1
|
Gutermuth T, Penner P, Sieg J, Dolfus U, Rarey M. SmartChemist─Simplifying Communication About Organic Chemical Structures. J Chem Inf Model 2025. [PMID: 40489663 DOI: 10.1021/acs.jcim.5c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Communication between collaborators of different (scientific) backgrounds can be difficult in any interdisciplinary work. Frequently used language of different disciplines can be partially unknown or sometimes even contradict each other. One example of this is knowledge about organic chemical nomenclature used by chemists. Although highly efficient, this nomenclature can be challenging to learn and confusing for scientists new to it. Today, interdisciplinary teams in chemistry often consist of a diverse range of experts, including those from biology, pharmacology, medicine, computer science, and mathematics. This can complicate communication regarding chemical structures, impeding a productive work environment and potentially introducing errors. To address this issue, we present a new web tool called SmartChemist. This tool enables users to upload molecular files or enter SMILES of molecules. It then displays the names of identified substructures, including cyclic substructures, functional groups, and common biologically relevant organic molecules. It utilizes a database of over 40,000 patterns that have been carefully generated for this purpose, and it only shows the most specific substructures found while enabling novices to inquire about all substructures found.
Collapse
Affiliation(s)
- Torben Gutermuth
- ZBH─Center for Bioinformatics, University of Hamburg, Albert Einstein Ring 8-10, 22761 Hamburg, Germany
| | - Patrick Penner
- ZBH─Center for Bioinformatics, University of Hamburg, Albert Einstein Ring 8-10, 22761 Hamburg, Germany
| | - Jochen Sieg
- ZBH─Center for Bioinformatics, University of Hamburg, Albert Einstein Ring 8-10, 22761 Hamburg, Germany
| | - Uschi Dolfus
- ZBH─Center for Bioinformatics, University of Hamburg, Albert Einstein Ring 8-10, 22761 Hamburg, Germany
| | - Matthias Rarey
- ZBH─Center for Bioinformatics, University of Hamburg, Albert Einstein Ring 8-10, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Mamolo MG, Carosati E, Pasin D, De Logu A, Cabiddu G, Jukič M, Zampieri D. Synthesis, Antimycobacterial Activity, and Computational Insight of Novel 1,4-Benzoxazin-2-one Derivatives as Promising Candidates against Multidrug-Resistant Mycobacterium Tuberculosis. ChemMedChem 2025:e2500073. [PMID: 40365658 DOI: 10.1002/cmdc.202500073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/15/2025]
Abstract
In the search for new antitubercular agents, a series of 1,4-benzoxazinone-based compounds is designed, synthesized, and evaluated. These molecules show potent antimycobacterial activity, with a minimum inhibitory concentration between 2 and 8 μg mL-1. This interesting profile includes activity against several drug-resistant strains and minimal cytotoxicity against mammalian Vero cells. Structural similarities with analogs from the literature are reinforced by molecular docking and molecular dynamics simulations, suggesting that inhibition of the menaquinone-B enzyme as a potential mechanism of action. In addition, the active compounds exhibit favorable predicted Absorption, Distribuition, Metabolism, and Excretion (ADME) properties, indicating their potential for oral administration in humans.
Collapse
Affiliation(s)
- Maria Grazia Mamolo
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Emanuele Carosati
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Diletta Pasin
- S.O.C. Experimental and Clinical Pharmacology, IRCSS, RO Aviano, Via F. Gallini 2, 33081, Aviano, Italy
| | - Alessandro De Logu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042, Cagliari, Italy
| | - Gianluigi Cabiddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042, Cagliari, Italy
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000, Koper, Slovenia
| | - Daniele Zampieri
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
3
|
Mirabal B, Andrade BS, Souza SPA, Oliveira IBDS, Melo TS, Barbosa FS, Jaiswal AK, Seyffert N, Portela RW, Soares SDC, Azevedo V, Meyer R, Tiwari S, Castro TLDP. In silico approaches for predicting natural compounds with therapeutic potential and vaccine candidates against Streptococcus equi. J Biomol Struct Dyn 2025; 43:4013-4027. [PMID: 38239063 DOI: 10.1080/07391102.2023.2301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Equine strangles is a prevalent disease that affects the upper respiratory in horses and is caused by the Gram-positive bacterium Streptococcus equi. In addition to strangles, other clinical conditions are caused by the two S. equi subspecies, equi and zooepidemicus, which present relevant zoonotic potential. Treatment of infections caused by S. equi has become challenging due to the worldwide spreading of infected horses and the unavailability of effective therapeutics and vaccines. Penicillin treatment is often recommended, but multidrug resistance issues arised. We explored the whole genome sequence of 18 S. equi isolates to identify candidate proteins to be targeted by natural drug-like compounds or explored as immunogens. We considered only proteins shared among the sequenced strains of subspecies equi and zooepidemicus, absent in the equine host and predicted to be essential and involved in virulence. Of these, 4 proteins with cytoplasmic subcellular location were selected for molecular docking with a library of 5008 compounds, while 6 proteins were proposed as prominent immunogens against S. equi due to their probabilities of behaving as adhesins. The molecular docking analyses revealed the best ten ligands for each of the 4 drug target candidates, and they were ranked according to their binding affinities and the number of hydrogen bonds for complex stability. Finally, the natural 5-ring compound C25H20F3N5O3 excelled in molecular dynamics simulations for the increased stability in the interaction with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB). This research paves the way to developing new therapeutics to minimize the impacts caused by S. equi infections.
Collapse
Affiliation(s)
- Bernardo Mirabal
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Department of Biological Sciences, State University of Southwest Bahia, Jequié, Brazil
| | | | | | - Tarcisio Silva Melo
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Feira de Santana, Brazil
| | - Fabrício Santos Barbosa
- Postgraduate Program in Chemistry, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Arun Kumar Jaiswal
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Siomar de Castro Soares
- Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Sandeep Tiwari
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Thiago Luiz de Paula Castro
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Kewedar S, Chen QR, Moural TW, Lo C, Umbel E, Forrence PJ, Walsh DB, Zhu F. Acaricide Resistance Monitoring and Structural Insights for Precision Tetranychus urticae Management. INSECTS 2025; 16:440. [PMID: 40429153 PMCID: PMC12112526 DOI: 10.3390/insects16050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025]
Abstract
The two-spotted spider mite (Tetranychus urticae) is a highly destructive and economically significant pest in agricultural, horticultural, and ornamental agroecosystems worldwide, including hop (Humulus lupulus) and mint (Mentha spp.) fields in the Pacific Northwest (PNW) region of the United States. Repeated acaricide applications and rotations have led to widespread resistance, resulting in control failures. In this study, we investigated the mechanisms of resistance to four different acaricides (bifenthrin, bifenazate, etoxazole, and abamectin) across 23 field-collected TSSM populations by integrating diagnostic bioassays, genetic screening for resistance-associated mutations, structural modeling, and molecular docking. Several kdr mutations and mutation combinations were detected in TuVGSC across all tested populations. The G132A in Tucytb was identified in 68.75% of hop and 40% of mint TSSM populations, while the I1017F in TuCHS 1 was found in 94% of hop and 100% of mint populations. Structural analysis revealed key interactions between acaricides and target proteins in both wild-type and mutant variants, providing novel insights into the functional impacts of these mutations. Our findings enhance the understanding of TSSM adaptation to acaricides among different crops, supporting the development of more effective resistance management strategies to mitigate economic losses in hops, mint, and other crop production.
Collapse
Affiliation(s)
- Said Kewedar
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Qi-Ren Chen
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Timothy W. Moural
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Carah Lo
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Elsie Umbel
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Peter J. Forrence
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; (P.J.F.); (D.B.W.)
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Douglas B. Walsh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; (P.J.F.); (D.B.W.)
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Fang Zhu
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Pinto FDCL, Cabongo SQ, João PP, Lima MDSPC, Paiva MMPC, Madureira JMC, Caluaco BJ, Colares RP, Neto MM, Dos Santos HS, Marinho ES, da Fonseca AM. Bioactive structures for inhibitors of Candida auris polymerase enzyme by artificial intelligence. Future Med Chem 2025; 17:869-884. [PMID: 40247646 DOI: 10.1080/17568919.2025.2491301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
AIMS Present new bioactive compounds, created by De novo Drug Design and artificial intelligence (AI), as possible inhibitors of C. auris polymerase. MATERIALS & METHODS MolAICal's AI module was configured to identify FDA-approved molecular fragments with therapeutic effectiveness against C. auris polymerase, where the model with optimized synthetic accessibility and structural complexity was subjected to docking and molecular dynamics simulations and pharmacokinetic prediction. RESULTS Among 1,722 new forms, the Hit-960 compound stood out for its high bioaffinity and stability, with a binding energy of -9.12 kcal/mol and 75% synthetic accessibility. CONCLUSIONS Clinical studies are recommended to test its efficacy, contributing to the development of new treatments for C. auris infections.
Collapse
Affiliation(s)
- Francisco Das Chagas Lima Pinto
- Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| | - Sadrack Queque Cabongo
- Institute of Exact and Natural Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| | - Pedro Paulino João
- Institute of Exact and Natural Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| | - Maria Do Socorro Pereira Costa Lima
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony - UNILAB, Redenção, Brazil
| | - Maria Mabelle Pereira Costa Paiva
- Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| | | | - Bernardino Joaquim Caluaco
- Institute of Exact and Natural Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| | - Regilany Paulo Colares
- Institute of Exact and Natural Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| | - Moises Maia Neto
- Department of Pharmacy, Centro Universitário Fametro, Fortaleza, Brazil
| | | | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos - FAFIDAM, State University of Ceará, Centro, Limoeiro do Norte, Brazil
| | - Aluísio Marques da Fonseca
- Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Acarape-CE, Brazil
| |
Collapse
|
6
|
Zhong F, Mao S, Peng S, Li J, Xie Y, Xia Z, Chen C, Sun A, Zhang S, Wang S. Exploration of SUSD3 in pan-cancer: studying its role, predictive analysis, and biological significance in various malignant tumors in humans. Front Immunol 2025; 16:1521965. [PMID: 40191190 PMCID: PMC11968365 DOI: 10.3389/fimmu.2025.1521965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Background The SUSD3 protein, marked by the Sushi domain, plays a key role in cancer progression, with its expression linked to tumor advancement and patient prognosis. Altered SUSD3 levels could serve as a predictive biomarker for cancer progression. Recognized as a novel susceptibility marker, SUSD3 presents a promising target for antibody-based therapies, offering a potential approach for the prevention, diagnosis, and treatment of breast cancer. Methods Using the HPA and GeneMANIA platforms, the distribution of SUSD3 protein across tissues was analyzed, while expression levels in tumor and healthy tissues were compared using The Cancer Genome Atlas data. The TISCH and STOmics DB databases facilitated the mapping of SUSD3 expression in different cell types and its spatial relationship with cancer markers. Univariate Cox regression assessed the prognostic significance of SUSD3 expression in various cancers. Genomic alterations of SUSD3 were explored through the cBioPortal database. The potential of SUSD3 as a predictor of immunotherapy response was investigated using TIMER2.0, and GSEA/GSVA identified related biological pathways. Drugs targeting SUSD3 were identified through CellMiner, CTRP, and GDSC databases, complemented by molecular docking studies. In vitro experiments demonstrated that SUSD3 knockdown in breast cancer cell lines significantly reduced proliferation and migration. Results SUSD3 expression variations in pan-cancer cohorts are closely linked to the prognosis of various malignancies. In the tumor microenvironment (TME), SUSD3 is predominantly expressed in monocytes/macrophages and CD4+ T cells. Research indicates a strong correlation between SUSD3 expression and key cancer immunotherapy biomarkers, immune cell infiltration, and immunomodulatory factors. To explore its immune regulatory role, StromalScore, ImmuneScore, ESTIMATE, and Immune Infiltration metrics were employed. Molecular docking studies revealed that selumetinib inhibits tumor cell proliferation. Finally, SUSD3 knockdown reduced cancer cell proliferation and migration. Conclusion These findings provide valuable insights and establish a foundation for further exploration of SUSD3's role in pan-carcinomas. Additionally, they offer novel perspectives and potential targets for the development of innovative therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Shining Mao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shuangfu Peng
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Jiaqi Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - YanTeng Xie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Ziqian Xia
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chao Chen
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Aijun Sun
- Department of Laboratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyan Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| |
Collapse
|
7
|
Liu R, Dong J, Wang J, Xu Q, Dong Z, Wang L, Bao Y, Wang K, Han X, Shi X, Xiong Y, Lyu Q, Shan Q, Cao G. MCnebula analysis combined with alpha-glucosidase inhibitory screening reveals potential chemical contributors to efficacy enhancement of natural products after processing. Food Res Int 2025; 205:115985. [PMID: 40032476 DOI: 10.1016/j.foodres.2025.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Natural products often show enhanced therapeutic effects after processing, largely due to changes in their chemical profiles. However, identifying the key chemical classes and components responsible for these improvements remains a challenge. In this study, we present a novel workflow for mass spectrometry data analysis, based on our previously developed MCnebula, combined with in vivo and in vitro testing to identify contributors to the anti-diabetic effects of processed natural products. Cornus officinalis (CO), a traditional food and medicinal plant, showed strong α-glucosidase inhibition, particularly its steamed and wine-steamed products, outperforming acarbose in both in vitro and in vivo testing. MCnebula analysis revealed that flavonoids underwent the most significant changes during processing. Further validation of selected flavonoid compounds, such as quercetin and kaempferol, demonstrated their α-glucosidase inhibitory effects to be 207 and 263 times more potent than acarbose, respectively. The combined use of MCnebula analysis and bioactivity validation revealed the key compounds that contribute to the enhanced anti-glucose effects of CO after processing, offering insights into the chemical transformations with bioactive potential as anti-diabetic dietary supplements and agents.
Collapse
Affiliation(s)
- Ruina Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Jie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Jiaping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Qiongfang Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Zhixiang Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Lu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Yini Bao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Xin Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Xingyang Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Yu Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Qiang Lyu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| | - Qiyuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| |
Collapse
|
8
|
Puthiyottil S, Jose D, Kuriakose N, Skaria T. The developmental and inflammatory disease target protein ADAM17 is vulnerable to off-target interaction by the drug eltrombopag: Insights from molecular modeling. Comput Biol Med 2025; 186:109693. [PMID: 39967193 DOI: 10.1016/j.compbiomed.2025.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The loss of proteolytic activity of ADAM17 causes birth defects and embryonic lethality. Conversely, inhibiting ADAM17 activity represents a potential strategy for treating inflammatory and autoimmune diseases. ADAM17 has an active site cleft with a divalent Zn ion and hydrophobic S1'/S3' subsites interconnected to form an L shaped cavity. However, it is currently unknown whether the active site of ADAM17 is susceptible to off-target inhibition by the small molecule drug eltrombopag, which contains metal-binding moieties and is classified as pregnancy category C by the FDA. The in-depth molecular modeling analysis in this study revealed that the unique structural features of L-shaped S1'/S3', crucial for determining ADAM17 specificity, along with spatial constraints imposed by active site amino acid residues, create an ideal binding environment for eltrombopag. Interestingly, the structural peculiarity of L-shaped S1'/S3' cavity enabled the carboxylate group rather than the traditionally recognized metal binding domain of eltrombopag to chelate catalytic Zn of ADAM17. Further, eltrombopag's biphenyl and xylene groups embed in the S1'/S3' subsites and pyrazole and hydrazine linker occupy the interconnecting tunnel, forming a stable eltrombopag-ADAM17 complex. These novel findings from molecular modeling suggest that ADAM17 is an off-target of eltrombopag, a drug used to increase platelet production in thrombocytopenia. They stimulate further in vitro and in vivo studies to test the repurposing potential of eltrombopag as an ADAM17 inhibitor to prevent tissue destruction in autoimmune diseases in adults and whether the use of eltrombopag during pregnancy could potentially lead to developmental toxicity due to ADAM17 inhibition.
Collapse
Affiliation(s)
- Shahid Puthiyottil
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College (Autonomous), Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Nishamol Kuriakose
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Skaria
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
9
|
Mathpal S, Joshi T, Priyamvada P, Ramaiah S, Anbarasu A. Machine learning and cheminformatics-based Identification of lichen-derived compounds targeting mutant PBP4 R200L in Staphylococcus aureus. Mol Divers 2025:10.1007/s11030-025-11125-6. [PMID: 39954181 DOI: 10.1007/s11030-025-11125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Penicillin-binding protein 4 (PBP4) is essential in imparting significant β-lactam antibiotics resistance in Staphylococcus aureus (S. aureus) and the mutation R200L in PBP4 is linked to β-lactam non-susceptibility in natural strains, complicating treatment options. Therefore, discovering novel therapeutics against the mutant PBP4 is crucial, and natural compounds from lichen have found relevance in this regard. The aim of our study was to identify novel inhibitors against the R200L mutation by applying machine learning (ML) approach. Predictive classification models were developed using six machine learning algorithms to categorize lichen-derived compounds as either active or inactive. The models were evaluated using ROC curves, confusion matrices, and relevant statistical parameters. Among these, the Extra Trees algorithm showed superior predictive accuracy at 81%. The model identified 115 potentially active compounds from lichen, which were further evaluated for drug-likeness and structural similarity to β-lactam antibiotics. The top 23 compounds, showing similarity to β-lactam drug, were subjected to molecular docking. Among the top 10 compounds, two compounds, Barbatolic acid and Orcinyl lecanorate, displayed promising results in 200 ns molecular dynamics (MD) simulations and MM-PBSA analysis, exhibiting better docking score compare to reference compound. Additionally, DFT calculations revealed negative binding energies and smaller HOMO-LUMO gaps for both compounds. The obtained results prove the utility of ML in screening natural compounds, and provide novel opportunities for the design of antimicrobial compounds in the future.
Collapse
Affiliation(s)
- Shalini Mathpal
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Tushar Joshi
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
10
|
Wang W, Wu X, Zhang Q, Zhang T, Jiang L, Qu L, Lu F, Liu F. Tetrahydrofolic acid accelerates amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Int J Biol Macromol 2025; 290:139041. [PMID: 39708879 DOI: 10.1016/j.ijbiomac.2024.139041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Soluble cytotoxic oligomers produced during the fibrillation of both α-synuclein (αS) and amyloid-β protein (Aβ) are key pathogenic factors in Parkinson's disease (PD) and Alzheimer's disease (AD). Reducing toxic oligomers by regulating the aggregation process of αS and Aβ is an important strategy for the treatment of PD and AD. Herein, tetrahydrofolic acid (THF) is found to accelerate amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Thioflavin T and atomic force microscopy assays results showed that THF was able to accelerate the formation of dense fibrils from αS and Aβ in a dose-dependent manner. Strikingly, this was accompanied by a reduction in the abundance of toxic oligomers, and these results were confirmed by DB. Meanwhile, MTT and FDA/PI assays demonstrated that THF-induced accelerated fibril formation was accompanied by a reduction in αS- and Aβ-induced cytotoxicity. In addition, the lifespan of genetically modified αS and Aβ expressing C. elegans was extended by feeding THF, although plaque deposits of αS and Aβ increased. These findings suggest that THF enhances the conversion of αS and Aβ oligomers into less toxic fibrils and is a potential therapeutic agent for PD and AD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
11
|
Bibi S, Breeze CW, Jadoon V, Fareed A, Syed A, Frkic RL, Zaffar H, Ali M, Zeb I, Jackson CJ, Naqvi TA. Isolation, identification, and characterisation of the malachite green detoxifying bacterial strain Bacillus pacificus ROC1 and the azoreductase AzrC. Sci Rep 2025; 15:3499. [PMID: 39875461 PMCID: PMC11775184 DOI: 10.1038/s41598-024-84609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy. MG is persistent in the environment and so requires degradative intervention. In this work we isolated Bacillus pacificus ROC1 strain from a salt flat in Pakistan that had the ability to aerobically detoxify MG, as determined by bacterio- and phyto-toxicity assays. We demonstrate immobilized B. pacificus ROC1 can effectively detoxify MG, which highlights a potential method for its biodegradation. Genomic sequencing identified three candidate azo-reductases within B. pacificus ROC1 that could be responsible for the MG-degrading activity. These were cloned, expressed and purified from Escherichia coli, with one (AzrC), catalyzing the reduction of MG to leuco-MG in vitro. AzrC was crystallised and MG was captured within the active site in a Michaelis complex, providing structural insight into the reduction mechanism. Altogether, this work identifies a bacterium capable of aerobically degrading a major industrial pollutant and characterizes the molecular basis for this activity.
Collapse
Affiliation(s)
- Shanza Bibi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Callum W Breeze
- Research School of Chemistry, The Australian National University, Canberra, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, The Australian National University, Canberra, Australia
| | - Vusqa Jadoon
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Anum Fareed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Alina Syed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Rebecca L Frkic
- Research School of Chemistry, The Australian National University, Canberra, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, The Australian National University, Canberra, Australia
| | - Habiba Zaffar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, The Australian National University, Canberra, Australia.
- Australian Research Council Centre of Excellence for Synthetic Biology, Research School of Biology, The Australian National University, Canberra, Australia.
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan.
| |
Collapse
|
12
|
Strieder Philippsen G, Augusto Vicente Seixas F. Computational approach based on freely accessible tools for antimicrobial drug design. Bioorg Med Chem Lett 2025; 115:130010. [PMID: 39486485 DOI: 10.1016/j.bmcl.2024.130010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Antimicrobial drug development is crucial for public health, especially with the emergence of pandemics and drug resistance that prompts the search for new therapeutic resources. In this context, in silico assays consist of a valuable approach in the rational drug design because they enable a faster and more cost-effective identification of drug candidates compared to in vitro screening. However, once a potential drug is identified, in vitro and in vivo assays are essential to verify the expected activity of the compound and advance it through the subsequent stages of drug development. This work aims to outline an in silico protocol that utilizes only freely available computational tools for identifying new potential antimicrobial agents, which is also suitable in the broad spectrum of drug design. Additionally, this paper reviews relevant computational methods in this context and provides a summary of information concerning the protein-ligand interaction.
Collapse
|
13
|
Medicharla SS, Maheshwari T, B V S. In silico studies of designed thiadiazole derivatives as retinoic acid receptor-alpha (RAR-α) inhibitors for potential contraceptive application. J Biomol Struct Dyn 2024:1-16. [PMID: 39679915 DOI: 10.1080/07391102.2024.2440643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/03/2024] [Indexed: 12/17/2024]
Abstract
Retinoic acid receptors (RARs) are a class of nuclear receptors that play an important role in spermatogenesis. Blocking RAR-α activity is an effective method of contraception. In this study, we used in silico methods to design and evaluate new thiadiazole-based RAR-α antagonists. We performed molecular docking, ADME studies, molecular dynamics, and Binding free energy calculations to determine binding affinities, oral bioavailability, and stability. From the twenty designed compounds, three compounds, BVSSS14, BVSSS09, and BVSSS10, exhibit promising interactions and docking scores of -12.3, -11.6, and -10.1 kcal/mol, respectively. Using molecular dynamics simulations, we elucidated the conformational stability of these three compounds within the RAR-α binding pocket. Furthermore, MMGBSA analysis provided insights into binding free energies, proving the efficacy of BVSSS14, BVSSS09, and BVSSS10. In silico approach highlights the potential of BVSSS14, BVSSS09, and BVSSS10 as promising compounds to inhibit RAR-α, and these compounds are effective candidates as contraceptive agents, laying the groundwork for future experimental validation.
Collapse
Affiliation(s)
- Sri Satya Medicharla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Tanya Maheshwari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Suma B V
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
14
|
Asfa SS, Arshinchi Bonab R, Önder O, Uça Apaydın M, Döşeme H, Küçük C, Georgakilas AG, Stadler BM, Logotheti S, Kale S, Pavlopoulou A. Computer-Aided Identification and Design of Ligands for Multi-Targeting Inhibition of a Molecular Acute Myeloid Leukemia Network. Cancers (Basel) 2024; 16:3607. [PMID: 39518047 PMCID: PMC11544916 DOI: 10.3390/cancers16213607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is characterized by therapeutic failure and long-term risk for disease relapses. As several therapeutic targets participate in networks, they can rewire to eventually evade single-target drugs. Hence, multi-targeting approaches are considered on the expectation that interference with many different components could synergistically hinder activation of alternative pathways and demolish the network one-off, leading to complete disease remission. METHODS Herein, we established a network-based, computer-aided approach for the rational design of drug combinations and de novo agents that interact with many AML network components simultaneously. RESULTS A reconstructed AML network guided the selection of suitable protein hubs and corresponding multi-targeting strategies. For proteins responsive to existing drugs, a greedy algorithm identified the minimum amount of compounds targeting the maximum number of hubs. We predicted permissible combinations of amiodarone, artenimol, fostamatinib, ponatinib, procaine, and vismodegib that interfere with 3-8 hubs, and we elucidated the pharmacological mode of action of procaine on DNMT3A. For proteins that do not respond to any approved drugs, namely cyclins A1, D2, and E1, we used structure-based de novo drug design to generate a novel triple-targeting compound of the chemical formula C15H15NO5, with favorable pharmacological and drug-like properties. CONCLUSIONS Overall, by integrating network and structural pharmacology with molecular modeling, we determined two complementary strategies with the potential to annihilate the AML network, one in the form of repurposable drug combinations and the other as a de novo synthesized triple-targeting agent. These target-drug interactions could be prioritized for preclinical and clinical testing toward precision medicine for AML.
Collapse
Affiliation(s)
- Seyedeh Sadaf Asfa
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R3E 0W2, Canada
| | - Onur Önder
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Merve Uça Apaydın
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Hatice Döşeme
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| | - Can Küçük
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, 35330 Balçova, İzmir, Türkiye;
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece;
| | - Bernhard M. Stadler
- Technische Hochschule Nürnberg, Faculty of Applied Chemistry, 90489 Nuremberg, Germany;
| | - Stella Logotheti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Department of Biophysics, Faculty of Medicine, Izmir Katip Çelebi University, 35330 Çiğli, İzmir, Türkiye
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, 35340 Balçova, İzmir, Türkiye; (S.S.A.); (R.A.B.); (O.Ö.); (M.U.A.); (H.D.); (S.K.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balçova, İzmir, Türkiye
| |
Collapse
|
15
|
Jha AB, Chaube UJ, Jha AB. Ellagic acid improves the symptoms of early-onset Alzheimer's disease: Behavioral and physiological correlates. Heliyon 2024; 10:e37372. [PMID: 39309887 PMCID: PMC11416286 DOI: 10.1016/j.heliyon.2024.e37372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Oryza sativa is a globally recognized staple food, rich in essential phyto-phenolic compounds such as γ-Oryzanol (OZ), Ferulic acid (FA), and Ellagic acid (EA). These phytochemicals are known for their potential to beneficially modulate molecular biochemistry. The present investigation aimed to evaluate the neuroprotective and cognitive enhancement effects of Oryza sativa phyto-phenolics in a model of early-onset Alzheimer's disease (EOAD) induced by Aβ (1-42) in animals. In-silico studies suggested that FA, OZ, and EA have target specificity for Aβ, with EA being further selected based on its potent in-vitro Aβ anti-aggregatory effects for exploring neurodegenerative conditions. The in-vivo experiments demonstrated that EA exerts therapeutic effects in Aβ-induced EOAD, modulating both biochemical and behavioral outcomes. EA treatment at two dose levels, EA70 and EA140 (70 μM and 140 μM, respectively, administered i.c.v.), significantly counteracted Aβ aggregation and modulated the Ca2⁺/Calpain/GSK-3β/CDK5 signaling pathways, exhibiting anti-tauopathy effects. Additionally, EA was shown to exert anti-inflammatory effects by preventing astroglial activation, modulating FAIM-L expression, and protecting against TNF-α-induced apoptotic signals. Moreover, the neuromodulatory effects of EA were attributed to the regulation of CREB levels, Dnm-1 expression, and synaptophysin levels, thereby enhancing LTP and synaptic plasticity. EA also induced beneficial cytological and behavioral changes, improving both long-term and short-term spatial memory as well as associative learning behavior in the animal model, which underscores its cognitive enhancement properties.
Collapse
Affiliation(s)
- Abhishek B. Jha
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Udit J. Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | | |
Collapse
|
16
|
Rama GR, Saraiva Macedo Timmers LF, Volken de Souza CF. In Silico Strategies to Predict Anti-aging Features of Whey Peptides. Mol Biotechnol 2024; 66:2426-2440. [PMID: 37737930 DOI: 10.1007/s12033-023-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
We have analysed the in silico potential of bioactive peptides from cheese whey, the most relevant by-product from the dairy industry, to bind into the active site of collagenase and elastase. The peptides generated from the hydrolysis of bovine β-lactoglobulin with three proteases (trypsin, chymotrypsin, and subtilisin) were docked onto collagenase and elastase by molecular docking. The interaction models were ranked according to their free binding energy using molecular dynamics simulations, which showed that most complexes presented favourable interactions. Interactions with elastase had significantly lower binding energies than those with collagenase. Regarding the interaction site, it was found that four bioactive peptides were positioned in collagenase's active site, while six were found in elastase's active site. Among these, the most we have found one promising collagen-binding peptide produced by chymotrypsin and two for elastase, produced by subtilisin and chymotrypsin. These in silico results can be used as a tool for designing further experiments aiming at testing the in vitro potential of the peptides found in this work.
Collapse
Affiliation(s)
- Gabriela Rabaioli Rama
- Graduate Program in Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil
| | | | - Claucia Fernanda Volken de Souza
- Graduate Program in Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil.
| |
Collapse
|
17
|
Groaz E, Modranka J, Ploschik D, Jabgunde A, Froeyen M, Jang MY, Wagenknecht HA, Herdewijn P. Impact of sulfur substitution on biotin binding affinity to streptavidin. Bioorg Chem 2024; 150:107600. [PMID: 38945086 DOI: 10.1016/j.bioorg.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jakub Modranka
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Damian Ploschik
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Amit Jabgunde
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mi-Yeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Philippsen GS, Seixas FAV. In silico identification of D449-0032 compound as a putative SARS-CoV-2 M pro inhibitor. J Biomol Struct Dyn 2024; 42:6440-6447. [PMID: 37424215 DOI: 10.1080/07391102.2023.2234045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The SARS-CoV-2 pandemic originated the urgency in developing therapeutic resources for the treatment of COVID-19. Despite the current availability of vaccines and some antivirals, the occurence of severe cases of the disease and the risk of the emergence of new virus variants still motivate research in this field. In this context, this study aimed at the computational prospection of likely inhibitors of the main protease (Mpro) of SARS-CoV-2 since inhibiting this enzyme leads to disruption of the viral replication process. The virtual screening of the antiviral libraries Asinex, ChemDiv, and Enamine targeting SARS-CoV-2 Mpro was performed, indicating the D449-0032 compound as a promising inhibitor. Molecular dynamics simulations showed the stability of the protein-ligand complex and in silico predictions of toxicity and pharmacokinetic parameters indicated the probable drug-like behavior of the compound. In vitro and in vivo studies are essential to confirm the Mpro inhibition by the D449-0032.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Flavio Augusto Vicente Seixas
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Brazil
| |
Collapse
|
19
|
Alcántar-Zavala E, Delgado-Vargas F, Marín-González F, Angulo GL, Aguirre-Madrigal HE, Ochoa-Terán A, Rodríguez-Vega G, Aguirre-Hernández G, Montes-Avila J. Design, synthesis, and exploration of antibacterial activity of 6 H-1,2-oxazin-6-ones. RSC Adv 2024; 14:23828-23839. [PMID: 39077316 PMCID: PMC11285021 DOI: 10.1039/d4ra04220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
This study reports the in silico design of 30 6H-1,2-oxazin-6-ones against DHFR and PTC antimicrobial targets. Docking compounds 1, 3, 4, 6, and 8 with both enzymes was favorable, outperforming Trimethoprim with DHFR. Therefore, 12 6H-1,2-oxazin-6-ones, including the most promising compounds, were synthesized through an aminolysis reaction of β-cyanoketones with hydroxylamine hydrochloride, obtaining moderate to high yields (55-88%). Subsequently, antibacterial studies were conducted against five bacteria: four Gram-positive MRSA (ATCC 43300 and three clinical isolates) and one Gram-negative (E. coli ATCC 25922). Compounds 1, 2, 3, 4, 6, and 8 inhibited bacterial growth with MIC values ranging from 3.125 to 200 μg mL-1. Compound 1 showed better activity against Gram-positive bacteria than Linezolid. Toxicity assays indicated no adverse effects of the active oxazinones in silico and in vitro. This study demonstrated the antibacterial potential of the selected 6H-1,2-oxazin-6-ones against resistant human pathogenic bacteria.
Collapse
Affiliation(s)
- Eleazar Alcántar-Zavala
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa Culiacán 80010 Sinaloa Mexico
| | - Francisco Delgado-Vargas
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa Culiacán 80010 Sinaloa Mexico
| | - Fabricio Marín-González
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa Culiacán 80010 Sinaloa Mexico
| | - Gabriela López Angulo
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa Culiacán 80010 Sinaloa Mexico
| | - Hugo Enrique Aguirre-Madrigal
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa Culiacán 80010 Sinaloa Mexico
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana 22444 Baja California Mexico
| | - Gibrán Rodríguez-Vega
- Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas, Universidad Autonóma de Nayarit Tepic 63155 Nayarit Mexico
| | - Gerardo Aguirre-Hernández
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana 22444 Baja California Mexico
| | - Julio Montes-Avila
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa Culiacán 80010 Sinaloa Mexico
| |
Collapse
|
20
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
21
|
Joshi P, Pandey P, Rawat S, Chandra S. Repurposing of Drug Bank Compounds against Plasmodium falciparum Dihydroorotate Dehydrogenase as novel anti malarial drug candidates by Computational approaches. In Silico Pharmacol 2024; 12:60. [PMID: 38978708 PMCID: PMC11227489 DOI: 10.1007/s40203-024-00232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
This study aimed to repurpose Drug Bank Compounds against P. falciparum Dihydroorotate dehydrogenase (Pf-DHODH)a potential molecular target for antimalarial drug development due to its vital role in P. falciparum survival. Initially, the MATGEN server was used to screen drugs against Pf-DHODH (PDB ID 6GJG), followed by revalidating the results through docking by Autodock Vina through PyRx. Based on the docking results, three drugs namely, Talnifumate, Sulfaphenazole, and (3S)-N-[(2S)-1-[2-(1H-indol-3-yl)ethylamino]-1-oxopropan-2-yl]-1-(4-methoxyphenyl)-5-oxopyrrolidine-3-carboxamide-were subjected to molecular dynamics simulation for 100 ns. Molecular dynamics simulation results indicate that (3S)-N-[(2S)-1-[2-(1H-indol-3-yl)ethylamino]-1-oxopropan-2-yl]-1-(4-methoxyphenyl)-5-oxopyrrolidine-3-carboxamide- and Sulfaphenazole may target Pf-DHODH by forming a stable protein-ligand complex as they showed better free binding energy -130.58 kJ/mol, and -79.84 kJ/mol, respectively as compared to the free binding energy 116.255 kJ/mol of the reference compound; 3,6-dimethyl- ~ {N}-[4-(trifluoromethyl)phenyl]-[1,2]oxazolo[5,4-d]pyrimidin-4-amine. Although the studied compounds are drugs, still we applied Lipinski's rules and ADMET analysis that reconfirmed that these drugs have favorable drug-like properties. In conclusion, the results of the study show that Talniflumate and Sulfaphenazole may be potential antimalarial drug candidates.The derivatives of these drugs could be designed and tested to develop better drugs against Plasmodium species. Graphical Abstract
Collapse
Affiliation(s)
- Priyanka Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, 263601 Uttarakhand India
| | - Pankaja Pandey
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, 263601 Uttarakhand India
| | - Shilpi Rawat
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, 263601 Uttarakhand India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, 263601 Uttarakhand India
| |
Collapse
|
22
|
Diedrich K, Ehrt C, Graef J, Poppinga M, Ritter N, Rarey M. User-centric design of a 3D search interface for protein-ligand complexes. J Comput Aided Mol Des 2024; 38:23. [PMID: 38814371 PMCID: PMC11139749 DOI: 10.1007/s10822-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
In this work, we present the frontend of GeoMine and showcase its application, focusing on the new features of its latest version. GeoMine is a search engine for ligand-bound and predicted empty binding sites in the Protein Data Bank. In addition to its basic text-based search functionalities, GeoMine offers a geometric query type for searching binding sites with a specific relative spatial arrangement of chemical features such as heavy atoms and intermolecular interactions. In contrast to a text search that requires simple and easy-to-formulate user input, a 3D input is more complex, and its specification can be challenging for users. GeoMine's new version aims to address this issue from the graphical user interface perspective by introducing an additional visualization concept and a new query template type. In its latest version, GeoMine extends its query-building capabilities primarily through input formulation in 2D. The 2D editor is fully synchronized with GeoMine's 3D editor and provides the same functionality. It enables template-free query generation and template-based query selection directly in 2D pose diagrams. In addition, the query generation with the 3D editor now supports predicted empty binding sites for AlphaFold structures as query templates. GeoMine is freely accessible on the ProteinsPlus web server ( https://proteins.plus ).
Collapse
Affiliation(s)
- Konrad Diedrich
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | - Joel Graef
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany
| | - Martin Poppinga
- Universität Hamburg, Department of Informatics, Vogt-Kölln-Straße 30, 22527, Hamburg, Germany
| | - Norbert Ritter
- Universität Hamburg, Department of Informatics, Vogt-Kölln-Straße 30, 22527, Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761, Hamburg, Germany.
| |
Collapse
|
23
|
Babijczuk K, Berdzik N, Nowak D, Warżajtis B, Rychlewska U, Starzyk J, Mrówczyńska L, Jasiewicz B. Novel C3-Methylene-Bridged Indole Derivatives with and without Substituents at N1: The Influence of Substituents on Their Hemolytic, Cytoprotective, and Antimicrobial Activity. Int J Mol Sci 2024; 25:5364. [PMID: 38791402 PMCID: PMC11121452 DOI: 10.3390/ijms25105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Alkaloids are natural compounds useful as scaffolds for discovering new bioactive molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted indole derivatives, which were either functionalized at N1 or not. The compounds were characterized by spectroscopic methods. The protective effects of the new compounds against in vitro oxidative hemolysis induced by standard oxidant 2,2'-azobis(2-amidinopropane dihydro chloride (AAPH) on human erythrocytes as a cell model were investigated. Additionally, the compounds were screened for antimicrobial activity. The results indicated that most of the indole derivatives devoid of the N1 substitution exhibited strong cytoprotective properties. The docking studies supported the affinities of selected indole-based ligands as potential antioxidants. Furthermore, the derivatives obtained exhibited potent fungicidal properties. The structures of the eight derivatives possessing indole moiety bridged to the imidazole-, benzimidazole-, thiazole-, benzothiazole-, and 5-methylbenzothiazoline-2-thiones were determined by X-ray diffraction. The C=S bond lengths in the thioamide fragment pointed to the involvement of zwitterionic structures of varying contribution. The predominance of zwitterionic mesomers may explain the lack of cytoprotective properties, while steric effects, which limit multiple the hydrogen-bond acceptor properties of a thione sulfur, seem to be responsible for the high hemolytic activity.
Collapse
Affiliation(s)
- Karolina Babijczuk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.B.); (N.B.)
| | - Natalia Berdzik
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.B.); (N.B.)
| | - Damian Nowak
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Beata Warżajtis
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (B.W.); (U.R.)
| | - Urszula Rychlewska
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (B.W.); (U.R.)
| | - Justyna Starzyk
- Department of Soil Science and Microbiology, Faculty of Agronomy, Horticulture, and Bioengineering, University of Life Science, Szydłowska 50, 60-656 Poznań, Poland;
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Beata Jasiewicz
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (K.B.); (N.B.)
| |
Collapse
|
24
|
Falke S, Lieske J, Herrmann A, Loboda J, Karničar K, Günther S, Reinke PYA, Ewert W, Usenik A, Lindič N, Sekirnik A, Dretnik K, Tsuge H, Turk V, Chapman HN, Hinrichs W, Ebert G, Turk D, Meents A. Structural Elucidation and Antiviral Activity of Covalent Cathepsin L Inhibitors. J Med Chem 2024; 67:7048-7067. [PMID: 38630165 PMCID: PMC11089505 DOI: 10.1021/acs.jmedchem.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/15/2024]
Abstract
Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.
Collapse
Affiliation(s)
- Sven Falke
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Julia Lieske
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Herrmann
- Institute
of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - Jure Loboda
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Katarina Karničar
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sebastian Günther
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Patrick Y. A. Reinke
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Wiebke Ewert
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Aleksandra Usenik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Nataša Lindič
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andreja Sekirnik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Klemen Dretnik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- The
Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Hideaki Tsuge
- Faculty of
Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Vito Turk
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henry N. Chapman
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Hamburg
Centre for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Winfried Hinrichs
- Institute
of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Gregor Ebert
- Institute
of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
- Institute
of Virology, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Dušan Turk
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alke Meents
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
25
|
Du Z, Gao F, Wang S, Sun S, Chen C, Wang X, Wu R, Yu X. Genome-Wide Investigation of Oxidosqualene Cyclase Genes Deciphers the Genetic Basis of Triterpene Biosynthesis in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10584-10595. [PMID: 38652774 DOI: 10.1021/acs.jafc.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a β-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.
Collapse
Affiliation(s)
- Zhenghua Du
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuquan Gao
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chanxin Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaxia Wang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Stylianaki EA, Mouchlis VD, Magkrioti C, Papavasileiou KD, Afantitis A, Matralis AN, Aidinis V. Identification of two novel chemical classes of Autotaxin (ATX) inhibitors using Enalos Asclepios KNIME nodes. Bioorg Med Chem Lett 2024; 103:129690. [PMID: 38447786 DOI: 10.1016/j.bmcl.2024.129690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.
Collapse
Affiliation(s)
| | - Varnavas D Mouchlis
- Department of ChemoInformatics, Novamechanics Ltd., Nicosia 1070, Cyprus; Department of Chemoinformatics, Novamechanics MIKE, Piraeus 18545, Greece; Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| | | | | | - Antreas Afantitis
- Department of ChemoInformatics, Novamechanics Ltd., Nicosia 1070, Cyprus; Department of Chemoinformatics, Novamechanics MIKE, Piraeus 18545, Greece; Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus.
| | - Alexios N Matralis
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece.
| | - Vassilis Aidinis
- Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Greece.
| |
Collapse
|
27
|
Meewan I, Panmanee J, Petchyam N, Lertvilai P. HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES. Sci Rep 2024; 14:9262. [PMID: 38649402 PMCID: PMC11035669 DOI: 10.1038/s41598-024-59933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.
Collapse
Affiliation(s)
- Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pichaya Lertvilai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
28
|
Belghit H, Spivak M, Dauchez M, Baaden M, Jonquet-Prevoteau J. From complex data to clear insights: visualizing molecular dynamics trajectories. FRONTIERS IN BIOINFORMATICS 2024; 4:1356659. [PMID: 38665177 PMCID: PMC11043564 DOI: 10.3389/fbinf.2024.1356659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Advances in simulations, combined with technological developments in high-performance computing, have made it possible to produce a physically accurate dynamic representation of complex biological systems involving millions to billions of atoms over increasingly long simulation times. The analysis of these computed simulations is crucial, involving the interpretation of structural and dynamic data to gain insights into the underlying biological processes. However, this analysis becomes increasingly challenging due to the complexity of the generated systems with a large number of individual runs, ranging from hundreds to thousands of trajectories. This massive increase in raw simulation data creates additional processing and visualization challenges. Effective visualization techniques play a vital role in facilitating the analysis and interpretation of molecular dynamics simulations. In this paper, we focus mainly on the techniques and tools that can be used for visualization of molecular dynamics simulations, among which we highlight the few approaches used specifically for this purpose, discussing their advantages and limitations, and addressing the future challenges of molecular dynamics visualization.
Collapse
Affiliation(s)
- Hayet Belghit
- Université de Reims Champagne-Ardenne, CNRS, MEDYC, Reims, France
| | - Mariano Spivak
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, Paris, France
| | - Manuel Dauchez
- Université de Reims Champagne-Ardenne, CNRS, MEDYC, Reims, France
| | - Marc Baaden
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, Paris, France
| | | |
Collapse
|
29
|
Papadopoulou D, Mavrikaki V, Charalampous F, Tzaferis C, Samiotaki M, Papavasileiou KD, Afantitis A, Karagianni N, Denis MC, Sanchez J, Lane JR, Faidon Brotzakis Z, Skretas G, Georgiadis D, Matralis AN, Kollias G. Discovery of the First-in-Class Inhibitors of Hypoxia Up-Regulated Protein 1 (HYOU1) Suppressing Pathogenic Fibroblast Activation. Angew Chem Int Ed Engl 2024; 63:e202319157. [PMID: 38339863 DOI: 10.1002/anie.202319157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Vasiliki Mavrikaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Filippos Charalampous
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Konstantinos D Papavasileiou
- Department of ChemoInformatics, Novamechanics Ltd., 1070, Nicosia, Cyprus
- Department of Chemoinformatics, Novamechanics MIKE, 18545, Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, 6059, Larnaca, Cyprus
| | - Antreas Afantitis
- Department of ChemoInformatics, Novamechanics Ltd., 1070, Nicosia, Cyprus
- Department of Chemoinformatics, Novamechanics MIKE, 18545, Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, 6059, Larnaca, Cyprus
| | | | | | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, NG2 7AG, Midlands, U.K
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, NG2 7AG, Midlands, U.K
| | - Zacharias Faidon Brotzakis
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Georgios Skretas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Alexios N Matralis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Research Institute of New Biotechnologies and Precision Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
30
|
de Albuquerque KCO, da Veiga ADSS, Silveira FT, Campos MB, da Costa APL, Brito AKM, Melo PRDS, Percario S, de Molfetta FA, Dolabela MF. Anti-leishmanial activity of Eleutherine plicata Herb. and predictions of isoeleutherin and its analogues. Front Chem 2024; 12:1341172. [PMID: 38510811 PMCID: PMC10950963 DOI: 10.3389/fchem.2024.1341172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: Leishmaniasis is caused by protozoa of the genus Leishmania, classified as tegumentary and visceral. The disease treatment is still a serious problem, due to the toxic effects of available drugs, the costly treatment and reports of parasitic resistance, making the search for therapeutic alternatives urgent. This study assessed the in vitro anti-leishmanial potential of the extract, fractions, and isoeleutherin from Eleutherine plicata, as well as the in silico interactions of isoeleutherin and its analogs with Trypanothione Reductase (TR), in addition to predicting pharmacokinetic parameters. Methods: From the ethanolic extract of E. plicata (EEEp) the dichloromethane fraction (FDEp) was obtained, and isoeleutherin isolated. All samples were tested against promastigotes, and parasite viability was evaluated. Isoeleutherin analogues were selected based on similarity in databases (ZINK and eMolecules) to verify the impact on structural change. Results and Discussion: The extract and its fractions were not active against the promastigote form (IC50 > 200 μg/mL), while isoeleutherin was active (IC50 = 25 μg/mL). All analogues have high intestinal absorption (HIA), cell permeability was moderate in Caco2 and low to moderate in MDCK. Structural changes interfered with plasma protein binding and blood-brain barrier permeability. Regarding metabolism, all molecules appear to be CYP3A4 metabolized and inhibited 2-3 CYPs. Molecular docking and molecular dynamics assessed the interactions between the most stable configurations of isoeleutherin, analogue compound 17, and quinacrine (control drug). Molecular dynamics simulations demonstrated stability and favorable interactions with TR. In summary, fractionation contributed to antileishmanial activity and isoleutherin seems to be promising. Structural alterations did not contribute to improve pharmacokinetic aspects and analogue 17 proved to be more promising than isoeleutherin, presenting better stabilization in TR.
Collapse
Affiliation(s)
| | | | | | | | - Ana Paula Lima da Costa
- Laboratory of Molecular Modeling, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | | | - Sandro Percario
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, PA, Brazil
| | - Fábio Alberto de Molfetta
- Laboratory of Molecular Modeling, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Fâni Dolabela
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, PA, Brazil
- Pharmaceutical Innovation Postgraduate Program, Federal University of Pará, Belém, PA, Brazil
- Faculty of Pharmacy, Federal University of Pará, Belém, PA, Brazil
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
31
|
Kar T, Dugam P, Shivhare S, Shetty SR, Choudhury S, Sen D, Deb B, Majumdar S, Debnath S, Das A. Epidermal growth factor receptor inhibition potentiates chemotherapeutics-mediated sensitization of metastatic breast cancer stem cells. Cancer Rep (Hoboken) 2024; 7:e2049. [PMID: 38522013 PMCID: PMC10961089 DOI: 10.1002/cnr2.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Metastasis has been a cause of the poor prognosis and cancer relapse of triple-negative breast cancer (TNBC) patients. The metastatic nature of TNBC is contributed by the breast cancer stem cells (CSCs) which have been implicated in tumorigenesis. Higher expression of epidermal growth factor receptor (EGFR) in breast CSCs has been used as a molecular target for breast cancer therapeutics. Thus, it necessitates the design and generation of efficacious EGFR inhibitors to target the downstream signaling associated with the cellular proliferation and tumorigenesis of breast cancer. AIM To generate efficacious EGFR inhibitors that can potentiate the chemotherapeutic-mediated mitigation of breast cancer tumorigenesis. METHODS AND RESULTS We identified small molecule EGFR inhibitors using molecular docking studies. In-vitro screening of the compounds was undertaken to identify the cytotoxicity profile of the small-molecule EGFR inhibitors followed by evaluation of the non-cytotoxic compounds in modulating the doxorubicin-induced migration, in-vitro tumorigenesis potential, and their effect on the pro-apoptotic genes' and protein markers' expression in TNBC cells. Compound 1e potentiated the doxorubicin-mediated inhibitory effect on proliferation, migration, in-vitro tumorigenesis capacity, and induction of apoptosis in MDA-MB-231 cells, and in the sorted CD24+-breast cancer cells and CD24-/CD44+-breast CSC populations. Orthotopic xenotransplantation of the breast CSCs-induced tumors in C57BL/6J mice was significantly inhibited by the low dose of Doxorubicin in the presence of compound 1e as depicted by molecular and immunohistochemical analysis. CONCLUSION Thus, the study suggests that EGFR inhibition-mediated sensitization of the aggressive and metastatic breast CSCs in TNBCs toward chemotherapeutics may reduce the relapse of the disease.
Collapse
Affiliation(s)
- Trisha Kar
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Prachi Dugam
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
| | - Surbhi Shivhare
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Swathi R. Shetty
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subholakshmi Choudhury
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Debanjan Sen
- Department of Pharmaceutical ChemistryBCDA College of Pharmacy and TechnologyKolkataWest BengalIndia
| | - Barnali Deb
- Department of ChemistryTripura UniversityAgartalaTripuraIndia
| | - Swapan Majumdar
- Department of ChemistryTripura UniversityAgartalaTripuraIndia
| | - Sudhan Debnath
- Department of ChemistryNetaji Subhash MahavidyalayaUdaipurTripuraIndia
| | - Amitava Das
- Department of Applied BiologyCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Technology (CSIR‐IICT)HyderabadTelanganaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
32
|
Ahmad Ansari I, Debnath B, Kar S, Patel HM, Debnath S, Zaki MEA, Pal P. Identification of potential edible spices as EGFR and EGFR mutant T790M/L858R inhibitors by structure-based virtual screening and molecular dynamics. J Biomol Struct Dyn 2024; 42:2464-2481. [PMID: 37349948 DOI: 10.1080/07391102.2023.2223661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/14/2023] [Indexed: 06/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinases are overexpressed in several human cancers and could serve as a promising anti-cancer drug target. With this in view, the main aim of the present study was to identify spices having the potential to inhibit EGFR tyrosine kinase. The structure-based virtual screening of spice database consisting of 1439 compounds with EGFR tyrosine kinase (PDB ID: 3W32) was carried out using Glide. Top scored 18 hits (XP Glide Score ≥ -10.0 kcal/mol) was further docked with three EGFR tyrosine kinases and three EGFR T790M/L858R mutants using AutodockVina, followed by ADME filtration. The best three hits were further refined by Molecular Dynamics (MD) simulation and MM-GBSA-based binding energy calculation. The overall docking results of the selected hits with both EGFR and EGFR T790M/L858R were quite satisfactory and showed strong binding compared to the three coligands. Detailed MD analysis of CL_07, AC_11 and AS_49 also showed the stability of the protein-ligand complexes. Moreover, the hits were drug-like, and MM-GBSA binding free energy of CL_07 and AS_49 was established to be far better. AC_11 was found to be similar to the known inhibitor Gefitinib. Most of the potential hits are available in Allium cepa, CL_07 and AS_49 available in Curcuma longa and Allium sativum, respectively. Therefore, these three spices could be used as a potential therapeutic candidate against cancer caused by overexpression of EGFR after validation of the observations of this study in in-vitro experiments. Further extensive work is needed to improve the scaffolds CL_07, AC_11, AC_17, and AS_49 as potential anti-cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iqrar Ahmad Ansari
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, India
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, India
| | - Saikat Kar
- Department of Obstetrics and Gynecology, Agartala Govt. Medical College, Tripura, India
| | - Harun M Patel
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, India
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhas Mahavidyalaya, Udaipur, Tripura, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Faculty of Science, Riyadh, Saudi Arabia
| | - Pinaki Pal
- Department of Physics, RamkrishnaMahavidyalay, Unokoti, Tripura, India
| |
Collapse
|
33
|
Carey SM, Kearns SP, Millington ME, Buechner GS, Alvarez BE, Daneshian L, Abiskaroon B, Chruszcz M, D'Antonio EL. At the outer part of the active site in Trypanosoma cruzi glucokinase: The role of phenylalanine 337. Biochimie 2024; 218:8-19. [PMID: 37741546 DOI: 10.1016/j.biochi.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
The hole mutagenesis approach was used to interrogate the importance of F337 in Trypanosoma cruzi glucokinase (TcGlcK) in order to understand the complete set of binding interactions that are made by d-glucosamine analogue inhibitors containing aromatic tail groups that can extend to the outer part of the active site. An interesting inhibitor of this analogue class includes 2-N-carboxybenzyl-2-deoxy-d-glucosamine (CBZ-GlcN), which exhibits strong TcGlcK binding with a Ki of 710 nM. The residue F337 is found at the outer part of the active site that stems from the second protein subunit of the homodimeric assembly. In this study, F337 was changed to leucine and alanine so as to diminish phenylalanine's side chain size and attenuate intermolecular interactions in this region of the binding cavity. Results from enzyme - inhibitor assays revealed that the phenyl group of F337 made dominant hydrophobic interactions with the phenyl group of CBZ-GlcN as opposed to π - π stacking interactions. Moreover, enzymatic activity assays and X-ray crystallographic experiments indicated that each of these site-directed mutants primarily retained their activity and had high structural similarity of their protein fold. A computed structure model of T. cruzi hexokinase (TcHxK), which was produced by the artificial intelligence system AlphaFold, was compared to an X-ray crystal structure of TcGlcK. Our structural analysis revealed that TcHxK lacked an F337 counterpart residue and probably exists in the monomeric form. We proposed that the d-glucosamine analogue inhibitors that are structurally similar to CBZ-GlcN may not bind as strongly in TcHxK as they do in TcGlcK because of absent van der Waals contact from residue side chains.
Collapse
Affiliation(s)
- Shane M Carey
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Sean P Kearns
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Matthew E Millington
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Gregory S Buechner
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Beda E Alvarez
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brendan Abiskaroon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA.
| |
Collapse
|
34
|
Rabaan AA, AlShehail BM, Halwani MA, Alshengeti A, Najim MA, Garout M, Bajunaid HA, Alshamrani SA, Al Fares MA, Alissa M, Alwashmi ASS. Investigation of Zika virus methyl transferase inhibitors using steered molecular dynamics. J Biomol Struct Dyn 2024; 42:1711-1724. [PMID: 37325855 DOI: 10.1080/07391102.2023.2224882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Huda A Bajunaid
- Makkah Specialized Laboratory, Fakeeh Care group, Hadda, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
35
|
Nowak D, Huczyński A, Bachorz RA, Hoffmann M. Machine Learning Application for Medicinal Chemistry: Colchicine Case, New Structures, and Anticancer Activity Prediction. Pharmaceuticals (Basel) 2024; 17:173. [PMID: 38399388 PMCID: PMC10892630 DOI: 10.3390/ph17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
In the contemporary era, the exploration of machine learning (ML) has gained widespread attention and is being leveraged to augment traditional methodologies in quantitative structure-activity relationship (QSAR) investigations. The principal objective of this research was to assess the anticancer potential of colchicine-based compounds across five distinct cell lines. This research endeavor ultimately sought to construct ML models proficient in forecasting anticancer activity as quantified by the IC50 value, while concurrently generating innovative colchicine-derived compounds. The resistance index (RI) is computed to evaluate the drug resistance exhibited by LoVo/DX cells relative to LoVo cancer cell lines. Meanwhile, the selectivity index (SI) is computed to determine the potential of a compound to demonstrate superior efficacy against tumor cells compared to its toxicity against normal cells, such as BALB/3T3. We introduce a novel ML system adept at recommending novel chemical structures predicated on known anticancer activity. Our investigation entailed the assessment of inhibitory capabilities across five cell lines, employing predictive models utilizing various algorithms, including random forest, decision tree, support vector machines, k-nearest neighbors, and multiple linear regression. The most proficient model, as determined by quality metrics, was employed to predict the anticancer activity of novel colchicine-based compounds. This methodological approach yielded the establishment of a library encompassing new colchicine-based compounds, each assigned an IC50 value. Additionally, this study resulted in the development of a validated predictive model, capable of reasonably estimating IC50 values based on molecular structure input.
Collapse
Affiliation(s)
- Damian Nowak
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Rafał Adam Bachorz
- Institute of Medical Biology of Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
- Institute of Computing Science, Faculty of Computing, Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Marcin Hoffmann
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
36
|
Morretta E, Capuano A, D’Urso G, Voli A, Mozzicafreddo M, Di Gaetano S, Capasso D, Sala M, Scala MC, Campiglia P, Piccialli V, Casapullo A. Identification of Mortalin as the Main Interactor of Mycalin A, a Poly-Brominated C-15 Acetogenin Sponge Metabolite, by MS-Based Proteomics. Mar Drugs 2024; 22:52. [PMID: 38393023 PMCID: PMC10890321 DOI: 10.3390/md22020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Mycalin A (MA) is a polybrominated C-15 acetogenin isolated from the marine sponge Mycale rotalis. Since this substance displays a strong antiproliferative bioactivity towards some tumour cells, we have now directed our studies towards the elucidation of the MA interactome through functional proteomic approaches, (DARTS and t-LIP-MS). DARTS experiments were performed on Hela cell lysates with the purpose of identifying MA main target protein(s); t-LiP-MS was then applied for an in-depth investigation of the MA-target protein interaction. Both these techniques exploit limited proteolysis coupled with MS analysis. To corroborate LiP data, molecular docking studies were performed on the complexes. Finally, biological and SPR analysis were conducted to explore the effect of the binding. Mortalin (GRP75) was identified as the MA's main interactor. This protein belongs to the Hsp70 family and has garnered significant attention due to its involvement in certain forms of cancer. Specifically, its overexpression in cancer cells appears to hinder the pro-apoptotic function of p53, one of its client proteins, because it becomes sequestered in the cytoplasm. Our research, therefore, has been focused on the possibility that MA might prevent this sequestration, promoting the re-localization of p53 to the nucleus and facilitating the apoptosis of tumor cells.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
| | - Alessandra Capuano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Domenica Capasso
- Department of Physics, Ettore Pancini, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy;
| | - Marina Sala
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
| | - Vincenzo Piccialli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.M.); (A.C.); (G.D.); (A.V.); (M.S.); (M.C.S.); (P.C.)
| |
Collapse
|
37
|
Daboe M, Parlak C, Direm A, Alver Ö, Ramasami P. Interaction between escitalopram and ibuprofen or paracetamol: DFT and molecular docking on the drug-drug interactions. J Biomol Struct Dyn 2024; 42:672-686. [PMID: 37042928 DOI: 10.1080/07391102.2023.2195004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
A large number of drugs are introduced each year to treat different diseases. Most of the time, patients suffer from more than one health problem which makes it necessary to take multiple drugs. When drugs are combined, the problem of drug-drug interaction becomes relevant. In this work, we studied the drug-drug interaction between escitalopram and ibuprofen or paracetamol using density functional theory and quantum theory of atoms in molecules. The results suggest that following the interactions, the activity of drugs changes according to site of interaction. Most reactive and most stable interactions would be preferable for the purpose of use. The in silico drug-likeness studies show that escitalopram and paracetamol couple is more bioavailable than escitalopram and ibuprofen couple. Moreover, in order to gain additional insights into the mentioned drugs' interactions, the drugs were docked separately and jointly against the potential targets for antidepressants and NSAIDs, namely 6HIS and 2PXX. The molecular docking results showed a potential improvement of the effectiveness of the drugs after combining by forming hydrogen bonds, hydrophobic contacts and π…π stacking.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Musa Daboe
- Department of Physics, Science Faculty, Ege University, Izmir, Turkey
| | - Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, Turkey
| | - Amani Direm
- Department of Matter Sciences, Faculty of Sciences and Technology, Abbes Laghrour University, Khenchela, Algeria
- Laboratory of Structures, Properties and Interatomic Interactions LASPI2A, Faculty of Sciences and Technology, Abbes Laghrour University, Khenchela, Algeria
| | - Özgür Alver
- Department of Physics, Science Faculty, Eskişehir Technical University, Eskişehir, Turkey
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius
- Department of Chemistry College of Science, Engineering and Technology, University of South Africa, Pretoria, South Africa
| |
Collapse
|
38
|
Berdzik N, Koenig H, Mrówczyńska L, Nowak D, Jasiewicz B, Pospieszny T. Synthesis and Hemolytic Activity of Bile Acid-Indole Bioconjugates Linked by Triazole. J Org Chem 2023; 88:16719-16734. [PMID: 38059841 PMCID: PMC10729025 DOI: 10.1021/acs.joc.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
New formyl and acetyl derivatives of bile acid propargyl esters and their bioconjugates with modified gramine molecules have been obtained using the click chemistry method to study their hemolytic potency. The structures of all compounds were confirmed by spectral (1H- and 13C NMR and FT-IR) analysis and mass spectrometry (ESI-MS) as well as PM5 semiempirical methods. According to the results, the structural modification of formyl and acetyl bile acid derivatives, leading to the formation of new propargyl esters and indole bioconjugates, reduces their hemolytic activity. According to molecular docking studies, the tested ligands are highly likely to exhibit a similar affinity, as native ligands, for the active sites of specific protein domains (PDB IDs: 2Q85 and 5V5Z). The obtained results may be helpful for the development of selective bile acid bioconjugates as effective antibacterial, antifungal, or antioxidant agents.
Collapse
Affiliation(s)
- Natalia Berdzik
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Damian Nowak
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznań, Poland
| | - Beata Jasiewicz
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
39
|
Zahraee H, Arab SS, Khoshbin Z, Bozorgmehr MR. A comprehensive computer simulation insight into inhibitory mechanisms of EGCG and NQTrp ligands on amyloid-beta assemblies as the Alzheimer's disease insignia. J Biomol Struct Dyn 2023; 41:10830-10839. [PMID: 36576270 DOI: 10.1080/07391102.2022.2158939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
Amyloid-β peptide with predominant presence in the senile plaques is the most common agent for Alzheimer's disease (AD) incidence. Assembly of the amyloid-β(1-42) (Aβ1-42) isoform is known as the main reason for the AD appearance. Epigallocatechin gallate (EGCG) and 1,4-naphthoquinone-2-yl-L-tryptophan (NQTrp) are two small molecules that inhibit the formation of the Aβ1-42 fibrils. The present study provides molecular insight to clarify the inhibitory mechanisms of the EGCG and NQTrp ligands on the Aβ1-42 assemblies by using molecular dynamics (MD) simulation. Hence, nine different Aβ1-42-containing systems including the monomer, dimer, and hexamer of Aβ1-42 considering each of them in a media with no ligands, in the presence of one EGCG ligand, and in the presence of one EGCG ligand were studied with a simulation time of 1 µs for each system. The precise investigation of the peptide-ligand distance, conformational factor (Pi), solvent accessible surface area (SASA), dictionary of secondary structure (DSSP), and Lys28-Ala42 salt bridge analyses confirmed that the hydroxyl-rich structure of the EGCG ligand applied its inhibitory effect on the aggregation of the peptides indirectly by involving water molecules. While the hydroxyl-free structure of the NQTrp ligand exposed its inhibitory effect through a direct interaction with the Aβ1-42 peptides. Besides, reduced density gradient (RDG) analysis clarified the hydrogen bonding interactions as the dominant ones for the peptide-EGCG systems, and also, steric and van der Waals interactions for the peptide-NQTrp systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
40
|
Nguyen NKV, Tran HDT, Duong TH, Pham NKT, Nguyen TQT, Nguyen TNT, Chavasiri W, Nguyen NH, Nguyen HT. Bio-guided isolation of alpha-glucosidase inhibitory compounds from Vietnamese liverwort Marchantia polymorpha: in vitro and in silico studies. RSC Adv 2023; 13:35481-35492. [PMID: 38058554 PMCID: PMC10697071 DOI: 10.1039/d3ra07503f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bio-guided isolation was applied to Vietnamese Marchantia polymorpha L. to find alpha-glucosidase inhibition. Fifteen compounds were isolated and structurally determined, including two new compounds, marchatoside (7) and marchanol (8), along with thirteen known compounds: marchantin A (1), isoriccardin C (2), riccardin C (3), marchantin K (4), lunularin (5), 3R-(3,4-dimethoxybenzyl)-5,7-dimethoxyphthalide (6), vitexilactone (9), 12-oleanene-3-one (10), 3,11-dioxoursolic acid (11), ursolic acid (12), artemetin (13), kaempferol (14), and quercetin (15). The structures of these compounds were determined through extensive spectroscopic analyses (1D and 2D NMR, HRESIMS, and ECD) and by comparisons to the existing literature. There are five types of carbon skeleton, including bibenzyl (1-5), 3-benzylphthalide (6 and 7), diterpenoid (8 and 9), triterpenoid (10-12), and flavonoid (13-15). Compounds 6-12 were reported for the first time within the genus Marchantia. Compounds 1-12 were evaluated for their alpha-glucosidase inhibition. Among them, 1-5 and 10-12 displayed potent inhibition, with IC50 values ranging from 28.9 to 130.6 μM, compared to the positive control acarbose 330.9 μM. A kinetic study and molecular docking were also performed to understand the mechanism.
Collapse
Affiliation(s)
- Ngoc Khanh Van Nguyen
- Faculty of Natural Sciences Pedagogy, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City 70000 Vietnam
| | - Ho-Duc-Trung Tran
- Department of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Street, District 5 Ho Chi Minh City 748342 Vietnam
| | - Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Street, District 5 Ho Chi Minh City 748342 Vietnam
| | - Nguyen Kim Tuyen Pham
- Faculty of Environment, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City 70000 Vietnam
| | - Thi Quynh Trang Nguyen
- Faculty of Environment, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City 70000 Vietnam
| | - Thi Ngoc Thao Nguyen
- Faculty of Environment, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City 70000 Vietnam
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Ngoc-Hong Nguyen
- CirTech Institute, HUTECH University 475 A Dien Bien Phu Street, Binh Thanh District Ho Chi Minh City Vietnam
| | - Huu Tri Nguyen
- Faculty of Natural Sciences Pedagogy, Sai Gon University 273 An Duong Vuong, Ward 3, District 5 Ho Chi Minh City 70000 Vietnam
| |
Collapse
|
41
|
Bloch M, Raj I, Pape T, Taylor NMI. Structural and mechanistic basis of substrate transport by the multidrug transporter MRP4. Structure 2023; 31:1407-1418.e6. [PMID: 37683641 DOI: 10.1016/j.str.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Multidrug resistance-associated protein 4 (MRP4) is an ATP-binding cassette (ABC) transporter expressed at multiple tissue barriers where it actively extrudes a wide variety of drug compounds. Overexpression of MRP4 provides resistance to clinically used antineoplastic agents, making it a highly attractive therapeutic target for countering multidrug resistance. Here, we report cryo-EM structures of multiple physiologically relevant states of lipid bilayer-embedded human MRP4, including complexes between MRP4 and two widely used chemotherapeutic agents and a complex between MRP4 and its native substrate. The structures display clear similarities and distinct differences in the coordination of these chemically diverse substrates and, in combination with functional and mutational analysis, reveal molecular details of the transport mechanism. Our study provides key insights into the unusually broad substrate specificity of MRP4 and constitutes an important contribution toward a general understanding of multidrug transporters.
Collapse
Affiliation(s)
- Magnus Bloch
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isha Raj
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
42
|
Weber P, Mészáros Z, Bojarová P, Ebner M, Fischer R, Křen V, Kulik N, Müller P, Vlachová M, Slámová K, Stütz AE, Thonhofer M, Torvisco A, Wrodnigg TM, Wolfsgruber A. Highly functionalized diaminocyclopentanes: A new route to potent and selective inhibitors of human O-GlcNAcase. Bioorg Chem 2023; 140:106819. [PMID: 37666109 DOI: 10.1016/j.bioorg.2023.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A new class of compounds inhibiting de-O-glycosylation of proteins has been identified. Highly substituted diaminocyclopentanes are impressively selective reversible non-transition state O-β-N-acetyl-d-glucosaminidase (O-GlcNAcase) inhibitors. The ease of preparative access and remarkable biological activities provide highly viable leads for the development of anti-tau-phosphorylation agents with a view to eventually ameliorating Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Zuzana Mészáros
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Manuel Ebner
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Roland Fischer
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Philipp Müller
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Arnold E Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Ana Torvisco
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
43
|
da Fonseca AM, Cabongo SQ, Caluaco BJ, Colares RP, Fernandes CFC, Dos Santos HS, de Lima-Neto P, Marinho ES. The search for new efficient inhibitors of SARS-COV-2 through the De novo drug design developed by artificial intelligence. J Biomol Struct Dyn 2023; 41:9890-9906. [PMID: 36420665 DOI: 10.1080/07391102.2022.2148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of -17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of -10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of -7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis - MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Sadrack Queque Cabongo
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Bernardino Joaquim Caluaco
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Regilany Paulo Colares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | | | - Pedro de Lima-Neto
- Department of Analytical Chemistry and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Grupo de química Teorica e Eletroquimica-GQTE, Universidade Estadual do Ceará, Limoeiro do Norte, CE, Brazil
| |
Collapse
|
44
|
Prasad RS, Chikhale RV, Rai N, Akojwar NS, Purohit RA, Sharma P, Kulkarni O, Laloo D, Gurav SS, Itankar PR, Prasad SK. Rutin from Begonia roxburghii modulates iNOS and Sep A activity in treatment of Shigella flexneri induced diarrhoea in rats: An in vitro, in vivo and computational analysis. Microb Pathog 2023; 184:106380. [PMID: 37821049 DOI: 10.1016/j.micpath.2023.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.
Collapse
Affiliation(s)
- Rupali S Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Rupesh V Chikhale
- Department of Pharmaceutical & Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | - Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Natasha S Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Raksha A Purohit
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Pravesh Sharma
- Birla Institute of Technology & Sciences, Pilani, Hyderabad Campus, Shameerpth, Hyderabad, 500078, India
| | - Onkar Kulkarni
- Birla Institute of Technology & Sciences, Pilani, Hyderabad Campus, Shameerpth, Hyderabad, 500078, India
| | - Damiki Laloo
- Girijananda Chowdhury Institute of Pharmaceutical Sciences, Guwahati, Assam, India
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panji, Goa, India
| | - Prakash R Itankar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India.
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India.
| |
Collapse
|
45
|
Sun A, Cai F, Xiong Q, Xie T, Li X, Xie Y, Luo R, Hu W, Zhong F, Wang S. Comprehensive pan-cancer investigation: unraveling the oncogenic, prognostic, and immunological significance of Abelson interactor family member 3 gene in human malignancies. Front Mol Biosci 2023; 10:1277830. [PMID: 37942289 PMCID: PMC10628744 DOI: 10.3389/fmolb.2023.1277830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Background: Abelson interactor Family Member 3 (ABI3) encodes protein that not only suppresses the ectopic metastasis of tumor cells but also hinders their migration. Although ABI3 had been found to modulate the advancement of diverse neoplasms, there is no comprehensive pan-cancer analysis of its effects. Methods: The transcriptomics data of neoplasm and normal tissues were retrieved from the Genomic Data Commons (GDC) data portal, and UCSC XENA database. To gather protein information for ABI3, Human Protein Atlas (HPA) and GeneMANIA websites were utilized. Additionally, Tumor Immune Single-cell Hub (TISCH) database was consulted to determine the primary cell types expressing ABI3 in cancer microenvironments. Univariate Cox regression approach was leveraged to evaluate ABI3's prognostic role across cancers. The Cbioportal and Gene Set Cancer Analysis (GSCA) website were leveraged to scrutinize the genomic landscape information across cancers. TIMER2.0 was leveraged to probe the immune cell infiltrations associated with ABI3 across cancers. The associations of ABI3 with immune-related genes were analyzed through Spearman correlation method. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were utilized to search associated biological pathways. The CellMiner database and molecular docking were implemented to identify potential interactions between the ABI3 protein and specific anticarcinogen. Findings: ABI3 expression and its ability to predict prognosis varied distinct tumor, with particularly high expression observed in Tprolif cells and monocytes/macrophages. Copy number variation (CNV) and methylation negatively correlated with ABI3 expression in the majority of malignancies. Corresponding mutation survival analysis indicated that the mutation status of ABI3 was strongly connected to the prognosis of LGG patients. ABI3 expression was linked to immunotherapeutic biomarkers and response in cancers. ESTIMATE and immune infiltrations analyses presented ABI3 association with immunosuppression. ABI3 was significantly correlated with immunoregulators and immune-related pathways. Lastly, prospective ABI3-targeted drugs were filtered and docked to ABI3 protein. Interpretation: Our study reveals that ABI3 acts as a robust tumor biomarker. Its functions are vital that could inhibit ectopic metastasis of tumor cells and modulate cellular adhesion and migration. The discoveries presented here may have noteworthy consequences for the creation of fresh anticancer suppressors, especially those targeting BRCA.
Collapse
Affiliation(s)
- Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Fengze Cai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Xiang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Yanteng Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Ruiyang Luo
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Wenwen Hu
- Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| |
Collapse
|
46
|
Sousa JN, Queiroz LDRP, de Paula AMB, Guimarães ALS, Lescano CH, Aguilar CM, Pires de Oliveira I, Santos SHS. Gallic acid as a Sestrin (SESN2) activator and potential obesity therapeutic agent: A molecular docking study. Gene 2023; 883:147683. [PMID: 37536400 DOI: 10.1016/j.gene.2023.147683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Sestrins (SESNs) are a family of evolutionarily conserved proteins among mammals. They have several body homeostatic functions such as antioxidant, metabolic, and anti-aging, and are required to regenerate hyperoxidized forms of peroxiredoxins and reactive oxygen species. Sestrin 2 has been studied as a therapeutic agent in obesity treatment. Gallic acid (GA) is a triphenolic compound with beneficial biological activities including anti-inflammatory, antidiabetic, antihypertensive, and antioxidant effects. Recent studies demonstrated the GA's ability to reduce body weight gain and improve glycemic parameters. In this sense, the present study aims to investigate the GA activating potential of Sestrin using the molecular docking method. The 3D structure of gallic acid was retrieved from the NCBI PubChem database and the chemical structure of the Sestrin2 protein from the RCSB Protein Data Bank (5DJ4). The docking calculus was performed via UCSF Chimera and AutoDock Vinaprograms. The results showed that amino acids Arg390, Glu451, Trp444, Thr386, Arg448, Thr374, Tyr375, Asn376, Thr377, Leu389, His454, Ser450, His86, and Val455 are very important for GA stabilization, resembling the interactions that permit Leucine to activate SESN2. In this context, the obesity therapeutic property of GA can be understood from a Sestrin activating process through amino acid metabolism.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Caroline Honaiser Lescano
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Charles Martins Aguilar
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ivan Pires de Oliveira
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Bajrai LH, Alandijany TA, Alsaady I, El-Daly MM, Tolah AM, Khateb AM, Dubey A, Dwivedi VD, Azhar EI. Assessing the inhibitory potential of anti-dengue compounds against Japanese encephalitis virus RNA dependent RNA polymerase: an in silico study. J Biomol Struct Dyn 2023; 42:11844-11860. [PMID: 37811742 DOI: 10.1080/07391102.2023.2265489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Japanese encephalitis (JE), a neurological infection of severe nature, is caused by the Japanese encephalitis virus (JEV) and is transmitted by the mosquito vector. The polymerase domain of Non-structural 5 (NS5), which is also referred to as RdRp (RNA-dependent RNA polymerase), is considered a potential therapeutic target for JEV. The present study employed molecular dynamics modelling and high-throughput virtual screening to evaluate the possible antiviral activity of anti-dengue drugs against JEV RdRp. Furthermore, a ranking was performed utilising the MM/GBSA analysis to identify the three most promising compounds. Compound ID 57409246 exhibited the highest binding affinity with the protein, as evidenced by its minimum binding free energy of -72.96 kcal/mole. In contrast, the other two compounds had minimum binding free energies of -67.57 and -59.19 kcal/mole, respectively. Upon conducting a 100 nanosecond molecular dynamics simulation to confirm the binding of the chemical complexes, it was observed that the three hits, namely 57409246, 70683874, and 44577154, exhibited a consistent and stable RMSD. Subsequently, the binding strength of the trajectory was confirmed through MM/GBSA analysis. The compounds 70683874 and 57409246 exhibited the lowest binding free energies, which were -97.58 kcal/mol and -96.38 kcal/mol, respectively. The binding free energy (ΔG Bind) values for the native ligand ATP and molecule 44577154 were -65.64 kcal/mol and -69.44 kcal/mol, respectively. Overall, compared to the native ligand ATP, all three compounds exhibited higher binding affinity. The study proposes three anti-dengue molecules as a potential remedy for JE, which can be confirmed through in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leena H Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabig, Saudi Arabia
| | - Aiah M Khateb
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Amit Dubey
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, Tamil Nadu, India
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Sunil AA, Jose D, Karri SK, Pukhraj P, Varughese JK, Skaria T. Biomolecular interactions between the antibacterial ceftolozane and the human inflammatory disease target ADAM17: a drug repurposing study. J Biomol Struct Dyn 2023; 42:11706-11716. [PMID: 37798935 DOI: 10.1080/07391102.2023.2263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Inhibition of a disintegrin and metalloproteinase-17 (ADAM17), a metzincin, is proposed as a novel therapeutic strategy to suppress overproduction of the proinflammatory cytokine TNF-α in rheumatoid arthritis and inflammatory bowel disease. Existing ADAM17 inhibitors generate toxic metabolites in-vivo or haven't progressed in clinical trials. Previous studies suggest that ligands which bind to ADAM17 active site by interacting with the Zn ion and L-shaped hydrophobic S1'- and S3'-pockets and forming favorable hydrogen bonds could act as potential ADAM17 inhibitors. Here, we investigated whether the FDA-approved anti-bacterial drug ceftolozane, a cephalosporin containing aromatic groups and carboxyl groups as probable zinc binding groups (ZBGs), forms non-covalent interactions resulting in its binding in the active site of ADAM17. In this study, the density functional theory (DFT), molecular docking and molecular dynamics calculations with the catalytic chain of ADAM17 show that carboxyl group of ceftolozane acts as moderate ZBG, and its extended geometry forms hydrogen bonds and hydrophobic interactions resulting in a binding affinity comparable to the co-crystallized known ADAM17 inhibitor. The favorable binding interactions identified here suggest the potential of ceftolozane to modulate ADAM17 activity in inflammatory diseases. ADAM17 cleaves and releases epidermal growth factor (EGF) ligands from the cell surface. The shed EGF ligands then bind to the EGF receptors to drive embryonic development. Therefore, our findings also suggest that use of ceftolozane during pregnancy may inhibit ADAM17-mediated shedding of EGF and thus increase the risk of birth defects in humans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College, Calicut, India
| | - Sai Kumar Karri
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Pukhraj Pukhraj
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | | | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
49
|
Ropponen HK, Diamanti E, Johannsen S, Illarionov B, Hamid R, Jaki M, Sass P, Fischer M, Haupenthal J, Hirsch AKH. Exploring the Translational Gap of a Novel Class of Escherichia coli IspE Inhibitors. ChemMedChem 2023; 18:e202300346. [PMID: 37718320 DOI: 10.1002/cmdc.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Discovery of novel antibiotics needs multidisciplinary approaches to gain target enzyme and bacterial activities while aiming for selectivity over mammalian cells. Here, we report a multiparameter optimisation of a fragment-like hit that was identified through a structure-based virtual-screening campaign on Escherichia coli IspE crystal structure. Subsequent medicinal-chemistry design resulted in a novel class of E. coli IspE inhibitors, exhibiting activity also against the more pathogenic bacteria Pseudomonas aeruginosa and Acinetobacter baumannii. While cytotoxicity remains a challenge for the series, it provides new insights on the molecular properties for balancing enzymatic target and bacterial activities simultaneously as well as new starting points for the development of IspE inhibitors with a predicted new mode of action.
Collapse
Affiliation(s)
- Henni-Karoliina Ropponen
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Current address: AMR Action Fund GP GmbH, Messeplatz 10, 4058, Basel, Switzerland
| | - Eleonora Diamanti
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Sandra Johannsen
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, Grindelallee 117, 20146, Hamburg, Germany
| | - Rawia Hamid
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Miriam Jaki
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Current address: University of Freiburg, Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Sonnenstraße 5, 79104, Freiburg, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Universität Tubingen
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, Grindelallee 117, 20146, Hamburg, Germany
| | - Jörg Haupenthal
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
50
|
Diedrich K, Krause B, Berg O, Rarey M. PoseEdit: enhanced ligand binding mode communication by interactive 2D diagrams. J Comput Aided Mol Des 2023; 37:491-503. [PMID: 37515714 PMCID: PMC10440272 DOI: 10.1007/s10822-023-00522-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
In this article, we present PoseEdit, a new, interactive frontend of the popular pose visualization tool PoseView. PoseEdit automatically produces high-quality 2D diagrams of intermolecular interactions in 3D binding sites calculated from ligands in complex with protein, DNA, and RNA. The PoseView diagrams have been improved in several aspects, most notably in their interactivity. Thanks to the easy-to-use 2D editor of PoseEdit, the diagrams are extensively editable and extendible by the user, can be merged with other diagrams, and even be created from scratch. A large variety of graphical objects in the diagram can be moved, rotated, selected and highlighted, mirrored, removed, or even newly added. Furthermore, PoseEdit enables a synchronized 2D-3D view of macromolecule-ligand complexes simplifying the analysis of structural features and interactions. The representation of individual diagram objects regarding their visualized chemical properties, like stereochemistry, and general graphical styles, like the color of interactions, can additionally be edited. The primary objective of PoseEdit is to support scientists with an enhanced way to communicate ligand binding mode information through graphical 2D representations optimized with the scientist's input in accordance with objective criteria and individual needs. PoseEdit is freely available on the ProteinsPlus web server ( https://proteins.plus ).
Collapse
Affiliation(s)
- Konrad Diedrich
- Universität Hamburg, ZBH-Center for Bioinformatics, 20146, Hamburg, Germany
| | - Bennet Krause
- Universität Hamburg, ZBH-Center for Bioinformatics, 20146, Hamburg, Germany
- Capgemini, 10785, Berlin, Germany
| | - Ole Berg
- Universität Hamburg, ZBH-Center for Bioinformatics, 20146, Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH-Center for Bioinformatics, 20146, Hamburg, Germany.
| |
Collapse
|