1
|
Hekim S, Kaçıran A, Akmehmet AN, Belduz AO, Bektaş Kİ, Mamatjan Y, Canakci S. Point mutations enhance catalytic efficiency of Geobacillus stearothermophilus α-glucosidase: A biochemical characterization study. Int J Biol Macromol 2025; 315:144379. [PMID: 40398777 DOI: 10.1016/j.ijbiomac.2025.144379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
α-Glucosidases are important enzymes with a broad spectrum of industrial applications. However, traditional protein engineering often struggles to improve activity without compromising stability and usually demands extensive screening. Here, we targeted the α-glucosidase (AG) from Geobacillus stearothermophilus (Gst), using in silico analyses and literature precedent to select point mutations N61H and N258P. We cloned the mutated gstAG gene into the pET-28a(+) vector and expressed in Escherichia coli. After expressing and purifying both wild-type and mutant enzymes, we performed detailed biochemical assays. Both mutants maintained GstAG's optimum temperature (60 °C) and pH (6.5). However, each displayed enhanced catalytic efficiency: N61H lowered the Michaelis constant (Kₘ) by 1.5-fold and raised the turnover number (kcat) by 1.7-fold relative to the wild type. These results offer a blueprint for engineering α-glucosidases with improved performance, unlocking new commercial and biotechnological applications.
Collapse
Affiliation(s)
- Suleyman Hekim
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey; Eryiğit Medical Devices Inc., R&D Department, Ankara, Turkey
| | - Arife Kaçıran
- Eryiğit Medical Devices Inc., R&D Department, Ankara, Turkey; Department of Biotechnology, Gradute School of Natural and Applied Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ayşe Nur Akmehmet
- Eryiğit Medical Devices Inc., R&D Department, Ankara, Turkey; Department of Biotechnology, Gradute School of Natural and Applied Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Kadriye İnan Bektaş
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yasin Mamatjan
- Faculty of Science, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Sabriye Canakci
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| |
Collapse
|
2
|
Wróblewski K, Zalewski M, Kuriata A, Kmiecik S. CABS-flex 3.0: an online tool for simulating protein structural flexibility and peptide modeling. Nucleic Acids Res 2025:gkaf412. [PMID: 40366023 DOI: 10.1093/nar/gkaf412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Simulating protein structure flexibility using classical methods is computationally demanding, especially for large proteins. To address this challenge, we have been developing the CABS-flex method, which enables fast simulations of protein structural flexibility by combining a coarse-grained simulation approach with all-atom detail. Previously available as the CABS-flex 2.0 web server, the method has now undergone a major upgrade with the release of CABS-flex 3.0. Key improvements include the introduction of intuitive flexibility modes that simplify the control of distance restraints and allow users to reflect known or expected dynamic regions; improved all-atom reconstruction for higher-quality model generation; a new feature for de novo peptide structure prediction, supporting both linear and cyclic peptides along with their conformational flexibility; and new tools for result analysis and visualization, facilitating deeper insights into structural flexibility. Additionally, AlphaFold pLDDT-derived restraints can be used as optional input for guiding simulations. The method accepts input as either a PDB/mmCIF structure or a sequence (for peptide modeling). Advanced options allow users to incorporate experimental or computational restraints. The CABS-flex 3.0 web server is available at https://lcbio.pl/cabsflex3. This website is free and open to all users, with no login requirement.
Collapse
Affiliation(s)
- Karol Wróblewski
- University of Warsaw, Biological and Chemical Research Centre, Faculty of Chemistry, 02-089 Warsaw, Poland
| | - Mateusz Zalewski
- University of Warsaw, Biological and Chemical Research Centre, Faculty of Chemistry, 02-089 Warsaw, Poland
| | - Aleksander Kuriata
- University of Warsaw, Biological and Chemical Research Centre, Faculty of Chemistry, 02-089 Warsaw, Poland
| | - Sebastian Kmiecik
- University of Warsaw, Biological and Chemical Research Centre, Faculty of Chemistry, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Sanyal D, Pandey D, McLelland A, Uversky VN, Chowdhury S, Bhasin S, Jasuja R. Integrated structural analysis of sex hormone binding globulin reveals allosteric modulation by distant mutations. Int J Biol Macromol 2025; 315:144050. [PMID: 40345282 DOI: 10.1016/j.ijbiomac.2025.144050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Sex hormone-binding globulin (SHBG), a glycoprotein in circulation, binds testosterone, dihydrotestosterone, and estradiol with high specificity, regulating their transport and bioavailability. This function relies on long-range conformational interactions between its N-terminal (NTD) and C-terminal (CTD) domains. Variations in SHBG levels or binding affinities alter free hormone concentrations, influencing reproductive and metabolic health. Despite its significance, the full-length SHBG structure and the conformational dynamics influencing hormone binding remain unclear. Deploying in-silico structural analysis, Raman spectroscopy, and network modeling, we investigated the intramolecular structural dynamics of the full length SHBG to understand how allosteric perturbations caused by natural mutations affect hormone binding and inter-residue interactions. Raman spectroscopy and in-silico analyses show that majority of the residues in SHBG (308 residues) constitute loop regions, whereas only 21 % constitute beta sheet. Mutations in SHBG that alter its binding affinity, though distant from the ligand-binding pocket (LBP), induce long-range conformational changes. These mutations are clustered in flexible regions but maintain structural order through dense local interactions. Our in-silico analyses identified key substructures regulating allosteric interactions between mutation sites and ligand-binding residues. This study provides a template for further structural analyses of clinically reported mutations and their effect on hormone binding and action.
Collapse
Affiliation(s)
| | - Deeptanshu Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Arthur McLelland
- Centre for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sourav Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ravi Jasuja
- Xyone Therapeutics, Boston, MA, USA; Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Agoni C, Fernández-Díaz R, Timmons PB, Adelfio A, Gómez H, Shields DC. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules 2025; 15:524. [PMID: 40305228 PMCID: PMC12025251 DOI: 10.3390/biom15040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties and interactions with biological targets. Many models predicting bioactive peptide function or structure rely on their intrinsic properties, including the influence of amino acid composition, sequence, and chain length, which impact stability, folding, aggregation, and target interaction. Homology modelling predicts peptide structures based on known templates. Peptide-protein interactions can be explored using molecular docking techniques, but there are challenges related to the inherent flexibility of peptides, which can be addressed by more computationally intensive approaches that consider their movement over time, called molecular dynamics (MD). Virtual screening of many peptides, usually against a single target, enables rapid identification of potential bioactive peptides from large libraries, typically using docking approaches. The integration of artificial intelligence (AI) has transformed peptide discovery by leveraging large amounts of data. AlphaFold is a general protein structure prediction tool based on deep learning that has greatly improved the predictions of peptide conformations and interactions, in addition to providing estimates of model accuracy at each residue which greatly guide interpretation. Peptide function and structure prediction are being further enhanced using Protein Language Models (PLMs), which are large deep-learning-derived statistical models that learn computer representations useful to identify fundamental patterns of proteins. Recent methodological developments are discussed in the context of canonical peptides, as well as those with modifications and cyclisations. In designing potential peptide therapeutics, the main outstanding challenge for these methods is the incorporation of diverse non-canonical amino acids and cyclisations.
Collapse
Affiliation(s)
- Clement Agoni
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Raúl Fernández-Díaz
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- IBM Research, D15 HN66 Dublin, Ireland
| | | | - Alessandro Adelfio
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Hansel Gómez
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Denis C. Shields
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
| |
Collapse
|
5
|
Yamaguchi H, Yamada R, Lama K, Youn UJ, Lee JH, Oh TJ. Integrating LC-MS/MS and In Silico Methods to Uncover Bioactive Compounds with Lipase Inhibitory Potential in the Antarctic Moss Warnstorfia fontinaliopsis. Appl Biochem Biotechnol 2025; 197:2734-2756. [PMID: 39792337 PMCID: PMC11985623 DOI: 10.1007/s12010-024-05139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses. To gain insights into their enzyme inhibitory activity, the binding affinities of these candidate compounds to lipase were evaluated through in silico molecular docking. Further validation by molecular dynamics (MD) simulations revealed that hyocholic acid and pheophorbide A form stable complexes with human pancreatic lipase (HPL). Based on these results, targeted fractionation experiments were performed, yielding eight fractions. Among these, Fractions 4 and 6, which are assumed to contain those compounds, exhibited higher lipase inhibitory activity compared to the crude extract. Additionally, pharmacokinetic properties of those compounds were analyzed using SwissADME and Molinspiration calculations, suggesting their potential as drug candidates. This study establishes a promising methodology for identifying rare bioactive compounds of low abundance in underexplored natural resources by combining LC-MS/MS analysis with molecular docking. These findings also provide new insights into the chemical ecology of Antarctic mosses and their potential applications in pharmaceutical development.
Collapse
Affiliation(s)
- Hirotake Yamaguchi
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, BK21 FOUR, SunMoon University, Asan, 31460, Republic of Korea
| | - Ryoichi Yamada
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, BK21 FOUR, SunMoon University, Asan, 31460, Republic of Korea
| | - Kristina Lama
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, BK21 FOUR, SunMoon University, Asan, 31460, Republic of Korea
| | - Ui Joung Youn
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, BK21 FOUR, SunMoon University, Asan, 31460, Republic of Korea.
- Genome-Based BioIT Convergence Institute, Asan, 31460, Republic of Korea.
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
6
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Mutational Scanning and Binding Free Energy Computations of the SARS-CoV-2 Spike Complexes with Distinct Groups of Neutralizing Antibodies: Energetic Drivers of Convergent Evolution of Binding Affinity and Immune Escape Hotspots. Int J Mol Sci 2025; 26:1507. [PMID: 40003970 PMCID: PMC11855367 DOI: 10.3390/ijms26041507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes with neutralizing antibodies from four distinct groups (A-D), including group A LY-CoV016, group B AZD8895 and REGN10933, group C LY-CoV555, and group D antibodies AZD1061, REGN10987, and LY-CoV1404. Using coarse-grained simplified simulation models, rapid energy-based mutational scanning, and rigorous MM-GBSA binding free energy calculations, we elucidated the molecular mechanisms of antibody binding and escape mechanisms, identified key binding hotspots, and explored the evolutionary strategies employed by the virus to evade neutralization. The residue-based decomposition analysis revealed energetic mechanisms and thermodynamic factors underlying the effect of mutations on antibody binding. The results demonstrate excellent qualitative agreement between the predicted binding hotspots and the latest experiments on antibody escape. These findings provide valuable insights into the molecular determinants of antibody binding and viral escape, highlighting the importance of targeting conserved epitopes and leveraging combination therapies to mitigate the risk of immune evasion.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Humans
- Immune Evasion
- Thermodynamics
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Binding
- Molecular Dynamics Simulation
- Evolution, Molecular
- Binding Sites
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Puławski W, Koliński A, Koliński M. Multiscale modeling of protofilament structures: A case study on insulin amyloid aggregates. Int J Biol Macromol 2024; 285:138382. [PMID: 39638203 DOI: 10.1016/j.ijbiomac.2024.138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Under certain conditions, proteins may undergo misfolding and form long insoluble aggregates called amyloid fibrils. The presence of these aggregates is often associated with various diseases. The molecular mechanisms governing the aggregation process are yet to be fully understood. The self-assembly of amyloid protofilaments occurs over extended time frames, making the simulation of such events problematic. In this work, we describe a pipeline for multiscale modeling protofilament structures. In the first stage, the self-assembly of short fibrillar oligomers occurs during coarse-grained docking simulations of multiple copies of aggregating peptides. Subsequently, symmetry criteria are used to select the highest-ranked oligomer structures. Selected models are then reconstructed to an all-atom representation and used for the assembly of longer protofilaments. Models are optimized using molecular dynamics. Final structures are selected using various scoring protocols. We evaluated this modeling procedure through the test prediction of insulin amyloid protofilaments whose experimental structures have been published recently. The resulting insulin protofilament models closely resemble the experimental structures. This work provides a proof of concept for the proposed modeling procedure aiming to predict amyloid protofilament structures that exhibit in-register and parallel arrangement of β-sheets based solely on the amino acid sequence of aggregating peptides.
Collapse
Affiliation(s)
- Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | - Andrzej Koliński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Wróblewski K, Kmiecik S. Integrating AlphaFold pLDDT Scores into CABS-flex for enhanced protein flexibility simulations. Comput Struct Biotechnol J 2024; 23:4350-4356. [PMID: 39697677 PMCID: PMC11653142 DOI: 10.1016/j.csbj.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
CABS-flex is a well-established method for fast protein flexibility simulations, offering an effective balance between computational efficiency and accuracy in modeling protein dynamics. To further enhance its predictive capabilities, we propose incorporating AlphaFold's predicted Local Distance Difference Test (pLDDT) scores into CABS-flex simulations. The pLDDT scores, which reflect the confidence of AlphaFold's structural predictions, were integrated with secondary structure information to refine the restraint schemes used in the simulations. We tested this approach on the ATLAS database, which includes molecular dynamics (MD) simulations of nearly 1400 proteins. The results showed improved alignment of flexibility predictions with the MD data compared to previous restraint schemes. The integration of pLDDT scores also offers a new perspective on protein flexibility by incorporating structural confidence into the analysis. This development enhances the utility of CABS-flex for investigating protein dynamics and motion.
Collapse
Affiliation(s)
- Karol Wróblewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02–089, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02–089, Poland
| |
Collapse
|
9
|
Zalewski M, Iglesias V, Bárcenas O, Ventura S, Kmiecik S. Aggrescan4D: A comprehensive tool for pH-dependent analysis and engineering of protein aggregation propensity. Protein Sci 2024; 33:e5180. [PMID: 39324697 PMCID: PMC11425640 DOI: 10.1002/pro.5180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Aggrescan4D (A4D) is an advanced computational tool designed for predicting protein aggregation, leveraging structural information and the influence of pH. Building upon its predecessor, Aggrescan3D (A3D), A4D has undergone numerous enhancements aimed at assisting the improvement of protein solubility. This manuscript reviews A4D's updated functionalities and explains the fundamental principles behind its pH-dependent calculations. Additionally, it presents an antibody case study to evaluate its performance in comparison with other structure-based predictors. Notably, A4D integrates advanced protein engineering protocols with pH-dependent calculations, enhancing its utility in advising solubility-enhancing mutations. A4D considers the impact of structural flexibility on aggregation propensities, and includes a large set of precalculated predictions. These capabilities should help to open new avenues for both understanding and managing protein aggregation. A4D is accessible through a dedicated web server at https://biocomp.chem.uw.edu.pl/a4d/.
Collapse
Affiliation(s)
- Mateusz Zalewski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Valentin Iglesias
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Oriol Bárcenas
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Dziadek ŁJ, Sieradzan AK, Czaplewski C, Zalewski M, Banaś F, Toczek M, Nisterenko W, Grudinin S, Liwo A, Giełdoń A. Assessment of Four Theoretical Approaches to Predict Protein Flexibility in the Crystal Phase and Solution. J Chem Theory Comput 2024; 20:7667-7681. [PMID: 39171852 PMCID: PMC11391579 DOI: 10.1021/acs.jctc.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this paper, we evaluated the ability of four coarse-grained methods to predict protein flexible regions with potential biological importance, UNRES-flex, UNRES-DSSP-flex (based on the united residue model of polypeptide chains without and with secondary structure restraints, respectively), CABS-flex (based on the C-α, C-β, and side chain model), and nonlinear rigid block normal mode analysis (NOLB) with a set of 100 protein structures determined by NMR spectroscopy or X-ray crystallography, with all secondary structure types. End regions with high fluctuations were excluded from analysis. The Pearson and Spearman correlation coefficients were used to quantify the conformity between the calculated and experimental fluctuation profiles, the latter determined from NMR ensembles and X-ray B-factors, respectively. For X-ray structures (corresponding to proteins in a crowded environment), NOLB resulted in the best agreement between the predicted and experimental fluctuation profiles, while for NMR structures (corresponding to proteins in solution), the ranking of performance is CABS-flex > UNRES-DSSP-flex > UNRES-flex > NOLB; however, CABS-flex sometimes exaggerated the extent of small fluctuations, as opposed to UNRES-DSSP-flex.
Collapse
Affiliation(s)
- Ł J Dziadek
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - A K Sieradzan
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - C Czaplewski
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - M Zalewski
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - F Banaś
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - M Toczek
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - W Nisterenko
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - S Grudinin
- LJK, University Grenoble Alpes, CNRS, Grenoble INP, F-38000 Grenoble, France
| | - A Liwo
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| | - A Giełdoń
- Faculty of Chemistry, University of Gdansk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Nithin C, Fornari RP, Pilla SP, Wroblewski K, Zalewski M, Madaj R, Kolinski A, Macnar JM, Kmiecik S. Exploring protein functions from structural flexibility using CABS-flex modeling. Protein Sci 2024; 33:e5090. [PMID: 39194135 PMCID: PMC11350595 DOI: 10.1002/pro.5090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/29/2024]
Abstract
Understanding protein function often necessitates characterizing the flexibility of protein structures. However, simulating protein flexibility poses significant challenges due to the complex dynamics of protein systems, requiring extensive computational resources and accurate modeling techniques. In response to these challenges, the CABS-flex method has been developed as an efficient modeling tool that combines coarse-grained simulations with all-atom detail. Available both as a web server and a standalone package, CABS-flex is dedicated to a wide range of users. The web server version offers an accessible interface for straightforward tasks, while the standalone command-line program is designed for advanced users, providing additional features, analytical tools, and support for handling large systems. This paper examines the application of CABS-flex across various structure-function studies, facilitating investigations into the interplay among protein structure, dynamics, and function in diverse research fields. We present an overview of the current status of the CABS-flex methodology, highlighting its recent advancements, practical applications, and forthcoming challenges.
Collapse
Affiliation(s)
- Chandran Nithin
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Rocco Peter Fornari
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Smita P. Pilla
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Karol Wroblewski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Mateusz Zalewski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Rafał Madaj
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Andrzej Kolinski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Joanna M. Macnar
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
- Present address:
Ryvu TherapeuticsCracowPoland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| |
Collapse
|
12
|
Alhassan HH. Advanced vaccinomic, immunoinformatic, and molecular modeling strategies for designing Multi- epitope vaccines against the Enterobacter cloacae complex. Front Immunol 2024; 15:1454394. [PMID: 39221241 PMCID: PMC11362624 DOI: 10.3389/fimmu.2024.1454394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The increasing and ongoing issue of antibiotic resistance in bacteria is of huge concern globally, mainly to healthcare facilities. It is now crucial to develop a vaccine for therapeutic and preventive purposes against the bacterial species causing hospital-based infections. Among the many antibiotic- resistant bacterial pathogens, the Enterobacter cloacae complex (ECC) including six species, E. Colcae, E. absuriae, E. kobie, E. hormaechei, E. ludwigii, and E. nimipressuralis, are dangerous to public health and may worsen the situation. Vaccination plays a vital role in the prevention of infections and infectious diseases. This research highlighted the construction and design of a multi-epitope vaccine for the E. cloacae complex by retrieving their complete sequenced proteome. The retrieved proteome was assessed to opt for potential vaccine candidates using immunoinformatic tools. Both B and T-cell epitopes were predicted in order to create both humoral and cellular immunity and further scrutinized for antigenicity, allergenicity, water solubility, and toxicity analysis. The final potential epitopes were subjected to population coverage analysis. Major histocompatibility complex (MHC) class combined, and MHC Class I and II world population coverage was obtained as 99.74%, and 98.55% respectively while a combined 81.81% was covered. A multi-epitope peptide-based vaccine construct consisting of the adjuvant, epitopes, and linkers was subjected to the ProtParam tool to calculate its physiochemical properties. The total amino acids were 236, the molecular weight was 27.64kd, and the vaccine construct was stable with an instability index of 27.01. The Grand Average of Hydropathy (GRAVY) (hydrophilicity) value obtained was -0.659, being more negative and depicting the hydrophilic character. It was non-allergen antigenic with an antigenicity of 0.8913. The vaccine construct was further validated for binding efficacy with immune cell receptors MHC-I, MHC-II, and Toll-like receptor (TLR)-4. The molecular docking results depict that the designed vaccine has good binding potency with immune receptors crucial for antigen presentation and processing. Among the Vaccine-MHC-I, Vaccine-MHC-II, and Vaccine-TLR-4 complexes, the best-docked poses were identified based on their lowest binding energy scores of -886.8, -995.6, and -883.6, respectively. Overall, we observed that the designed vaccine construct can evoke a proper immune response and the construct could help experimental researchers in the formulation of a vaccine against the targeted pathogens.
Collapse
Affiliation(s)
- Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
13
|
Brudenell EL, Pohare MB, Zafred D, Phipps J, Hornsby HR, Darby JF, Dai J, Liggett E, Cain KM, Barran PE, de Silva TI, Sayers JR. Efficient overexpression and purification of severe acute respiratory syndrome coronavirus 2 nucleocapsid proteins in Escherichia coli. Biochem J 2024; 481:669-682. [PMID: 38713013 PMCID: PMC11346444 DOI: 10.1042/bcj20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.
Collapse
Affiliation(s)
- Emma L. Brudenell
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Manoj B. Pohare
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Domen Zafred
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Janine Phipps
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Hailey R. Hornsby
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - John F. Darby
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Junxiao Dai
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Ellen Liggett
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Kathleen M. Cain
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Thushan I. de Silva
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| | - Jon R. Sayers
- Sheffield Institute for Nucleic Acids and Florey Institute, Section of Infection and Immunity, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, U.K
| |
Collapse
|
14
|
Badaczewska-Dawid A, Wróblewski K, Kurcinski M, Kmiecik S. Structure prediction of linear and cyclic peptides using CABS-flex. Brief Bioinform 2024; 25:bbae003. [PMID: 38305457 PMCID: PMC10836054 DOI: 10.1093/bib/bbae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
The structural modeling of peptides can be a useful aid in the discovery of new drugs and a deeper understanding of the molecular mechanisms of life. Here we present a novel multiscale protocol for the structure prediction of linear and cyclic peptides. The protocol combines two main stages: coarse-grained simulations using the CABS-flex standalone package and an all-atom reconstruction-optimization process using the Modeller program. We evaluated the protocol on a set of linear peptides and two sets of cyclic peptides, with cyclization through the backbone and disulfide bonds. A comparison with other state-of-the-art tools (APPTEST, PEP-FOLD, ESMFold and AlphaFold implementation in ColabFold) shows that for most cases, AlphaFold offers the highest resolution. However, CABS-flex is competitive, particularly when it comes to short linear peptides. As demonstrated, the protocol performance can be further improved by combination with the residue-residue contact prediction method or more efficient scoring. The protocol is included in the CABS-flex standalone package along with online documentation to aid users in predicting the structure of peptides and mini-proteins.
Collapse
Affiliation(s)
| | - Karol Wróblewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Kurcinski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
15
|
Islam F, Islam MS, Ahmed K, Amanat M. Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach. Chem Biodivers 2023; 20:e202300860. [PMID: 37715726 DOI: 10.1002/cbdv.202300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to assess the anthelmintic activity of methanol extracts from Merremia vitifolia stems using a combination approach encompassing experimental, in vitro, and in silico evaluations. Despite the well-recognized pharmacological properties of M. vitifolia, its potential as an anthelmintic agent remained unexplored. This plant's anthelmintic potential was assessed on adult earthworms (Pheretima posthuma), revealing a dose-dependent reduction in spontaneous motility leading to paralysis and eventual mortality. The most effective dose of M. vitifolia (200 mg/ml) for anthelmintic effects on Pheretima posthuma was identified. Complementary in silico investigations were also conducted, employing Autodock PyRx 0.8 for docking studies of reported M. vitifolia compounds. Notably, quercetin emerged as a promising candidate with superior binding energies against β-tubulin (-8.3 Kcal/mol). Moreover, this comprehensive research underlines the anthelmintic potential of Merremia vitifolia stem extract and highlights quercetin as a noteworthy compound for further investigation in the quest for novel anthelmintic agents.
Collapse
Affiliation(s)
- Fakhrul Islam
- M. Pharm, Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Mohammad Shariful Islam
- M. Pharm, Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Kawser Ahmed
- M. Pharm, Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh
| | - Muhammed Amanat
- PhD Scholar, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| |
Collapse
|
16
|
Nowakowska AW, Wojciechowski JW, Szulc N, Kotulska M. The role of tandem repeats in bacterial functional amyloids. J Struct Biol 2023; 215:108002. [PMID: 37482232 DOI: 10.1016/j.jsb.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Repetitivity and modularity of proteins are two related notions incorporated into multiple evolutionary concepts. We discuss whether they may also be essential for functional amyloids. Amyloids are proteins that create very regular and usually highly insoluble fibrils, which are often associated with neurodegeneration. However, recent discoveries showed that amyloid structure of a protein could also be beneficial and desired, e.g., to promote cell adhesion. Functional amyloids are proteins which differ in their characteristics from pathological amyloids, so that the fibril formation could be more under control of an organism. We propose that repeats in the sequence could regulate the aggregation propensity of these proteins. The inclusion of multiple symmetric interactions, due to the presence of the repeats, could be supporting and strengthening the desirable structural properties of functional amyloids. Our results show that tandem repeats in bacterial functional amyloids have a distinct characteristic. The pattern of repeats supports the appropriate level of fibril formation and better controllability of fibril stability. The repeats tend to be more imperfect, which attenuates excessive aggregation propensity. Their desired structure and function are also reinforced by their amino acid profile. Although in the study we focused on bacterial functional amyloids, due to their importance in biofilm formation, we propose that similar mechanisms could be employed in other functional amyloids which are designed by evolution to aggregate in a desirable manner, but not necessarily in pathological amyloids.
Collapse
Affiliation(s)
- Alicja W Nowakowska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| | - Jakub W Wojciechowski
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland
| | - Natalia Szulc
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland; Wrocław University of Environmental and Life Sciences, Department of Physics and Biophysics, Poland; LPCT, CNRS, Universite de Lorraine, F-54000 Nancy, France
| | - Malgorzata Kotulska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| |
Collapse
|
17
|
Das S, Dey A, Maji S, Sahoo A, Barman A, Santra S, Mondal S, Mondal KC, Chattopadhyay S. Attenuation of fluoride-induced hepatorenal oxidative stress by ferulic acid in vivo: An approach with in-silico analysis and interaction informatics of ferulic acid. J Trace Elem Med Biol 2023; 77:127133. [PMID: 36638706 DOI: 10.1016/j.jtemb.2023.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic fluoride toxicity induces oxidative strain and lipid peroxidation and imparts deleterious effects on human metabolic organs. AIM The present study aimed to expose the defensive impact of ferulic acid against sodium fluoride (NaF) induced hepatorenal dysfunction at the biochemical and antioxidative systems. METHODS In-vivo. Rats were arbitrarily separated into five groups as control, sodium fluoride-treated (200 ppm kg -1), vitamin C -as a positive control, and FA co-administered groups with 10 mg kg -1 and 20 mg kg -1 body weight for 56 days. In the present investigation, we measured antioxidant enzymes, superoxide dismutase, catalase, and lactate dehydrogenase by electrozymographic and spectrophotometric methods. Biochemical assessment of TBARS, conjugated diene, and different serum biomarkers was done for liver and kidney functionality tests. In-silico. An in-silico study was conducted through a molecular docking experiment to evaluate the binding potentiality of FA by employing AutoDock Vina [version 1.5.6] to overcome the abnormality in the activities of catalase, and superoxide dismutase in NaF promoted toxicity of hepatorenal system. In-vitro. An in vitro biochemical experiment was conducted to support the in-silico study. RESULTS Superoxide dismutase and catalase were decreased in the intoxicated rat. Ferulic acid (FA) as an antioxidant remarkably defended the NaF-mediated deterioration of the antioxidative status in the hepatorenal system, lowering lipid peroxidation products, malondialdehyde, and conjugated diene. Serum biomarkers, ALT, AST, ALP, urea, and creatinine increased in the intoxicated group than in control. Ferulic acid significantly neutralized the ill effects of NaF on serum lipid profile. In-silico analysis hypothesized the strong interaction of FA with the active side of catalase and superoxide dismutase that prevented the binding of NaF at the active site of these mentioned enzymes and this was further validated by in-vitro assay. CONCLUSION However, FA modulates free radical generation and protected these metabolic organs against sodium fluoride-induced injury.
Collapse
Affiliation(s)
- Seba Das
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Arindam Dey
- Dept. of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Shilpa Maji
- Dept. of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Asim Sahoo
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ananya Barman
- Dept. of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sourav Santra
- Dept. of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | | | - Sandip Chattopadhyay
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Dept. of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
18
|
Souissi A, Abdelmalek Driss D, Chakchouk I, Ben Said M, Ben Ayed I, Mosrati MA, Elloumi I, Tlili A, Aifa S, Masmoudi S. Molecular insights into MYO3A kinase domain variants explain variability in both severity and progression of DFNB30 hearing impairment. J Biomol Struct Dyn 2022; 40:10940-10951. [PMID: 34423747 DOI: 10.1080/07391102.2021.1953600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hereditary hearing impairment (HI) is a common disease with the highest incidence among sensory defects. Several genes have been identified to affect stereocilia structure causing HI, including the unconventional myosin3A. Interestingly, we noticed that variants in MYO3A gene have been previously found to cause variable HI onset and severity. Using clinical exome sequencing, we identified a novel pathogenic variant p.(Lys50Arg) in the MYO3A kinase domain (MYO3A-KD). Previous in vitro studies supported its damaging effect as a 'kinase-dead' mutant. We further analyzed this variation through molecular dynamics which predicts that changes in flexibility of MYO3A structure would influence the protein-ATP binding properties. This Lys50Arg mutation segregated with congenital profound non-syndromic HI. To better investigate this variability, we collected previously identified MYO3A-KDs variants, p.(Tyr129Cys), p.(His142Gln) and p.(Pro189Thr), and built both wild type and mutant 3 D MYO3A-KD models to assess their impact on the protein structure and function. Our results suggest that KD mutations could either cause a congenital profound form of HI, when particularly affecting the kinase activity and preventing the auto-phosphorylation of the motor, or a late onset and progressive form, when partially or completely inactivating the MYO3A protein. In conclusion, we report a novel pathogenic variant affecting the ATP-binding site within the MYO3A-KD causing congenital profound HI. Through computational approaches we provide a deeper understanding on the correlation between the effects of MYO3A-KD mutations and the variable hearing phenotypes. To the best of our knowledge this is the first study to correlate mutations' genotypes with the variable phenotypes of DFNB30.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Abdelmalek Driss
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.,Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Mohamed Ali Mosrati
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Verkhivker GM, Agajanian S, Oztas D, Gupta G. Computational analysis of protein stability and allosteric interaction networks in distinct conformational forms of the SARS-CoV-2 spike D614G mutant: reconciling functional mechanisms through allosteric model of spike regulation. J Biomol Struct Dyn 2022; 40:9724-9741. [PMID: 34060425 DOI: 10.1080/07391102.2021.1933594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike engine. By combining functional dynamics analysis and ensemble-based alanine scanning of the SARS-CoV-2 spike proteins we found that the D614G mutation can improve stability of the spike protein in both closed and open forms, but shifting thermodynamic preferences towards the open mutant form. Our results revealed that the D614G mutation can promote the increased number of stable communities and allosteric hub centers in the open form by reorganizing and enhancing the stability of the S1-S2 inter-domain interactions and restricting mobility of the S1 regions. This study provides atomistic-based view of allosteric communications in the SARS-CoV-2 spike proteins, suggesting that the D614G mutation can exert its primary effect through allosterically induced changes on stability and communications in the residue interaction networks.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA.,Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Deniz Oztas
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| |
Collapse
|
20
|
AlChalabi R, Al-Rahim A, Omer D, Suleiman AA. Immunoinformatics design of multi-epitope peptide-based vaccine against Haemophilus influenzae strain using cell division protein. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 12:1. [PMID: 36465492 PMCID: PMC9707196 DOI: 10.1007/s13721-022-00395-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 05/28/2023]
Abstract
Haemophilus influenzae is a pathogen that causes invasive bacterial infections in humans. The highest prevalence lies in both young children and adults. Generally, there are no vaccines available that target all the strains of Haemophilus influenzae. Hence, the purpose of this research is to employ bioinformatics and immunoinformatics approaches to design a Multi-Epitope Vaccine candidate employing the pathogenic cell division protein FtsN that specifically combat all the Haemophilus influenzae strains. The current research focuses on developing subunit vaccine in contrast to vaccines generated from the entire pathogen. This will be accomplished by combining multiple bioinformatics and immunoinformatics approaches. As a result, prospective T cells (helper T lymphocyte and cytotoxic T lymphocytes) and B cells epitopes were investigated. The human leukocyte antigen allele having strong associations with the antigenic and overlapping epitopes were chosen, with 70% of the total coverage of the world population. To construct a linked vaccine design, multiple linkers were used. To increase the immunogenic profile, an adjuvant was linked using EAAAK linker. The final vaccine construct with 149 amino acids was obtained after adjuvants and linkers were added. The developed Multi-Epitope Vaccine has a high antigenicity as well as viable physiochemical features. The 3D conformation was modeled and undergoes refinement and validation using bioinformatics methods. Furthermore, protein-protein molecular docking analysis was performed to predict the effective binding poses of Multi-Epitope Vaccine with the Toll-like receptor 4 protein. Besides, vaccine underwent the codon translational optimization and computational cloning to verify the reliability and proper Multi-Epitope Vaccine expression. In addition, it is necessary to conduct experiments and research in the laboratory to demonstrate that the vaccine that has been developed is immunogenic and protective.
Collapse
Affiliation(s)
- Rawaa AlChalabi
- College of Biotechnology, Department of Molecular and Medical Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Aya Al-Rahim
- College of Biotechnology, Department of Molecular and Medical Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Dania Omer
- College of Biotechnology, Department of Molecular and Medical Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
21
|
Sumera, Anwer F, Waseem M, Fatima A, Malik N, Ali A, Zahid S. Molecular Docking and Molecular Dynamics Studies Reveal Secretory Proteins as Novel Targets of Temozolomide in Glioblastoma Multiforme. Molecules 2022; 27:7198. [PMID: 36364024 PMCID: PMC9653723 DOI: 10.3390/molecules27217198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 10/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a tumor of glial origin and is the most malignant, aggressive and prevalent type, with the highest mortality rate in adult brain cancer. Surgical resection of the tumor followed by Temozolomide (TMZ) therapy is currently available, but the development of resistance to TMZ is a common limiting factor in effective treatment. The present study investigated the potential interactions of TMZ with several secretory proteins involved in various molecular and cellular processes in GBM. Automated docking studies were performed using AutoDock 4.2, which showed an encouraging binding affinity of TMZ towards all targeted proteins, with the strongest interaction and binding affinity with GDF1 and SLIT1, followed by NPTX1, CREG2 and SERPINI, among the selected proteins. Molecular dynamics (MD) simulations of protein-ligand complexes were performed via CABS-flex V2.0 and the iMOD server to evaluate the root-mean-square fluctuations (RMSFs) and measure protein stability, respectively. The results showed that docked models were more flexible and stable with TMZ, suggesting that it may be able to target putative proteins implicated in gliomagenesis that may impact radioresistance. However, additional in vitro and in vivo investigations can ascertain the potential of the selected proteins to serve as novel targets for TMZ for GBM treatment.
Collapse
Affiliation(s)
- Sumera
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Farha Anwer
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Maaz Waseem
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Areeba Fatima
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Nishat Malik
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Amjad Ali
- Integrative Biology Laboratory, Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
22
|
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:649-675. [PMID: 36083166 DOI: 10.1080/1062936x.2022.2117846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - A Kade
- Department of Physics Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - M Taiyeb
- Department of Biology, Faculty of Mathematics and Natural Sciences, Makassar State University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - T Santoso
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - P Ningsih
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - H Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - T Tahril
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - K Uday Kumar
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia Cesk´e Budˇejovice, Czech Republic
| |
Collapse
|
23
|
Verkhivker GM. Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery. J Phys Chem B 2022; 126:5421-5442. [PMID: 35853093 DOI: 10.1021/acs.jpcb.2c03464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the allosteric mechanisms of the Hsp90 chaperone interactions with cochaperones and client protein clientele is fundamental to dissect activation and regulation of many proteins. In this work, atomistic simulations are combined with perturbation-based approaches and dynamic network modeling for a comparative mutational profiling of the Hsp90 binding and allosteric interaction networks in the three Hsp90 maturation complexes with FKBP51 and P23 cochaperones and the glucocorticoid receptor (GR) client. The conformational dynamics signatures of the Hsp90 complexes and dynamics fluctuation analysis revealed how the intrinsic plasticity of the Hsp90 dimer can be modulated by cochaperones and client proteins to stabilize the closed dimer state required at the maturation stage of the ATPase cycle. In silico deep mutational scanning of the protein residues characterized the hot spots of protein stability and binding affinity in the Hsp90 complexes, showing that binding hot spots may often coincide with the regulatory centers that modulate dynamic allostery in the Hsp90 dimer. We introduce a perturbation-based network approach for mutational scanning of allosteric residue potentials and characterize allosteric switch clusters that control mechanism of cochaperone-dependent client recognition and remodeling by the Hsp90 chaperone. The results revealed a conserved network of allosteric switches in the Hsp90 complexes that allow cochaperones and GR protein to become integrated into the Hsp90 system by anchoring to the conformational switch points in the functional Hsp90 regions. This study suggests that the Hsp90 binding and allostery may operate under a regulatory mechanism in which activation or repression of the Hsp90 activity can be pre-encoded in the allosterically regulated Hsp90 dimer motions. By binding directly to the conformational switch centers on the Hsp90, cochaperones and interacting proteins can efficiently modulate the allosteric interactions and long-range communications required for client remodeling and activation.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
24
|
Sanyal D, Banerjee S, Bej A, Chowdhury VR, Uversky VN, Chowdhury S, Chattopadhyay K. An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD). Int J Biol Macromol 2022; 217:492-505. [PMID: 35841961 PMCID: PMC9278002 DOI: 10.1016/j.ijbiomac.2022.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022]
Abstract
Conventional drug development strategies typically use pocket in protein structures as drug-target sites. They overlook the plausible effects of protein evolvability and resistant mutations on protein structure which in turn may impair protein-drug interaction. In this study, we used an integrated evolution and structure guided strategy to develop potential evolutionary-escape resistant therapeutics using receptor binding domain (RBD) of SARS-CoV-2 spike-protein/S-protein as a model. Deploying an ensemble of sequence space exploratory tools including co-evolutionary analysis and deep mutational scans we provide a quantitative insight into the evolutionarily constrained subspace of the RBD sequence-space. Guided by molecular simulation and structure network analysis we highlight regions inside the RBD, which are critical for providing structural integrity and conformational flexibility. Using fuzzy C-means clustering we combined evolutionary and structural features of RBD and identified a critical region. Subsequently, we used computational drug screening using a library of 1615 small molecules and identified one lead molecule, which is expected to target the identified region, critical for evolvability and structural stability of RBD. This integrated evolution-structure guided strategy to develop evolutionary-escape resistant lead molecules have potential general applications beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Dwipanjan Sanyal
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Suharto Banerjee
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Aritra Bej
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Vaidehi Roy Chowdhury
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Sourav Chowdhury
- Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
25
|
Jemmy Christy H, Vasudevan S, Sudha S, Kandeel M, Subramanian K, Pugazhvendan SR, Ronald Ross P, Velmurugan. Targeting Streptomyces-Derived Streptenol Derivatives against Gynecological Cancer Target PIK3CA: An In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6600403. [PMID: 35860806 PMCID: PMC9293527 DOI: 10.1155/2022/6600403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/21/2023]
Abstract
Streptomyces is amongst the most amenable genera for biotechnological applications, and it is extensively used as a scaffold for drug development. One of the most effective therapeutic applications in the treatment of cancer is targeted therapy. Small molecule therapy is one of them, and it has gotten a lot of attention recently. Streptomyces derived compounds namely streptenols A, C, and F-I and streptazolin were subjected for ADMET property assessment. Our computational studies based on molecular docking effectively displayed the synergistic effect of streptomyces-derived compounds on the gynecological cancer target PIK3CA. These compounds were observed with the highest docking scores as well as promising intermolecular interaction stability throughout the molecular dynamic simulation. Molecular docking and molecular dynamic modeling techniques were utilized to investigate the binding mode stability of drugs using a pharmacophore scaffold, as well as physicochemical and pharmacokinetic aspects linked to alpelisib. With a root mean square fluctuation of the protein backbone of less than 0.7 nm, they demonstrated a steady binding mode in the target binding pocket. They have also prompted hydrogen bonding throughout the simulations, implying that the chemicals have firmly occupied the active site. A comprehensive study showed that streptenol D, streptenol E, streptenol C, streptenol G, streptenol F, and streptenol B can be considered as lead compounds for PIK3CA-based inhibitor design. To warrant the treatment efficacy against cancer, comprehensive computational research based on proposed chemicals must be assessed through in vitro studies.
Collapse
Affiliation(s)
- H. Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Swetha Vasudevan
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - S. Sudha
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Kumaran Subramanian
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - S. R. Pugazhvendan
- Department of Zoology, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
- Department of Zoology, Annamalai University, Annamalai Nagar, Cuddalore, Tamil Nadu, India
| | - P. Ronald Ross
- Department of Zoology, Annamalai University, Annamalai Nagar, Cuddalore, Tamil Nadu, India
| | - Velmurugan
- Department of Biology, School of Natural Science, Madda Walabu University, Oromiya Region, Ethiopia
| |
Collapse
|
26
|
Mondal S, Santra S, Uddin H, Pal K, Halder SK, Chattopadhyay S, Mondal KC. Application of Phytochemicals To Combat Fungal Pathogens of Pulses: An Approach toward Inhibition of Fungal Propagation and Invasin Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7662-7673. [PMID: 35699309 DOI: 10.1021/acs.jafc.1c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study represented an innovative strategy for inactivating the secreted invasins (lignocellulolytic enzymes) of fungal phytopathogens using natural phytochemicals to combat fungal infection to the pulses. A fungal pathogen (Aspergillus niger SKP1) was isolated from the white lentil (Vigna mungo), which has the ability to synthesize different lignocellulolytic enzymes. An in silico docking study elucidated that quercetin, naringin, epigallocatechin gallate, curcumin, and cinnamic acid were the prime efficient phytochemicals to inhibit the activity of fungal invasive enzymes like endoglucanase, endo-1,4-β-xylanase, and glucoamylase. Considering this observation, extracted phytochemicals in different mixtures were applied to prevent growth of the isolated pathogen under in situ experimental studies. The minimal inhibitory concentrations (MIC50) and minimal fungicidal concentration (MFC50) values of the first mixture (naringenin, epicatechin gallate, and cinnamic acid) and second mixture (quercetin and curcumin) were 170 and 220 mg/L and 320 and 380 mg/L, respectively. The studied phytochemicals were established to be cytosafe when compared to the commercial fungicides. The seeds of the white lentil were subjected to 1 year of long-term storage with the two aforementioned combinatorial phytochemicals. Subsequent morphological and physiological analyses revealed the complete protection of the stored seeds from the fungal infection. The present work has enough potentiality for the storage of pulses using natural preservatives that circumvent the adverse effect of the chemical preservatives on the ecosystem.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Hilal Uddin
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
27
|
Verkhivker GM, Agajanian S, Kassab R, Krishnan K. Landscape-Based Protein Stability Analysis and Network Modeling of Multiple Conformational States of the SARS-CoV-2 Spike D614G Mutant: Conformational Plasticity and Frustration-Induced Allostery as Energetic Drivers of Highly Transmissible Spike Variants. J Chem Inf Model 2022; 62:1956-1978. [PMID: 35377633 DOI: 10.1021/acs.jcim.2c00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The structural and functional studies of the SARS-CoV-2 spike protein variants revealed an important role of the D614G mutation that is shared across many variants of concern (VOCs), suggesting the effect of this mutation on the enhanced virus infectivity and transmissibility. The recent structural and biophysical studies provided important evidence about multiple conformational substates of the D614G spike protein. The development of a plausible mechanistic model that can explain the experimental observations from a more unified thermodynamic perspective is an important objective of the current work. In this study, we employed efficient and accurate coarse-grained simulations of multiple structural substates of the D614G spike trimers together with the ensemble-based mutational frustration analysis to characterize the dynamics signatures of the conformational landscapes. By combining the local frustration profiling of the conformational states with residue-based mutational scanning of protein stability and network analysis of allosteric interactions and communications, we determine the patterns of mutational sensitivity in the functional regions and sites of variants. We found that the D614G mutation may induce a considerable conformational adaptability of the open states in the SARS-CoV-2 spike protein without compromising the folding stability and integrity of the spike protein. The results suggest that the D614G mutant may employ a hinge-shift mechanism in which the dynamic couplings between the site of mutation and the interprotomer hinge modulate the interdomain interactions, global mobility change, and the increased stability of the open form. This study proposes that mutation-induced modulation of the conformational flexibility and energetic frustration at the interprotomer interfaces may serve as an efficient mechanism for allosteric regulation of the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Ryan Kassab
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Keerthi Krishnan
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| |
Collapse
|
28
|
Ni K, Cai D, Lu J, Tian J. Eugenol-Mediated Inhibition of Biofilm Formed by S. aureus: a Potent Organism for Pediatric Digestive System Diseases. Appl Biochem Biotechnol 2022; 194:1340-1358. [PMID: 34705248 DOI: 10.1007/s12010-021-03682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Ocimum tenuiflorum (KT) is a common ethnobotanical plant of Southeast Asia. The ethnic communities of these regions use the various parts of the plants, especially the leaves, for the treatment of various ailments like cold and flu, chronic infections, and surface ailments. The leaves of these plants are consumed to act as immune boosters in the body. With this ethnical background, we performed the antimicrobial and antibiofilm potential of the methanolic extract of Ocimum tenuiflorum against biofilm formed by S. aureus biofilm. The biofilm formed by S. aureus is a potent cause for the development of gastrointestinal (GI)-associated chronic infection. The extract from the KT leaf was analyzed using UV spectroscopy and HPLC to confirm the presence of the active ingredients present within the extract. The HPLC and GC-MS studies revealed the presence of eugenol and linalool in a greater proportion having the maximum drug-like properties. It was observed that KT showed maximum inhibition of biofilms, proteins, and carbohydrates being present with the extracellular polymeric substance (EPS). Interestingly, the maximum inhibition to the quorum sensing (QS) and the genomic DNA, RNA content was reduced by eugenol and linalool in comparison to the plant extract. The studies were supported by in silico interaction between eugenol and linalool with the QS proteins of S. aureus. The studies were further confirmed with microscopic studies SEM and FCM. The IR studies also confirmed much reduction in biofilm when treated with eugenol, linalool, and KT with respect to the untreated sample.
Collapse
Affiliation(s)
- KaiHua Ni
- Pediatric Department, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Danlei Cai
- The Emergency Department, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jianhong Lu
- Pediatric Department, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jianmei Tian
- Department of Infectious Diseases, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
29
|
Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant. Int J Mol Sci 2022; 23:ijms23042172. [PMID: 35216287 PMCID: PMC8877688 DOI: 10.3390/ijms23042172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.
Collapse
|
30
|
Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins : Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. J Mol Biol 2022; 434:167506. [DOI: 10.1016/j.jmb.2022.167506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
|
31
|
Verkhivker G. Conformational Flexibility and Local Frustration in the Functional States of the SARS-CoV-2 Spike B.1.1.7 and B.1.351 Variants: Mutation-Induced Allosteric Modulation Mechanism of Functional Dynamics and Protein Stability. Int J Mol Sci 2022; 23:ijms23031646. [PMID: 35163572 PMCID: PMC8836237 DOI: 10.3390/ijms23031646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize conformational dynamics of the SARS-CoV-2 spike proteins and identify dynamic signatures of the functional regions that regulate transitions between the closed and open forms. By combining molecular simulations with full atomistic reconstruction of the trajectories and the ensemble-based mutational frustration analysis, we characterized how the intrinsic flexibility of specific spike regions can control functional conformational changes required for binding with the host-cell receptor. Using the residue-based mutational scanning of protein stability, we determined protein stability hotspots and identified potential energetic drivers favoring the receptor-accessible open spike states for the B.1.1.7 and B.1.351 spike variants. The results suggested that modulation of the energetic frustration at the inter-protomer interfaces can serve as a mechanism for allosteric couplings between mutational sites and the inter-protomer hinges of functional motions. The proposed mechanism of mutation-induced energetic frustration may result in greater adaptability and the emergence of multiple conformational states in the open form. This study suggested that SARS-CoV-2 B.1.1.7 and B.1.351 variants may leverage the intrinsic plasticity of functional regions in the spike protein for mutation-induced modulation of protein dynamics and allosteric regulation to control binding with the host cell receptor.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +17-14-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
32
|
Kuriata A, Badaczewska-Dawid AE, Pujols J, Ventura S, Kmiecik S. Protocols for Rational Design of Protein Solubility and Aggregation Properties Using Aggrescan3D Standalone. Methods Mol Biol 2022; 2340:17-40. [PMID: 35167068 DOI: 10.1007/978-1-0716-1546-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation is a major hurdle in the development and manufacturing of protein-based therapeutics. Development of aggregation-resistant and stable protein variants can be guided by rational redesign using computational tools. Here, we describe the architecture and functionalities of the Aggrescan3D (A3D) standalone package for the rational design of protein solubility and aggregation properties based on three-dimensional protein structures. We present the case studies of the three therapeutic proteins, including antibodies, exploring the practical use of the A3D standalone tool. The case studies demonstrate that protein solubility can be easily improved by the A3D prediction of non-destabilizing amino acid mutations at the protein surfaces.
Collapse
Affiliation(s)
- Aleksander Kuriata
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Jordi Pujols
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
33
|
Pujols J, Iglesias V, Santos J, Kuriata A, Kmiecik S, Ventura S. A3D 2.0 Update for the Prediction and Optimization of Protein Solubility. Methods Mol Biol 2022; 2406:65-84. [PMID: 35089550 DOI: 10.1007/978-1-0716-1859-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation propensity is a property imprinted in protein sequences and structures, being associated with the onset of human diseases and limiting the implementation of protein-based biotherapies. Computational approaches stand as cost-effective alternatives for reducing protein aggregation and increasing protein solubility. AGGRESCAN 3D (A3D) is a structure-based predictor of aggregation that takes into account the conformational context of a protein, aiming to identify aggregation-prone regions exposed in protein surfaces. Here we inspect the updated 2.0 version of the algorithm, which extends the application of A3D to previously inaccessible proteins and incorporates new modules to assist protein redesign. Among these features, the new server includes stability calculations and the possibility to optimize protein solubility using an experimentally validated computational pipeline. Finally, we employ defined examples to navigate the A3D RESTful service, a routine to handle extensive protein collections. Altogether, this chapter is conceived to train and assist A3D non-experts in the study of aggregation-prone regions and protein solubility redesign.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain
| | - Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barelona (UAB), Barcelona, Spain.
| |
Collapse
|
34
|
Modak C, Jha A, Sharma N, Kumar A. Chitosan derivatives: A suggestive evaluation for novel inhibitor discovery against wild type and variants of SARS-CoV-2 virus. Int J Biol Macromol 2021; 187:492-512. [PMID: 34324908 PMCID: PMC8313795 DOI: 10.1016/j.ijbiomac.2021.07.144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022]
Abstract
With increasing global cases and mortality rates due to COVID-19 infection, finding effective therapeutic interventions has become a top priority. Marine resources are not explored much and to be taken into consideration for exploring antiviral potential. Chitosan (carbohydrate polymer) is one such bioactive glycan found ubiquitously in marine organisms. The presence of reactive amine/hydroxyl groups, with low toxicity/allergenicity, compels us to explore it against SARS-CoV-2. We have screened a library of chitosan derivatives by site-specific docking at not only spike protein Receptor Binding Domain (RBD) of wild type SARS-CoV-2 but also on RBD of B.1.1.7 (UK) and P.1 (Brazil) SARS-CoV-2 variants. The obtained result was very interesting and ranks N-benzyl-O-acetyl-chitosan, Imino-chitosan, Sulfated-chitosan oligosaccharides derivatives as a potent antiviral candidate due to its high binding affinity of the ligands (-6.0 to -6.6 kcal/mol) with SARS-CoV-2 spike protein RBD and they critically interacting with amino acid residues Tyr 449, Asn 501, Tyr 501, Gln 493, Gln 498 and some other site-specific residues associated with higher transmissibility and severe infection. Further ADMET analysis was done and found significant for exploration of the future therapeutic potential of these three ligands. The obtained results are highly encouraging in support for consideration and exploration in further clinical studies of these chitosan derivatives as anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Chandrima Modak
- Birla Institute of Technology and Sciences (BITS), Pilani campus, Rajasthan, India
| | - Anubhuti Jha
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India
| | - Nivya Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India.
| |
Collapse
|
35
|
Bhattacharya R, Daoud I, Chatterjee A, Chatterjee S, Saha NC. An integrated in silico and in vivo approach to determine the effects of three commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate on growth rate and hematology in Cyprinus carpio L. Toxicol Mech Methods 2021; 32:132-144. [PMID: 34445924 DOI: 10.1080/15376516.2021.1973633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this work is to evaluate the homology modeling, in silico prediction, and characterization of somatotropin and erythropoietin from Cyprinus carpio as well as molecular docking and simulation experiments between the modeled proteins and surfactants sodium dodecyl sulfate (SDS), sodium laureth sulfate (SLES) and cetylpyridinium chloride (CPC). Using the best fit template structure, homology modeling of somatotropin and erythropoietin of Cyprinus carpio respectively was conducted. The model structures were improved further with 3Drefine, and the final 3D structures were verified with PROCHEK, ERRATA and ProQ. The physiochemical, as well as the stereochemical parameters of the modeled proteins, were evaluated using ExPASy's ProtParam. Molecular docking calculations, protein-ligand interactions, and protein flexibility analysis were carried out to determine the binding pattern of each ligand to the targeted proteins and their effect on the overall proteins' conformation. Our in silico analysis showed that hydrophobic interactions with the active site amino acid residues of the modeled proteins (somatotropin and erythropoietin) were more prevalent than hydrogen bonds and salt bridges that affect the flexibility and stability of the somatotropin and erythropoietin as revealed from our protein flexibility analysis. The in vivo analysis showed that sublethal concentrations of SDS, SLES, and CPC negatively affected the growth and hematological parameters of Cyprinus carpio. Hence, it may be inferred from the study that the alterations in the flexibility of somatotropin and erythropoietin of Cyprinus carpio upon addition of SDS, CPC and SLES might be attributable to the reduction in growth and hematological parameters.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Ismail Daoud
- Laboratory of Natural and Bioactive Substances, University of Abou-Bakr Belkaid, Tlemcen, Algeria.,Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|
36
|
Umar AK. Flavonoid compounds of buah merah ( Pandanus conoideus Lamk) as a potent SARS-CoV-2 main protease inhibitor: in silico approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:158. [PMID: 34395638 PMCID: PMC8353435 DOI: 10.1186/s43094-021-00309-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background COVID19 is a global pandemic that threatens all nations. As there is no effective antiviral drug for COVID19, we examined the potency of natural ingredients against the SARS-CoV-2 main protease (PDB ID 6YNQ). Buah merah is a typical fruit from Papua, Indonesia, which is known to contain high levels of carotenoids and flavonoids. The contents have been proven to be effective as antiparasitic and anti-HIV. An in silico approach to 16 metabolites of buah merah (Pandanus conoideus Lamk) was carried out using AutoDock Vina. Furthermore, the study of the dynamics of ligand–protein interactions was carried out using CABS Flex 2.0 server to determine the test ligand and receptor complexes' stability. ADMET prediction was also carried out to study the pharmacokinetic profile of potential antiviral candidates.
Result The docking results showed that 3 of the 16 buah merah metabolites were potent inhibitors against the SARS-CoV-2 main protease. The flavonoid compounds are quercetin 3′-glucoside, quercetin 3-O-glucose, and taxifolin 3-O-α-arabinopyranose with a binding affinity of − 9.7, − 9.3, and − 8.8, respectively, with stable ligand–protein complex. ADMET study shows that the three compounds are easily dissolved, easily absorbed orally and topically, have a high unbound fraction, low toxicity, and non-irritant. Conclusion We conclude that quercetin 3′-glucoside, quercetin 3-O-glucose, and taxifolin 3-O-α-arabinopyranose can be used and improved as potential anti-SARS-CoV-2 agents in further study.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363 Indonesia
| |
Collapse
|
37
|
Lu Y, Villoutreix BO, Biswas I, Ding Q, Wang X, Rezaie AR. Antithrombin Resistance Rescues Clotting Defect of Homozygous Prothrombin-Y510N Dysprothrombinemia. Thromb Haemost 2021; 122:679-691. [PMID: 34256393 PMCID: PMC8755856 DOI: 10.1055/a-1549-6407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A patient with hematuria in our clinic was diagnosed with urolithiasis. Analysis of the patient's plasma clotting time indicated that both activated partial thromboplastin time (52.6 seconds) and prothrombin time (19.4 seconds) are prolonged and prothrombin activity is reduced to 12.4% of normal, though the patient exhibited no abnormal bleeding phenotype and a prothrombin antigen level of 87.9%. Genetic analysis revealed the patient is homozygous for prothrombin Y510N mutation. We expressed and characterized the prothrombin-Y510N variant in appropriate coagulation assays and found that the specificity constant for activation of the mutant zymogen by factor Xa is impaired approximately fivefold. Thrombin generation assay using patient's plasma and prothrombin-deficient plasma supplemented with either wild-type or prothrombin-Y510N revealed that both peak height and time to peak for the prothrombin mutant are decreased; however, the endogenous thrombin generation potential is increased. Further analysis indicated that the thrombin mutant exhibits resistance to antithrombin and is inhibited by the serpin with approximately 12-fold slower rate constant. Protein C activation by thrombin-Y510N was also decreased by approximately 10-fold; however, thrombomodulin overcame the catalytic defect. The Na+-concentration-dependence of the amidolytic activities revealed that the dissociation constant for the interaction of Na+ with the mutant has been elevated approximately 20-fold. These results suggest that Y510 (Y184a in chymotrypsin numbering) belongs to network of residues involved in binding Na+. A normal protein C activation by thrombin-Y510N suggests that thrombomodulin modulates the conformation of the Na+-binding loop of thrombin. The clotting defect of thrombin-Y510N appears to be compensated by its markedly lower reactivity with antithrombin, explaining patient's normal hemostatic phenotype.
Collapse
Affiliation(s)
- Yeling Lu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States.,Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruno O Villoutreix
- INSERM 1141, NeuroDiderot, Université de Paris, Hôpital Robert-Debré, Paris, France
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States.,Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
38
|
Kurcinski M, Kmiecik S, Zalewski M, Kolinski A. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations. Int J Mol Sci 2021; 22:7341. [PMID: 34298961 PMCID: PMC8306105 DOI: 10.3390/ijms22147341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
Most of the protein-protein docking methods treat proteins as almost rigid objects. Only the side-chains flexibility is usually taken into account. The few approaches enabling docking with a flexible backbone typically work in two steps, in which the search for protein-protein orientations and structure flexibility are simulated separately. In this work, we propose a new straightforward approach for docking sampling. It consists of a single simulation step during which a protein undergoes large-scale backbone rearrangements, rotations, and translations. Simultaneously, the other protein exhibits small backbone fluctuations. Such extensive sampling was possible using the CABS coarse-grained protein model and Replica Exchange Monte Carlo dynamics at a reasonable computational cost. In our proof-of-concept simulations of 62 protein-protein complexes, we obtained acceptable quality models for a significant number of cases.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; (M.Z.); (A.K.)
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; (M.Z.); (A.K.)
| | | | | |
Collapse
|
39
|
Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry 2021; 60:1459-1484. [PMID: 33900725 PMCID: PMC8098775 DOI: 10.1021/acs.biochem.1c00139] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Indexed: 12/11/2022]
Abstract
In this study, we used an integrative computational approach to examine molecular mechanisms and determine functional signatures underlying the role of functional residues in the SARS-CoV-2 spike protein that are targeted by novel mutational variants and antibody-escaping mutations. Atomistic simulations and functional dynamics analysis are combined with alanine scanning and mutational sensitivity profiling of the SARS-CoV-2 spike protein complexes with the ACE2 host receptor and the REGN-COV2 antibody cocktail(REG10987+REG10933). Using alanine scanning and mutational sensitivity analysis, we have shown that K417, E484, and N501 residues correspond to key interacting centers with a significant degree of structural and energetic plasticity that allow mutants in these positions to afford the improved binding affinity with ACE2. Through perturbation-based network modeling and community analysis of the SARS-CoV-2 spike protein complexes with ACE2, we demonstrate that E406, N439, K417, and N501 residues serve as effector centers of allosteric interactions and anchor major intermolecular communities that mediate long-range communication in the complexes. The results provide support to a model according to which mutational variants and antibody-escaping mutations constrained by the requirements for host receptor binding and preservation of stability may preferentially select structurally plastic and energetically adaptable allosteric centers to differentially modulate collective motions and allosteric interactions in the complexes with the ACE2 enzyme and REGN-COV2 antibody combination. This study suggests that the SARS-CoV-2 spike protein may function as a versatile and functionally adaptable allosteric machine that exploits the plasticity of allosteric regulatory centers to fine-tune response to antibody binding without compromising the activity of the spike protein.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences,
Chapman University School of Pharmacy, Irvine, California
92618, United States
| | - Steve Agajanian
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| | - Deniz Yazar Oztas
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
| |
Collapse
|
40
|
Cetin A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem Phys Lett 2021; 771:138563. [PMID: 33776065 PMCID: PMC7983322 DOI: 10.1016/j.cplett.2021.138563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
COVID-19, a new strain of coronavirus family, was identified at the end of 2019 in China. The COVID-19 virus spread rapidly all over the world. Scientists strive to find virus-specific antivirals for the treatment of COVID-19. The present study reports a molecular docking study of the stilbenolignans and SARS-CoV-2 main protease (SARS-CoV-2 Mpro) inhibitors. The detailed interactions between the stilbenolignan analogues and SARS-CoV-2 Mpro inhibitors were determined as hydrophobic bonds, hydrogen bonds and electronic bonds, inhibition activity, ligand efficiency, bonding type and distance and etc. The binding energies of the stilbenolignan analogues were obtained from the molecular docking of SARS-CoV-2 Mpro. Lehmbachol D, Maackolin, Gnetucleistol, Gnetifolin F, Gnetofuran A and Aiphanol were found to be -7.7, -8.2, -7.3, -8.5, -8.0 and -7.3 kcal/mol, respectively. Osirus, Molinspiration and SwissADME chemoinformatic tools were used to examine ADMET properties, pharmacokinetic parameters and toxicological characteristics of the stilbenolignan analogues. All analogues obey the Lipinski's rule of five. Furthermore, stilbenolignan analogues were studied to predict their binding affinities against SARS-CoV-2 Mpro using molecular modeling and simulation techniques, and the binding free energy calculations of all complexes were calculated using the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method. With the data presented here it has been observed that these analogues may be a good candidate for SARS-CoV-2 Mpro in vivo studies, so more research can be done on stilbenolignan analogues.
Collapse
|
41
|
Verkhivker GM, Di Paola L. Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies. J Phys Chem B 2021; 125:4596-4619. [PMID: 33929853 PMCID: PMC8098774 DOI: 10.1021/acs.jpcb.1c00395] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Structural and biochemical studies of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoproteins and complexes with highly potent antibodies have revealed multiple conformation-dependent epitopes highlighting conformational plasticity of spike proteins and capacity for eliciting specific binding and broad neutralization responses. In this study, we used coevolutionary analysis, molecular simulations, and perturbation-based hierarchical network modeling of the SARS-CoV-2 spike protein complexes with a panel of antibodies targeting distinct epitopes to explore molecular mechanisms underlying binding-induced modulation of dynamics and allosteric signaling in the spike proteins. Through coevolutionary analysis of the SARS-CoV-2 spike proteins, we identified highly coevolving hotspots and functional clusters that enable a functional cross-talk between distant allosteric regions in the SARS-CoV-2 spike complexes with antibodies. Coarse-grained and all-atom molecular dynamics simulations combined with mutational sensitivity mapping and perturbation-based profiling of the SARS-CoV-2 receptor-binding domain (RBD) complexes with CR3022 and CB6 antibodies enabled a detailed validation of the proposed approach and an extensive quantitative comparison with the experimental structural and deep mutagenesis scanning data. By combining in silico mutational scanning, perturbation-based modeling, and network analysis of the SARS-CoV-2 spike trimer complexes with H014, S309, S2M11, and S2E12 antibodies, we demonstrated that antibodies can incur specific and functionally relevant changes by modulating allosteric propensities and collective dynamics of the SARS-CoV-2 spike proteins. The results provide a novel insight into regulatory mechanisms of SARS-CoV-2 S proteins showing that antibody-escaping mutations can preferentially target structurally adaptable energy hotspots and allosteric effector centers that control functional movements and allosteric communication in the complexes.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck Center for Science and Engineering, Schmid
College of Science and Technology, Chapman University, One
University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences,
Chapman University School of Pharmacy, Irvine, California
92618, United States
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical
Engineering, Department of Engineering, Università Campus Bio-Medico
di Roma, via Álvaro del Portillo 21, 00128 Rome,
Italy
| |
Collapse
|
42
|
Badaczewska-Dawid AE, Kolinski A, Kmiecik S. Protocols for Fast Simulations of Protein Structure Flexibility Using CABS-Flex and SURPASS. Methods Mol Biol 2021; 2165:337-353. [PMID: 32621235 DOI: 10.1007/978-1-0716-0708-4_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conformational flexibility of protein structures can play an important role in protein function. The flexibility is often studied using computational methods since experimental characterization can be difficult. Depending on protein system size, computational tools may require large computational resources or significant simplifications in the modeled systems to speed up calculations. In this work, we present the protocols for efficient simulations of flexibility of folded protein structures that use coarse-grained simulation tools of different resolutions: medium, represented by CABS-flex, and low, represented by SUPRASS. We test the protocols using a set of 140 globular proteins and compare the results with structure fluctuations observed in MD simulations, ENM modeling, and NMR ensembles. As demonstrated, CABS-flex predictions show high correlation to experimental and MD simulation data, while SURPASS is less accurate but promising in terms of future developments.
Collapse
Affiliation(s)
- Aleksandra E Badaczewska-Dawid
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland.,Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
43
|
Villoutreix BO, Calvez V, Marcelin AG, Khatib AM. In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 Variants with a Focus at the ACE2-Spike RBD Interface. Int J Mol Sci 2021; 22:1695. [PMID: 33567580 PMCID: PMC7915722 DOI: 10.3390/ijms22041695] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike-ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure-function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.
Collapse
Affiliation(s)
- Bruno O. Villoutreix
- Integrative Computational Pharmacology and Data Mining, INSERM UMR 1141, NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Virologie, F75013 Paris, France; (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Virologie, F75013 Paris, France; (V.C.); (A.-G.M.)
| | - Abdel-Majid Khatib
- Université de Bordeaux, INSERM, LAMC, U1029, F-33600 Pessac, France
- Institut Bergonié, 33000 Bordeaux, France
| |
Collapse
|
44
|
Shah S, Chaple D, Arora S, Yende S, Moharir K, Lohiya G. Exploring the active constituents of Oroxylum indicum in intervention of novel coronavirus (COVID-19) based on molecular docking method. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 10:8. [PMID: 33585155 PMCID: PMC7865104 DOI: 10.1007/s13721-020-00279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
The severe acute respiratory syndrome COVID-19 declared a global pandemic by WHO has become the present wellbeing worry to the whole world. There is an emergent need to search for possible medications. We report in this study a molecular docking study of eighteen Oroxylum indicum molecules with the main protease (Mpro) responsible for the replication of SARS-CoV-2 virus. The outcome of their molecular simulation and ADMET properties reveal four potential inhibitors of the enzyme (Baicalein-7-O-diglucoside, Chrysin-7-O-glucuronide, Oroxindin and Scutellarein) with preference of ligand Chrysin-7-O-glucuronide that has the second highest binding energy (- 8.6 kcal/mol) and fully obeys the Lipinski's rule of five. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13721-020-00279-y.
Collapse
Affiliation(s)
- Sapan Shah
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, Maharashtra 440016 India
| | - Dinesh Chaple
- Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, Maharashtra 440016 India
| | - Sumit Arora
- Pharmacognosy and Phytochemistry Division, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| | - Subhash Yende
- Pharmacology Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| | - Keshav Moharir
- Pharmaceutics Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| | - Govind Lohiya
- Pharmaceutics Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra 440026 India
| |
Collapse
|
45
|
Verkhivker GM, Di Paola L. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. J Phys Chem B 2021; 125:850-873. [PMID: 33448856 PMCID: PMC7839160 DOI: 10.1021/acs.jpcb.0c10637] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Indexed: 12/13/2022]
Abstract
The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
46
|
Tahir ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, Fatima I, Shahid F, Chen LL. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS One 2020; 15:e0244176. [PMID: 33351863 PMCID: PMC7755200 DOI: 10.1371/journal.pone.0244176] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.
Collapse
Affiliation(s)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Xitong Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
47
|
Arora S, Lohiya G, Moharir K, Shah S, Yende S. Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ: A Molecular Docking Study. DIGITAL CHINESE MEDICINE 2020. [PMCID: PMC7834211 DOI: 10.1016/j.dcmed.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), is responsible for the recent global pandemic. As there are no effective drugs or vaccines available for SARS-CoV-2, we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ. Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ. Results Among the 21 selected flavonoids, rutin demonstrated the highest binding energy (− 8.7 kcal/mol) and displayed perfect binding with the catalytic sites. Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ. These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.
Collapse
|
48
|
Verkhivker GM. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins. J Proteome Res 2020; 19:4587-4608. [PMID: 33006900 PMCID: PMC7640983 DOI: 10.1021/acs.jproteome.0c00654] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 12/13/2022]
Abstract
The development of computational strategies for the quantitative characterization of the functional mechanisms of SARS-CoV-2 spike proteins is of paramount importance in efforts to accelerate the discovery of novel therapeutic agents and vaccines combating the COVID-19 pandemic. Structural and biophysical studies have recently characterized the conformational landscapes of the SARS-CoV-2 spike glycoproteins in the prefusion form, revealing a spectrum of stable and more dynamic states. By employing molecular simulations and network modeling approaches, this study systematically examined functional dynamics and identified the regulatory centers of allosteric interactions for distinct functional states of the wild-type and mutant variants of the SARS-CoV-2 prefusion spike trimer. This study presents evidence that the SARS-CoV-2 spike protein can function as an allosteric regulatory engine that fluctuates between dynamically distinct functional states. Perturbation-based modeling of the interaction networks revealed a key role of the cross-talk between the effector hotspots in the receptor binding domain and the fusion peptide proximal region of the SARS-CoV-2 spike protein. The results have shown that the allosteric hotspots of the interaction networks in the SARS-CoV-2 spike protein can control the dynamic switching between functional conformational states that are associated with virus entry to the host receptor. This study offers a useful and novel perspective on the underlying mechanisms of the SARS-CoV-2 spike protein through the lens of allosteric signaling as a regulatory apparatus of virus transmission that could open up opportunities for targeted allosteric drug discovery against SARS-CoV-2 proteins and contribute to the rapid response to the current and potential future pandemic scenarios.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate
Program in Computational and Data Sciences, Keck Center for Science
and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
49
|
Verkhivker G. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2. Int J Mol Sci 2020; 21:ijms21218268. [PMID: 33158276 PMCID: PMC7672574 DOI: 10.3390/ijms21218268] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Binding to the host receptor is a critical initial step for the coronavirus SARS-CoV-2 spike protein to enter into target cells and trigger virus transmission. A detailed dynamic and energetic view of the binding mechanisms underlying virus entry is not fully understood and the consensus around the molecular origins behind binding preferences of SARS-CoV-2 for binding with the angiotensin-converting enzyme 2 (ACE2) host receptor is yet to be established. In this work, we performed a comprehensive computational investigation in which sequence analysis and modeling of coevolutionary networks are combined with atomistic molecular simulations and comparative binding free energy analysis of the SARS-CoV and SARS-CoV-2 spike protein receptor binding domains with the ACE2 host receptor. Different from other computational studies, we systematically examine the molecular and energetic determinants of the binding mechanisms between SARS-CoV-2 and ACE2 proteins through the lens of coevolution, conformational dynamics, and allosteric interactions that conspire to drive binding interactions and signal transmission. Conformational dynamics analysis revealed the important differences in mobility of the binding interfaces for the SARS-CoV-2 spike protein that are not confined to several binding hotspots, but instead are broadly distributed across many interface residues. Through coevolutionary network analysis and dynamics-based alanine scanning, we established linkages between the binding energy hotspots and potential regulators and carriers of signal communication in the virus-host receptor complexes. The results of this study detailed a binding mechanism in which the energetics of the SARS-CoV-2 association with ACE2 may be determined by cumulative changes of a number of residues distributed across the entire binding interface. The central findings of this study are consistent with structural and biochemical data and highlight drug discovery challenges of inhibiting large and adaptive protein-protein interfaces responsible for virus entry and infection transmission.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +1-714-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
50
|
Amamuddy OS, Verkhivker GM, Bishop ÖT. Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M pro. J Chem Inf Model 2020; 60:5080-5102. [PMID: 32853525 PMCID: PMC7496595 DOI: 10.1021/acs.jcim.0c00634] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/15/2022]
Abstract
A new coronavirus (SARS-CoV-2) is a global threat to world health and economy. Its dimeric main protease (Mpro), which is required for the proteolytic cleavage of viral precursor proteins, is a good candidate for drug development owing to its conservation and the absence of a human homolog. Improving our understanding of Mpro behavior can accelerate the discovery of effective therapies to reduce mortality. All-atom molecular dynamics (MD) simulations (100 ns) of 50 mutant Mpro dimers obtained from filtered sequences from the GISAID database were analyzed using root-mean-square deviation, root-mean-square fluctuation, Rg, averaged betweenness centrality, and geometry calculations. The results showed that SARS-CoV-2 Mpro essentially behaves in a similar manner to its SAR-CoV homolog. However, we report the following new findings from the variants: (1) Residues GLY15, VAL157, and PRO184 have mutated more than once in SARS CoV-2; (2) the D48E variant has lead to a novel "TSEEMLN"" loop at the binding pocket; (3) inactive apo Mpro does not show signs of dissociation in 100 ns MD; (4) a non-canonical pose for PHE140 widens the substrate binding surface; (5) dual allosteric pockets coinciding with various stabilizing and functional components of the substrate binding pocket were found to display correlated compaction dynamics; (6) high betweenness centrality values for residues 17 and 128 in all Mpro samples suggest their high importance in dimer stability-one such consequence has been observed for the M17I mutation whereby one of the N-fingers was highly unstable. (7) Independent coarse-grained Monte Carlo simulations suggest a relationship between the rigidity/mutability and enzymatic function. Our entire approach combining database preparation, variant retrieval, homology modeling, dynamic residue network (DRN), relevant conformation retrieval from 1-D kernel density estimates from reaction coordinates to other existing approaches of structural analysis, and data visualization within the coronaviral Mpro is also novel and is applicable to other coronaviral proteins.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics, Department of Microbiology and Biochemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics, Department of Microbiology and Biochemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|