1
|
Ananya, Panchariya DC, Karthic A, Singh SP, Mani A, Chawade A, Kushwaha S. Vaccine design and development: Exploring the interface with computational biology and AI. Int Rev Immunol 2024; 43:361-380. [PMID: 38982912 DOI: 10.1080/08830185.2024.2374546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Computational biology involves applying computer science and informatics techniques in biology to understand complex biological data. It allows us to collect, connect, and analyze biological data at a large scale and build predictive models. In the twenty first century, computational resources along with Artificial Intelligence (AI) have been widely used in various fields of biological sciences such as biochemistry, structural biology, immunology, microbiology, and genomics to handle massive data for decision-making, including in applications such as drug design and vaccine development, one of the major areas of focus for human and animal welfare. The knowledge of available computational resources and AI-enabled tools in vaccine design and development can improve our ability to conduct cutting-edge research. Therefore, this review article aims to summarize important computational resources and AI-based tools. Further, the article discusses the various applications and limitations of AI tools in vaccine development.
Collapse
Affiliation(s)
- Ananya
- National Institute of Animal Biotechnology, Hyderabad, India
| | | | | | | | - Ashutosh Mani
- Motilal Nehru National Institute of Technology, Prayagraj, India
| | - Aakash Chawade
- Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|
2
|
Petro-Turnquist E, Corder Kampfe B, Gadeken A, Pekarek MJ, Weaver EA. Multivalent Epigraph Hemagglutinin Vaccine Protects against Influenza B Virus in Mice. Pathogens 2024; 13:97. [PMID: 38392835 PMCID: PMC10892733 DOI: 10.3390/pathogens13020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza B virus is a respiratory pathogen that contributes to seasonal epidemics, accounts for approximately 25% of global influenza infections, and can induce severe disease in young children. While vaccination is the most commonly used method of preventing influenza infections, current vaccines only induce strain-specific responses and have suboptimal efficacy when mismatched from circulating strains. Further, two influenza B virus lineages have been described, B/Yamagata-like and B/Victoria-like, and the limited cross-reactivity between the two lineages provides an additional barrier in developing a universal influenza B virus vaccine. Here, we report a novel multivalent vaccine using computationally designed Epigraph hemagglutinin proteins targeting both the B/Yamagata-like and B/Victoria-like lineages. When compared to the quadrivalent commercial vaccine, the Epigraph vaccine demonstrated increased breadth of neutralizing antibody and T cell responses. After lethal heterologous influenza B virus challenge, mice immunized with the Epigraph vaccine were completely protected against both weight loss and mortality. The superior cross-reactive immunity conferred by the Epigraph vaccine immunogens supports their continued investigation as a universal influenza B virus vaccine.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Brigette Corder Kampfe
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Science Department, North Arkansas College, Harrison, AR 72601, USA
| | - Amber Gadeken
- College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Matthew J. Pekarek
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Enhanced Cross-Reactive and Polyfunctional Effector-Memory T Cell Responses by ICVAX-a Human PD1-Based Bivalent HIV-1 Gag-p41 Mosaic DNA Vaccine. J Virol 2022; 96:e0216121. [PMID: 35297660 PMCID: PMC9006887 DOI: 10.1128/jvi.02161-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced protective T cell immunity is necessary for HIV-1 functional cure. We previously reported that rhesus PD1-Gag-based DNA vaccination sustained simian-human immunodeficiency virus (SHIV) suppression by inducing effector-memory CD8+ T cells. Here, we investigated a human PD1-Gag-based DNA vaccine, namely, ICVAX, for clinical translation. PD1-based dendritic cell targeting and mosaic antigenic designs were combined to generate the ICVAX by fusing the human soluble PD1 domain with a bivalent HIV-1 Gag-p41 mosaic antigen. The mosaic antigen was cross-reactive with patients infected with B, CRF07/08_BC, and CRF01_AE variants. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses than mosaic Gag-p41 alone, and suppressed EcoHIV infection more efficiently. In macaques, ICVAX elicited polyfunctional effector-memory T cell responses that targeted multiple nonoverlapping epitopes of the Gag-p41 antigen. Furthermore, ICVAX manufactured following good manufacturing practices proved potent immunogenicity in macaques after biannual homologous vaccination, warranting clinical evaluation of ICVAX as an immunotherapy against HIV-1. IMPORTANCE This study presents that ICVAX, a PD1-based DNA vaccine against HIV-1, could induce broad and polyfunctional T cell responses against different HIV-1 subtypes. ICVAX encodes a recombinant antigen consisting of the human soluble PD1 domain fused with two mosaic Gag-p41 antigens. The mosaic antigens cover more than 500 HIV-1 strains circulating in China including the subtypes B/B’, CRF01_AE, and CRF07/08_BC. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses, with better EcoHIV suppression than the nontargeting mosaic Gag-p41 DNA vaccine. Moreover, both lab-generated and GMP-grade ICVAX also elicited strong polyfunctional effector-memory T cell responses in rhesus macaques with good immunogenicity against multiple nonoverlapping epitopes of the Gag-p41 antigen. This study therefore highlights the great potential to translate the PD1-based DNA vaccine approach into clinical use, and opens up new avenues for alternative HIV-1 vaccine design for HIV-1 preventive and functional cure.
Collapse
|
4
|
Linchangco GV, Foley B, Leitner T. Updated HIV-1 Consensus Sequences Change but Stay Within Similar Distance From Worldwide Samples. Front Microbiol 2022; 12:828765. [PMID: 35178042 PMCID: PMC8843389 DOI: 10.3389/fmicb.2021.828765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
HIV consensus sequences are used in various bioinformatic, evolutionary, and vaccine related research. Since the previous HIV-1 subtype and CRF consensus sequences were constructed in 2002, the number of publicly available HIV-1 sequences have grown exponentially, especially from non-EU and US countries. Here, we reconstruct 90 new HIV-1 subtype and CRF consensus sequences from 3,470 high-quality, representative, full genome sequences in the LANL HIV database. While subtypes and CRFs are unevenly spread across the world, in total 89 countries were represented. For consensus sequences that were based on at least 20 genomes, we found that on average 2.3% (range 0.8–10%) of the consensus genome site states changed from 2002 to 2021, of which about half were nucleotide state differences and the rest insertions and deletions. Interestingly, the 2021 consensus sequences were shorter than in 2002, and compared to 4,674 HIV-1 worldwide genome sequences, the 2021 consensuses were somewhat closer to the worldwide genome sequences, i.e., showing on average fewer nucleotide state differences. Some subtypes/CRFs have had limited geographical spread, and thus sampling of subtypes/CRFs is uneven, at least in part, due to the epidemiological dynamics. Thus, taken as a whole, the 2021 consensus sequences likely are good representations of the typical subtype/CRF genome nucleotide states. The new consensus sequences are available at the LANL HIV database.
Collapse
Affiliation(s)
- Gregorio V Linchangco
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Brian Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
5
|
Garmendia AE, Mwangi W, Renukaradhya GJ. Porcine Reproductive and Respiratory Syndrome. VETERINARY VACCINES 2021:355-370. [DOI: 10.1002/9781119506287.ch26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
7
|
Dorigatti E, Schubert B. Graph-theoretical formulation of the generalized epitope-based vaccine design problem. PLoS Comput Biol 2020; 16:e1008237. [PMID: 33095790 PMCID: PMC7652351 DOI: 10.1371/journal.pcbi.1008237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 11/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Epitope-based vaccines have revolutionized vaccine research in the last decades. Due to their complex nature, bioinformatics plays a pivotal role in their development. However, existing algorithms address only specific parts of the design process or are unable to provide formal guarantees on the quality of the solution. We present a unifying formalism of the general epitope vaccine design problem that tackles all phases of the design process simultaneously and combines all prevalent design principles. We then demonstrate how to formulate the developed formalism as an integer linear program, which guarantees optimality of the designs. This makes it possible to explore new regions of the vaccine design space, analyze the trade-offs between the design phases, and balance the many requirements of vaccines.
Collapse
Affiliation(s)
- Emilio Dorigatti
- Department of Statistics, Ludwig Maximilian Universität, München, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching bei München, Germany
| |
Collapse
|
8
|
Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother 2020; 16:713-722. [PMID: 31584318 PMCID: PMC7227724 DOI: 10.1080/21645515.2019.1666957] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Despite 30 years of effort, we do not have an effective HIV-1 vaccine. Over the past decade, the HIV-1 vaccine field has shifted emphasis toward antibody-based vaccine strategies, following a lack of efficacy in CD8+ T-cell-based vaccine trials. Several lines of evidence, however, suggest that improved CD8+ T-cell-directed strategies could benefit an HIV-1 vaccine. First, T-cell responses often correlate with good outcomes in non-human primate (NHP) challenge models. Second, subgroup studies of two no-efficacy human clinical vaccine trials found associations between CD8+ T-cell responses and protective effects. Finally, improved strategies can increase the breadth and potency of CD8+ T-cell responses, direct them toward preferred epitopes (that are highly conserved and/or associated with viral control), or both. Optimized CD8+ T-cell vaccine strategies are promising in both prophylactic and therapeutic settings. This commentary briefly outlines some encouraging findings from T-cell vaccine studies, and then directly compares key features of some T-cell vaccine candidates currently in the clinical pipeline.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
9
|
Broad Protection of Pigs against Heterologous PRRSV Strains by a GP5-Mosaic DNA Vaccine Prime/GP5-Mosaic rVaccinia (VACV) Vaccine Boost. Vaccines (Basel) 2020; 8:vaccines8010106. [PMID: 32121277 PMCID: PMC7157218 DOI: 10.3390/vaccines8010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) viruses are a major cause of disease and economic loss in pigs worldwide. High genetic diversity among PRRSV strains is problematic for successful disease control by vaccination. Mosaic DNA and vaccinia (VACV) vaccines were developed in order to improve protection against heterologous PRRSV strains. METHODS Piglets were primed and boosted with GP5-Mosaic DNA vaccine and recombinant GP5-Mosaic VACV (rGP5-Mosaic VACV), respectively. Pigs vaccinated with rGP5-WT (VR2332) DNA and rGP5-WT VACV, or empty vector DNA and empty VACV respectively, served as controls. Virus challenge was given to separate groups of vaccinated pigs with VR2332 or MN184C. Necropsies were performed 14 days after challenge. RESULTS Vaccination with the GP5-Mosaic-based vaccines resulted in cellular reactivity and higher levels of neutralizing antibodies to both VR2332 and MN184C PRRSV strains. In contrast, vaccination of animals with the GP5-WT vaccines induced responses only to VR2332. Furthermore, vaccination with the GP5-Mosaic based vaccines resulted in protection against challenge with two heterologous virus strains, as demonstrated by the significantly lower viral loads in serum, tissues, porcine alveolar macrophages (PAMs), and bronchoalveolar lavage (BAL) fluids, and less severe lung lesions after challenge with either MN184C or VR2332, which have only 85% identity. In contrast, significant protection by the GP5-WT based vaccines was only achieved against the VR2332 strain. Conclusions: GP5-Mosaic vaccines, using a DNA-prime/VACV boost regimen, conferred protection in pigs against heterologous viruses.
Collapse
|
10
|
Hou J, Shrivastava S, Fraser CC, Loo HL, Wong LH, Ho V, Fink K, Ooi EE, Chen J. Dengue Mosaic Vaccines Enhance Cellular Immunity and Expand the Breadth of Neutralizing Antibody Against All Four Serotypes of Dengue Viruses in Mice. Front Immunol 2019; 10:1429. [PMID: 31281322 PMCID: PMC6596366 DOI: 10.3389/fimmu.2019.01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
An estimated 400 million people in the world are infected with any of the four types of dengue virus (DENV) annually. The only licensed dengue vaccine cannot effectively prevent infection with all of the four DENVs, especially in those immunologically naïve at baseline. In this study, we explored a mosaic vaccine approach, which utilizes an artificial recombinant sequence for each serotype to achieve maximum coverage of variant epitopes in the four DENVs. We determined the immunogenicity and cross-reactivity of DNA plasmids encoding individual mosaic sequences or the natural sequences in mice. We show that the mosaic vaccines, particularly those targeting DENV serotype 1 and 2, improved vaccine immunogenicity by increasing the percentage of antigen-specific IFNγ- or TNFα-secreting CD4 and CD8 T cells, and titers of neutralizing antibodies. The mosaic vaccine diversified and broadened anti-dengue T cell responses and cross-reactive neutralizing antibodies against all four serotypes. The mosaic vaccines also induced higher level of antigen-specific B cell responses. These results suggest that mosaic vaccines comprising of DENV serotype 1 and 2 variant epitopes could stimulate strong and broad immune responses against all four serotypes.
Collapse
Affiliation(s)
- Jue Hou
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Shubham Shrivastava
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Christopher C Fraser
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Hooi Linn Loo
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Lan Hiong Wong
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Victor Ho
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Eng Eong Ooi
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Koch Institute for Integrative Cancer Research and Departments of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
11
|
Cui J, O’Connell CM, Costa A, Pan Y, Smyth JA, Verardi PH, Burgess DJ, Van Kruiningen HJ, Garmendia AE. A PRRSV GP5-Mosaic vaccine: Protection of pigs from challenge and ex vivo detection of IFNγ responses against several genotype 2 strains. PLoS One 2019; 14:e0208801. [PMID: 30703122 PMCID: PMC6354972 DOI: 10.1371/journal.pone.0208801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), is a highly mutable RNA virus that affects swine worldwide and its control is very challenging due to its formidable heterogeneity in the field. In the present study, DNA vaccines constructed with PRRSV GP5-Mosaic sequences were complexed to cationic liposomes and administered to experimental pigs by intradermal and intramuscular injection, followed by three boosters 14, 28 and 42 days later. The GP5-Mosaic vaccine thus formulated was immunogenic and induced protection from challenge in vaccinated pigs comparable to that induced by a wild type (VR2332) GP5 DNA vaccine (GP5-WT). Periodic sampling of blood and testing of vaccine-induced responses followed. Interferon-γ (IFN-γ) mRNA expression by virus-stimulated peripheral blood mononuclear cells (PBMCs) of GP5-Mosaic-vaccinated pigs was significantly higher compared to pigs vaccinated with either GP5-WT or empty vector at 21, 35 and 48 days after vaccination. Cross-reactive cellular responses were also demonstrated in GP5-Mosaic vaccinated pigs after stimulation of PBMCs with divergent strains of PRRSV. Thus, significantly higher levels of IFN-γ mRNA were detected when PBMCs from GP5-Mosaic-vaccinated pigs were stimulated by four Genotype 2 strains (VR2332, NADC9, NADC30 and SDSU73), which have at least 10% difference in GP5 amino acid sequences, while such responses were recorded only upon VR2332 stimulation in GP5-WT-vaccinated pigs. In addition, the levels of virus-specific neutralizing antibodies were higher in GP5-Mosaic or GP5-WT vaccinated pigs than those in vector-control pigs. The experimental pigs vaccinated with either the GP5-Mosaic vaccine or the GP5-WT vaccine were partially protected from challenge with VR2332, as measured by significantly lower viral loads in sera and tissues and lower lung lesion scores than the vector control group. These data demonstrate that the GP5-Mosaic vaccine can induce cross-reactive cellular responses to diverse strains, neutralizing antibodies, and protection in pigs.
Collapse
Affiliation(s)
- Junru Cui
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Caitlin M. O’Connell
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yan Pan
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, PR China
| | - Joan A. Smyth
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paulo H. Verardi
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Herbert J. Van Kruiningen
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Antonio E. Garmendia
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
12
|
Computational Design of Epitope-Enriched HIV-1 Gag Antigens with Preserved Structure and Function for Induction of Broad CD8 + T Cell Responses. Sci Rep 2018; 8:11264. [PMID: 30050069 PMCID: PMC6062507 DOI: 10.1038/s41598-018-29435-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
The partially protective phenotype observed in HIV-infected long-term-non-progressors is often associated with certain HLA alleles, thus indicating that cytotoxic T lymphocyte (CTL) responses play a crucial role in combating virus replication. However, both the vast variability of HIV and the HLA diversity impose a challenge on elicitation of broad and effective CTL responses. Therefore, we conceived an algorithm for the enrichment of CD8+ T cell epitopes in HIV’s Gag protein, respecting functional preservation to enable cross-presentation. Experimentally identified epitopes were compared to a Gag reference sequence. Amino-acid-substitutions (AAS) were assessed for their impact on Gag’s budding-function using a trained classifier that considers structural models and sequence conservation. Experimental assessment of Gag-variants harboring selected AAS demonstrated an apparent classifier-precision of 100%. Compatible epitopes were assigned an immunological score that incorporates features such as conservation or HLA-association in a user-defined weighted manner. Using a genetic algorithm, the epitopes were incorporated in an iterative manner into novel T-cell-epitope-enriched Gag sequences (TeeGag). Computational evaluation showed that these antigen candidates harbor a higher fraction of epitopes with higher score as compared to natural Gag isolates and other artificial antigen designs. Thus, these designer sequences qualify as next-generation antigen candidates for induction of broader CTL responses.
Collapse
|
13
|
Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform 2017; 18:467-478. [PMID: 27016393 DOI: 10.1093/bib/bbw025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity.
Collapse
|
14
|
Stading B, Ellison JA, Carson WC, Satheshkumar PS, Rocke TE, Osorio JE. Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine. PLoS Negl Trop Dis 2017; 11:e0005958. [PMID: 28976983 PMCID: PMC5643138 DOI: 10.1371/journal.pntd.0005958] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/16/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies is an ancient neglected tropical disease that causes tens of thousands of human deaths and millions of cattle deaths annually. In order to develop a new vaccine for potential use in bats, a reservoir of rabies infection for humans and animals alike, an in silico antigen designer tool was used to create a mosaic glycoprotein (MoG) gene using available sequences from the rabies Phylogroup I glycoprotein. This sequence, which represents strains more likely to occur in bats, was cloned into raccoonpox virus (RCN) and the efficacy of this novel RCN-MoG vaccine was compared to RCN-G that expresses the glycoprotein gene from CVS-11 rabies or luciferase (RCN-luc, negative control) in mice and big brown bats (Eptesicus fuscus). Mice vaccinated and boosted intradermally with 1 x 107 plaque forming units (PFU) of each RCN-rabies vaccine construct developed neutralizing antibodies and survived at significantly higher rates than controls. No significant difference in antibody titers or survival was noted between rabies-vaccinated groups. Bats were vaccinated either oronasally (RCN-G, RCN-MoG) with 5x107 PFU or by topical application in glycerin jelly (RCN-MoG, dose 2x108 PFU), boosted (same dose and route) at 46 days post vaccination (dpv), and then challenged with wild-type big brown variant RABV at 65 dpv. Prior to challenge, 90% of RCN-G and 75% of RCN-MoG oronasally vaccinated bats had detectable levels of serum rabies neutralizing antibodies. Bats from the RCN-luc and topically vaccinated RCN-MoG groups did not have measurable antibody responses. The RCN-rabies constructs were highly protective and not significantly different from each other. RCN-MoG provided 100% protection (n = 9) when delivered oronasally and 83% protection (n = 6) when delivered topically; protection provided by the RCN-G construct was 70% (n = 10). All rabies-vaccinated bats survived at a significantly (P ≤ 0.02) higher rate than control bats (12%; n = 8). We have demonstrated the efficacy of a novel, in silico designed rabies MoG antigen that conferred protection from rabies challenge in mice and big brown bats in laboratory studies. With further development, topical or oronasal administration of the RCN-MoG vaccine could potentially mitigate rabies in wild bat populations, reducing spillover of this deadly disease into humans, domestic mammals, and other wildlife.
Collapse
Affiliation(s)
- Ben Stading
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - James A. Ellison
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William C. Carson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tonie E. Rocke
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
- * E-mail: (JEO); (TER)
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail: (JEO); (TER)
| |
Collapse
|
15
|
Abstract
A key unresolved challenge for developing an effective HIV‐1 vaccine is the discovery of strategies to elicit immune responses that are able to cross‐protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV‐1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine‐elicited T‐cell responses, which contribute to the control of HIV‐1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross‐reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV‐1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage‐based design strategies to illustrate how such in‐depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA.,New Mexico Consortium, Los Alamos, NM, USA
| | - Peter Hraber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nat Commun 2017; 8:15711. [PMID: 28593989 PMCID: PMC5472724 DOI: 10.1038/ncomms15711] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. A previous human HIV-1 vaccine clinical trial, boosting with HIV envelope protein from two strains, demonstrated moderate vaccine efficacy. Here, Bradley et al. show that a pentavalent HIV envelope protein boost improves protection from viral challenge in non-human primates and they identify immune correlates of protection.
Collapse
|
17
|
A study of vaccine-induced immune pressure on breakthrough infections in the Phambili phase 2b HIV-1 vaccine efficacy trial. Vaccine 2016; 34:5792-5801. [PMID: 27756485 DOI: 10.1016/j.vaccine.2016.09.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/25/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The Merck Adenovirus-5 Gag/Pol/Nef HIV-1 subtype-B vaccine evaluated in predominately subtype B epidemic regions (Step Study), while not preventing infection, exerted vaccine-induced immune pressure on HIV-1 breakthrough infections. Here we investigated if the same vaccine exerted immune pressure when tested in the Phambili Phase 2b study in a subtype C epidemic. MATERIALS AND METHODS A sieve analysis, which compares breakthrough viruses from placebo and vaccine arms, was performed on 277 near full-length genomes generated from 23 vaccine and 20 placebo recipients. Vaccine coverage was estimated by computing the percentage of 9-mers that were exact matches to the vaccine insert. RESULTS There was significantly greater protein distances from the vaccine immunogen sequence in Gag (p=0.045) and Nef (p=0.021) in viruses infecting vaccine recipients compared to placebo recipients. Twenty-seven putative sites of vaccine-induced pressure were identified (p<0.05) in Gag (n=10), Pol (n=7) and Nef (n=10), although they did not remain significant after adjustment for multiple comparisons. We found the epitope sieve effect in Step was driven by HLA A∗02:01; an allele which was found in low frequency in Phambili participants compared to Step participants. Furthermore, the coverage of the vaccine against subtype C Phambili viruses was 31%, 46% and 14% for Gag, Pol and Nef, respectively, compared to subtype B Step virus coverage of 56%, 61% and 26%, respectively. DISCUSSION This study presents evidence of sieve effects in Gag and Nef; however could not confirm effects on specific amino acid sites. We propose that this weaker signal of vaccine immune pressure detected in the Phambili study compared to the Step study may have been influenced by differences in host genetics (HLA allele frequency) and reduced impact of vaccine-induced immune responses due to mismatch between the viral subtype in the vaccine and infecting subtypes.
Collapse
|
18
|
New concepts in HIV-1 vaccine development. Curr Opin Immunol 2016; 41:39-46. [PMID: 27268856 DOI: 10.1016/j.coi.2016.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 01/13/2023]
Abstract
With 2 million people newly infected with HIV-1 in 2014, an effective HIV-1 vaccine remains a major public health priority. HIV-1 vaccine efficacy trials in humans, complemented by active and passive immunization studies in non-human primates, have identified several key vaccine-induced immunological responses that may correlate with protection against HIV-1 infection. Potential correlates of protection in these studies include V2-specific, polyfunctional, and broadly neutralizing antibody responses, as well as effector memory T cell responses. Here we review how these correlates of protection are guiding current approaches to HIV-1 vaccine development. These approaches include improvements on the ALVAC-HIV/AIDSVAX B/E vaccine regimen used in the RV144 clinical trial in Thailand, adenovirus serotype 26 vectors with gp140 boosting, intravenous infusions of bNAbs, and replicating viral vectors.
Collapse
|
19
|
Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1166-75. [PMID: 26376928 PMCID: PMC4622110 DOI: 10.1128/cvi.00510-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/28/2022]
Abstract
Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors.
Collapse
|
20
|
Billings E, Sanders-Buell E, Bose M, Bradfield A, Lei E, Kijak GH, Arroyo MA, Kibaya RM, Scott PT, Wasunna MK, Sawe FK, Shaffer DN, Birx DL, McCutchan FE, Michael NL, Robb ML, Kim JH, Tovanabutra S. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006. PLoS One 2015; 10:e0135124. [PMID: 26287814 PMCID: PMC4543584 DOI: 10.1371/journal.pone.0135124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999–2000) and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006). Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G) and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D). This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope), which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic.
Collapse
Affiliation(s)
- Erik Billings
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Eric Sanders-Buell
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Meera Bose
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Andrea Bradfield
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Esther Lei
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Gustavo H. Kijak
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Miguel A. Arroyo
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Rukia M. Kibaya
- The Kenya Medical Research Institute/Walter Reed Project Clinical Research Center, Kericho, Kenya
| | - Paul T. Scott
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Monique K. Wasunna
- The Kenya Medical Research Institute, Kericho, Kenya
- The Kenya Medical Research Institute, Nairobi, Kenya
| | - Frederick K. Sawe
- The Kenya Medical Research Institute/Walter Reed Project HIV Program, Kericho, Kenya
| | - Douglas N. Shaffer
- United States Army Medical Research Unit-Kenya/Walter Reed Project HIV Program, Kericho, Kenya
| | - Deborah L. Birx
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Francine E. McCutchan
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Nelson L. Michael
- United States Military HIV Research Program/Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Sodsai Tovanabutra
- United States Military HIV Research Program/Henry M. Jackson Foundation, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. J Virol 2015; 89:6462-80. [PMID: 25855741 DOI: 10.1128/jvi.00383-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Collapse
|
22
|
Tongo M, Riou C, Crunchant E, Müller TL, Strickland N, Mpoudi-Ngole E, Burgers WA. Evaluating potential T-cell epitope peptides for detecting HIV-specific T cell responses in a highly diverse HIV-1 epidemic from Cameroon. AIDS 2015; 29:635-639. [PMID: 25715106 PMCID: PMC4374151 DOI: 10.1097/qad.0000000000000581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HIV genetic diversity is a major obstacle for vaccine development. To define whether potential T-cell epitope (PTE) peptide usage improves the detection of T cell responses in a highly diverse HIV-1 epidemic, we compared the magnitude, breadth and depth of group M PTE peptide responses to consensus M peptides in Gag and Nef proteins. Gag PTE responses were detected at a higher magnitude, more Nef PTE responses were detected at a cohort (but not individual) level and depth was detected in both Gag and Nef responses.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Medical Research and Study of Medicinal plants, Yaoundé, Cameroon
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Eléonore Crunchant
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tracey L. Müller
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Natalie Strickland
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Eitel Mpoudi-Ngole
- Institute of Medical Research and Study of Medicinal plants, Yaoundé, Cameroon
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Stephenson KE, Neubauer GH, Reimer U, Pawlowski N, Knaute T, Zerweck J, Korber BT, Barouch DH. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development. J Immunol Methods 2015; 416:105-23. [PMID: 25445329 PMCID: PMC4324361 DOI: 10.1016/j.jim.2014.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George H Neubauer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | | | | | | | - Bette T Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Ragon Institute of MGH, MIT, and Harvard, Boston, MA, United States.
| |
Collapse
|
24
|
Short conserved sequences of HIV-1 are highly immunogenic and shift immunodominance. J Virol 2014; 89:1195-204. [PMID: 25378501 DOI: 10.1128/jvi.02370-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Cellular immunity is pivotal in HIV-1 pathogenesis but is hampered by viral sequence diversity. An approach to minimize this diversity is to focus immunity on conserved proteome sequences; therefore, we selected four relatively conserved regions (Gag amino acids 148 to 214 and 250 to 335, Env amino acids 521 to 606, and Nef amino acids 106 to 148), each created in three mosaics, to provide better coverage of M-group HIV-1 sequences. A conserved-region vaccine (CRV) delivering genes for these four regions as equal mixtures of three mosaics each (each region at a separate injection site) was compared to a whole-protein vaccine (WPV) delivering equimolar amounts of genes for whole Gag, Env, and Nef as clade B consensus sequences (separate injection sites). Three rhesus macaques were vaccinated via three DNA primes and a recombinant adenovirus type 5 boost (weeks 0, 4, 8, and 24, respectively). Although CRV inserts were about one-fifth that of WPV, the CRV generated comparable-magnitude blood CD4+ and CD8+ T lymphocyte responses against Gag, Env, and Nef. WPV responses preferentially targeted proteome areas outside the selected conserved regions in direct proportion to sequence lengths, indicating similar immunogenicities for the conserved regions and the outside regions. The CRV yielded a conserved-region targeting density that was approximately 5-fold higher than that of the WPV. A similar pattern was seen for bronchoalveolar lymphocytes, but with quadruple the magnitudes seen in blood. Overall, these findings demonstrate that the selected conserved regions are highly immunogenic and that anatomically isolated vaccinations with these regions focus immunodominance compared to the case for full-length protein vaccination. IMPORTANCE HIV-1 sequence diversity is a major barrier limiting the capability of cellular immunity to contain infection and the ability of vaccines to match circulating viral sequences. To date, vaccines tested in humans have delivered whole proteins or genes for whole proteins, and it is unclear whether including only conserved sequences would yield sufficient cellular immunogenicity. We tested a vaccine delivering genes for four small conserved HIV-1 regions compared to a control vaccine with genes for whole Gag, Env, and Nef. Although the conserved regions ranged from 43 to 86 amino acids and comprised less than one-fifth of the whole Gag/Env/Nef sequence, the vaccines elicited equivalent total magnitudes of both CD4+ and CD8+ T lymphocyte responses. These data demonstrate the immunogenicity of these small conserved regions and the potential for a vaccine to steer immunodominance toward conserved epitopes.
Collapse
|
25
|
Lewis B, Whitney S, Hudacik L, Galmin L, Huaman MC, Cristillo AD. Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice. PLoS One 2014; 9:e91267. [PMID: 24614057 PMCID: PMC3948788 DOI: 10.1371/journal.pone.0091267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/10/2014] [Indexed: 02/02/2023] Open
Abstract
The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.
Collapse
Affiliation(s)
- Brad Lewis
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Stephen Whitney
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Lauren Hudacik
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Lindsey Galmin
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Maria Cecilia Huaman
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Anthony D. Cristillo
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
A global human immunodeficiency virus-1 (HIV-1) vaccine will have to elicit immune responses capable of providing protection against a tremendous diversity of HIV-1 variants. In this review, we first describe the current state of the HIV-1 vaccine field, outlining the immune responses that are desired in a global HIV-1 vaccine. In particular, we emphasize the likely importance of Env-specific neutralizing and non-neutralizing antibodies for protection against HIV-1 acquisition and the likely importance of effector Gag-specific T lymphocytes for virologic control. We then highlight four strategies for developing a global HIV-1 vaccine. The first approach is to design specific vaccines for each geographic region that include antigens tailor-made to match local circulating HIV-1 strains. The second approach is to design a vaccine that will elicit Env-specific antibodies capable of broadly neutralizing all HIV-1 subtypes. The third approach is to design a vaccine that will elicit cellular immune responses that are focused on highly conserved HIV-1 sequences. The fourth approach is to design a vaccine to elicit highly diverse HIV-1-specific responses. Finally, we emphasize the importance of conducting clinical efficacy trials as the only way to determine which strategies will provide optimal protection against HIV-1 in humans.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
27
|
Vanham G, Van Gulck E. Can immunotherapy be useful as a "functional cure" for infection with Human Immunodeficiency Virus-1? Retrovirology 2012; 9:72. [PMID: 22958464 PMCID: PMC3472319 DOI: 10.1186/1742-4690-9-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens.This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells.Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a "functional cure") it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.
Collapse
Affiliation(s)
- Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerpen, Antwerpen, Belgium
| | - Ellen Van Gulck
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Present address: Community of Research Excellence and Advanced Technology (C.R.E.A.Te), Division of Janssen, Beerse, Belgium
| |
Collapse
|
28
|
Etschel JK, Hückelhoven AG, Hofmann C, Zitzelsberger K, Maurer K, Bergmann S, Mueller-Schmucker SM, Wittmann J, Spriewald BM, Dörrie J, Schaft N, Harrer T. HIV-1 mRNA electroporation of PBMC: A simple and efficient method to monitor T-cell responses against autologous HIV-1 in HIV-1-infected patients. J Immunol Methods 2012; 380:40-55. [DOI: 10.1016/j.jim.2012.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
29
|
Santra S, Muldoon M, Watson S, Buzby A, Balachandran H, Carlson KR, Mach L, Kong WP, McKee K, Yang ZY, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL. Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens. Virology 2012; 428:121-7. [PMID: 22521913 DOI: 10.1016/j.virol.2012.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/12/2012] [Accepted: 03/22/2012] [Indexed: 12/01/2022]
Abstract
To create an HIV-1 vaccine that generates sufficient breadth of immune recognition to protect against the genetically diverse forms of the circulating virus, we have been exploring vaccines based on consensus and mosaic protein designs. Increasing the valency of a mosaic immunogen cocktail increases epitope coverage but with diminishing returns, as increasingly rare epitopes are incorporated into the mosaic proteins. In this study we compared the immunogenicity of 2-valent and 3-valent HIV-1 envelope mosaic immunogens in rhesus monkeys. Immunizations with the 3-valent mosaic immunogens resulted in a modest increase in the breadth of vaccine-elicited T lymphocyte responses compared to the 2-valent mosaic immunogens. However, the 3-valent mosaic immunogens elicited significantly higher neutralizing responses to Tier 1 viruses than the 2-valent mosaic immunogens. These findings underscore the potential utility of polyvalent mosaic immunogens for eliciting both cellular and humoral immune responses to HIV-1.
Collapse
Affiliation(s)
- Sampa Santra
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Anderson TK, Laegreid WW, Cerutti F, Osorio FA, Nelson EA, Christopher-Hennings J, Goldberg TL. Ranking viruses: measures of positional importance within networks define core viruses for rational polyvalent vaccine development. Bioinformatics 2012; 28:1624-32. [DOI: 10.1093/bioinformatics/bts181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Currier JR, Robb ML, Michael NL, Marovich MA. Defining epitope coverage requirements for T cell-based HIV vaccines: theoretical considerations and practical applications. J Transl Med 2011; 9:212. [PMID: 22152192 PMCID: PMC3284408 DOI: 10.1186/1479-5876-9-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important metrics such as the minimum epitope count required to reach a desired level of coverage can be easily calculated. We propose that such analyses can be applied early in the planning stages and during the execution phase of a vaccine trial to explore theoretical and empirical suitability of a vaccine product to a particular epidemic setting.
Collapse
|
32
|
Salimi N, Fleri W, Peters B, Sette A. Design and utilization of epitope-based databases and predictive tools. Immunogenetics 2010; 62:185-96. [PMID: 20213141 PMCID: PMC2843836 DOI: 10.1007/s00251-010-0435-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/11/2010] [Indexed: 11/30/2022]
Abstract
In the last decade, significant progress has been made in expanding the scope and depth of publicly available immunological databases and online analysis resources, which have become an integral part of the repertoire of tools available to the scientific community for basic and applied research. Herein, we present a general overview of different resources and databases currently available. Because of our association with the Immune Epitope Database and Analysis Resource, this resource is reviewed in more detail. Our review includes aspects such as the development of formal ontologies and the type and breadth of analytical tools available to predict epitopes and analyze immune epitope data. A common feature of immunological databases is the requirement to host large amounts of data extracted from disparate sources. Accordingly, we discuss and review processes to curate the immunological literature, as well as examples of how the curated data can be used to generate a meta-analysis of the epitope knowledge currently available for diseases of worldwide concern, such as influenza and malaria. Finally, we review the impact of immunological databases, by analyzing their usage and citations, and by categorizing the type of citations. Taken together, the results highlight the growing impact and utility of immunological databases for the scientific community.
Collapse
Affiliation(s)
- Nima Salimi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
33
|
Barouch DH, O'Brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, Sun YH, La Porte A, Riggs AM, Lynch DM, Clark SL, Backus K, Perry JR, Seaman MS, Carville A, Mansfield KG, Szinger JJ, Fischer W, Muldoon M, Korber B. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 2010; 16:319-23. [PMID: 20173752 PMCID: PMC2834868 DOI: 10.1038/nm.2089] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/29/2009] [Indexed: 12/21/2022]
Abstract
The worldwide diversity of HIV-1 presents an unprecedented challenge for vaccine development. Antigens derived from natural HIV-1 sequences have elicited only a limited breadth of cellular immune responses in nonhuman primate studies and clinical trials to date. Polyvalent 'mosaic' antigens, in contrast, are designed to optimize cellular immunologic coverage of global HIV-1 sequence diversity. Here we show that mosaic HIV-1 Gag, Pol and Env antigens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors markedly augmented both the breadth and depth without compromising the magnitude of antigen-specific T lymphocyte responses as compared with consensus or natural sequence HIV-1 antigens in rhesus monkeys. Polyvalent mosaic antigens therefore represent a promising strategy to expand cellular immunologic vaccine coverage for genetically diverse pathogens such as HIV-1.
Collapse
Affiliation(s)
- Dan H Barouch
- Division of Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
35
|
Yusim K, Fischer W, Yoon H, Thurmond J, Fenimore PW, Lauer G, Korber B, Kuiken C. Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity. J Gen Virol 2010; 91:1194-206. [PMID: 20053820 DOI: 10.1099/vir.0.017491-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Delta). Mosaic proteins resemble natural proteins, but are assembled from fragments of natural sequences via a genetic algorithm and optimized to maximize the coverage of potential T-cell epitopes (all 9-mers) found in natural sequences and to minimize the inclusion of rare 9-mers to avoid vaccine-specific responses. Genotype 1-specific and global vaccine cocktails were evaluated. Among vaccine candidates considered, polyvalent mosaic sequences provided the best coverage of both known and potential epitopes and had the fewest rare epitopes. A global vaccine based on conserved proteins across genotypes may be feasible, as a five-antigen mosaic cocktail provided 90, 77 and 70% coverage of the Core, NS3 and NS4 proteins, respectively; protein coverage diminished with increased protein variability, dropping to 38% for NS2. For the genotype 1-specific vaccine, the H77 prototype vaccine sequence matched only 50% of the potential epitopes in the population, whilst a polyprotein three-antigen mosaic cocktail increased potential epitope coverage to 83%. More than 75% coverage of all HCV proteins was achieved with a three-antigen mosaic cocktail, suggesting that genotype-specific vaccines could also include the more variable proteins.
Collapse
Affiliation(s)
- Karina Yusim
- Los Alamos National Laboratory, Theory Division, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J Virol 2009; 83:8300-14. [PMID: 19439471 DOI: 10.1128/jvi.00114-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
37
|
Toussaint NC, Kohlbacher O. OptiTope--a web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Res 2009; 37:W617-22. [PMID: 19420066 PMCID: PMC2703925 DOI: 10.1093/nar/gkp293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epitope-based vaccines (EVs) have recently been attracting significant interest. They trigger an immune response by confronting the immune system with immunogenic peptides derived from, e.g. viral- or cancer-related proteins. Binding of these peptides to proteins from the major histocompatibility complex (MHC) is crucial for immune system activation. However, since the MHC is highly polymorphic, different patients typically bind different repertoires of peptides. Furthermore, economical and regulatory issues impose strong limitations on the number of peptides that can be included in an EV. Hence, it is crucial to identify the optimal set of peptides for a vaccine, given constraints such as MHC allele probabilities in the target population, peptide mutation rates and maximum number of selected peptides. OptiTope aims at assisting immunologists in this critical task. With OptiTope, we provide an easy-to-use tool to determine a provably optimal set of epitopes with respect to overall immunogenicity in a specific individual (personalized medicine) or a target population (e.g. a certain ethnic group). OptiTope is available at http://www.epitoolkit.org/optitope.
Collapse
Affiliation(s)
- Nora C Toussaint
- Division for Simulation of Biological Systems, Wilhelm Schickard Institute for Computer Science, Center for Bioinformatics Tübingen, Eberhard-Karls-Universität Tübingen, Germany.
| | | |
Collapse
|
38
|
Expanded breadth of the T-cell response to mosaic human immunodeficiency virus type 1 envelope DNA vaccination. J Virol 2008; 83:2201-15. [PMID: 19109395 DOI: 10.1128/jvi.02256-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An effective AIDS vaccine must control highly diverse circulating strains of human immunodeficiency virus type 1 (HIV-1). Among HIV-1 gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV-1 Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential T-cell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. One-, two-, and three-mosaic sets that increased theoretical epitope coverage were developed. The breadth and magnitude of T-cell immunity stimulated by these vaccines were compared to those for natural strain Envs; additional comparisons were performed on mutant Envs, including gp160 or gp145 with or without V regions and gp41 deletions. Among them, the two- or three-mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the three-mosaic set elicited responses to an average of eight peptide pools, compared to two pools for a set of three natural Envs. Synthetic mosaic HIV-1 antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T-cell-based HIV-1 vaccines.
Collapse
|