounter technology, we analyzed immune gene expression in PBMCs from MOGAD patients and compare it with healthy controls (HCs). We found 35 genes that distinguished MOGAD patients and HCs. We then validated those results in a larger cohort including MS and NMOSD patients. Expressions of HLA-DRA was significantly lower in MOGAD patients. This reduction in HLA-DRA, correlated with a monophasic disease course and greater brain volume, enhancing our ability to predict MOGAD progression.
Collapse
Affiliation(s)
- Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Ghelich P, Samandari M, Hassani Najafabadi A, Tanguay A, Quint J, Menon N, Ghanbariamin D, Saeedinejad F, Alipanah F, Chidambaram R, Krawetz R, Nuutila K, Toro S, Barnum L, Jay GD, Schmidt TA, Tamayol A. Dissolvable Immunomodulatory Microneedles for Treatment of Skin Wounds. Adv Healthc Mater 2024; 13:e2302836. [PMID: 38299437 DOI: 10.1002/adhm.202302836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Sustained inflammation can halt or delay wound healing, and macrophages play a central role in wound healing. Inflammatory macrophages are responsible for the removal of pathogens, debris, and neutrophils, while anti-inflammatory macrophages stimulate various regenerative processes. Recombinant human Proteoglycan 4 (rhPRG4) is shown to modulate macrophage polarization and to prevent fibrosis and scarring in ear wound healing. Here, dissolvable microneedle arrays (MNAs) carrying rhPRG4 are engineered for the treatment of skin wounds. The in vitro experiments suggest that rhPRG4 modulates the inflammatory function of bone marrow-derived macrophages. Degradable and detachable microneedles are developed from gelatin methacryloyl (GelMA) attach to a dissolvable gelatin backing. The developed MNAs are able to deliver a high dose of rhPRG4 through the dissolution of the gelatin backing post-injury, while the GelMA microneedles sustain rhPRG4 bioavailability over the course of treatment. In vivo results in a murine model of full-thickness wounds with impaired healing confirm a decrease in inflammatory biomarkers such as TNF-α and IL-6, and an increase in angiogenesis and collagen deposition. Collectively, these results demonstrate rhPRG4-incorporating MNA is a promising platform in skin wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Alireza Hassani Najafabadi
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Adam Tanguay
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Nikhil Menon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Fatemeh Alipanah
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ramaswamy Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Roman Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Surgery, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kristo Nuutila
- US Army Institute of Surgical Research, Fort Sam Houston, Texas, 78234, USA
| | - Steven Toro
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Lindsay Barnum
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gregory D Jay
- Emergency Medicine, Brown University, Providence, RI, 02908, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
27
|
Kundu A, Ghosh P, Bishayi B. Verapamil and tangeretin enhances the M1 macrophages to M2 type in lipopolysaccharide-treated mice and inhibits the P-glycoprotein expression by downregulating STAT1/STAT3 and upregulating SOCS3. Int Immunopharmacol 2024; 133:112153. [PMID: 38678669 DOI: 10.1016/j.intimp.2024.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, INDIA
| | - Pratiti Ghosh
- Lab of Lifestyle and Stress Physiology, Head, Department of Physiology, West Bengal State University, North 24 Parganas, Malikapur, Berunanpukuria, Barasat, Kolkata, West Bengal 700126, INDIA.
| | - Biswadev Bishayi
- Professor, Department of Physiology, University of Calcutta. West Bengal, INDIA.
| |
Collapse
|
28
|
Lyu MH, Bian C, Dou YP, Gao K, Xu JJ, Ma P. Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway. World J Stem Cells 2024; 16:560-574. [PMID: 38817327 PMCID: PMC11135252 DOI: 10.4252/wjsc.v16.i5.560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved. Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process. AIM To assess the influence of interleukin-10 (IL-10) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) following their interaction with macrophages in an inflammatory environment. METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment. In this study, we investigated its impact on the proliferation, migration, and osteogenesis of BMSCs. The expression levels of signal transducer and activator of transcription 3 (STAT3) and its activated form, phosphorylated-STAT3, were examined in IL-10-stimulated macrophages. Subsequently, a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling. RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution, and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs. Mechanistically, STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages. Specifically, IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response, as evidenced by its diminished impact on the osteogenic differentiation of BMSCs. CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs. The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs' osteogenic differentiation.
Collapse
Affiliation(s)
- Meng-Hao Lyu
- Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yi-Ping Dou
- Department of Dental Implantology, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Kang Gao
- Department of Dental Implantology, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jun-Ji Xu
- Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100050, China
| | - Pan Ma
- Department of Dental Implantology, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
29
|
Solleiro-Villavicencio H, Méndez-García LA, Ocampo-Aguilera NA, Baltazar-Pérez I, Arreola-Miranda JA, Aguayo-Guerrero JA, Alfaro-Cruz A, González-Chávez A, Fonseca-Sánchez MA, Fragoso JM, Escobedo G. Decreased Hepatic and Serum Levels of IL-10 Concur with Increased Lobular Inflammation in Morbidly Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:862. [PMID: 38929479 PMCID: PMC11205754 DOI: 10.3390/medicina60060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.
Collapse
Affiliation(s)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Nydia A. Ocampo-Aguilera
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Itzel Baltazar-Pérez
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Arreola-Miranda
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Ana Alfaro-Cruz
- Pathological Anatomy Department, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | - Antonio González-Chávez
- Clínica de Atención Integral para Pacientes con Diabetes y Obesidad (CAIDO), General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | | | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| |
Collapse
|
30
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
31
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
32
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
33
|
Saldaña-Villanueva K, González-Palomo AK, Méndez-Rodríguez KB, Gavilán-García A, Benítez-Arvizu G, Diaz-Barriga F, Alcantara-Quintana L, Pérez-Vázquez FJ. Serum levels of inflammatory cytokines in mercury mining workers in a precarious situation: A preliminary study. Toxicol Ind Health 2024; 40:134-143. [PMID: 38289205 DOI: 10.1177/07482337241229471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Mercury is a ubiquitous environmental xenobiotic; the primary sources of exposure to this metal are artisanal gold mining and the direct production of mercury. In Mexico, artisanal mercury mining continues to be an important activity in different regions of the country. Exposure to mercury vapors releases can have severe health impacts, including immunotoxic effects such as alterations in cytokine profiling. Therefore, in the present work, we evaluated the inflammatory cytokines profile in the blood serum of miners exposed to mercury. A cross-sectional observational study was performed on 27 mining workers (exposed group) and 20 control subjects (nonexposed group) from central Mexico. The mercury urine concentration (U-Hg) was determined by atomic absorption spectrometry, and IL-2, IL-6, IL-8, IL-10, and TNF-α were measured using a Multiplex Assay. The results showed that the U-Hg in the miners had a median value of 552.70 μg/g creatinine. All cytokines showed a significant increase in the miner group compared with the control group, except for TNF-α. In addition, we observed a positive correlation between U-Hg concentration and cytokine levels. In conclusion, mercury exposure correlated with cytokine levels (considered acute inflammatory marker) in miners; therefore, workers exposed to this metal show an acute systemic inflammation that could lead to alterations in other organs and systems.
Collapse
Affiliation(s)
- Kelvin Saldaña-Villanueva
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ana K González-Palomo
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karen B Méndez-Rodríguez
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Arturo Gavilán-García
- Instituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales, Ciudad de México, México
| | - Gamaliel Benítez-Arvizu
- Banco de Sangre Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades Centro Medico Nacional Siglo XXI, Ciudad de México, México
| | - Fernando Diaz-Barriga
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Luz Alcantara-Quintana
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Francisco J Pérez-Vázquez
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
34
|
Lacinski RA, Dziadowicz SA, Stewart A, Chaharbakhshi E, Akhter H, Pisquiy JJ, Victory JH, Hardham JB, Chew C, Prorock A, Bao Y, Sol-Church K, Hobbs GR, Klein E, Nalesnik MA, Hu G, de Oliveira A, Santiago SP, Lindsey BA. Nanosphere pharmacodynamics improves safety of immunostimulatory cytokine therapy. iScience 2024; 27:108836. [PMID: 38303687 PMCID: PMC10831265 DOI: 10.1016/j.isci.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Systemic administration of interleukin (IL)-12 induces potent anti-tumor immune responses in preclinical cancer models through the systemic activation of effector immune cells and release of proinflammatory cytokines. IL-12-loaded PLGA nanospheres (IL12ns) are hypothesized to improve therapeutic efficacy and thwart unwanted side effects observed in previous human clinical trials. Through the investigation of peripheral blood and local tissue immune responses in healthy BALB/c mice, the immune-protective pharmacodynamics of IL12ns were suggested. Nanospheres increased pro-inflammatory plasma cytokines/chemokines (IFN-γ, IL-6, TNF-α, and CXCL10) without inducing maladaptive transcriptomic signatures in circulating peripheral immune cells. Gene expression profiling revealed activation of pro-inflammatory signaling pathways in systemic tissues, the likely source of these effector cytokines. These data support that nanosphere pharmacodynamics, including shielding IL-12 from circulating immune cells, depositing peripherally in systemic immune tissues, and then slowly eluting bioactive cytokine, thereafter, are essential to safe immunostimulatory therapy.
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Amanda Stewart
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Chaharbakhshi
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - John J. Pisquiy
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Jack H. Victory
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Joshua B. Hardham
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Claude Chew
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyson Prorock
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Yongde Bao
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Katia Sol-Church
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Gerald R. Hobbs
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michael A. Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Ana de Oliveira
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Stell P. Santiago
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Brock A. Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
35
|
Zhang S, Sun L, Zuo J, Feng D. Tumor associated neutrophils governs tumor progression through an IL-10/STAT3/PD-L1 feedback signaling loop in lung cancer. Transl Oncol 2024; 40:101866. [PMID: 38128466 PMCID: PMC10753083 DOI: 10.1016/j.tranon.2023.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Tumor-associated neutrophils (TANs) can exist in either a pro-inflammatory or an anti-inflammatory state, known as N1 and N2, respectively. Anti-inflammatory TANs have been shown to correlate with poor prognosis and tumor progression in patients. To explore the role and mechanisms of TANs in lung cancer development, we isolated neutrophils from both peripheral blood and tumor tissues of patients/mice, and assessed their functional interaction with lung cancer cells both in vitro and in vivo. Our results revealed that tumor-derived neutrophils (or TANs) promote the tumorigenic and metastatic potential of lung cancer cells. Upon tumorigenesis, TANs display a N2-like status and secrete the cytokine IL-10 to facilitate the activation of c-Met/STAT3 signaling, which ultimately enhances distant metastasis in vivo. Meanwhile, the transcription factor STAT3 increases PD-L1 level in tumor cells, which promotes neutrophils polarization towards a N2-like status, leading to a positive feedback loop between TANs, IL-10, STAT3, PD-L1, and TANs themselves. Blocking IL-10, we additionally eliminated metastatic tumor nodules and enhanced the anticancer effects of chemotherapy in a Lewis mouse model. Our findings suggest a positive feedback loop between tumor cells and TANs that controls tumor progression and patient outcome in lung cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China
| | - Lei Sun
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China
| | - Jingfang Zuo
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China
| | - Dongjie Feng
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China.
| |
Collapse
|
36
|
Petrina M, Alothaimeen T, Bouzeineddine NZ, Trus E, Banete A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor exerts dominant effects over macrophage colony stimulating factor during macrophage differentiation in vitro to induce an inflammatory phenotype. Inflamm Res 2024; 73:253-262. [PMID: 38158446 DOI: 10.1007/s00011-023-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Macrophages (Mφ) can exist along a spectrum of phenotypes that include pro-inflammatory (M1) or anti-inflammatory (M2) immune cells. Mφ colony stimulating factor (M-CSF) and granulocyte Mφ colony stimulating factor (GM-CSF) are cytokines important in hematopoiesis, polarization and activation of Mφ. METHODS AND RESULTS To gain a greater understanding of the relationship between GM-CSF and M-CSF, we investigated an in vitro model of differentiation to determine if GM-CSF and M-CSF can antagonize each other, in terms of Mφ phenotype and functions. We determined that Mφ cultured in mixed M-CSF: GM-CSF ratios exhibit M1-like GM-CSF-treated macrophage phenotype when the ratios of the two cytokines are 1:1 in culture. Moreover, GM-CSF is dominant over M-CSF in influencing Mφ production of proinflammatory cytokines such as IL-6, TNFα, and IL-12p40, and the anti-inflammatory cytokine IL-10. CONCLUSIONS Our data established that GM-CSF is more dominant over M-CSF, triggering the Mφ to become pro-inflammatory cells. These findings provide insight into how GM-CSF can influence Mφ activation with implications in inflammatory diseases where the Mφ status can play a significant role in supporting the inflammatory conditions.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Torki Alothaimeen
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada.
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
37
|
Adumuah NN, Quarshie JT, Danwonno H, Aikins AR, Ametefe EN. Exploring Anti-Breast Cancer Effects of Live Pediococcus acidilactici and Its Cell-Free Supernatant Isolated from Human Breast Milk. Int J Breast Cancer 2024; 2024:1841909. [PMID: 38314029 PMCID: PMC10838206 DOI: 10.1155/2024/1841909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Current breast cancer treatment options are limited by drug resistance and adverse side effects, which calls for the need for alternatives or complementary remedies. Probiotic bacteria isolated from human breast milk have been shown to possess proapoptotic and anti-inflammatory properties against breast mastitis in breastfeeding mothers and are being studied as possible anticancer regimens. Thus, this study aimed at exploring the effect of lactic acid bacteria isolated from human breast milk on MDA-MB 231 breast cancer cells. A total of twenty-two bacteria were isolated from four human breast milk samples. The isolates were characterized and identified using biochemical tests and Sanger sequencing, respectively. For in vitro experiments, we used isolated P. acidilactici to treat MDA-MB-231 cells, and an MTT assay was used to detect proliferation. RT-qPCR and wound healing assays were performed to determine the effect of the isolated P. acidilactici on breast cancer cytokine expression and migration. Exposure of MDA-MB 231 breast cancer cells to live P. acidilactici and its cell-free supernatant (CFS) for 24 h resulted in a reduction in cancer cell viability. Also, the expression of the cytokines IL-6, IL-8, and IL-10 in the breast cancer cells increased following exposure to P. acidilactici and its CFS for 24 and 72 h. Additionally, the levels of the SLUG gene remained unchanged while the TWIST1 gene was upregulated following exposure of the cancer cells to bacteria, indicating that P. acidilactici may promote epithelial-mesenchymal transition in breast cancer. Finally, the CFS significantly inhibited cancer cell mobility. These findings serve as a foundation to further investigate the usefulness of P. acidilactici as a potential therapeutic agent in breast cancer therapy.
Collapse
Affiliation(s)
- Naa N. Adumuah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Jude T. Quarshie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Harry Danwonno
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Anastasia R. Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Elmer N. Ametefe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
38
|
Minucci SB, Heise RL, Reynolds AM. Agent-based vs. equation-based multi-scale modeling for macrophage polarization. PLoS One 2024; 19:e0270779. [PMID: 38271449 PMCID: PMC10810539 DOI: 10.1371/journal.pone.0270779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophages show high plasticity and result in heterogenic subpopulations or polarized states identified by specific cellular markers. These immune cells are typically characterized as pro-inflammatory, or classically activated M1, and anti-inflammatory, or alternatively activated M2. However, a more precise definition places them along a spectrum of activation where they may exhibit a number of pro- or anti-inflammatory roles. To understand M1-M2 dynamics in the context of a localized response and explore the results of different mathematical modeling approaches based on the same biology, we utilized two different modeling techniques, ordinary differential equation (ODE) modeling and agent-based modeling (ABM), to simulate the spectrum of macrophage activation to general pro- and anti-inflammatory stimuli on an individual and multi-cell level. The ODE model includes two hallmark pro- and anti-inflammatory signaling pathways and the ABM incorporates similar M1-M2 dynamics but in a spatio-temporal platform. Both models link molecular signaling with cellular-level dynamics. We then performed simulations with various initial conditions to replicate different experimental setups. Similar results were observed in both models after tuning to a common calibrating experiment. Comparing the two models' results sheds light on the important features of each modeling approach. When more data is available these features can be considered when choosing techniques to best fit the needs of the modeler and application.
Collapse
Affiliation(s)
- Sarah B. Minucci
- Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rebecca L. Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Angela M. Reynolds
- Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
39
|
Patilas C, Varsamos I, Galanis A, Vavourakis M, Zachariou D, Marougklianis V, Kolovos I, Tsalimas G, Karampinas P, Kaspiris A, Vlamis J, Pneumaticos S. The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics (Basel) 2024; 14:151. [PMID: 38248028 PMCID: PMC10814517 DOI: 10.3390/diagnostics14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that often leads to severe and permanent neurological deficits. The complex pathophysiology of an SCI involves a cascade of events, including inflammation, oxidative stress, and secondary injury processes. Among the myriad of molecular players involved, interleukin-10 (IL-10) emerges as a key regulator with the potential to modulate both the inflammatory response and promote neuroprotection. This comprehensive review delves into the intricate interplay of IL-10 in the pathogenesis of an SCI and explores its therapeutic implications in the quest for effective treatments. IL-10 has been found to regulate inflammation, oxidative stress, neuronal apoptosis, and glial scars after an SCI. Its neuroprotective properties have been evaluated in a plethora of animal studies. IL-10 administration, either isolated or in combination with other molecules or biomaterials, has shown neuroprotective effects through a reduction in inflammation, the promotion of tissue repair and regeneration, the modulation of glial scar formation, and improved functional outcomes. In conclusion, IL-10 emerges as a pivotal player in the pathogenesis and treatment of SCIs. Its multifaceted role in modulating inflammation, oxidative stress, neuronal apoptosis, glial scars, and neuroprotection positions IL-10 as a promising therapeutic target. The ongoing research exploring various strategies for harnessing the potential of IL-10 offers hope for the development of effective treatments that could significantly improve outcomes for individuals suffering from spinal cord injuries. As our understanding of IL-10's intricacies deepens, it opens new avenues for innovative and targeted therapeutic interventions, bringing us closer to the goal of alleviating the profound impact of SCIs on patients' lives.
Collapse
Affiliation(s)
| | | | | | - Michail Vavourakis
- 3rd Department of Orthopaedic Surgery, National & Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Obata T, Mizoguchi S, Greaney AM, Adams T, Yuan Y, Edelstein S, Leiby KL, Rivero R, Wang N, Kim H, Yang J, Schupp JC, Stitelman D, Tsuchiya T, Levchenko A, Kaminski N, Niklason LE, Brickman Raredon MS. Organ Boundary Circuits Regulate Sox9+ Alveolar Tuft Cells During Post-Pneumonectomy Lung Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574469. [PMID: 38260691 PMCID: PMC10802449 DOI: 10.1101/2024.01.07.574469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.
Collapse
Affiliation(s)
- Tomohiro Obata
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Mizoguchi
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Allison M. Greaney
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of technology, Cambridge, MA, 02139
| | - Taylor Adams
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Sophie Edelstein
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Rachel Rivero
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Nuoya Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Haram Kim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Junchen Yang
- Computational Biology and Biomedical Informatics, Yale University, New Haven, CT, 06511, USA
| | - Jonas C. Schupp
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hanover, Germany
| | - David Stitelman
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, University of Toyama, Toyama, 9300194, Japan
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT, 06511, USA
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Laura E. Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Humacyte, Inc., Durham, North Carolina
| | - Micha Sam Brickman Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| |
Collapse
|
41
|
Kambouris AR, Brammer JA, Roussey H, Chen C, Cross AS. A combination of burn wound injury and Pseudomonas infection elicits unique gene expression that enhances bacterial pathogenicity. mBio 2023; 14:e0245423. [PMID: 37929965 PMCID: PMC10746159 DOI: 10.1128/mbio.02454-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The interaction between an underlying disease process and a specific pathogen may lead to the unique expression of genes that affect bacterial pathogenesis. These genes may not be observed during infection in the absence of, or with a different underlying process or infection during the underlying process with a different pathogen. To test this hypothesis, we used Nanostring technology to compare gene transcription in a murine-burned wound infected with P. aeruginosa. The Nanostring probeset allowed the simultaneous direct comparison of immune response gene expression in both multiple host tissues and P. aeruginosa in conditions of burn alone, infection alone, and burn with infection. While RNA-Seq is used to discover novel transcripts, NanoString could be a technique to monitor specific changes in transcriptomes between samples and bypass the additional adjustments for multispecies sample processing or the need for the additional steps of alignment and assembly required for RNASeq. Using Nanostring, we identified arginine and IL-10 as important contributors to the lethal outcome of burned mice infected with P. aeruginosa. While other examples of altered gene transcription are in the literature, our study suggests that a more systematic comparison of gene expression in various underlying diseases during infection with specific bacterial pathogens may lead to the identification of unique host-pathogen interactions and result in more precise therapeutic interventions.
Collapse
Affiliation(s)
- Adrienne R. Kambouris
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerod A. Brammer
- US Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Houston, Texas, USA
| | - Holly Roussey
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan S. Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Kim B, Yu JE, Yeo IJ, Son DJ, Lee HP, Roh YS, Lim KH, Yun J, Park H, Han SB, Hong JT. (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol alleviates inflammatory responses in LPS-induced mice liver sepsis through inhibition of STAT3 phosphorylation. Int Immunopharmacol 2023; 125:111124. [PMID: 37977740 DOI: 10.1016/j.intimp.2023.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.
Collapse
Affiliation(s)
- Boyoung Kim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Ji Eun Yu
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - In Jun Yeo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Dong Ju Son
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Yoon Seok Roh
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Hanseul Park
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Sang Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
43
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023; 14:2190650. [PMID: 36914565 PMCID: PMC10026935 DOI: 10.1080/21505594.2023.2190650] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chun-Chun Yang
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- National Defense Medical Center, Department of Pediatrics, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- h Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
44
|
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. The consumption of Sechium edule (chayote) has antioxidant effect and prevents telomere attrition in older adults with metabolic syndrome. Redox Rep 2023; 28:2207323. [PMID: 37140004 PMCID: PMC10165935 DOI: 10.1080/13510002.2023.2207323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE To determine the effect of the consumption of Sechium edule (1.5 g/day) for six months on oxidative stress (OxS) and inflammation markers and its association with telomere length (TL) in older adults with metabolic syndrome (MetS). METHODS The study was conducted in a sample of 48 older adults: placebo (EP) and experimental (EG) groups. Lipoperoxides, protein carbonylation, 8-OHdG, total oxidant status (TOS), SOD, GPx, H2O2 inhibition, total antioxidant status (TAS), inflammatory cytokines (IL6, IL10, TNF-α), and TL were measured before and six months post-treatment. RESULTS We found a significant decrease in the levels of lipoperoxides, protein carbonylation, 8-OHdG, TOS in the EG in comparison PG. Likewise, a significante increase of TAS, IL-6, and IL-10 levels was found at six months post-treatment in EG in comparison with PG. TL showed a statistically significant decrease in PG compared to post-treatment EG. CONCLUSIONS Our findigns showed that the supplementation of Sechium edule has antioxidant, and anti-inflammatory effects, and diminushion of shortening of telomeric DNA in older adults with MetS. This would be the first study that shows that the intervention with Sechium edule has a possible geroprotective effect by preventing telomeres from shortening as usually happens in these patients. Therefore, suggesting a protection of telomeric DNA and genomic DNA.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
45
|
Lee JH, Ahn EH, Kwon MJ, Ryu CS, Ha YH, Ko EJ, Lee JY, Hwang JY, Kim JH, Kim YR, Kim NK. Genetic Correlation of miRNA Polymorphisms and STAT3 Signaling Pathway with Recurrent Implantation Failure in the Korean Population. Int J Mol Sci 2023; 24:16794. [PMID: 38069116 PMCID: PMC10706094 DOI: 10.3390/ijms242316794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The growing prevalence of in vitro fertilization-embryo transfer procedures has resulted in an increased incidence of recurrent implantation failure (RIF), necessitating focused research in this area. STAT3, a key factor in maternal endometrial remodeling and stromal proliferation, is crucial for successful embryo implantation. While the relationship between STAT3 and RIF has been studied, the impact of single nucleotide polymorphisms (SNPs) in miRNAs, well-characterized gene expression modulators, on STAT3 in RIF cases remains uncharacterized. Here, we investigated 161 RIF patients and 268 healthy control subjects in the Korean population, analyzing the statistical association between miRNA genetic variants and RIF risk. We aimed to determine whether SNPs in specific miRNAs, namely miR-218-2 rs11134527 G>A, miR-34a rs2666433 G>A, miR-34a rs6577555 C>A, and miR-130a rs731384 G>A, were significantly associated with RIF risk. We identified a significant association between miR-34a rs6577555 C>A and RIF prevalence (implantation failure [IF] ≥ 2: adjusted odds ratio [AOR] = 2.264, 95% CI = 1.007-5.092, p = 0.048). These findings suggest that miR-34a rs6577555 C>A may contribute to an increased susceptibility to RIF. However, further investigations are necessary to elucidate the precise mechanisms underlying the role of miR-34a rs6577555 C>A in RIF. This study sheds light on the genetic and molecular factors underlying RIF, offering new avenues for research and potential advancements in the diagnosis and treatment of this complex condition.
Collapse
Affiliation(s)
- Jung Hun Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea; (E.H.A.); (J.H.K.)
| | - Min Jung Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Chang Su Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Yong Hyun Ha
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| | - Ji Young Hwang
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea;
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea; (E.H.A.); (J.H.K.)
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea; (E.H.A.); (J.H.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (J.H.L.); (M.J.K.); (C.S.R.); (Y.H.H.); (E.J.K.); (J.Y.L.)
| |
Collapse
|
46
|
Bejeshk MA, Aminizadeh AH, Rajizadeh MA, Rostamabadi F, Bagheri F, Khaksari M, Azimi M. Ameliorating effects of Acacia arabica and Ocimum basilicum on acetic acid-induced ulcerative colitis model through mitigation of inflammation and oxidative stress. Heliyon 2023; 9:e22355. [PMID: 38058645 PMCID: PMC10696014 DOI: 10.1016/j.heliyon.2023.e22355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum. The disease is characterized by oxidative stress and severe inflammation. Research has shown the anti-oxidative and anti-inflammatory effects induced by consuming the Acacia arabia and Ocimum basilicum. The present study aimed to evaluate the effect of treatment with O. basilicum together with A. arabica on healing, inflammation, and oxidative stress in the course of experimental colitis in rats. Methods A total number of 50 male rats were selected and randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with a 4 % acetic acid solution. Four days after the colitis induction, the rats were orally treated for the next 4 days with saline or a combination of A. arabica and O. basilicum (1000 mg/kg) or sulfasalazine (100 mg/kg). Results Acetic acid-induced colitis increased the colon's macroscopic and histopathological damage scores; increased colon levels of MDA (Malondialdehyde), MPO (Myeloperoxidase), TNF-α (Tissue necrosis factor α), IL6 (Interleukin 6), and IL17 (Interleukin 17); and decreased SOD (Superoxide Dismutase), GPx (Glutathione Peroxidase), and IL10 (Interleukin 10) levels in the treated rats compared with the control group (P < 0.001). Overall, a combination of A. arabica and O. basilicum reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, and MDA, MPO, TNF-α, IL6 (P < 0.001), and IL17 (P < 0.01) levels of the colon. Furthermore, it increased SOD, GPx, and IL10 levels compared to the colitis group (P < 0.01). Conclusion A. arabica and O. basilicum have improving effects on UC by reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Azimi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Amodio D, Pascucci GR, Cotugno N, Rossetti C, Manno EC, Pighi C, Morrocchi E, D'Alessandro A, Perrone MA, Valentini A, Franceschini A, Chinali M, Deodati A, Azzari C, Rossi P, Cianfarani S, Andreani M, Porzio O, Palma P. Similarities and differences between myocarditis following COVID-19 mRNA vaccine and multiple inflammatory syndrome with cardiac involvement in children. Clin Immunol 2023; 255:109751. [PMID: 37660743 DOI: 10.1016/j.clim.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Despite the multiple benefits of vaccination, cardiac adverse Events Following COVID-19 Immunization (c-AEFI) have been reported. These events as well as the severe cardiac involvement reported in Multisystem inflammatory syndrome in children (MIS-C) appear more frequent in young adult males. Herein, we firstly report on the inflammatory profiles of patients experiencing c-AEFI in comparison with age, pubertal age and gender matched MIS-C with cardiac involvement. Proteins related to systemic inflammation were found higher in MIS-C compared to c-AEFI, whereas a higher level in proteins related to myocardial injury was found in c-AEFI. In addition, higher levels of DHEAS, DHEA, and cortisone were found in c-AEFI which persisted at follow-up. No anti-heart muscle and anti-endothelial cell antibodies have been detected. Overall current comparative data showed a distinct inflammatory and androgens profile in c-AEFI patients which results to be well restricted on heart and to persist months after the acute event.
Collapse
Affiliation(s)
- Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emma Concetta Manno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Annamaria D'Alessandro
- Clinical Biochemistry Laboratory, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy
| | - Marco Alfonso Perrone
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy; Division of Cardiology and CardioLab, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Alessandra Valentini
- Department of laboratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Alessio Franceschini
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marcello Chinali
- Department of Medical and Surgical Cardiology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Annalisa Deodati
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164 Rome, Italy
| | - Chiara Azzari
- Department of Health Sciences, Section of Pediatrics, University of Florence, Florence, Italy
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00164 Rome, Italy; Department of Women's and Children's Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Andreani
- Transplantation Immunogenetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, IRCCS "Bambino Gesù" Children's Hospital, 00165 Rome, Italy; Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
48
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
49
|
Fitzsimons S, Muñoz-San Martín M, Nally F, Dillon E, Fashina IA, Strowitzki MJ, Ramió-Torrentà L, Dowling JK, De Santi C, McCoy CE. Inhibition of pro-inflammatory signaling in human primary macrophages by enhancing arginase-2 via target site blockers. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:941-959. [PMID: 37701067 PMCID: PMC10494319 DOI: 10.1016/j.omtn.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.
Collapse
Affiliation(s)
- Stephen Fitzsimons
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - María Muñoz-San Martín
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Frances Nally
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Moritz J. Strowitzki
- Department of General, Visceral & Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lluís Ramió-Torrentà
- Neuroinflammation and Neurodegeneration Group, Girona Biomedical Research Institute (IDIBGI), CERCA Programme/Generalitat de Catalunya, Salt, Girona, Spain
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
50
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|