1
|
Moore M, Whittington HD, Knickmeyer R, Azcarate-Peril MA, Bruno-Bárcena JM. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. Gut Microbes 2025; 17:2440120. [PMID: 39695352 DOI: 10.1080/19490976.2024.2440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL-1) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO2, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.
Collapse
Affiliation(s)
- Madison Moore
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hunter D Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Rebecca Knickmeyer
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Kang A, Eor JY, Lee J, Kwak MJ, Lee DJ, Seo E, Lee WJ, Son SH, Song M, Kim JM, Kim HW, Yang J, Oh S, Kim Y. Lacticaseibacillus casei IDCC 3451 alleviates cognitive and behavioral functions by reshaping the gut microbiome and regulating intestinal barrier integrity in chronic stress animal models. Curr Res Food Sci 2025; 10:101051. [PMID: 40290371 PMCID: PMC12023876 DOI: 10.1016/j.crfs.2025.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Lacticaseibacillus casei IDCC 3451 (3451) was evaluated for its effects on the gut-brain axis using Caenorhabditis elegans (C. elegans) and mouse models of stress and inflammation. In C. elegans, 3451 extended lifespans by 25 %, improved motility, and chemotaxis, enhanced survival under pathogen challenge, and reduced amyloid beta accumulation by 42 %. Transcriptomic profiling revealed upregulation of genes involved in neurotransmitter signaling and serine/threonine pathways. In the unpredictable chronic mild stress (UCMS) mouse model, 3451 administration increased the time spent in the center of the open field by 65 % and reduced immobility in the forced swim test by 32 %, indicating anxiolytic and antidepressant effects. Serum levels of aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) were decreased by 18 % and 24 %, respectively. Additionally, 3451 restored the expressions of 5HT1AR, GABAR, and tight junction proteins, including ZO-1 and Claudin1. Metabolomic analysis showed increased glycine and decreased palmitic acid levels, associated with an increased abundance of Ruminococcus and Akkermansia. In the dextran sulfate sodium (DSS)-induced colitis model, 3451 reduced the disease activity index by 36 %, improved colon histology, increased goblet cell preservation, and upregulated ZO-1 and IL-10 expression. Threonine levels were also increased and correlated with a higher abundance of Coprococcus. These findings demonstrate that 3451 improved behavioral and intestinal outcomes through coordinated modulation of host signaling, metabolite production, and gut microbial composition, highlighting its therapeutic potential for managing IBD and neurobehavioral disorders.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Junbeom Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Eunsol Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Woong Ji Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Seon-hui Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, 34134, South Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, South Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, 05006, South Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
3
|
Li TP, Xie JC, Wang CH, Zhao LQ, Hao DJ. Diffusive Phyllosphere Microbiome Potentially Regulates Harm and Defence Interactions Between Stephanitis nashi and Its Crabapple Host. PLANT, CELL & ENVIRONMENT 2025; 48:1311-1328. [PMID: 39440590 DOI: 10.1111/pce.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lv-Quan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Li TP, Wang CH, Xie JC, Wang MK, Chen J, Zhu YX, Hao DJ, Hong XY. Microbial changes and associated metabolic responses modify host plant adaptation in Stephanitis nashi. INSECT SCIENCE 2024; 31:1789-1809. [PMID: 38369568 DOI: 10.1111/1744-7917.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
7
|
Connell E, Le Gall G, McArthur S, Lang L, Breeze B, Pontifex MG, Sami S, Pourtau L, Gaudout D, Müller M, Vauzour D. (Poly)phenol-rich grape and blueberry extract prevents LPS-induced disruption of the blood-brain barrier through the modulation of the gut microbiota-derived uremic toxins. Neurochem Int 2024; 180:105878. [PMID: 39389472 DOI: 10.1016/j.neuint.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The dynamic protective capacity of (poly)phenols, attributed to their potent antioxidant and anti-inflammatory properties, has been consistently reported. Due to their capacity to alter gut microbiome composition, further actions of (poly)phenols may be exerted through the modulation of the microbiota-gut-brain axis. However, the underlying mechanisms remain poorly defined. Here, we investigated the protective effect of a (poly)phenol-rich grape and blueberry extract (Memophenol™), on the microbiota-gut-brain axis in a model of chronic low-grade inflammation (0.5 mg/kg/wk lipopolysaccharide (LPS) for 8 weeks). Dietary supplementation of male C57BL/6 J mice with Memophenol™ prevented LPS-induced increases in the microbe-derived uremia-associated molecules, indoxyl sulfate (IS) and trimethylamine N-oxide (TMAO). These changes coincided with shifts in gut microbiome composition, notably Romboutsia and Desulfovibrio abundance, respectively. In the brain, LPS exposure disrupted the marginal localisation of the endothelial tight junction ZO-1 and downregulated ZO-1 mRNA expression to an extent closely correlated with TMAO and IS levels; a process prevented by Memophenol™ intake. Hippocampal mRNA sequencing analysis revealed significant downregulation in regulatory pathways of neurodegeneration with Memophenol™ intake. These findings may indicate a novel protective role of the (poly)phenol-rich grape and blueberry extract on the endothelial tight junction component ZO-1, acting through modulation of gut microbial metabolism.
Collapse
Affiliation(s)
- Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, London, E1 2AT, United Kingdom
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Bernadette Breeze
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Saber Sami
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
8
|
Hernández-Melgar AG, Guerrero A, Moreno-Ulloa A. Chronic Exposure to Petroleum-Derived Hydrocarbons Alters Human Skin Microbiome and Metabolome Profiles: A Pilot Study. J Proteome Res 2024; 23:4273-4285. [PMID: 39024464 DOI: 10.1021/acs.jproteome.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Petroleum-derived substances, like industrial oils and grease, are ubiquitous in our daily lives. Comprised of petroleum hydrocarbons (PH), these substances can come into contact with our skin, potentially causing molecular disruptions and contributing to the development of chronic disease. In this pilot study, we employed mass spectrometry-based untargeted metabolomics and 16S rRNA gene sequencing analyses to explore these effects. Superficial skin samples were collected from subjects with and without chronic dermal exposure to PH at two anatomical sites: the fingers (referred to as the hand) and arms (serving as an intersubject variability control). Exposed hands exhibited higher bacterial diversity (Shannon and Simpson indices) and an enrichment of oil-degrading bacteria (ODB), including Dietzia, Paracoccus, and Kocuria. Functional prediction suggested enriched pathways associated with PH degradation in exposed hands vs non-exposed hands, while no differences were observed when comparing the arms. Furthermore, carboxylic acids, glycerophospholipids, organooxygen compounds, phenol ethers, among others, were found to be more abundant in exposed hands. We observed positive correlations among multiple ODB and xenobiotics, suggesting a chemical remodeling of the skin favorable for ODB thriving. Overall, our study offers insights into the complex dysregulation of bacterial communities and the chemical milieu induced by chronic dermal exposure to PH.
Collapse
Affiliation(s)
- Alan G Hernández-Melgar
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
- Posgrado en Ciencias de la Vida, CICESE, Ensenada 22860, Baja California, Mexico
| | - Abraham Guerrero
- CONAHCyT Research, Research Center in Food & Development A.C. (CIAD), Mazatlán 82112, Sinaloa, Mexico
| | - Aldo Moreno-Ulloa
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| |
Collapse
|
9
|
Nguyen QH, Nguyen H, Oh EC, Nguyen T. Current approaches and outstanding challenges of functional annotation of metabolites: a comprehensive review. Brief Bioinform 2024; 25:bbae498. [PMID: 39397425 PMCID: PMC11471905 DOI: 10.1093/bib/bbae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Metabolite profiling is a powerful approach for the clinical diagnosis of complex diseases, ranging from cardiometabolic diseases, cancer, and cognitive disorders to respiratory pathologies and conditions that involve dysregulated metabolism. Because of the importance of systems-level interpretation, many methods have been developed to identify biologically significant pathways using metabolomics data. In this review, we first describe a complete metabolomics workflow (sample preparation, data acquisition, pre-processing, downstream analysis, etc.). We then comprehensively review 24 approaches capable of performing functional analysis, including those that combine metabolomics data with other types of data to investigate the disease-relevant changes at multiple omics layers. We discuss their availability, implementation, capability for pre-processing and quality control, supported omics types, embedded databases, pathway analysis methodologies, and integration techniques. We also provide a rating and evaluation of each software, focusing on their key technique, software accessibility, documentation, and user-friendliness. Following our guideline, life scientists can easily choose a suitable method depending on method rating, available data, input format, and method category. More importantly, we highlight outstanding challenges and potential solutions that need to be addressed by future research. To further assist users in executing the reviewed methods, we provide wrappers of the software packages at https://github.com/tinnlab/metabolite-pathway-review-docker.
Collapse
Affiliation(s)
- Quang-Huy Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| | - Ha Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| | - Edwin C Oh
- Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, NV 89154, United States
| | - Tin Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
10
|
Lv Y, Zhen C, Liu A, Hu Y, Yang G, Xu C, Lou Y, Cheng Q, Luo Y, Yu J, Fang Y, Zhao H, Peng K, Yu Y, Lou J, Chen J, Ni Y. Profiles and interactions of gut microbiome and intestinal microRNAs in pediatric Crohn's disease. mSystems 2024; 9:e0078324. [PMID: 39150251 PMCID: PMC11406922 DOI: 10.1128/msystems.00783-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Gut dysbiosis is closely related to dysregulated microRNAs (miRNAs) in the intestinal epithelial cells, which plays an important role in the pathogenesis of Crohn's disease (CD). We investigated the relationship between fecal gut microbiome (GM) and intestinal tissue miRNAs in different stages of pediatric CD. Metagenomic analysis and miRNA sequencing were conducted to examine the GM and intestinal miRNA profiles of CD patients before and after clinical induction therapy and the controls. Twenty-seven newly diagnosed, therapy-naïve pediatric patients with active CD and 11 non-inflammatory bowel disease (IBD) controls were recruited in this study. Among CD patients, 11 patients completed induction treatment and reached clinical remission. Both GM and miRNA profiles were significantly changed between CD patients and controls. Seven key bacteria were identified at species level including Defluviitalea raffinosedens, Thermotalea metallivorans, Roseburia intestinalis, Dorea sp. AGR2135, Escherichia coli, Shigella sonnei, and Salmonella enterica, the exact proportions of which were further validated by real-time quantitative PCR analysis. Eight key miRNAs were also identified including hsa-miR-215-5p, hsa-miR-194-5p, hsa-miR-12135, hsa-miR-509-3-5p, hsa-miR-212-5p, hsa-miR-4448, hsa-miR-501-3p, and hsa-miR-503-5p. The functional enrichment analysis of differential miRNAs indicated the significantly altered cyclin protein, cyclin-dependent protein, and cell cycle pathway. The close interactions between seven key bacteria and eight key miRNAs were further investigated by miRNA target prediction. The association between specific miRNA expressions and key gut bacteria at different stages of CD supported their important roles as potential molecular biomarkers. Understanding the relationship between them will help us to explore the molecular mechanisms of CD. IMPORTANCE Since previous studies have focused on the change of the fecal gut microbiome and intestinal tissue miRNA in pediatric Crohn's disease (CD), the relationship between them in different stages is still not clear. This is the first study to explore the gut microbiota and miRNA and their correlations with the Pediatric Crohn's Disease Activity Index (PCDAI). Crohn's Disease Endoscopic Index of Severity (CDEIS), and calprotectin, by applying two omics approach in three different groups (active CD, CD in remission with exclusive enteral nutrition or infliximab induction therapy, and the healthy controls). Both gut microbiome structure and the miRNA profiles were significantly changed in the different stage of CD. Seven key gut microbiome at species and eight key miRNAs were found, and their close interactions were further fully investigated by miRNA target prediction.
Collapse
Affiliation(s)
- Yao Lv
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Changjun Zhen
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ana Liu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yudie Hu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Gan Yang
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yue Lou
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Cheng
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Youyou Luo
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jindan Yu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Youhong Fang
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hong Zhao
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kerong Peng
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Yu
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingan Lou
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Chen
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Gastroenterology Department, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
11
|
Bartels N, Matthews JL, Lawson CA, Possell M, Hughes DJ, Raina JB, Suggett DJ. Paired metabolomics and volatilomics provides insight into transient high light stress response mechanisms of the coral Montipora mollis. Metabolomics 2024; 20:66. [PMID: 38886248 PMCID: PMC11182861 DOI: 10.1007/s11306-024-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.
Collapse
Affiliation(s)
- Natasha Bartels
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jennifer L Matthews
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Caitlin A Lawson
- Heron Island Research Station, Faculty of Science, University of Queensland, Gladstone, 4680, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Kang A, Kwak MJ, Lee DJ, Lee JJ, Kim MK, Song M, Lee M, Yang J, Oh S, Kim Y. Dietary supplementation with probiotics promotes weight loss by reshaping the gut microbiome and energy metabolism in obese dogs. Microbiol Spectr 2024; 12:e0255223. [PMID: 38270436 PMCID: PMC10913549 DOI: 10.1128/spectrum.02552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Obesity and overweight among companion animals are significant concerns, paralleling the issues observed in human populations. Recent research has highlighted the potential benefits of various probiotics in addressing weight-related changes, obesity, and associated pathologies. In this study, we delved into the beneficial probiotic mechanisms in high-fat-induced obese canines, revealing that Enterococcus faecium IDCC 2102 (IDCC 2102) and Bifidobacterium lactis IDCC 4301 (IDCC 4301) have the capacity to mitigate the increase in body weight and lipid accumulation in obese canines subjected to a high-fat diet and hyperlipidemic Caenorhabditis elegans (C. elegans) strain VS29. Both IDCC 2102 and IDCC 4301 demonstrated the ability to reduce systemic inflammation and hormonal disruptions induced by obesity. Notably, these probiotics induced modifications in the microbiota by promoting lactic acid bacteria, including Lactobacillaceae, Ruminococcaceae, and S24-7, with concomitant activation of pyruvate metabolism. IDCC 4301, through the generation of bacterial short-chain fatty acids and carboxylic acids, facilitated glycolysis and contributed to ATP synthesis. Meanwhile, IDCC 2102 produced bacterial metabolites such as acetic acid and butyric acid, exhibiting a particular ability to stimulate dopamine synthesis in a canine model. This stimulation led to the restoration of eating behavior and improvements in glucose and insulin tolerance. In summary, we propose novel probiotics for the treatment of obese animals based on the modifications induced by IDCC 2102 and IDCC 4301. These probiotics enhanced systemic energy utilization in response to high caloric intake, thereby preventing lipid accumulation and restoring stability to the fecal microbiota. Consequently, this intervention resulted in a reduction in systemic inflammation caused by the high-fat diet.IMPORTANCEProbiotic supplementation affected commensal bacterial proliferation, and administering probiotics increased glycolysis and activated pyruvate metabolism in the body, which is related to propanate metabolism as a result of pyruvate metabolism activation boosting bacterial fatty acid production via dopamine and carboxylic acid specialized pathways, hence contributing to increased ATP synthesis and energy metabolism activity.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, South Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Nguyen TTT, Foysal MJ, Gupta SK, Tay A, Fotedar R, Gagnon MM. Effects of carbon source addition in rearing water on sediment characteristics, growth and health of cultured marron (Cherax cainii). Sci Rep 2024; 14:1349. [PMID: 38228662 DOI: 10.1038/s41598-024-51585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
Carbon sources are considered as critical input for the health and immunity of aquatic animals. The present study investigated the impact of different carbon sources on water quality parameters, carbon to nitrogen (C/N) ratio and microbial community in sediments, and health responses of marron (Cherax cainii) under laboratory conditions. Following one week of acclimation, 120 marron were randomly assigned to 12 experimental tanks. There were four treatments including one untreated control and three groups with carbon addition to maintain a C/N ratio of 12 maintained in culture water. Carbon supplementation groups included corn flour (CBC12), molasses (MBC12) and wheat flour (WBC12). At the end of the 60-day trial, MBC12 resulted in the highest sediment C/N ratio, followed by CBC12. Weight gain and specific growth rate were higher in MBC12, compared to control. The protease activity in marron hepatopancreas, total haemocyte count and lysozyme activity in haemolymph were highest in MBC12. Analysis of 16S rRNA sequence data of tank sediments revealed increased bacterial alpha diversity in MBC12 and WBC12. Proteobacteria was the most abundant phylum in MBC12 (88.6%), followed by control (82.4%) and CBC12 (72.8%). Sphingobium and Novosphingobium were the most abundant genera in control and MBC12 groups, respectively. Higher Aeromonas abundance in CBC12 and Flavobacterium in WBC12 were observed. Overall results indicated that MBC12 led to improved water quality, retaining high C/N ratio and enriched the bacterial populations in sediments resulting in improved growth and immune performance of marron.
Collapse
Affiliation(s)
- Thi Thu Thuy Nguyen
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
- Department of Experimental Biology, Research Institute for Aquaculture No.2, Ho Chi Minh City, Vietnam.
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| | - Sanjay Kumar Gupta
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Alfred Tay
- Helicobacter Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA, Australia
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | | |
Collapse
|
14
|
Pontifex MG, Connell E, Le Gall G, Lang L, Pourtau L, Gaudout D, Angeloni C, Zallocco L, Ronci M, Giusti L, Müller M, Vauzour D. A novel Mediterranean diet-inspired supplement ameliorates cognitive, microbial, and metabolic deficits in a mouse model of low-grade inflammation. Gut Microbes 2024; 16:2363011. [PMID: 38835220 PMCID: PMC11155709 DOI: 10.1080/19490976.2024.2363011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | | | | | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Alma, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
15
|
Nie S, Wang A, Chen X, Gong Y, Yuan Y. Microbial-Related Metabolites May Be Involved in Eight Major Biological Processes and Represent Potential Diagnostic Markers in Gastric Cancer. Cancers (Basel) 2023; 15:5271. [PMID: 37958446 PMCID: PMC10649575 DOI: 10.3390/cancers15215271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Metabolites associated with microbes regulate human immunity, inhibit bacterial colonization, and promote pathogenicity. Integrating microbe and metabolome research in GC provides a direction for understanding the microbe-associated pathophysiological process of metabolic changes and disease occurrence. The present study included 30 GC patients with 30 cancerous tissues and paired non-cancerous tissues (NCs) as controls. LC-MS/MS metabolomics and 16S rRNA sequencing were performed to obtain the metabolic and microbial characteristics. Integrated analysis of the microbes and metabolomes was conducted to explore the coexistence relationship between the microbial and metabolic characteristics of GC and to identify microbial-related metabolite diagnostic markers. The metabolic analysis showed that the overall metabolite distribution differed between the GC tissues and the NC tissues: 25 metabolites were enriched in the NC tissues and 42 metabolites were enriched in the GC tissues. The α and β microbial diversities were higher in the GC tissues than in the NC tissues, with 11 differential phyla and 52 differential genera. In the correlation and coexistence integrated analysis, 66 differential metabolites were correlated and coexisted, with specific differential microbes. The microbes in the GC tissue likely regulated eight metabolic pathways. In the efficacy evaluation of the microbial-related differential metabolites in the diagnosis of GC, 12 differential metabolites (area under the curve [AUC] >0.9) exerted relatively high diagnostic efficiency, and the combined diagnostic efficacy of 5 to 6 microbial-related differential metabolites was higher than the diagnostic efficacy of a single feature. Therefore, microbial diversity and metabolite distribution differed between the GC tissues and the NC tissues. Microbial-related metabolites may be involved in eight major metabolism-based biological processes in GC and represent potential diagnostic markers.
Collapse
Affiliation(s)
- Siru Nie
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaohui Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (S.N.); (A.W.); (X.C.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
16
|
Matthews JL, Khalil A, Siboni N, Bougoure J, Guagliardo P, Kuzhiumparambil U, DeMaere M, Le Reun NM, Seymour JR, Suggett DJ, Raina JB. Coral endosymbiont growth is enhanced by metabolic interactions with bacteria. Nat Commun 2023; 14:6864. [PMID: 37891154 PMCID: PMC10611727 DOI: 10.1038/s41467-023-42663-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.
Collapse
Affiliation(s)
- Jennifer L Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Matthew DeMaere
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine M Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
17
|
Gautam A, Bhowmik D, Basu S, Zeng W, Lahiri A, Huson DH, Paul S. Microbiome Metabolome Integration Platform (MMIP): a web-based platform for microbiome and metabolome data integration and feature identification. Brief Bioinform 2023; 24:bbad325. [PMID: 37771003 DOI: 10.1093/bib/bbad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/12/2023] [Indexed: 09/30/2023] Open
Abstract
A microbial community maintains its ecological dynamics via metabolite crosstalk. Hence, knowledge of the metabolome, alongside its populace, would help us understand the functionality of a community and also predict how it will change in atypical conditions. Methods that employ low-cost metagenomic sequencing data can predict the metabolic potential of a community, that is, its ability to produce or utilize specific metabolites. These, in turn, can potentially serve as markers of biochemical pathways that are associated with different communities. We developed MMIP (Microbiome Metabolome Integration Platform), a web-based analytical and predictive tool that can be used to compare the taxonomic content, diversity variation and the metabolic potential between two sets of microbial communities from targeted amplicon sequencing data. MMIP is capable of highlighting statistically significant taxonomic, enzymatic and metabolic attributes as well as learning-based features associated with one group in comparison with another. Furthermore, MMIP can predict linkages among species or groups of microbes in the community, specific enzyme profiles, compounds or metabolites associated with such a group of organisms. With MMIP, we aim to provide a user-friendly, online web server for performing key microbiome-associated analyses of targeted amplicon sequencing data, predicting metabolite signature, and using learning-based linkage analysis, without the need for initial metabolomic analysis, and thereby helping in hypothesis generation.
Collapse
Affiliation(s)
- Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Debaleena Bhowmik
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayantani Basu
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Wenhuan Zeng
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2064: Machine Learning: New Perspectives for Science, University of Tübingen, Tübingen, Germany
| | - Abhishake Lahiri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, West Bengal, India
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Sandip Paul
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, West Bengal, India
| |
Collapse
|
18
|
Shen K, Din AU, Sinha B, Zhou Y, Qian F, Shen B. Translational informatics for human microbiota: data resources, models and applications. Brief Bioinform 2023; 24:7152256. [PMID: 37141135 DOI: 10.1093/bib/bbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of human intestinal microbiology and diverse microbiome-related studies and investigations, a large amount of data have been generated and accumulated. Meanwhile, different computational and bioinformatics models have been developed for pattern recognition and knowledge discovery using these data. Given the heterogeneity of these resources and models, we aimed to provide a landscape of the data resources, a comparison of the computational models and a summary of the translational informatics applied to microbiota data. We first review the existing databases, knowledge bases, knowledge graphs and standardizations of microbiome data. Then, the high-throughput sequencing techniques for the microbiome and the informatics tools for their analyses are compared. Finally, translational informatics for the microbiome, including biomarker discovery, personalized treatment and smart healthcare for complex diseases, are discussed.
Collapse
Affiliation(s)
- Ke Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Ahmad Ud Din
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Baivab Sinha
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Yi Zhou
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| |
Collapse
|
19
|
Dhanasiri AKS, Jaramillo-Torres A, Chikwati EM, Forberg T, Krogdahl Å, Kortner TM. Effects of dietary supplementation with prebiotics and Pediococcus acidilactici on gut health, transcriptome, microbiota, and metabolome in Atlantic salmon (Salmo salar L.) after seawater transfer. Anim Microbiome 2023; 5:10. [PMID: 36774518 PMCID: PMC9921345 DOI: 10.1186/s42523-023-00228-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Given the importance of gut microbiota for health, growth and performance of the host, the aquaculture industry has taken measures to develop functional fish feeds aiming at modulating gut microbiota and inducing the anticipated beneficial effects. However, present understanding of the impact of such functional feeds on the fish is limited. The study reported herein was conducted to gain knowledge on performance and gut health characteristics in post-smolt Atlantic salmon fed diets varying in content of functional ingredients. Three experimental diets, a diet containing fructo-oligosaccharides (FOS), a diet with a combination of FOS and Pediococcus acidilactici (BC) and a diet containing galacto-oligosaccharides (GOS) and BC, were used in a 10-weeks feeding trial. A commercial diet without functional ingredients was also included as a control/reference. Samples of blood plasma, mucosa and digesta were subjected to microbiota, transcriptome and metabolome profiling for evaluation of the diet effects. RESULTS No significant growth differences were observed between fish fed the supplemented diets, but FOS-BC fed fish showed significantly faster growth than the control fed fish. The microbiota results showed that the BC was present in both the digesta, and the mucosa samples of fish fed the FOS-BC and GOS-BC diets. Digesta-associated microbiota was altered, while mucosa-associated microbiota was relatively unaffected by diet. Replacing FOS with GOS increased the level of metabolites linked to phospholipid, fatty acid, carnitine and sphingolipid metabolism. Variation in metabolite levels between the treatments closely correlated with genera mainly belonging to Firmicutes and Actinobacteria phyla. The transcriptome analyses indicated diet effects of exchanging FOS with GOS on immune functions, oxidative defense and stress responses. No significant diet effect was observed on intestinal inflammation in the pyloric caeca or in the distal intestine, or on lipid accumulation in the pyloric caeca. CONCLUSIONS Dietary supplementation with BC induced moderate effects on the microbiota of the digesta, while the effects of replacing FOS with GOS were more marked and was observed also for nutrient metabolism. Our data indicates therefore that the quality of a prebiotic may be of great importance for the effects of a probiotic on gut microbiota, function, and health.
Collapse
Affiliation(s)
- Anusha K. S. Dhanasiri
- grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Alexander Jaramillo-Torres
- grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elvis M. Chikwati
- grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Åshild Krogdahl
- grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trond M. Kortner
- grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
20
|
Liu H, Xu J, Yeung C, Chen Q, Li J. Effects of hemicellulose on intestinal mucosal barrier integrity, gut microbiota, and metabolomics in a mouse model of type 2 diabetes mellitus. Front Microbiol 2023; 14:1096471. [PMID: 36825092 PMCID: PMC9942597 DOI: 10.3389/fmicb.2023.1096471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
Background and objective Impaired gut barrier contributes to the progression of type 2 diabetes mellitus (T2DM), and the gut microbiota and metabolome play an important role in it. Hemicellulose, a potential prebiotics, how its supplementation impacted the glucose level, the impaired gut barrier, and the gut microbiota and metabolome in T2DM remained unclear. Methods In this study, some mice were arranged randomly into four groups: db/db mice fed by a compositionally defined diet (CDD), db/db mice fed by a CDD with 10% and 20% hemicellulose supplementation, and control mice fed by a CDD. Body weight and fasting blood glucose levels were monitored weekly. The gut barrier was evaluated. Fresh stool samples were analyzed using metagenomic sequencing and liquid chromatography-mass spectrometry to detect gut microbiota and metabolome changes. Systemic and colonic inflammation were evaluated. Results Better glycemic control, restoration of the impaired gut barrier, and lowered systemic inflammation levels were observed in db/db mice with the supplementation of 10 or 20% hemicellulose. The gut microbiota showed significant differences in beta diversity among the four groups. Fifteen genera with differential relative abundances and 59 significantly different metabolites were found. In the db/db group, hemicellulose eliminated the redundant Faecalibaculum and Enterorhabdus. The increased succinate and ursodeoxycholic acid (UDCA) after hemicellulose treatment were negatively correlated with Bifidobacterium, Erysipelatoclostridium, and Faecalibaculum. In addition, hemicellulose reduced the colonic expressions of TLR2/4 and TNF-α in db/db mice. Conclusion Hemicellulose may serve as a potential therapeutic intervention for T2DM by improving impaired intestinal mucosal barrier integrity, modulating gut microbiota composition, and altering the metabolic profile.
Collapse
Affiliation(s)
| | | | - Chiuwing Yeung
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | |
Collapse
|
21
|
Yoon SJ, Yu JS, Min BH, Gupta H, Won SM, Park HJ, Han SH, Kim BY, Kim KH, Kim BK, Joung HC, Park TS, Ham YL, Lee DY, Suk KT. Bifidobacterium-derived short-chain fatty acids and indole compounds attenuate nonalcoholic fatty liver disease by modulating gut-liver axis. Front Microbiol 2023; 14:1129904. [PMID: 36937300 PMCID: PMC10014915 DOI: 10.3389/fmicb.2023.1129904] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 03/05/2023] Open
Abstract
Emerging evidences about gut-microbial modulation have been accumulated in the treatment of nonalcoholic fatty liver disease (NAFLD). We evaluated the effect of Bifidobacterium breve and Bifidobacterium longum on the NAFLD pathology and explore the molecular mechanisms based on multi-omics approaches. Human stool analysis [healthy subjects (n = 25) and NAFLD patients (n = 32)] was performed to select NAFLD-associated microbiota. Six-week-old male C57BL/6 J mice were fed a normal chow diet (NC), Western diet (WD), and WD with B. breve (BB) or B. longum (BL; 109 CFU/g) for 8 weeks. Liver/body weight ratio, histopathology, serum/tool analysis, 16S rRNA-sequencing, and metabolites were examined and compared. The BB and BL groups showed improved liver histology and function based on liver/body ratios (WD 7.07 ± 0.75, BB 5.27 ± 0.47, and BL 4.86 ± 0.57) and NAFLD activity scores (WD 5.00 ± 0.10, BB 1.89 ± 1.45, and BL 1.90 ± 0.99; p < 0.05). Strain treatment showed ameliorative effects on gut barrier function. Metagenomic analysis showed treatment-specific changes in taxonomic composition. The community was mainly characterized by the significantly higher composition of the Bacteroidetes phylum among the NC and probiotic-feeding groups. Similarly, the gut metabolome was modulated by probiotics treatment. In particular, short-chain fatty acids and tryptophan metabolites were reverted to normal levels by probiotics, whereas bile acids were partially normalized to those of the NC group. The analysis of gene expression related to lipid and glucose metabolism as well as the immune response indicated the coordinative regulation of β-oxidation, lipogenesis, and systemic inflammation by probiotic treatment. BB and BL attenuate NAFLD by improving microbiome-associated factors of the gut-liver axis.
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jeong Seok Yu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byung-Yong Kim
- Chong Kun Dang Healthcare Institute, Seoul, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon-si, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Do Yup Lee,
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
- Ki Tae Su,
| |
Collapse
|
22
|
Bhosle A, Wang Y, Franzosa EA, Huttenhower C. Progress and opportunities in microbial community metabolomics. Curr Opin Microbiol 2022; 70:102195. [PMID: 36063685 DOI: 10.1016/j.mib.2022.102195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023]
Abstract
The metabolome lies at the interface of host-microbiome crosstalk. Previous work has established links between chemically diverse microbial metabolites and a myriad of host physiological processes and diseases. Coupled with scalable and cost-effective technologies, metabolomics is thus gaining popularity as a tool for characterization of microbial communities, particularly when combined with metagenomics as a window into microbiome function. A systematic interrogation of microbial community metabolomes can uncover key microbial compounds, metabolic capabilities of the microbiome, and also provide critical mechanistic insights into microbiome-linked host phenotypes. In this review, we discuss methods and accompanying resources that have been developed for these purposes. The accomplishments of these methods demonstrate that metabolomes can be used to functionally characterize microbial communities, and that microbial properties can be used to identify and investigate chemical compounds.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ya Wang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
23
|
Kang J, Wang Z, Cremonini E, Le Gall G, Pontifex MG, Muller M, Vauzour D, Oteiza PI. (-)-Epicatechin mitigates anxiety-related behavior in a mouse model of high fat diet-induced obesity. J Nutr Biochem 2022; 110:109158. [PMID: 36150679 DOI: 10.1016/j.jnutbio.2022.109158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Mounting evidence demonstrates that consumption of high fat diet (HFD) and subsequent development of obesity leads to alterations in cognition and mood. While obesity can affect brain function, consumption of select dietary bioactives may help prevent obesity-related cognitive decline. This study investigated the capacity of the dietary flavonoid (-)-epicatechin (EC) to mitigate HFD-induced obesity-associated alterations in memory and mood. Healthy 8-week old male C57BL/6J mice were maintained on either a control diet (10 kCal% from fat) or a HFD (45 kCal% from fat) and were supplemented with EC at 2 or 20 mg/kg body weight (B.W.) for a 24 week period. Between week 20 and 22, anxiety-related behavior, recognition memory, and spatial memory were measured. Underlying mechanisms were assessed by measuring the expression of selected genes in the hippocampus and by 16S rRNA sequencing and metabolomic analysis of the gut microbiota. 24 weeks of HFD feeding resulted in obesity, which was not affected by EC supplementation. HFD-associated increase in anxiety-related behavior was mitigated by EC in a dose-response manner and was accompanied by increased hippocampal brain-derived neurotrophic factor (BDNF), as well as partial or full restoration of glucocorticoid receptor, mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression. Higher EC dosage (20 mg/kg B.W.) also restored aberrant Lactobacillus and Enterobacter abundance altered by HFD and/or the associated obesity. Together, these results demonstrate how EC mitigates anxiety-related behaviors, revealing a connection between BDNF- and glucocorticoids-mediated signaling. Our findings link changes in the hippocampus and the gut microbiota in a context of HFD-induced obesity and anxiety.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Ziwei Wang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Eleonora Cremonini
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
24
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Lee WJ, Ryu S, Kang AN, Song M, Shin M, Oh S, Kim Y. Molecular characterization of gut microbiome in weaning pigs supplemented with multi-strain probiotics using metagenomic, culturomic, and metabolomic approaches. Anim Microbiome 2022; 4:60. [PMID: 36434671 PMCID: PMC9700986 DOI: 10.1186/s42523-022-00212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Probiotics have been reported to exhibit positive effects on host health, including improved intestinal barrier function, preventing pathogenic infection, and promoting nutrient digestion efficiency. These internal changes are reflected to the fecal microbiota composition and, bacterial metabolites production. In accordance, the application of probiotics has been broadened to industrial animals, including swine, which makes people to pursue better knowledge of the correlation between changes in the fecal microbiota and metabolites. Therefore, this study evaluated the effect of multi-strain probiotics (MSP) supplementation to piglets utilizing multiomics analytical approaches including metagenomics, culturomics, and metabolomics. RESULTS Six-week-old piglets were supplemented with MSP composed of Lactobacillus isolated from the feces of healthy piglets. To examine the effect of MSP supplement, piglets of the same age were selected and divided into two groups; one with MSP supplement (MSP group) and the other one without MSP supplement (Control group). MSP feeding altered the composition of the fecal microbiota, as demonstrated by metagenomics analysis. The abundance of commensal Lactobacillus was increased by 2.39%, while Clostridium was decreased, which revealed the similar pattern to the culturomic approach. Next, we investigated the microbial metabolite profiles, specifically SCFAs using HPLC-MS/MS and others using GC-MS, respectively. MSP supplement elevated the abundance of amino acids, including valine, isoleucine and proline as well as the concentration of acetic acid. According to the correlation analyses, these alterations were found out to be crucial in energy synthesizing metabolism, such as branched-chain amino acid (BCAA) metabolism and coenzyme A biosynthesis. Furthermore, we isolated commensal Lactobacillus strains enriched by MSP supplement, and analyzed the metabolites and evaluated the functional improvement, related to tight junction from intestinal porcine enterocyte cell line (IPEC-J2). CONCLUSIONS In conclusion, MSP administration to piglets altered their fecal microbiota, by enriching commensal Lactobacillus strains. This change contributed amino acid, acetic acid, and BCAA concentrations to be increased, and energy metabolism pathway was also increased at in vivo and in vitro. These changes produced by MSP supplement suggests the correlation between the various physiological energy metabolism functions induced by health-promoting Lactobacillus and the growth performance of piglets.
Collapse
Affiliation(s)
- Woong Ji Lee
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - Sangdon Ryu
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - An Na Kang
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| | - Minho Song
- grid.254230.20000 0001 0722 6377Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134 Korea
| | - Minhye Shin
- grid.202119.90000 0001 2364 8385Department of Microbiology, College of Medicine, Inha University, Incheon, 22212 Korea
| | - Sangnam Oh
- grid.411845.d0000 0000 8598 5806Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069 Korea
| | - Younghoon Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
26
|
The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun 2022; 13:6068. [PMID: 36241650 PMCID: PMC9568547 DOI: 10.1038/s41467-022-33609-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Diurnal (i.e., 24-hour) oscillations of the gut microbiome have been described in various species including mice and humans. However, the driving force behind these rhythms remains less clear. In this study, we differentiate between endogenous and exogenous time cues driving microbial rhythms. Our results demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the host's circadian system rather than representing a diurnal response to environmental changes. Intestinal epithelial cell-specific ablation of the core clock gene Bmal1 disrupts rhythmicity of microbiota. Targeted metabolomics functionally link intestinal clock-controlled bacteria to microbial-derived products, in particular branched-chain fatty acids and secondary bile acids. Microbiota transfer from intestinal clock-deficient mice into germ-free mice altered intestinal gene expression, enhanced lymphoid organ weights and suppressed immune cell recruitment. These results highlight the importance of functional intestinal clocks for microbiota composition and function, which is required to balance the host's gastrointestinal homeostasis.
Collapse
|
27
|
The use of ecological analytical tools as an unconventional approach for untargeted metabolomics data analysis: the case of Cecropia obtusifolia and its adaptive responses to nitrate starvation. Funct Integr Genomics 2022; 22:1467-1493. [PMID: 36199002 DOI: 10.1007/s10142-022-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Plant metabolomics studies haves revealed new bioactive compounds. However, like other omics disciplines, the generated data are not fully exploited, mainly because the commonly performed analyses focus on elucidating the presence/absence of distinctive metabolites (and/or their precursors) and not on providing a holistic view of metabolomic changes and their participation in organismal adaptation to biotic and abiotic stress conditions. Therefore, spectral libraries generated from Cecropia obtusifolia cell suspension cultures in a previous study were considered as a case study and were reanalyzed herein. These libraries were obtained from a time-course experiment under nitrate starvation conditions using both electrospray ionization modes. The applied methodology included the use of ecological analytical tools in a systematic four-step process, including a population analysis of metabolite α diversity, richness, and evenness (i); a chemometrics analysis to identify discriminant groups (ii); differential metabolic marker identification (iii); and enrichment analyses and annotation of active metabolic pathways enriched by differential metabolites (iv). Our species α diversity results referring to the diversity of metabolites represented by mass-to-charge ratio (m/z) values detected at a specific retention time (rt) (an uncommon way to analyze untargeted metabolomic data) suggest that the metabolome is dynamic and is modulated by abiotic stress. A total of 147 and 371 m/z_rt pairs was identified as differential markers responsive to nitrate starvation in ESI- and ESI+ modes, respectively. Subsequent enrichment analysis showed a high degree of completeness of biosynthetic pathways such as those of brassinosteroids, flavonoids, and phenylpropanoids.
Collapse
|
28
|
Sitthirak S, Suksawat M, Phetcharaburanin J, Wangwiwatsin A, Klanrit P, Namwat N, Khuntikeo N, Titapun A, Jarearnrat A, Sangkhamanon S, Loilome W. Chemotherapeutic resistant cholangiocarcinoma displayed distinct intratumoral microbial composition and metabolic profiles. PeerJ 2022; 10:e13876. [PMID: 35990899 PMCID: PMC9390323 DOI: 10.7717/peerj.13876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes. One of the major issues regarding treatment for CCA patients is the development of chemotherapeutic resistance. Recently, the association of intratumoral bacteria with chemotherapeutic response has been reported in many cancer types. Method In the present study, we aimed to investigate the association between the intratumoral microbiome and its function on gemcitabine and cisplatin response in CCA tissues using 16S rRNA sequencing and 1H NMR spectroscopic analysis. Result The results of 16S rRNA sequencing demonstrated that Gammaproteobacteria were significantly higher in both gemcitabine- and cisplatin-resistance groups compared to sensitive groups. In addition, intratumoral microbial diversity and abundance were significantly different compared between gemcitabine-resistant and sensitive groups. Furthermore, the metabolic phenotype of the low dose gemcitabine-resistant group significantly differed from that of low dose gemcitabine-sensitive group. Increased levels of acetylcholine, adenine, carnitine and inosine were observed in the low dose gemcitabine-resistant group, while the levels of acetylcholine, alpha-D-glucose and carnitine increased in the low dose cisplatin-resistant group. We further performed the intergrative microbiome-metabolome analysis and revealed a correlation between the intratumoral bacterial and metabolic profiles which reflect the chemotherapeutics resistance pattern in CCA patients. Conclusion Our results demonstrated insights into the disruption of the microbiome and metabolome in the progression of chemotherapeutic resistance. The altered microbiome-metabolome fingerprints could be used as predictive markers for drug responses potentially resulting in the development of an appropriate chemotherapeutic drug treatment plan for individual CCA patients.
Collapse
Affiliation(s)
- Sirinya Sitthirak
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jarearnrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Khon Kaen University International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Dang JT, Mocanu V, Park H, Laffin M, Hotte N, Karmali S, Birch DW, Madsen KL. Roux-en-Y gastric bypass and sleeve gastrectomy induce substantial and persistent changes in microbial communities and metabolic pathways. Gut Microbes 2022; 14:2050636. [PMID: 35316158 PMCID: PMC8942407 DOI: 10.1080/19490976.2022.2050636] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bariatric surgery induces significant microbial and metabolomic changes, however, links between microbial and metabolic pathways have not been fully elucidated. The objective of this study was to conduct a comprehensive investigation of the microbial, metabolomic, and inflammatory changes that occur following Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). A prospective clinical trial was conducted with participants undergoing RYGB, SG, and non-operative controls (CTRL). Clinical parameters, blood samples, and fecal samples were collected pre-intervention and at 3 and 9 months. A multi-omics approach was used to perform integrated microbial-metabolomic analysis to identify functional pathways in which weight loss and metabolic changes occur after surgery. RYGB led to profound microbial changes over time that included reductions in alpha-diversity, increased Proteobacteria and Verrucomicrobiota, decreased Firmicutes, and numerous changes at the genera level. These changes were associated with a reduction in inflammation and significant weight loss. A reduction in Romboutsia genera correlated strongly with weight loss and integrated microbial-metabolomic analysis revealed the importance of Romboutsia. Its obliteration correlated with improved weight loss and insulin resistance, possibly through decreases in glycerophospholipids. In contrast, SG was associated with no changes in alpha-diversity, and only a small number of changes in microbial genera. A cluster of Firmicutes genera including Butyriciccocus, Eubacterium ventriosum, and Monoglobus was decreased, which correlated with decreased weight, insulin resistance, and systemic inflammation. This work represents comprehensive analyses of microbial-metabolomic changes that occur following bariatric surgery and identifies several pathways that are associated with beneficial metabolic effects of surgery.
Collapse
Affiliation(s)
- Jerry T. Dang
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada,CONTACT Jerry T. Dang Division of General Surgery, Department of Surgery, University of Alberta, University of Alberta Hospital, 8440 112 Street NW, Edmonton, AB, CanadaT6G 2B7
| | - Valentin Mocanu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Heekuk Park
- Department of Medicine, Columbia University, New York, New York, USA
| | - Michael Laffin
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shahzeer Karmali
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel W. Birch
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38:223-244. [PMID: 35572407 PMCID: PMC9091761 DOI: 10.1016/j.jare.2021.09.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent research on the implications of gut microbiota on brain functions has helped to gather important information on the relationship between them. Pathogenesis of neurological disorders is found to be associated with dysregulation of gut-brain axis. Some gut bacteria metabolites are found to be directly associated with the increase in reactive oxygen species levels, one of the most important risk factors of neurodegeneration. Besides their morbid association, gut bacteria metabolites are also found to play a significant role in reducing the onset of these life-threatening brain disorders. Aim of Review Studies done in the recent past raises two most important link between gut microbiota and the brain: "gut microbiota-oxidative stress-neurodegeneration" and gut microbiota-antioxidant-neuroprotection. This review aims to gives a deep insight to our readers, of the collective studies done, focusing on the gut microbiota mediated oxidative stress involved in neurodegeneration along with a focus on those studies showing the involvement of gut microbiota and their metabolites in neuroprotection. Key Scientific Concepts of Review This review is focused on three main key concepts. Firstly, the mounting evidences from clinical and preclinical arenas shows the influence of gut microbiota mediated oxidative stress resulting in dysfunctional neurological processes. Therefore, we describe the potential role of gut microbiota influencing the vulnerability of brain to oxidative stress, and a budding causative in Alzheimer's and Parkinson's disease. Secondly, contributing roles of gut microbiota has been observed in attenuating oxidative stress and inflammation via its own metabolites or by producing secondary metabolites and, also modulation in gut microbiota population with antioxidative and anti-inflammatory probiotics have shown promising neuro resilience. Thirdly, high throughput in silico tools and databases also gives a correlation of gut microbiome, their metabolites and brain health, thus providing fascinating perspective and promising new avenues for therapeutic options.
Collapse
Affiliation(s)
- Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Sandeep Kumar
- Department of Biochemistry, International Institute of Veterinary Education and Research, Haryana, India
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, Helsinki 00180, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, India
| | | | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| |
Collapse
|
31
|
Yu G, Xu C, Zhang D, Ju F, Ni Y. MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. IMETA 2022; 1:e10. [PMID: 38867728 PMCID: PMC10989983 DOI: 10.1002/imt2.10] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2024]
Abstract
The interactions between the gut microbiome and metabolome play an important role in human health and diseases. Current studies mainly apply statistical correlation analysis between the gut microbiome and all the identified metabolites to explore their relationship. However, it remains challenging to identify the specific metabolic functions of microbes without in vitro culture experiments for validation. Discriminating the microbial metabolites from others (e.g., host, food, or environment) and exploring their metabolic functions and correlations with microbiome specifically may improve the efficiency and accuracy of biomarker discovery. So far, there have been no such bioinformatics tools available. Herein, we developed MetOrigin, an interactive web server that discriminates metabolites originating from the microbiome, performs the origin-based metabolic pathway enrichment analysis, and integrates the statistical correlations and biological relationships in the database using Sankey network visualization. MetOrigin not only enables the quick identification of microbial metabolites and their metabolic functions but also facilitates the discovery of specific bacterial species that are closely associated with metabolites statistically and biologically. MetOrigin is freely available at http://metorigin.met-bioinformatics.cn/.
Collapse
Affiliation(s)
- Gang Yu
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Cuifang Xu
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Danni Zhang
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of EngineeringWestlake UniversityHangzhouZhejiangChina
| | - Yan Ni
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| |
Collapse
|
32
|
Sun T, Li M, Yu X, Liang D, Xie G, Sang C, Jia W, Chen T. 3MCor: an integrative web server for metabolome-microbiome-metadata correlation analysis. Bioinformatics 2022; 38:1378-1384. [PMID: 34874987 DOI: 10.1093/bioinformatics/btab818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION The metabolome and microbiome disorders are highly associated with human health, and there are great demands for dual-omics interaction analysis. Here, we designed and developed an integrative platform, 3MCor, for metabolome and microbiome correlation analysis under the instruction of phenotype and with the consideration of confounders. RESULTS Many traditional and novel correlation analysis methods were integrated for intra- and inter-correlation analysis. Three inter-correlation pipelines are provided for global, hierarchical and pairwise analysis. The incorporated network analysis function is conducive to rapid identification of network clusters and key nodes from a complicated correlation network. Complete numerical results (csv files) and rich figures (pdf files) will be generated in minutes. To our knowledge, 3MCor is the first platform developed specifically for the correlation analysis of metabolome and microbiome. Its functions were compared with corresponding modules of existing omics data analysis platforms. A real-world dataset was used to demonstrate its simple and flexible operation, comprehensive outputs and distinctive contribution to dual-omics studies. AVAILABILITYAND IMPLEMENTATION 3MCor is available at http://3mcor.cn and the backend R script is available at https://github.com/chentianlu/3MCorServer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tao Sun
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dandan Liang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong 518109, China
| | - Chao Sang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
33
|
Wang Y, Gao X, Zhang X, Xiao F, Hu H, Li X, Dong F, Sun M, Xiao Y, Ge T, Li D, Yu G, Liu Z, Zhang T. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn's disease. Gut Microbes 2022; 13:1-18. [PMID: 33430702 PMCID: PMC7808429 DOI: 10.1080/19490976.2020.1865708] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gut microbial dysbiosis and altered metabonomics have been implicated in the pathogenesis of Crohn's disease (CD). The aim of our study was to characterize the gut microbiome structure and metabolic activities in pediatric CD patients with different clinical outcomes after infliximab (IFX) therapy. Fecal samples were collected from 20 healthy children and 29 newly diagnosed pediatric CD patients. 16S rRNA/ITS2 gene sequencing and targeted metabolomics analysis were applied to profile the gut bacterial microbiome, mycobiome, and metabolome, respectively. Pediatric CD patients exhibited lower relative abundances of short-chain fatty acids (SCFAs)-producing bacteria including Faecalibacterium, Clostridium clusters IV and XIVb, Roseburia, and Ruminococcus, which were correlated with reduced fecal levels of SCFAs. Decreased unconjugated bile acids (BAs) pool size and a lower unconjugated/conjugated BAs ratio were associated with reduced relative abundances of Bifidobacterium and Clostridium clusters IV and XIVb which contain bile salt hydrolases (BSH) genes. IFX treatment enriched the BSH-producing bacteria in CD subjects, which may explain a decreased level of conjugated BAs and an increase in unconjugated BAs as well as the unconjugated/conjugated BAs ratio. Furthermore, a sustained response (SR) of IFX therapy was associated with higher abundances of Methylobacterium, Sphingomonas, Staphylococcus, and Streptococcus, and higher fecal concentrations of amino acids, including L-aspartic acid, linoleic acid, and L-lactic acid at baseline. Our study suggests that the effects of IFX might be partially mediated by enriching bacteria taxa that producing SCFAs and BSH thereby inhibiting inflammation and restoring the BA metabolism. Some fecal bacteria and metabolites may be predictive of outcomes of IFX therapy for pediatric CD patients.
Collapse
Affiliation(s)
- Yizhong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China,Institue of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,CONTACT Yizhong Wang
| | - Xuefeng Gao
- Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Xinyue Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Hu
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Dong
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Ge
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Institue of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China,Zhanju Liu
| | - Ting Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China,Institue of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Ting Zhang Department of Gastroenterology, Hepatology and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai200062, China
| |
Collapse
|
34
|
Ye D, Li X, Shen J, Xia X. Microbial metabolomics: From novel technologies to diversified applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Luo S, Yue T, Liu Z, Yang D, Xu M, Ding Y, Jiang W, Xu W, Yan J, Weng J, Zheng X. Gut microbiome and metabolic activity in type 1 diabetes: An analysis based on the presence of GADA. Front Endocrinol (Lausanne) 2022; 13:938358. [PMID: 36246882 PMCID: PMC9563112 DOI: 10.3389/fendo.2022.938358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Type 1 diabetes (T1D) progression is affected by circulating glutamic acid decarboxylase antibody (GADA) that persist for many years. This study aimed at investigating whether and how the gut microbiome and its correlated metabolites change in T1D with the presence of GADA. METHODS We used a radiobinding assay to measure GADA titers and identify the 49 T1D patients with GADA+ and 52 T1D patients with GADA-. The fresh feces and serum were analyzed using 16S rRNA gene sequencing and GC/MS. Then gut microbiome and serum metabolites were compared between the GADA+ patients and the GADA- patients. The association between gut microbial community and metabolites was assessed using the Spearman's rank correlation. RESULTS The gut microbiome in diversity, composition, and function differed between these two groups. The abundance of genus Alistipes, Ruminococcus significantly increased in patients with GADA+ compared to that observed in the samples of GADA-. There were 54 significantly altered serum metabolites associated with tryptophan metabolism, phenylalanine, and tyrosine biosynthesis in individuals with GADA+ compared with those of GADA-For the serum metabolites, compared with those of GADA-, there were 54 significantly different metabolites with tryptophan metabolism, phenylalanine, and tyrosine and tryptophan biosynthesis decreased in individuals with GADA+. The abundance of Alistipes was positively correlated with altered metabolites involved in tryptophan metabolism. CONCLUSION We demonstrate that T1D patients with GADA+ are characterised by aberrant profiles of gut microbiota and serum metabolites. The abundance of Alistipes disturbances may participate in the development of T1D patients with GADA by modulating the host's tryptophan metabolism. These findings extend our insights into the association between the gut microbiota and tryptophan metabolism and GADA and might be targeted for preventing the development of T1D.
Collapse
Affiliation(s)
- Sihui Luo
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziyu Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Jiang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xueying Zheng, ; Jianping Weng,
| | - Xueying Zheng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xueying Zheng, ; Jianping Weng,
| |
Collapse
|
36
|
Dang JT, Mocanu V, Park H, Laffin M, Tran C, Hotte N, Karmali S, Birch DW, Madsen K. Ileal microbial shifts after Roux-en-Y gastric bypass orchestrate changes in glucose metabolism through modulation of bile acids and L-cell adaptation. Sci Rep 2021; 11:23813. [PMID: 34893681 PMCID: PMC8664817 DOI: 10.1038/s41598-021-03396-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Roux-en-Y gastric bypass (RYGB)-induced glycemic improvement is associated with increases in glucagon-like-peptide-1 (GLP-1) secreted from ileal L-cells. We analyzed changes in ileal bile acids and ileal microbial composition in diet-induced-obesity rats after RYGB or sham surgery to elucidate the early and late effects on L-cells and glucose homeostasis. In early cohorts, there were no significant changes in L-cell density, GLP-1 or glucose tolerance. In late cohorts, RYGB demonstrated less weight regain, improved glucose tolerance, increased L-cell density, and increased villi height. No difference in the expression of GLP-1 genes was observed. There were lower concentrations of ileal bile acids in the late RYGB cohort. Microbial analysis demonstrated decreased alpha diversity in early RYGB cohorts which normalized in the late group. The early RYGB cohorts had higher abundances of Escherichia-Shigella but lower abundances of Lactobacillus, Adlercreutzia, and Proteus while the late cohorts demonstrated higher abundances of Escherichia-Shigella and lower abundances of Lactobacillus. Shifts in Lactobacillus and Escherichia-Shigella correlated with decreases in multiple conjugated bile acids. In conclusion, RYGB caused a late and substantial increase in L-cell quantity with associated changes in bile acids which correlated to shifts in Escherichia-Shigella and Lactobacillus. This proliferation of L-cells contributed to improved glucose homeostasis.
Collapse
Affiliation(s)
- Jerry T Dang
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada.
| | - Valentin Mocanu
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Heekuk Park
- Department of Medicine, Columbia University, New York City, NY, USA
| | - Michael Laffin
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Caroline Tran
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Shahzeer Karmali
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Daniel W Birch
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Karen Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Yu JS, Youn GS, Choi J, Kim C, Kim BY, Yang S, Lee JH, Park T, Kim BK, Kim YB, Roh SW, Min BH, Park HJ, Yoon SJ, Lee NY, Choi YR, Kim HS, Gupta H, Sung H, Han SH, Suk KT, Lee DY. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin Transl Med 2021; 11:e634. [PMID: 34965016 PMCID: PMC8715831 DOI: 10.1002/ctm2.634] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. METHODS We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. RESULTS L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. CONCLUSIONS NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.
Collapse
Affiliation(s)
- Jeong Seok Yu
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Jieun Choi
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Chang‐Ho Kim
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | | | | | | | - Tae‐Sik Park
- Department of Life ScienceGachon UniversitySungnamRepublic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research InstituteGyeonggi‐doRepublic of Korea
| | - Yeon Bee Kim
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hotaik Sung
- School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sang Hak Han
- Department of PathologyHallym University College of MedicineChuncheonRepublic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Do Yup Lee
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
38
|
Pontifex MG, Mushtaq A, Le Gall G, Rodriguez-Ramiro I, Blokker BA, Hoogteijling MEM, Ricci M, Pellizzon M, Vauzour D, Müller M. Differential Influence of Soluble Dietary Fibres on Intestinal and Hepatic Carbohydrate Response. Nutrients 2021; 13:nu13124278. [PMID: 34959832 PMCID: PMC8706546 DOI: 10.3390/nu13124278] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Refined foods are commonly depleted in certain bioactive components that are abundant in 'natural' (plant) foods. Identification and addition of these 'missing' bioactives in the diet is, therefore, necessary to counteract the deleterious impact of convenience food. In this study, multiomics approaches were employed to assess the addition of the popular supplementary soluble dietary fibers inulin and psyllium, both in isolation and in combination with a refined animal feed. A 16S rRNA sequencing and 1H NMR metabolomic investigation revealed that, whilst inulin mediated an increase in Bifidobacteria, psyllium elicited a broader microbial shift, with Parasutterella and Akkermansia being increased and Enterorhabdus and Odoribacter decreased. Interestingly, the combination diet benefited from both inulin and psyllium related microbial changes. Psyllium mediated microbial changes correlated with a reduction of glucose (R -0.67, -0.73, respectively, p < 0.05) and type 2 diabetes associated metabolites: 3-methyl-2-oxovaleric acid (R -0.72, -0.78, respectively, p < 0.05), and citrulline (R -0.77, -0.71, respectively, p < 0.05). This was in line with intestinal and hepatic carbohydrate response (e.g., Slc2a2, Slc2a5, Khk and Fbp1) and hepatic lipogenesis (e.g., Srebf1 and Fasn), which were significantly reduced under psyllium addition. Although established in the liver, the intestinal response associated with psyllium was absent in the combination diet, placing greater significance upon the established microbial, and subsequent metabolomic, shift. Our results therefore highlight the heterogeneity that exists between distinct dietary fibers in the context of carbohydrate uptake and metabolism, and supports psyllium containing combination diets, for their ability to negate the impact of a refined diet.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Aleena Mushtaq
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Gwenaëlle Le Gall
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Ildefonso Rodriguez-Ramiro
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Britt Anne Blokker
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Mara E. M. Hoogteijling
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Matthew Ricci
- Research Diets, Inc., New Brunswick, NJ 08901, USA; (M.R.); (M.P.)
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (M.G.P.); (A.M.); (G.L.G.); (I.R.-R.); (B.A.B.); (M.E.M.H.); (D.V.)
- Correspondence: ; Tel.: +44-160-359-3047
| |
Collapse
|
39
|
Li Y, Yi J, Zeng Q, Liu Y, Yang B, Liu B, Li Y, Mehmood K, Hussain R, Tang Z, Zhang H, Li Y. Zearalenone exposure mediated hepatotoxicity via mitochondrial apoptotic and autophagy pathways: Associated with gut microbiome and metabolites. Toxicology 2021; 462:152957. [PMID: 34537261 DOI: 10.1016/j.tox.2021.152957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEN), a mycotoxin is frequently detected in different food products and has been widely studied for its toxicity. However, the underlying mechanisms of hepatotoxic effects, relationship between gut microbiome and liver metabolite mediated hepatotoxicity mechanisms induced by ZEN are still not clear. Here, we reported that the different microscopic changes like swelling of hepatocyte, disorganization of hepatocytes and extensive vacuolar degeneration were observed, and the mitochondrial functions decreased in exposed mice. Results exhibited up-regulation in expression of signals of apoptosis and autophagy in liver of treated mice via mitochondrial apoptotic and autophagy pathway (Beclin1/p62). The diversity of gut microbiome decreased and the values of various microbiome altered in treated mice, including 5 phyla (Chloroflexi, Sva0485, Methylomirabilota, MBNT15 and Kryptonia) and genera (Frankia, Lactococcus, Anaerolinea, Halomonas and Sh765B-TzT-35) significantly changed. Liver metabolism showed that the concentrations of 91 metabolite including lipids and lipid like molecules were significantly changed. The values of phosphatidylcholine, 2-Lysophosphatidylcholine and phosphatidate concentrations suggestive of abnormal glycerophosphate metabolism pathway were significantly increased in mice due to exposure to ZEN. In conclusion, the findings suggest that the disorders in gut microbiome and liver metabolites due to exposure to ZEN in mice may affect the liver.
Collapse
Affiliation(s)
- Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Zancarini A, Westerhuis JA, Smilde AK, Bouwmeester HJ. Integration of omics data to unravel root microbiome recruitment. Curr Opin Biotechnol 2021; 70:255-261. [PMID: 34242993 DOI: 10.1016/j.copbio.2021.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022]
Abstract
The plant microbiome plays an essential role in supporting plant growth and health, but plant molecular mechanisms underlying its recruitment are still unclear. Multi-omics data integration methods can be used to unravel new signalling relationships. Here, we review the effects of plant genetics and root exudates on root microbiome recruitment, and discuss methodological advances in data integration approaches that can help us to better understand and optimise the crop-microbiome interaction for a more sustainable agriculture.
Collapse
Affiliation(s)
- Anouk Zancarini
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Johan A Westerhuis
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Age K Smilde
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Shen J, Li P, Liu S, Liu Q, Li Y, Zhang Z, Yang C, Hu M, Sun Y, He C, Xiao P. The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct 2021; 11:9634-9650. [PMID: 33048099 DOI: 10.1039/d0fo01731k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite that colorectal cancer (CRC) is a severe global health problem, effective chemopreventive strategies against CRC are still lacking. Huang-qin tea (HQT), a healthy herbal tea, is prepared from the aerial parts of Scutellaria baicalensis Georgi and has been consumed in China for thousands of years. HQT contains abundant flavonoids, which display potent anticancer effects, but no research studies have investigated the cancer-preventive effects of HQT on CRC in vivo. Here, we found that HQT inhibits azoxymethane-induced aberrant crypt foci (ACF) formation in a preneoplastic colonic ACF rat model. The essential role of the gut microbiota in the chemopreventive effect of HQT on CRC in a pseudo-germ-free rat model was confirmed. Besides, HQT modulates inflammatory cytokine expression by significantly decreasing IL-1β, IL-6, IL-10, and TNF-α expression, and elevating IFN-γ production. 16S rDNA sequencing analysis indicated that HQT regulated the gut microbiota by increasing the abundance of beneficial bacteria (Lachnoclostridium, Alistipes, Roseburia, and Lactococcus) and reducing the levels of Bacteroides, Parasutterella, and unidentified_Clostridiales. Fecal metabolomics showed that HQT modulated the AOM-induced metabolomic disorder, and these altered metabolites were almost involved in the lipid metabolic pathways. The Spearman correlation analysis revealed a correlation between the gut microbiota and fecal metabolites. Collectively, these results suggested that HQT exerted beneficial effects on host health by inhibiting inflammation, and by regulating the gut microbiota profile and certain metabolic pathways. In conclusion, HQT inhibits AOM-induced ACF formation by modulating the gut microbiota composition and improving metabolomic disorders, indicating the potential of HQT as a functional beverage candidate for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reiman D, Layden BT, Dai Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput Biol 2021; 17:e1009021. [PMID: 33999922 PMCID: PMC8158931 DOI: 10.1371/journal.pcbi.1009021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The advance in microbiome and metabolome studies has generated rich omics data revealing the involvement of the microbial community in host disease pathogenesis through interactions with their host at a metabolic level. However, the computational tools to uncover these relationships are just emerging. Here, we present MiMeNet, a neural network framework for modeling microbe-metabolite relationships. Using ten iterations of 10-fold cross-validation on three paired microbiome-metabolome datasets, we show that MiMeNet more accurately predicts metabolite abundances (mean Spearman correlation coefficients increase from 0.108 to 0.309, 0.276 to 0.457, and -0.272 to 0.264) and identifies more well-predicted metabolites (increase in the number of well-predicted metabolites from 198 to 366, 104 to 143, and 4 to 29) compared to state-of-art linear models for individual metabolite predictions. Additionally, we demonstrate that MiMeNet can group microbes and metabolites with similar interaction patterns and functions to illuminate the underlying structure of the microbe-metabolite interaction network, which could potentially shed light on uncharacterized metabolites through “Guilt by Association”. Our results demonstrated that MiMeNet is a powerful tool to provide insights into the causes of metabolic dysregulation in disease, facilitating future hypothesis generation at the interface of the microbiome and metabolomics. The microbiome has shown to functionally interact with its host or environment at a metabolic level, however the exact nature of these interactions is not well understood. In addition, metabolic dysregulation caused by the microbiome is believed to contribute to the development of diseases such as inflammatory bowel disease, diabetes mellitus, and obesity. In this manuscript, we introduce a computational framework to integrate microbiome and metabolome data to uncover microbe-metabolite interactions in a data-driven manner. Our model uses neural networks to predict metabolite abundances from microbe abundances. The trained models are then used to derive microbe-metabolite feature scores, which are used for clustering microbes and metabolites into functional modules. These module-based interactions are useful in generating biological insights and facilitating hypothesis generation for the investigation of their roles in various metabolic diseases. The software of our model is made freely available to interested researchers.
Collapse
Affiliation(s)
- Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
43
|
Dhariwal A, Junges R, Chen T, Petersen FC. ResistoXplorer: a web-based tool for visual, statistical and exploratory data analysis of resistome data. NAR Genom Bioinform 2021; 3:lqab018. [PMID: 33796850 PMCID: PMC7991225 DOI: 10.1093/nargab/lqab018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/25/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The study of resistomes using whole metagenomic sequencing enables high-throughput identification of resistance genes in complex microbial communities, such as the human microbiome. Over recent years, sophisticated and diverse pipelines have been established to facilitate raw data processing and annotation. Despite the progress, there are no easy-to-use tools for comprehensive visual, statistical and functional analysis of resistome data. Thus, exploration of the resulting large complex datasets remains a key bottleneck requiring robust computational resources and technical expertise, which creates a significant hurdle for advancements in the field. Here, we introduce ResistoXplorer, a user-friendly tool that integrates recent advancements in statistics and visualization, coupled with extensive functional annotations and phenotype collection, to enable high-throughput analysis of common outputs generated from metagenomic resistome studies. ResistoXplorer contains three modules—the ‘Antimicrobial Resistance Gene Table’ module offers various options for composition profiling, functional profiling and comparative analysis of resistome data; the ‘Integration’ module supports integrative exploratory analysis of resistome and microbiome abundance profiles derived from metagenomic samples; finally, the ‘Antimicrobial Resistance Gene List’ module enables users to intuitively explore the associations between antimicrobial resistance genes and the microbial hosts using network visual analytics to gain biological insights. ResistoXplorer is publicly available at http://www.resistoxplorer.no.
Collapse
Affiliation(s)
- Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, 02142 Cambridge, MA, USA
| | - Fernanda C Petersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
44
|
Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:621276. [PMID: 33737943 PMCID: PMC7961088 DOI: 10.3389/fpls.2021.621276] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
Plant secondary metabolites (PSMs) play many roles including defense against pathogens, pests, and herbivores; response to environmental stresses, and mediating organismal interactions. Similarly, plant microbiomes participate in many of the above-mentioned processes directly or indirectly by regulating plant metabolism. Studies have shown that plants can influence their microbiome by secreting various metabolites and, in turn, the microbiome may also impact the metabolome of the host plant. However, not much is known about the communications between the interacting partners to impact their phenotypic changes. In this article, we review the patterns and potential underlying mechanisms of interactions between PSMs and plant microbiomes. We describe the recent developments in analytical approaches and methods in this field. The applications of these new methods and approaches have increased our understanding of the relationships between PSMs and plant microbiomes. Though the current studies have primarily focused on model organisms, the methods and results obtained so far should help future studies of agriculturally important plants and facilitate the development of methods to manipulate PSMs-microbiome interactions with predictive outcomes for sustainable crop productions.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
45
|
Sun K, Sun H, Qiu Z, Liu Q. Comparative Analyses of Phyllosphere Bacterial Communities and Metabolomes in Newly Developed Needles of Cunninghamia lanceolata (Lamb.) Hook. at Four Stages of Stand Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:717643. [PMID: 34650578 PMCID: PMC8505725 DOI: 10.3389/fpls.2021.717643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 05/06/2023]
Abstract
Host-plant-associated bacteria affect the growth, vigor, and nutrient availability of the host plant. However, phyllosphere bacteria have received less research attention and their functions remain elusive, especially in forest ecosystems. In this study, we collected newly developed needles from sapling (age 5 years), juvenile (15 years), mature (25 years), and overmature (35 years) stands of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook]. We analyzed changes in phyllosphere bacterial communities, their functional genes, and metabolic activity among different stand ages. The results showed that phyllosphere bacterial communities changed, both in relative abundance and in composition, with an increase in stand age. Community abundance predominantly changed in the orders Campylobacterales, Pseudonocardiales, Deinococcales, Gemmatimonadales, Betaproteobacteriales, Chthoniobacterales, and Propionibacteriales. Functional predictions indicated the genes of microbial communities for carbon metabolism, nitrogen metabolism, antibiotic biosynthesis, flavonoids biosynthesis, and steroid hormone biosynthesis varied; some bacteria were strongly correlated with some metabolites. A total of 112 differential metabolites, including lipids, benzenoids, and flavonoids, were identified. Trigonelline, proline, leucine, and phenylalanine concentrations increased with stand age. Flavonoids concentrations were higher in sapling stands than in other stands, but the transcript levels of genes associated with flavonoids biosynthesis in the newly developed needles of saplings were lower than those of other stands. The nutritional requirements and competition between individual trees at different growth stages shaped the phyllosphere bacterial community and host-bacteria interaction. Gene expression related to the secondary metabolism of shikimate, mevalonate, terpenoids, tocopherol, phenylpropanoids, phenols, alkaloids, carotenoids, betains, wax, and flavonoids pathways were clearly different in Chinese fir at different ages. This study provides an overview of phyllosphere bacteria, metabolism, and transcriptome in Chinese fir of different stand ages and highlights the value of an integrated approach to understand the molecular mechanisms associated with biosynthesis.
Collapse
Affiliation(s)
- Kun Sun
- Key Laboratory of Subtropical Siviculture of State Forestry and Grassland Administration, Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, China
- Department of Tree Genetics, College of Forestry, Beihua University, Jilin, China
| | - Honggang Sun
- Key Laboratory of Subtropical Siviculture of State Forestry and Grassland Administration, Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, China
- *Correspondence: Honggang Sun
| | - Zonghao Qiu
- Laboratory of Molecular Biology, Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Qiang Liu
- Department of Plant Sciences, School of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
46
|
Andrighetti T, Bohar B, Lemke N, Sudhakar P, Korcsmaros T. MicrobioLink: An Integrated Computational Pipeline to Infer Functional Effects of Microbiome-Host Interactions. Cells 2020; 9:cells9051278. [PMID: 32455748 PMCID: PMC7291277 DOI: 10.3390/cells9051278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Microbiome–host interactions play significant roles in health and in various diseases including autoimmune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of disease pathogenesis and provides useful leads on potential therapeutic targets. Despite the biological significance of microbe–host interactions, there is a big gap in understanding the downstream effects of these interactions on host processes. Computational methods are expected to fill this gap by generating, integrating, and prioritizing predictions—as experimental detection remains challenging due to feasibility issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions between microbial and host proteins together with host molecular networks. Using the concept of network diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing cellular processes by modulating gene or protein expression. We demonstrated the applicability of the pipeline using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy controls to uncover the mechanisms by which the microbial proteins can modulate host genes which belong to biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the microbial protein sources (bacterial, viral, etc.), is freely available on GitHub.
Collapse
Affiliation(s)
- Tahila Andrighetti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Institute of Biosciences, São Paulo University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Department of Genetics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Ney Lemke
- Institute of Biosciences, São Paulo University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven BE-3000, Leuven, Belgium
- Correspondence: (T.K.); (P.S.)
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Correspondence: (T.K.); (P.S.)
| |
Collapse
|
47
|
O'Shea K, Misra BB. Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics 2020; 16:36. [PMID: 32146531 DOI: 10.1007/s11306-020-01657-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/01/2020] [Indexed: 12/24/2022]
Abstract
Metabolomics has evolved as a discipline from a discovery and functional genomics tool, and is now a cornerstone in the era of big data-driven precision medicine. Sample preparation strategies and analytical technologies have seen enormous growth, and keeping pace with data analytics is challenging, to say the least. This review introduces and briefly presents around 100 metabolomics software resources, tools, databases, and other utilities that have surfaced or have improved in 2019. Table 1 provides the computational dependencies of the tools, categorizes the resources based on utility and ease of use, and provides hyperlinks to webpages where the tools can be downloaded or used. This review intends to keep the community of metabolomics researchers up to date with all the software tools, resources, and databases developed in 2019, in one place.
Collapse
Affiliation(s)
- Keiron O'Shea
- Institute of Biological, Environmental, and Rural Studies, Aberystwyth University, Ceredigion, Wales, SY23 3DA, UK
| | - Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|