1
|
Patel A, Lima T, Carson R, Huang Q, Bonissone SR, Castellana N. Serum proteomics reveals high-affinity and convergent antibodies by tracking SARS-CoV-2 hybrid immunity to emerging variants of concern. Front Immunol 2025; 16:1509888. [PMID: 40070844 PMCID: PMC11893383 DOI: 10.3389/fimmu.2025.1509888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
The rapid spread of SARS-CoV-2 and its continuing impact on human health has prompted the need for effective and rapid development of monoclonal antibody therapeutics. In this study, we investigate polyclonal antibodies in serum and B cells from the whole blood of three donors with SARS-CoV-2 immunity to find high-affinity anti-SARS-CoV-2 antibodies to escape variants. Serum IgG antibodies were selected by their affinity to the receptor-binding domain (RBD) and non-RBD sites on the spike protein of Omicron subvariant B.1.1.529 from each donor. Antibodies were analyzed by bottom-up mass spectrometry, and matched to single- and bulk-cell sequenced repertoires for each donor. The antibodies observed in serum were recombinantly expressed, and characterized to assess domain binding, cross-reactivity between different variants, and capacity to inhibit RBD binding to host protein. Donors infected with early Omicron subvariants had serum antibodies with subnanomolar affinity to RBD that also showed binding activity to a newer Omicron subvariant BQ.1.1. The donors also showed a convergent immune response. Serum antibodies and other single- and bulk-cell sequences were similar to publicly reported anti-SARS-CoV-2 antibodies, and the characterized serum antibodies had the same variant-binding and neutralization profiles as their reported public sequences. The serum antibodies analyzed were a subset of anti-SARS-CoV-2 antibodies in the B cell repertoire, which demonstrates significant dynamics between the B cells and circulating antibodies in peripheral blood.
Collapse
Affiliation(s)
- Anand Patel
- Abterra Biosciences, Inc., San Diego, CA, United States
| | | | | | | | | | | |
Collapse
|
2
|
Nawaz MA, Pamirsky IE, Golokhvast KS. Bioinformatics in Russia: history and present-day landscape. Brief Bioinform 2024; 25:bbae513. [PMID: 39402695 PMCID: PMC11473191 DOI: 10.1093/bib/bbae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bioinformatics has become an interdisciplinary subject due to its universal role in molecular biology research. The current status of Russia's bioinformatics research in Russia is not known. Here, we review the history of bioinformatics in Russia, present the current landscape, and highlight future directions and challenges. Bioinformatics research in Russia is driven by four major industries: information technology, pharmaceuticals, biotechnology, and agriculture. Over the past three decades, despite a delayed start, the field has gained momentum, especially in protein and nucleic acid research. Dedicated and shared centers for genomics, proteomics, and bioinformatics are active in different regions of Russia. Present-day bioinformatics in Russia is characterized by research issues related to genetics, metagenomics, OMICs, medical informatics, computational biology, environmental informatics, and structural bioinformatics. Notable developments are in the fields of software (tools, algorithms, and pipelines), use of high computation power (e.g. by the Siberian Supercomputer Center), and large-scale sequencing projects (the sequencing of 100 000 human genomes). Government funding is increasing, policies are being changed, and a National Genomic Information Database is being established. An increased focus on eukaryotic genome sequencing, the development of a common place for developers and researchers to share tools and data, and the use of biological modeling, machine learning, and biostatistics are key areas for future focus. Universities and research institutes have started to implement bioinformatics modules. A critical mass of bioinformaticians is essential to catch up with the global pace in the discipline.
Collapse
Affiliation(s)
- Muhammad A Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
| | - Igor E Pamirsky
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| |
Collapse
|
3
|
Hahn AM, Vogg L, Brey S, Schneider A, Schäfer S, Palmisano R, Pavlova A, Sandrock I, Tan L, Fichtner AS, Prinz I, Ravens S, Winkler TH. A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. Cell Rep 2023; 42:112253. [PMID: 36920908 DOI: 10.1016/j.celrep.2023.112253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/14/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
The clonal selection theory describes key features of adaptive immune responses of B and T cells. For αβ T cells and B cells, antigen recognition and selection principles are known at a detailed molecular level. The precise role of the antigen receptor in γδ T cells remains less well understood. To better understand the role of the γδ T cell receptor (TCR), we generate an orthotopic TCRδ transgenic mouse model. We demonstrate a multi-layered functionality of γδ TCRs and diverse roles of CDR3δ-mediated selection during γδ T cell development. Whereas epithelial populations using Vγ5 or Vγ7 chains are almost unaffected in their biology in the presence of the transgenic TCRδ chain, pairing with Vγ1 positively selects γδ T cell subpopulations with distinct programs in several organs, thereby distorting the repertoire. In conclusion, our data support dictation of developmental tropism together with adaptive-like recognition principles in a single antigen receptor.
Collapse
Affiliation(s)
- Anne M Hahn
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lisa Vogg
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Brey
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andrea Schneider
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralph Palmisano
- Optical Imaging Centre Erlangen (OICE), Competence Unit, FAU, 91058 Erlangen, Germany
| | - Anna Pavlova
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | | | - Likai Tan
- Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Immo Prinz
- Medizinische Hochschule Hannover, Hannover, Germany; Institute for Systems Immunology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Zhang C, Bzikadze AV, Safonova Y, Mirarab S. A scalable model for simulating multi-round antibody evolution and benchmarking of clonal tree reconstruction methods. Front Immunol 2022; 13:1014439. [PMID: 36618367 PMCID: PMC9815712 DOI: 10.3389/fimmu.2022.1014439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Affinity maturation (AM) of B cells through somatic hypermutations (SHMs) enables the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the formation of clonal lineages of antibody-secreting b cells that have evolved from a common naïve B cell. Advances in high-throughput sequencing have enabled deep scans of B cell receptor repertoires, paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture microevolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these methods, partially because evaluation is challenging. Benchmarking the performance of existing methods and developing better methods would both benefit from realistic models of clonal lineage evolution specifically designed for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal lineage evolution and use this model to benchmark several existing clonal tree reconstruction methods. Our model, designed to be extensible, has several features: by evolving the clonal tree and sequences simultaneously, it allows modeling selective pressure due to changes in affinity binding; it enables scalable simulations of large numbers of cells; it enables several rounds of infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest a set of metrics for comparing clonal trees and measuring their properties. Our results show that while maximum likelihood phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if applied naively, a simple post-processing of their results, where short branches are contracted, leads to inferences that are better than alternative methods.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Andrey V. Bzikadze
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, San Diego, CA, United States
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Burnum-Johnson KE, Conrads TP, Drake RR, Herr AE, Iyengar R, Kelly RT, Lundberg E, MacCoss MJ, Naba A, Nolan GP, Pevzner PA, Rodland KD, Sechi S, Slavov N, Spraggins JM, Van Eyk JE, Vidal M, Vogel C, Walt DR, Kelleher NL. New Views of Old Proteins: Clarifying the Enigmatic Proteome. Mol Cell Proteomics 2022; 21:100254. [PMID: 35654359 PMCID: PMC9256833 DOI: 10.1016/j.mcpro.2022.100254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Thomas P Conrads
- Inova Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Emma Lundberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, California, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Institute in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marc Vidal
- Department of Genetics, Harvard University, Cambridge, Massachusetts, USA
| | - Christine Vogel
- New York University Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - David R Walt
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Wyss Institute at Harvard University, Boston, Massachusetts, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
6
|
Abstract
High-throughput sequencing for B cell receptor (BCR) repertoire provides useful insights for the adaptive immune system. With the continuous development of the BCR-seq technology, many efforts have been made to develop methods for analyzing the ever-increasing BCR repertoire data. In this review, we comprehensively outline different BCR repertoire library preparation protocols and summarize three major steps of BCR-seq data analysis, i. e., V(D)J sequence annotation, clonal phylogenetic inference, and BCR repertoire profiling and mining. Different from other reviews in this field, we emphasize background intuition and the statistical principle of each method to help biologists better understand it. Finally, we discuss data mining problems for BCR-seq data and with a highlight on recently emerging multiple-sample analysis.
Collapse
|
7
|
Sirupurapu V, Safonova Y, Pevzner P. Gene prediction in the immunoglobulin loci. Genome Res 2022; 32:1152-1169. [PMID: 35545447 DOI: 10.1101/gr.276676.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
The V(D)J recombination process rearranges the variable (V), diversity (D), and joining (J) genes in the immunoglobulin loci to generate antibody repertoires. Annotation of these loci across various species and predicting the V, D, and J genes (IG genes) is critical for studies of the adaptive immune system. However, since the standard gene finding algorithms are not suitable for predicting IG genes, they have been semi-manually annotated in very few species. We developed the IGDetective algorithm for predicting IG genes and applied it to species with the assembled IG loci. IGDetective generated the first large collection of IG genes across many species and enabled their evolutionary analysis, including the analysis of the "bat IG diversity" hypothesis. This analysis revealed extremely conserved V genes in evolutionary distant species indicating that these genes may be subjected to the same selective pressure, e.g., pressure driven by common pathogens. IGDetective also revealed extremely diverged V genes and a new family of evolutionary conserved V genes in bats with unusual noncanonical cysteines. Moreover, in difference from all other previously reported antibodies, these cysteines are located within complementarity-determining regions. Since cysteines form disulfide bonds, we hypothesize that these cysteine-rich V genes might generate antibodies with noncanonical conformations and could potentially form a unique part of the immune repertoire in bats. We also analyzed the diversity landscape of the recombination signal sequences and revealed their features that trigger the high/low usage of the IG genes.
Collapse
|
8
|
Safonova Y, Shin SB, Kramer L, Reecy J, Watson CT, Smith TPL, Pevzner PA. Variations in antibody repertoires correlate with vaccine responses. Genome Res 2022; 32:791-804. [PMID: 35361626 PMCID: PMC8997358 DOI: 10.1101/gr.276027.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
An important challenge in vaccine development is to figure out why a vaccine succeeds in some individuals and fails in others. Although antibody repertoires hold the key to answering this question, there have been very few personalized immunogenomics studies so far aimed at revealing how variations in immunoglobulin genes affect a vaccine response. We conducted an immunosequencing study of 204 calves vaccinated against bovine respiratory disease (BRD) with the goal to reveal variations in immunoglobulin genes and somatic hypermutations that impact the efficacy of vaccine response. Our study represents the largest longitudinal personalized immunogenomics study reported to date across all species, including humans. To analyze the generated data set, we developed an algorithm for identifying variations of the immunoglobulin genes (as well as frequent somatic hypermutations) that affect various features of the antibody repertoire and titers of neutralizing antibodies. In contrast to relatively short human antibodies, cattle have a large fraction of ultralong antibodies that have opened new therapeutic opportunities. Our study reveals that ultralong antibodies are a key component of the immune response against the costliest disease of beef cattle in North America. The detected variants of the cattle immunoglobulin genes, which are implicated in the success/failure of the BRD vaccine, have the potential to direct the selection of individual cattle for ongoing breeding programs.
Collapse
Affiliation(s)
- Yana Safonova
- Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sung Bong Shin
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Nebraska 68933, USA
| | - Luke Kramer
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Nebraska 68933, USA
| | - Pavel A Pevzner
- Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093, USA
| |
Collapse
|
9
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
10
|
Werner A, Schäfer S, Zaytseva O, Albert H, Lux A, Krištić J, Pezer M, Lauc G, Winkler T, Nimmerjahn F. Targeting B cells in the pre-phase of systemic autoimmunity globally interferes with autoimmune pathology. iScience 2021; 24:103076. [PMID: 34585117 PMCID: PMC8455742 DOI: 10.1016/j.isci.2021.103076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a loss of self-tolerance, systemic inflammation, and multi-organ damage. While a variety of therapeutic interventions are available, it has become clear that an early diagnosis and treatment may be key to achieve long lasting therapeutic responses and to limit irreversible organ damage. Loss of humoral tolerance including the appearance of self-reactive antibodies can be detected years before the actual onset of the clinical autoimmune disease, representing a potential early point of intervention. Not much is known, however, about how and to what extent this pre-phase of disease impacts the onset and development of subsequent autoimmunity. By targeting the B cell compartment in the pre-disease phase of a spontaneous mouse model of SLE we now show, that resetting the humoral immune system during the clinically unapparent phase of the disease globally alters immune homeostasis delaying the downstream development of systemic autoimmunity. The clinically unapparent pre-phase of SLE impacts clinical disease Autoreactive IgM antibodies represent a biomarker for early therapeutic intervention Pre-phase B cells orchestrate clinical disease Depleting pre-phase B cells diminishes disease pathology
Collapse
Affiliation(s)
- Anja Werner
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Simon Schäfer
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Olga Zaytseva
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Heike Albert
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Jasminka Krištić
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Marija Pezer
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Thomas Winkler
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol 2021; 40:463-481. [PMID: 34535228 DOI: 10.1016/j.tibtech.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
Collapse
|
12
|
Meyer SJ, Steffensen M, Acs A, Weisenburger T, Wadewitz C, Winkler TH, Nitschke L. CD22 Controls Germinal Center B Cell Receptor Signaling, Which Influences Plasma Cell and Memory B Cell Output. THE JOURNAL OF IMMUNOLOGY 2021; 207:1018-1032. [PMID: 34330755 DOI: 10.4049/jimmunol.2100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Germinal center reactions are established during a thymus-dependent immune response. Germinal center (GC) B cells are rapidly proliferating and undergo somatic hypermutation in Ab genes. This results in the production of high-affinity Abs and establishment of long-lived memory cells. GC B cells show lower BCR-induced signaling when compared with naive B cells, but the functional relevance is not clear. CD22 is a member of the Siglec family and functions as an inhibitory coreceptor on B cells. Interestingly, GC B cells downregulate sialic acid forms that serve as high-affinity ligands for CD22, indicating a role for CD22 ligand binding during GC responses. We studied the role of CD22 in the GC with mixed bone marrow chimeric mice and found a disadvantage of CD22-/- GC B cells during the GC reaction. Mechanistic investigations ruled out defects in dark zone/light zone distribution and affinity maturation. Rather, an increased rate of apoptosis in CD22-/- GC B cells was responsible for the disadvantage, also leading to a lower GC output in plasma cells and memory B cells. CD22-/- GC B cells showed a clearly increased calcium response upon BCR stimulation, which was almost absent in wild-type GC B cells. We conclude that the differential expression of the low-affinity cis CD22 ligands in the GC normally results in a strong attenuation of BCR signaling in GC B cells, probably due to higher CD22-BCR interactions. Therefore, attenuation of BCR signaling by CD22 is involved in GC output and B cell fate.
Collapse
Affiliation(s)
- Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Andreas Acs
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas Weisenburger
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Charlotte Wadewitz
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Triqueneaux G, Burny C, Symmons O, Janczarski S, Gruffat H, Yvert G. Cell-to-cell expression dispersion of B-cell surface proteins is linked to genetic variants in humans. Commun Biol 2020; 3:346. [PMID: 32620900 PMCID: PMC7335051 DOI: 10.1038/s42003-020-1075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/12/2020] [Indexed: 01/02/2023] Open
Abstract
Variability in gene expression across a population of homogeneous cells is known to influence various biological processes. In model organisms, natural genetic variants were found that modify expression dispersion (variability at a fixed mean) but very few studies have detected such effects in humans. Here, we analyzed single-cell expression of four proteins (CD23, CD55, CD63 and CD86) across cell lines derived from individuals of the Yoruba population. Using data from over 30 million cells, we found substantial inter-individual variation of dispersion. We demonstrate, via de novo cell line generation and subcloning experiments, that this variation exceeds the variation associated with cellular immortalization. We detected a genetic association between the expression dispersion of CD63 and the rs971 SNP. Our results show that human DNA variants can have inherently-probabilistic effects on gene expression. Such subtle genetic effects may participate to phenotypic variation and disease outcome. Triqueneaux, Burny, Symmons et al. show association between gene expression noise and genotypes, using single-cell expression of four proteins across human-derived lymphoblastoid cell lines. This study suggests that very subtle regulatory effects of human DNA variants may contribute to phenotypic variation and disease outcome.
Collapse
Affiliation(s)
- Gérard Triqueneaux
- Laboratory of Biology and Modeling of the Cell, Univ Lyon, Ecole Normale Superieure de Lyon, CNRS UMR5239, Universite Claude Bernard Lyon 1, 69007, Lyon, France
| | - Claire Burny
- Laboratory of Biology and Modeling of the Cell, Univ Lyon, Ecole Normale Superieure de Lyon, CNRS UMR5239, Universite Claude Bernard Lyon 1, 69007, Lyon, France.,Institut für Populationsgenetik, Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Orsolya Symmons
- Laboratory of Biology and Modeling of the Cell, Univ Lyon, Ecole Normale Superieure de Lyon, CNRS UMR5239, Universite Claude Bernard Lyon 1, 69007, Lyon, France.,Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Stéphane Janczarski
- Laboratory of Biology and Modeling of the Cell, Univ Lyon, Ecole Normale Superieure de Lyon, CNRS UMR5239, Universite Claude Bernard Lyon 1, 69007, Lyon, France
| | - Henri Gruffat
- CIRI-Centre International de Recherche en Infectiologie, Universite Claude Bernard Lyon 1, Univ Lyon, Inserm U1111, CNRS UMR5308, Ecole Normale Superieure de Lyon, 69007, Lyon, France
| | - Gaël Yvert
- Laboratory of Biology and Modeling of the Cell, Univ Lyon, Ecole Normale Superieure de Lyon, CNRS UMR5239, Universite Claude Bernard Lyon 1, 69007, Lyon, France.
| |
Collapse
|
14
|
Bautista D, Vásquez C, Ayala-Ramírez P, Téllez-Sosa J, Godoy-Lozano E, Martínez-Barnetche J, Franco M, Angel J. Differential Expression of IgM and IgD Discriminates Two Subpopulations of Human Circulating IgM +IgD +CD27 + B Cells That Differ Phenotypically, Functionally, and Genetically. Front Immunol 2020; 11:736. [PMID: 32435242 PMCID: PMC7219516 DOI: 10.3389/fimmu.2020.00736] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 01/17/2023] Open
Abstract
The origin and function of blood IgM+IgD+CD27+ B cells is controversial, and they are considered a heterogeneous population. Previous staining of circulating B cells of healthy donors with rotavirus fluorescent virus-like particles allowed us to differentiate two subsets of IgM+IgD+CD27+: IgMhi and IgMlo B cells. Here, we confirmed this finding and compared the phenotype, transcriptome, in vitro function, and Ig gene repertoire of these two subsets. Eleven markers phenotypically discriminated both subsets (CD1c, CD69, IL21R, CD27, MTG, CD45RB, CD5, CD184, CD23, BAFFR, and CD38) with the IgMhi phenotypically resembling previously reported marginal zone B cells and the IgMlo resembling both naïve and memory B cells. Transcriptomic analysis showed that both subpopulations clustered close to germinal center-experienced IgM only B cells with a Principal Component Analysis, but differed in expression of 78 genes. Moreover, IgMhi B cells expressed genes characteristic of previously reported marginal zone B cells. After stimulation with CpG and cytokines, significantly (p < 0.05) higher frequencies (62.5%) of IgMhi B cells proliferated, compared with IgMlo B cells (35.37%), and differentiated to antibody secreting cells (14.22% for IgMhi and 7.19% for IgMlo). IgMhi B cells had significantly (p < 0.0007) higher frequencies of mutations in IGHV and IGKV regions, IgMlo B cells had higher usage of IGHJ6 genes (p < 0.0001), and both subsets differed in their HCDR3 properties. IgMhi B cells shared most of their shared IGH clonotypes with IgM only memory B cells, and IgMlo B cells with IgMhi B cells. These results support the notion that differential expression of IgM and IgD discriminates two subpopulations of human circulating IgM+IgD+CD27+ B cells, with the IgMhi B cells having similarities with previously described marginal zone B cells that passed through germinal centers, and the IgMlo B cells being the least differentiated amongst the IgM+CD27+ subsets.
Collapse
Affiliation(s)
- Diana Bautista
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camilo Vásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Ayala-Ramírez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Ernestina Godoy-Lozano
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
15
|
Wang Z, Liu X, Muther J, James JA, Smith K, Wu S. Top-down Mass Spectrometry Analysis of Human Serum Autoantibody Antigen-Binding Fragments. Sci Rep 2019; 9:2345. [PMID: 30787393 PMCID: PMC6382847 DOI: 10.1038/s41598-018-38380-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
Detecting autoimmune diseases at an early stage is crucial for effective treatment and disease management to slow disease progression and prevent irreversible organ damage. In many autoimmune diseases, disease-specific autoantibodies are produced by B cells in response to soluble autoantigens due to defects in B cell tolerance mechanisms. Autoantibodies accrue early in disease development, and several are so disease-specific they serve as classification criteria. In this study, we established a high-throughput, sensitive, intact serum autoantibody analysis platform based on the optimization of a one dimensional ultra-high-pressure liquid chromatography top-down mass spectrometry platform (1D UPLC-TDMS). This approach has been successfully applied to a 12 standard monoclonal antibody antigen-binding fragment (Fab) mixture, demonstrating the feasibility to separate and sequence intact antibodies with high sequence coverage and high sensitivity. We then applied the optimized platform to characterize total serum antibody Fabs in a systemic lupus erythematosus (SLE) patient sample and compared it to healthy control samples. From this analysis, we show that the SLE sample has many dominant antibody Fab-related mass features unlike the healthy controls. To our knowledge, this is the first top-down demonstration of serum autoantibody pool analysis. Our proposed approach holds great promise for discovering novel serum autoantibody biomarkers that are of interest for diagnosis, prognosis, and tolerance induction, as well as improving our understanding of pathogenic autoimmune processes.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jennifer Muther
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Judith A James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
16
|
Maestri E, Pavlicevic M, Montorsi M, Marmiroli N. Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Compr Rev Food Sci Food Saf 2018; 18:3-30. [PMID: 33337011 DOI: 10.1111/1541-4337.12402] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Amino acid (AA) sequences of 807 bioactive peptides from foods of animal origin were examined in order to correlate peptide structure with activity (antihypertensive, antioxidative, immunomodulatory, antimicrobial, hypolipidemic, antithrombotic, and opioid) and stability in vivo. Food sources, such as milk, meat, eggs, and marine products, show different frequencies of bioactive peptides exhibiting specific effects. There is a correlation of peptide structure and effect, depending on type and position of AA. Opioid peptides contain a high percentage of aromatic AA residues, while antimicrobial peptides show an excess of positively charged AAs. AA residue position is significant, with those in the first and penultimate positions having the biggest effects on peptide activity. Peptides that have activity in vivo contain a high percentage (67%) of proline residues, but the positions of proline in the sequence depend on the length of the peptide. We also discuss the influence of processing on activity of these peptides, as well as methods for predicting release from the source protein and activity of peptides.
Collapse
Affiliation(s)
- Elena Maestri
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Milica Pavlicevic
- Inst. for Food Technology and Biochemistry, Faculty of Agriculture, Univ. of Belgrade, Belgrade, Serbia
| | - Michela Montorsi
- Dept. of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open Univ., Via F. Daverio 7, 20122, Milan, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy.,Inst. of Bioimaging and Molecular Physiology, National Council of Research (CNR), Via Fratelli Cervi 93, 20090, Segrate, Italy
| | - Nelson Marmiroli
- Dept. of Chemistry, Life Sciences and Environmental Sustainability, Univ. of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.,Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), Univ. of Parma, Parco Area delle Scienze, 43124, Parma, Italy.,Consorzio Italbiotec, Via Fantoli, 16/15, 20138, Milano, Italy
| |
Collapse
|
17
|
Moshiri N, Mirarab S. A Two-State Model of Tree Evolution and Its Applications to Alu Retrotransposition. Syst Biol 2018; 67:475-489. [PMID: 29165679 DOI: 10.1093/sysbio/syx088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/15/2017] [Indexed: 11/14/2022] Open
Abstract
Models of tree evolution have mostly focused on capturing the cladogenesis processes behind speciation. Processes that derive the evolution of genomic elements, such as repeats, are not necessarily captured by these existing models. In this article, we design a model of tree evolution that we call the dual-birth model, and we show how it can be useful in studying the evolution of short Alu repeats found in the human genome in abundance. The dual-birth model extends the traditional birth-only model to have two rates of propagation, one for active nodes that propagate often, and another for inactive nodes, that with a lower rate, activate and start propagating. Adjusting the ratio of the rates controls the expected tree balance. We present several theoretical results under the dual-birth model, introduce parameter estimation techniques, and study the properties of the model in simulations. We then use the dual-birth model to estimate the number of active Alu elements and their rates of propagation and activation in the human genome based on a large phylogenetic tree that we build from close to one million Alu sequences.
Collapse
Affiliation(s)
- Niema Moshiri
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, Oxenius A, Stadler T, Reddy ST. Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics 2018; 33:3938-3946. [PMID: 28968873 DOI: 10.1093/bioinformatics/btx533] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/30/2017] [Indexed: 01/13/2023] Open
Abstract
Motivation The evolution of antibody repertoires represents a hallmark feature of adaptive B-cell immunity. Recent advancements in high-throughput sequencing have dramatically increased the resolution to which we can measure the molecular diversity of antibody repertoires, thereby offering for the first time the possibility to capture the antigen-driven evolution of B cells. However, there does not exist a repertoire simulation framework yet that enables the comparison of commonly utilized phylogenetic methods with regard to their accuracy in inferring antibody evolution. Results Here, we developed AbSim, a time-resolved antibody repertoire simulation framework, which we exploited for testing the accuracy of methods for the phylogenetic reconstruction of B-cell lineages and antibody molecular evolution. AbSim enables the (i) simulation of intermediate stages of antibody sequence evolution and (ii) the modeling of immunologically relevant parameters such as duration of repertoire evolution, and the method and frequency of mutations. First, we validated that our repertoire simulation framework recreates replicates topological similarities observed in experimental sequencing data. Second, we leveraged Absim to show that current methods fail to a certain extent to predict the true phylogenetic tree correctly. Finally, we formulated simulation-validated guidelines for antibody evolution, which in the future will enable the development of accurate phylogenetic methods. Availability and implementation https://cran.r-project.org/web/packages/AbSim/index.html. Contact sai.reddy@ethz.ch. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | - Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Andreas Dounas
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Enkelejda Miho
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
19
|
Dunn‐Walters D, Townsend C, Sinclair E, Stewart A. Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunol Rev 2018; 284:132-147. [PMID: 29944755 PMCID: PMC6033188 DOI: 10.1111/imr.12659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human immunoglobulin repertoire is a hugely diverse set of sequences that are formed by processes of gene rearrangement, heavy and light chain gene assortment, class switching and somatic hypermutation. Early B cell development produces diverse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that can bind many foreign antigens but which has had self-reactive B cells removed. Later antigen-dependent development processes adjust the antigen affinity of the receptor by somatic hypermutation. The effector mechanism of the antibody is also adjusted, by switching the class of the antibody from IgM to one of seven other classes depending on the required function. There are many instances in human biology where positive and negative selection forces can act to shape the immunoglobulin repertoire and therefore repertoire analysis can provide useful information on infection control, vaccination efficacy, autoimmune diseases, and cancer. It can also be used to identify antigen-specific sequences that may be of use in therapeutics. The juxtaposition of lymphocyte development and numerical evaluation of immune repertoires has resulted in the growth of a new sub-speciality in immunology where immunologists and computer scientists/physicists collaborate to assess immune repertoires and develop models of immune action.
Collapse
Affiliation(s)
| | | | - Emma Sinclair
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Alex Stewart
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
20
|
Abstract
Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis.
Collapse
Affiliation(s)
- Neha Chaudhary
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Duane R. Wesemann
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Abstract
Next-generation sequencing is making it possible to study the antibody repertoire of an organism in unprecedented detail, and, by so doing, to characterize its behavior in the response to infection and in pathological conditions such as autoimmunity and cancer. The polymorphic nature of the repertoire poses unique challenges that rule out the use of many commonly used NGS methods and require tradeoffs to be made when considering experimental design.We outline the main contexts in which antibody repertoire analysis has been used, and summarize the key tools that are available. The humoral immune response to vaccination has been a particular focus of repertoire analyses, and we review the key conclusions and methods used in these studies.
Collapse
Affiliation(s)
- William D Lees
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Adrian J Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
22
|
Cha SW, Bonissone S, Na S, Pevzner PA, Bafna V. The Antibody Repertoire of Colorectal Cancer. Mol Cell Proteomics 2017; 16:2111-2124. [PMID: 29046389 PMCID: PMC5724175 DOI: 10.1074/mcp.ra117.000397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy is becoming increasingly important in the fight against cancers, using and manipulating the body's immune response to treat tumors. Understanding the immune repertoire-the collection of immunological proteins-of treated and untreated cells is possible at the genomic, but technically difficult at the protein level. Standard protein databases do not include the highly divergent sequences of somatic rearranged immunoglobulin genes, and may lead to miss identifications in a mass spectrometry search. We introduce a novel proteogenomic approach, AbScan, to identify these highly variable antibody peptides, by developing a customized antibody database construction method using RNA-seq reads aligned to immunoglobulin (Ig) genes.AbScan starts by filtering transcript (RNA-seq) reads that match the template for Ig genes. The retained reads are used to construct a repertoire graph using the "split" de Bruijn graph: a graph structure that improves on the standard de Bruijn graph to capture the high diversity of Ig genes in a compact manner. AbScan corrects for sequencing errors, and converts the graph to a format suitable for searching with MS/MS search tools. We used AbScan to create an antibody database from 90 RNA-seq colorectal tumor samples. Next, we used proteogenomic analysis to search MS/MS spectra of matched colorectal samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) against the AbScan generated database. AbScan identified 1,940 distinct antibody peptides. Correlating with previously identified Single Amino-Acid Variants (SAAVs) in the tumor samples, we identified 163 pairs (antibody peptide, SAAV) with significant cooccurrence pattern in the 90 samples. The presence of coexpressed antibody and mutated peptides was correlated with survival time of the individuals. Our results suggest that AbScan (https://github.com/csw407/AbScan.git) is an effective tool for a proteomic exploration of the immune response in cancers.
Collapse
Affiliation(s)
- Seong Won Cha
- From the ‡Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California
| | | | - Seungjin Na
- ¶Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92037
| | - Pavel A Pevzner
- ¶Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92037
| | - Vineet Bafna
- ¶Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
23
|
Christley S, Levin MK, Toby IT, Fonner JM, Monson NL, Rounds WH, Rubelt F, Scarborough W, Scheuermann RH, Cowell LG. VDJPipe: a pipelined tool for pre-processing immune repertoire sequencing data. BMC Bioinformatics 2017; 18:448. [PMID: 29020925 PMCID: PMC5637252 DOI: 10.1186/s12859-017-1853-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pre-processing of high-throughput sequencing data for immune repertoire profiling is essential to insure high quality input for downstream analysis. VDJPipe is a flexible, high-performance tool that can perform multiple pre-processing tasks with just a single pass over the data files. Results Processing tasks provided by VDJPipe include base composition statistics calculation, read quality statistics calculation, quality filtering, homopolymer filtering, length and nucleotide filtering, paired-read merging, barcode demultiplexing, 5′ and 3′ PCR primer matching, and duplicate reads collapsing. VDJPipe utilizes a pipeline approach whereby multiple processing steps are performed in a sequential workflow, with the output of each step passed as input to the next step automatically. The workflow is flexible enough to handle the complex barcoding schemes used in many immunosequencing experiments. Because VDJPipe is designed for computational efficiency, we evaluated this by comparing execution times with those of pRESTO, a widely-used pre-processing tool for immune repertoire sequencing data. We found that VDJPipe requires <10% of the run time required by pRESTO. Conclusions VDJPipe is a high-performance tool that is optimized for pre-processing large immune repertoire sequencing data sets.
Collapse
Affiliation(s)
- Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Inimary T Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Fonner
- Texas Advanced Computing Center, Austin, TX, 78758-4497, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - William H Rounds
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Florian Rubelt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, 92037, USA.,Department of Pathology, University of California, San Diego, CA, 92093, USA.,La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
24
|
Shlemov A, Bankevich S, Bzikadze A, Turchaninova MA, Safonova Y, Pevzner PA. Reconstructing Antibody Repertoires from Error-Prone Immunosequencing Reads. THE JOURNAL OF IMMUNOLOGY 2017; 199:3369-3380. [PMID: 28978691 DOI: 10.4049/jimmunol.1700485] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
Transforming error-prone immunosequencing datasets into Ab repertoires is a fundamental problem in immunogenomics, and a prerequisite for studies of immune responses. Although various repertoire reconstruction algorithms were released in the last 3 y, it remains unclear how to benchmark them and how to assess the accuracy of the reconstructed repertoires. We describe an accurate IgReC algorithm for constructing Ab repertoires from high-throughput immunosequencing datasets and a new framework for assessing the quality of reconstructed repertoires. Surprisingly, Ab repertoires constructed by IgReC from barcoded immunosequencing datasets in the blind mode (without using information about unique molecular identifiers) improved upon the repertoires constructed by the state-of-the-art tools that use barcoding. This finding suggests that IgReC may alleviate the need to generate repertoires using the barcoding technology (the workhorse of current immunogenomics efforts) because our computational approach to error correction of immunosequencing data is nearly as powerful as the experimental approach based on barcoding.
Collapse
Affiliation(s)
- Alexander Shlemov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia 199034
| | - Sergey Bankevich
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia 199034
| | - Andrey Bzikadze
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia 199034
| | - Maria A Turchaninova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia 117997
| | - Yana Safonova
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia 199034; .,Information Theory and Applications Center, University of California, San Diego, La Jolla, CA 92093; and
| | - Pavel A Pevzner
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia 199034.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
25
|
Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. Cell Rep 2017; 19:1467-1478. [DOI: 10.1016/j.celrep.2017.04.054] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
|
26
|
Reshetova P, van Schaik BDC, Klarenbeek PL, Doorenspleet ME, Esveldt REE, Tak PP, Guikema JEJ, de Vries N, van Kampen AHC. Computational Model Reveals Limited Correlation between Germinal Center B-Cell Subclone Abundancy and Affinity: Implications for Repertoire Sequencing. Front Immunol 2017; 8:221. [PMID: 28321219 PMCID: PMC5337809 DOI: 10.3389/fimmu.2017.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022] Open
Abstract
Immunoglobulin repertoire sequencing has successfully been applied to identify expanded antigen-activated B-cell clones that play a role in the pathogenesis of immune disorders. One challenge is the selection of the Ag-specific B cells from the measured repertoire for downstream analyses. A general feature of an immune response is the expansion of specific clones resulting in a set of subclones with common ancestry varying in abundance and in the number of acquired somatic mutations. The expanded subclones are expected to have BCR affinities for the Ag higher than the affinities of the naive B cells in the background population. For these reasons, several groups successfully proceeded or suggested selecting highly abundant subclones from the repertoire to obtain the Ag-specific B cells. Given the nature of affinity maturation one would expect that abundant subclones are of high affinity but since repertoire sequencing only provides information about abundancies, this can only be verified with additional experiments, which are very labor intensive. Moreover, this would also require knowledge of the Ag, which is often not available for clinical samples. Consequently, in general we do not know if the selected highly abundant subclone(s) are also the high(est) affinity subclones. Such knowledge would likely improve the selection of relevant subclones for further characterization and Ag screening. Therefore, to gain insight in the relation between subclone abundancy and affinity, we developed a computational model that simulates affinity maturation in a single GC while tracking individual subclones in terms of abundancy and affinity. We show that the model correctly captures the overall GC dynamics, and that the amount of expansion is qualitatively comparable to expansion observed from B cells isolated from human lymph nodes. Analysis of the fraction of high- and low-affinity subclones among the unexpanded and expanded subclones reveals a limited correlation between abundancy and affinity and shows that the low abundant subclones are of highest affinity. Thus, our model suggests that selecting highly abundant subclones from repertoire sequencing experiments would not always lead to the high(est) affinity B cells. Consequently, additional or alternative selection approaches need to be applied.
Collapse
Affiliation(s)
- Polina Reshetova
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands; Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Barbera D C van Schaik
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Paul L Klarenbeek
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Marieke E Doorenspleet
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Rebecca E E Esveldt
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Paul-Peter Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Niek de Vries
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Antoine H C van Kampen
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands; Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Guthals A, Gan Y, Murray L, Chen Y, Stinson J, Nakamura G, Lill JR, Sandoval W, Bandeira N. De Novo MS/MS Sequencing of Native Human Antibodies. J Proteome Res 2016; 16:45-54. [PMID: 27779884 DOI: 10.1021/acs.jproteome.6b00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One direct route for the discovery of therapeutic human monoclonal antibodies (mAbs) involves the isolation of peripheral B cells from survivors/sero-positive individuals after exposure to an infectious reagent or disease etiology, followed by single-cell sequencing or hybridoma generation. Peripheral B cells, however, are not always easy to obtain and represent only a small percentage of the total B-cell population across all bodily tissues. Although it has been demonstrated that tandem mass spectrometry (MS/MS) techniques can interrogate the full polyclonal antibody (pAb) response to an antigen in vivo, all current approaches identify MS/MS spectra against databases derived from genetic sequencing of B cells from the same patient. In this proof-of-concept study, we demonstrate the feasibility of a novel MS/MS antibody discovery approach in which only serum antibodies are required without the need for sequencing of genetic material. Peripheral pAbs from a cytomegalovirus-exposed individual were purified by glycoprotein B antigen affinity and de novo sequenced from MS/MS data. Purely MS-derived mAbs were then manufactured in mammalian cells to validate potency via antigen-binding ELISA. Interestingly, we found that these mAbs accounted for 1 to 2% of total donor IgG but were not detected in parallel sequencing of memory B cells from the same patient.
Collapse
Affiliation(s)
- Adrian Guthals
- Mapp Biopharmaceutical, Inc. , 6160 Lusk Boulevard #C105, San Diego, California 92121, United States
| | - Yutian Gan
- Department of Proteomics & Biological Resources, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Laura Murray
- Department of Protein Chemistry, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Yongmei Chen
- Department of Antibody Engineering, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Jeremy Stinson
- Department of Molecular Biology, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Jennie R Lill
- Department of Proteomics & Biological Resources, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department of Proteomics & Biological Resources, Genentech, Inc. , South San Francisco, California 94080, United States
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego , 9500 Gilman Drive, Mail Code 0404, La Jolla, California 92093, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, Mail Code 0657, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Friedensohn S, Khan TA, Reddy ST. Advanced Methodologies in High-Throughput Sequencing of Immune Repertoires. Trends Biotechnol 2016; 35:203-214. [PMID: 28341036 DOI: 10.1016/j.tibtech.2016.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
In recent years, major efforts have been made to develop sophisticated experimental and bioinformatic workflows for sequencing adaptive immune repertoires. The immunological insight gained has been applied to fields as varied as lymphocyte biology, immunodiagnostics, vaccines, cancer immunotherapy, and antibody engineering. In this review, we provide a detailed overview of these advanced methodologies, focusing specifically on strategies to reduce sequencing errors and bias and to achieve high-throughput pairing of variable regions (e.g., heavy-light or alpha-beta chains). In addition, we highlight recent technologies for single-cell transcriptome sequencing that can be integrated with immune repertoires. Finally, we provide a perspective on advanced immune repertoire sequencing and its ability to impact basic immunology, biopharmaceutical drug discovery and development, and cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tarik A Khan
- Pharmaceutical Development & Supplies Biologics Europe, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
29
|
Toby IT, Levin MK, Salinas EA, Christley S, Bhattacharya S, Breden F, Buntzman A, Corrie B, Fonner J, Gupta NT, Hershberg U, Marthandan N, Rosenfeld A, Rounds W, Rubelt F, Scarborough W, Scott JK, Uduman M, Vander Heiden JA, Scheuermann RH, Monson N, Kleinstein SH, Cowell LG. VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements. BMC Bioinformatics 2016; 17:333. [PMID: 27766961 PMCID: PMC5073965 DOI: 10.1186/s12859-016-1214-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature composite genes. The full set of composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts. Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software tools produces results in a different file format, and can annotate the same result using different labels. These differences make it challenging for users to perform additional downstream analyses. Results To help address this problem, we propose a standardized file format for representing V(D)J analysis results. The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format. Conclusions The VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/. We welcome participation from the community in developing the file format standard, as well as code contributions.
Collapse
Affiliation(s)
- Inimary T Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Mikhail K Levin
- Bank of America Corporate Center, 100 North Tryon Street, Charlotte, NC, 28202, USA
| | | | - Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA
| | - Sanchita Bhattacharya
- Institute for Computational Health Sciences, University of California San Francisco, Mission Hall, 550 16th Street, 4th Floor, Box 0110, San Francisco, CA, 94158, USA
| | - Felix Breden
- Department of Biological Sciences and The IRMACS Centre, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, British Columbia, Canada
| | - Adam Buntzman
- Department of Immunobiology, University of Arizona School of Medicine, 1656 E. Mabel Street, P.O. Box 245221, Tucson, AZ, 85724-5221, USA
| | - Brian Corrie
- New Zealand eScience Infrastructure, University of Auckland, Level 10, 49 Symonds Street, Auckland, New Zealand
| | - John Fonner
- Texas Advanced Computing Center, Research Office Complex 1.101, J.J. Pickle Research Campus, Building 196, 10100 Burnet Road (R8700), Austin, TX, 78758-4497, USA
| | - Namita T Gupta
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 505, New Haven, CT, 06511, USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems and Department of Microbiology and Immunology, College of Medicine, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Nishanth Marthandan
- The IRMACS Centre (ASB 10905), Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aaron Rosenfeld
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - William Rounds
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9036, USA
| | - Florian Rubelt
- Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305-5101, USA
| | - Walter Scarborough
- Texas Advanced Computing Center, Research Office Complex 1.101, J.J. Pickle Research Campus, Building 196, 10100 Burnet Road (R8700), Austin, TX, 78758-4497, USA
| | - Jamie K Scott
- Department of Molecular Biology and Biochemistry and Faculty of Health Sciences, Simon Fraser University, Blusson Hall, Room 11300, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Mohamed Uduman
- Department of Pathology, Yale School of Medicine, 300 George Street, Suite 505, New Haven, CT, 06511, USA
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 505, New Haven, CT, 06511, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.,Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Nancy Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9036, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 505, New Haven, CT, 06511, USA.,Department of Pathology, Yale School of Medicine, 300 George Street, Suite 505, New Haven, CT, 06511, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9066, USA.
| |
Collapse
|
30
|
Galson JD, Trück J, Clutterbuck EA, Fowler A, Cerundolo V, Pollard AJ, Lunter G, Kelly DF. B-cell repertoire dynamics after sequential hepatitis B vaccination and evidence for cross-reactive B-cell activation. Genome Med 2016; 8:68. [PMID: 27312086 PMCID: PMC4910312 DOI: 10.1186/s13073-016-0322-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/27/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A diverse B-cell repertoire is essential for recognition and response to infectious and vaccine antigens. High-throughput sequencing of B-cell receptor (BCR) genes can now be used to study the B-cell repertoire at great depth and may shed more light on B-cell responses than conventional immunological methods. Here, we use high-throughput BCR sequencing to provide novel insight into B-cell dynamics following a primary course of hepatitis B vaccination. METHODS Nine vaccine-naïve participants were administered three doses of hepatitis B vaccine (months 0, 1, and 2 or 7). High-throughput Illumina sequencing of the total BCR repertoire was combined with targeted sequencing of sorted vaccine antigen-enriched B cells to analyze the longitudinal response of both the total and vaccine-specific repertoire after each vaccine. ELISpot was used to determine vaccine-specific cell numbers following each vaccine. RESULTS Deconvoluting the vaccine-specific from total BCR repertoire showed that vaccine-specific sequence clusters comprised <0.1 % of total sequence clusters, and had certain stereotypic features. The vaccine-specific BCR sequence clusters were expanded after each of the three vaccine doses, despite no vaccine-specific B cells being detected by ELISpot after the first vaccine dose. These vaccine-specific BCR clusters detected after the first vaccine dose had distinct properties compared to those detected after subsequent doses; they were more mutated, present at low frequency even prior to vaccination, and appeared to be derived from more mature B cells. CONCLUSIONS These results demonstrate the high-sensitivity of our vaccine-specific BCR analysis approach and suggest an alternative view of the B-cell response to novel antigens. In the response to the first vaccine dose, many vaccine-specific BCR clusters appeared to largely derive from previously activated cross-reactive B cells that have low affinity for the vaccine antigen, and subsequent doses were required to yield higher affinity B cells.
Collapse
Affiliation(s)
- Jacob D Galson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, OX3 7LE, UK.
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, OX3 7LE, UK
- Paediatric Immunology, University Children's Hospital Zürich, Zürich, 8032, Switzerland
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, OX3 7LE, UK
| | - Anna Fowler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, OX3 7LE, UK
| | - Gerton Lunter
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, OX3 7LE, UK
| |
Collapse
|
31
|
Bonissone SR, Pevzner PA. Immunoglobulin Classification Using the Colored Antibody Graph. J Comput Biol 2016; 23:483-94. [PMID: 27149636 DOI: 10.1089/cmb.2016.0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The somatic recombination of V, D, and J gene segments in B-cells introduces a great deal of diversity, and divergence from reference segments. Many recent studies of antibodies focus on the population of antibody transcripts that show which V, D, and J gene segments have been favored for a particular antigen, a repertoire. To properly describe the antibody repertoire, each antibody must be labeled by its constituting V, D, and J gene segment, a task made difficult by somatic recombination and hypermutation events. While previous approaches to repertoire analysis were based on sequential alignments, we describe a new de Bruijn graph-based algorithm to perform VDJ labeling and benchmark its performance.
Collapse
Affiliation(s)
- Stefano R Bonissone
- 1 Bioinformatics and Systems Biology Program, University of California San diego , La Jolla, California
| | - Pavel A Pevzner
- 2 Department of Computer Science and Engineering, University of California San diego , La Jolla, California
| |
Collapse
|
32
|
Al Kindi MA, Colella AD, Chataway TK, Jackson MW, Wang JJ, Gordon TP. Secreted autoantibody repertoires in Sjögren's syndrome and systemic lupus erythematosus: A proteomic approach. Autoimmun Rev 2016; 15:405-10. [PMID: 26804757 DOI: 10.1016/j.autrev.2016.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022]
Abstract
The structures of epitopes bound by autoantibodies against RNA-protein complexes have been well-defined over several decades, but little is known of the clonality, immunoglobulin (Ig) variable (V) gene usage and mutational status of the autoantibodies themselves at the level of the secreted (serum) proteome. A novel proteomic workflow is presented based on affinity purification of specific Igs from serum, high-resolution two-dimensional gel electrophoresis, and de novo and database-driven sequencing of V-region proteins by mass spectrometry. Analysis of anti-Ro52/Ro60/La proteomes in primary Sjögren's syndrome (SS) and anti-Sm and anti-ribosomal P proteomes in systemic lupus erythematosus (SLE) has revealed that these antibody responses are dominated by restricted sets of public (shared) clonotypes, consistent with common pathways of production across unrelated individuals. The discovery of shared sets of specific V-region peptides can be exploited for diagnostic biomarkers in targeted mass spectrometry platforms and for tracking and removal of pathogenic clones.
Collapse
Affiliation(s)
- Mahmood A Al Kindi
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Bedford Park, 5042, South Australia, Australia
| | - Alex D Colella
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Bedford Park, 5042, South Australia, Australia; Flinders Proteomic Facility, Flinders University, Australia
| | - Tim K Chataway
- Flinders Proteomic Facility, Flinders University, Australia
| | - Michael W Jackson
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Bedford Park, 5042, South Australia, Australia
| | - Jing J Wang
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Bedford Park, 5042, South Australia, Australia.
| | - Tom P Gordon
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Bedford Park, 5042, South Australia, Australia.
| |
Collapse
|