1
|
Catalán-Tatjer D, Kumar Ganesan S, Martínez-Monje I, Grav LM, Lavado-García J, Nielsen LK. Evaluating Apoptotic Gene Efficiency for CHO Culture Performance Using Targeted Integration. ACS Synth Biol 2025; 14:1414-1424. [PMID: 40268279 PMCID: PMC12090340 DOI: 10.1021/acssynbio.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Chinese hamster ovary (CHO) cells have long been the favored platform for producing complex biopharmaceuticals, such as monoclonal antibodies. Cell death is a critical factor in all CHO cultures, dictating the duration until harvest in batch cultures and viable cell density in perfusion. The programmed cell death, or apoptosis, pathway has been widely studied due to its relevance in affecting cell culture performance and the extensive knowledge about its protein-to-protein interaction network. However, clonal variation seen with random integration has confounded results, and it remains unclear which effector genes should be overexpressed. Here, we employed the recombinase-mediated cassette exchange strategy to develop isogenic cell lines expressing one copy of erythropoietin, as a model protein product, and various antiapoptotic genes: bcl-2 from CHO and human origin, bcl-xL from CHO and human origin, mcl-1, and bhrf-1. We tested the generated isogenic cell lines in the presence of sodium butyrate, a well-known apoptotic initiator, in a batch culture. The most promising candidates were cultured in fed-batch in the microbioreactor ambr15 system. The observed phenotype varied significantly depending on the overexpressed gene; therefore, the metabolic differences were further characterized using multiplexed quantitative proteomics. We showed that overexpressing bcl-2 from the CHO origin significantly improved productivity and established a methodology to successfully test candidate genes via targeted integration. This will enable future metabolic engineering strategies to be more comparable and overcome the challenges faced thus far.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Saravana Kumar Ganesan
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Iván Martínez-Monje
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Lise M. Grav
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Jesús Lavado-García
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Lars K. Nielsen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
2
|
Villalba-Orero M, López-Olañeta M, Campos-Olmo B, Jimenez-Carretero D, Sánchez L, Sánchez-Cabo F, Ausiello A, Cañas-Álvaro R, Camafeita E, Vázquez J, García-Pavía P, Pascual-Figal D, Lara-Pezzi E. Unraveling Comorbidities Contribution to Cardiac Diastolic Dysfunction and Heart Failure. Circ Heart Fail 2025; 18:e011724. [PMID: 39611257 DOI: 10.1161/circheartfailure.124.011724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a major public health problem characterized by multiple simultaneous comorbidities whose specific contribution is challenging to disentangle in humans, leading to a generalized therapeutic approach that may not account for the underlying pathology. METHODS We followed distinct mouse models of major HFpEF comorbidities for 2.5 years to unveil their specific contribution to the syndrome. RESULTS All comorbidities contributed to HFpEF through partially distinct routes. Aging alone resulted in HFpEF in old age, with delayed left ventricular relaxation and kidney fibrosis. Obesity induced a faster deterioration of relaxation associated with enlarged left ventricle and liver fibrosis. Hypertension caused delayed ventricular relaxation independent from structural changes that preceded left atrial dilatation linked to aortic stiffness and increased fibrosis in myocardium and kidney. Chronic intermittent hypoxia led to HFpEF and relaxation impairment associated with pulmonary hypertension. Hyperglycemia accelerated diastolic dysfunction and HFpEF onset associated with reduced arterial flow and left ventricular remodeling. Therefore, the pathological substrates contributing to HFpEF included cardiac and noncardiac alterations with differential features for each comorbidity. Critically, the characteristics linked to diastolic dysfunction and HFpEF across the various comorbidities agreed with phenogroups observed in human patients. CONCLUSIONS The identification of time-dependent pathological features provides a comprehensive picture of HFpEF progression associated with each comorbidity.
Collapse
Affiliation(s)
- María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain (M.V.-O.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Belén Campos-Olmo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Daniel Jimenez-Carretero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Lucía Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Antonella Ausiello
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Rodrigo Cañas-Álvaro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Pablo García-Pavía
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (P.G.-P.)
- Universidad Francisco de Vitoria, Madrid, Spain (P.G.-P.)
| | - Domingo Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain (D.P.-F.)
- Medicine Department, University of Murcia, Spain (D.P.-F.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
| |
Collapse
|
3
|
Borràs C, Canyelles M, Santos D, Rotllan N, Núñez E, Vázquez J, Maspoch D, Cano-Sarabia M, Carmona-Iragui M, Sirisi S, Lleó A, Fortea J, Alcolea D, Blanco-Vaca F, Escolà-Gil JC, Tondo M. Impaired Cerebrospinal Fluid Lipoprotein-Mediated Cholesterol Delivery to Neurons in Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5682870. [PMID: 39764088 PMCID: PMC11703344 DOI: 10.21203/rs.3.rs-5682870/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
In the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals. Additionally, we explored the ability of reconstituted HDL containing different APOE isoforms to regulate cholesterol transport. We evaluated the capacity of CSF HDL-like particles to facilitate radiolabeled unesterified cholesterol efflux from A172 human glioblastoma astrocytes and to deliver cholesterol to SH-SY5Y human neuronal cells. The HDL-like proteome in the AD and control groups was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Reconstituted HDL nanoparticles were prepared by combining phospholipids and cholesterol with human APOE3 or APOE4, followed by radiolabeling with unesterified cholesterol. Our results showed that cholesterol efflux from astrocytes to CSF were similar between AD patients and controls, both under baseline conditions and after activation of ATP-binding cassette transporters A1 and G1. However, CSF HDL-like particle-mediated neuronal cholesterol uptake was significantly reduced in the AD group. LC-MS/MS analysis identified 775 proteins associated with HDL-like particles in both groups, with no major alterations in proteins linked to cholesterol metabolism. However, 27 proteins involved in non-cholesterol-related processes were differentially expressed. Notably, synthetic reconstituted HDL particles containing APOE4 exhibited reduced capacity to deliver cholesterol to neurons compared to those with APOE3. These findings indicate that CSF HDL-like particles from patients with AD demonstrate impaired cholesterol delivery to neurons. Our study highlights APOE4 as a critical contributor to abnormal neuronal cholesterol uptake in AD pathophysiology.
Collapse
Affiliation(s)
| | | | - David Santos
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas
| | | | - Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Rodríguez JM, Jorge I, Martinez-Val A, Barrero-Rodríguez R, Magni R, Núñez E, Laguillo A, Devesa CA, López JA, Camafeita E, Vázquez J. iSanXoT: A standalone application for the integrative analysis of mass spectrometry-based quantitative proteomics data. Comput Struct Biotechnol J 2024; 23:452-459. [PMID: 38235360 PMCID: PMC10792623 DOI: 10.1016/j.csbj.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases.
Collapse
Affiliation(s)
- Jose Manuel Rodríguez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Martinez-Val
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Rafael Barrero-Rodríguez
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Ricardo Magni
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Estefanía Núñez
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea Laguillo
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Cristina A. Devesa
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Juan A. López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
5
|
Plaza-Florido A, Gálvez BG, López JA, Santos-Lozano A, Zazo S, Rincón-Castanedo C, Martín-Ruiz A, Lumbreras J, Terron-Camero LC, López-Soto A, Andrés-León E, González-Murillo Á, Rojo F, Ramírez M, Lucia A, Fiuza-Luces C. Exercise and tumor proteome: insights from a neuroblastoma model. Physiol Genomics 2024; 56:833-844. [PMID: 39311839 PMCID: PMC11573273 DOI: 10.1152/physiolgenomics.00064.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
The impact of exercise on pediatric tumor biology is essentially unknown. We explored the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). Tumor samples of 14 male mice (aged 6-8 wk) that were randomly allocated into an exercise (5-wk combined aerobic and resistance training) or nonexercise control group (6 and 8 mice/group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, than controls [false discovery rate (FDR) < 0.05]. These proteins were enriched in metabolic pathways, amino acid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling (FDR < 0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR < 0.01). Categories with lower abundance were involved in energy production, whereas those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying the potential effects of exercise in HR-NB.NEW & NOTEWORTHY We used liquid chromatography with tandem mass spectrometry to explore the impact of a 5-wk exercise intervention on the tumor proteome profile in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma. Exercise altered the abundance of hundreds of proteins and pathways, particularly those involved in energy metabolism and tumor suppression. These molecular changes could mediate, at least partly, the potential antitumorigenic effects of exercise.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, United States
| | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Santos-Lozano
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- i+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Sandra Zazo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | | | - Asunción Martín-Ruiz
- Department of Cellular Biology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Lumbreras
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Laura C Terron-Camero
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | - Manuel Ramírez
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
6
|
Hernansanz-Agustín P, Morales-Vidal C, Calvo E, Natale P, Martí-Mateos Y, Jaroszewicz SN, Cabrera-Alarcón JL, Acín-Pérez R, López-Montero I, Vázquez J, Enríquez JA. A transmitochondrial sodium gradient controls membrane potential in mammalian mitochondria. Cell 2024; 187:6599-6613.e21. [PMID: 39303716 DOI: 10.1016/j.cell.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Eukaryotic cell function and survival rely on the use of a mitochondrial H+ electrochemical gradient (Δp), which is composed of an inner mitochondrial membrane (IMM) potential (ΔΨmt) and a pH gradient (ΔpH). So far, ΔΨmt has been assumed to be composed exclusively of H+. Here, using a rainbow of mitochondrial and nuclear genetic models, we have discovered that a Na+ gradient equates with the H+ gradient and controls half of ΔΨmt in coupled-respiring mammalian mitochondria. This parallelism is controlled by the activity of the long-sought Na+-specific Na+/H+ exchanger (mNHE), which we have identified as the P-module of complex I (CI). Deregulation of this mNHE function, without affecting the canonical enzymatic activity or the assembly of CI, occurs in Leber's hereditary optic neuropathy (LHON), which has profound consequences in ΔΨmt and mitochondrial Ca2+ homeostasis and explains the previously unknown molecular pathogenesis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| | - Carmen Morales-Vidal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Paolo Natale
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
| | - Yolanda Martí-Mateos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | | | | | - Rebeca Acín-Pérez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Iván López-Montero
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain; Instituto Pluridisciplinar-UCM, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| |
Collapse
|
7
|
Núñez E, Gómez-Serrano M, Calvo E, Bonzon-Kulichenko E, Trevisan-Herraz M, Rodríguez JM, García-Marqués F, Magni R, Lara-Pezzi E, Martín-Ventura JL, Camafeita E, Vázquez J. A Multiplexed Quantitative Proteomics Approach to the Human Plasma Protein Signature. Biomedicines 2024; 12:2118. [PMID: 39335631 PMCID: PMC11428418 DOI: 10.3390/biomedicines12092118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the plasma proteome being able to provide a unique insight into the health and disease status of individuals, holding singular promise as a source of protein biomarkers that could be pivotal in the context of personalized medicine, only around 100 proteins covering a few human conditions have been approved as biomarkers by the US Food and Drug Administration (FDA) so far. Mass spectrometry (MS) currently has enormous potential for high-throughput analysis in clinical research; however, plasma proteomics remains challenging mainly due to the wide dynamic range of plasma protein abundances and the time-consuming procedures required. We applied a new MS-based multiplexed proteomics workflow to quantitate proteins, encompassing 67 FDA-approved biomarkers, in >1300 human plasma samples from a clinical cohort. Our results indicate that this workflow is suitable for large-scale clinical studies, showing good accuracy and reproducibility (coefficient of variation (CV) < 20 for 90% of the proteins). Furthermore, we identified plasma signature proteins (stable in time on an individual basis), stable proteins (exhibiting low biological variability and high temporal stability), and highly variable proteins (with low temporal stability) that can be used for personalized health monitoring and medicine.
Collapse
Affiliation(s)
- Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany;
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Elena Bonzon-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
| | - Marco Trevisan-Herraz
- International Center for Life, Newcastle University, Newcastle upon Tyne NE1 4EP, UK;
| | - José Manuel Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
| | | | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - José Luis Martín-Ventura
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- IIS-Fundación Jiménez-Díaz, 28015 Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| |
Collapse
|
8
|
Martin-Blazquez A, Martin-Lorenzo M, Santiago-Hernandez A, Heredero A, Donado A, Lopez JA, Anfaiha-Sanchez M, Ruiz-Jimenez R, Esteban V, Vazquez J, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients. J Proteome Res 2024; 23:3012-3024. [PMID: 38594816 PMCID: PMC11301675 DOI: 10.1021/acs.jproteome.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.
Collapse
Affiliation(s)
- Ariadna Martin-Blazquez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Marta Martin-Lorenzo
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | | | - Angeles Heredero
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Alicia Donado
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Juan A Lopez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miriam Anfaiha-Sanchez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Rocio Ruiz-Jimenez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Vanesa Esteban
- Department
of Allergy and Immunology, IIS-Fundación
Jiménez Díaz, Fundación Jiménez Díaz
Hospital-UAM, 28040 Madrid, Spain
- Faculty
of Medicine and Biomedicine, Alfonso X El
Sabio University, 28691 Madrid, Spain
| | - Jesus Vazquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
- RICORS2040, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department
of Biochemistry and Molecular Biology, Complutense
University, 28040 Madrid, Spain
| |
Collapse
|
9
|
García-Poyatos C, Arora P, Calvo E, Marques IJ, Kirschke N, Galardi-Castilla M, Lembke C, Meer M, Fernández-Montes P, Ernst A, Haberthür D, Hlushchuk R, Vázquez J, Vermathen P, Enríquez JA, Mercader N. Cox7a1 controls skeletal muscle physiology and heart regeneration through complex IV dimerization. Dev Cell 2024; 59:1824-1841.e10. [PMID: 38701784 DOI: 10.1016/j.devcel.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.
Collapse
Affiliation(s)
- Carolina García-Poyatos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Fragilidad y Envejecimiento saludable (CIBERFES), Madrid, Spain
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ines J Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Nick Kirschke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | | | - Carla Lembke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | | | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - David Haberthür
- MicroCT research group, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ruslan Hlushchuk
- MicroCT research group, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Peter Vermathen
- University Institute of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Methodology, University of Bern, Bern, Switzerland
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Fragilidad y Envejecimiento saludable (CIBERFES), Madrid, Spain.
| | - Nadia Mercader
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Santiago-Hernandez A, Martin-Lorenzo M, Gómez-Serrano M, Lopez JA, Martin-Blazquez A, Vellosillo P, Minguez P, Martinez PJ, Vázquez J, Ruiz-Hurtado G, Barderas MG, Sarafidis P, Segura J, Ruilope LM, Alvarez-Llamas G. The Urinary Glycopeptide Profile Differentiates Early Cardiorenal Risk in Subjects Not Meeting Criteria for Chronic Kidney Disease. Int J Mol Sci 2024; 25:7005. [PMID: 39000114 PMCID: PMC11241500 DOI: 10.3390/ijms25137005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Early diagnosis and treatment of chronic kidney disease (CKD) is a worldwide challenge. Subjects with albumin-to-creatinine ratio (ACR) ≥ 30 mg/g and preserved renal function are considered to be at no cardiorenal risk in clinical practice, but prospective clinical studies evidence increased risk, even at the high-normal (HN) ACR range (10-30 mg/g), supporting the need to identify other molecular indicators for early assessment of patients at higher risk. Following our previous studies, here we aim to stratify the normoalbuminuria range according to cardiorenal risk and identify the glycoproteins and N-glycosylation sites associated with kidney damage in subclinical CKD. Glycoproteins were analyzed in urine from hypertensive patients within the HN ACR range compared to control group (C; ACR < 10 mg/g) by mass spectrometry. A different cohort was analyzed for confirmation (ELISA) and sex perspective was evaluated. Patients' follow-up for 8 years since basal urine collection revealed higher renal function decline and ACR progression for HN patients. Differential N-glycopeptides and their N -glycosylation sites were also identified, together with their pathogenicity. N-glycosylation may condition pathological protein deregulation, and a panel of 62 glycoproteins evidenced alteration in normoalbuminuric subjects within the HN range. Haptoglobin-related protein, haptoglobin, afamin, transferrin, and immunoglobulin heavy constant gamma 1 (IGHG1) and 2 (IGHG2) showed increased levels in HN patients, pointing to disturbed iron metabolism and tubular reabsorption and supporting the tubule as a target of interest in the early progression of CKD. When analyzed separately, haptoglobin, afamin, transferrin, and IGHG2 remained significant in HN, in both women and men. At the peptide level, 172 N-glycopeptides showed differential abundance in HN patients, and 26 showed high pathogenicity, 10 of them belonging to glycoproteins that do not show variation between HN and C groups. This study highlights the value of glycosylation in subjects not meeting KDIGO criteria for CKD. The identified N-glycopeptides and glycosylation sites showed novel targets, for both the early assessment of individual cardiorenal risk and for intervention aimed at anticipating CKD progression.
Collapse
Grants
- PI16/01334, PI20/01103, IF08/3667-1, CPII20/00022, CPII21/00015, CP22/00100, FI21/00128, PRB3 [IPT17/0019-ISCIII-SGEFI/ERDF], RICORS2040 [RD21/0005/0001] Instituto de Salud Carlos III
- PID2021-122348NB-I00, PLEC2022-009235 and PLEC2022-009298 Ministerio de Ciencia, Innovación y Universidades
- PEJ-2020-AI/BMD-17899; PEJD-2019-PRE/BMD-16992, 2018-T2/BMD-11561, P2022/BMD-7333 Comunidad de Madrid
- N/A Fundación SENEFRO/SEN
- N/A Fundación Mutua Madrileña
- HR17-00247 and LCF/PR/HR22/52420019 La Caixa Banking Foundation
- N/A Fundación Conchita Rábago
Collapse
Affiliation(s)
- Aranzazu Santiago-Hernandez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Marta Martin-Lorenzo
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - María Gómez-Serrano
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Juan Antonio Lopez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
| | - Ariadna Martin-Blazquez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Perceval Vellosillo
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Pablo Minguez
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Paula J. Martinez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
| | - Gema Ruiz-Hurtado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, IDISCAM, 45004 Toledo, Spain
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julian Segura
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Hypertension Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Ruilope
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- School of Doctoral Studies and Research, European University of Madrid, 28005 Madrid, Spain
| | - Gloria Alvarez-Llamas
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- RICORS2040, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
11
|
Santamans AM, Cicuéndez B, Mora A, Villalba-Orero M, Rajlic S, Crespo M, Vo P, Jerome M, Macías Á, López JA, Leiva M, Rocha SF, León M, Rodríguez E, Leiva L, Pintor Chocano A, García Lunar I, García-Álvarez A, Hernansanz-Agustín P, Peinado VI, Barberá JA, Ibañez B, Vázquez J, Spinelli JB, Daiber A, Oliver E, Sabio G. MCJ: A mitochondrial target for cardiac intervention in pulmonary hypertension. SCIENCE ADVANCES 2024; 10:eadk6524. [PMID: 38241373 PMCID: PMC10798563 DOI: 10.1126/sciadv.adk6524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
Pulmonary hypertension (PH) can affect both pulmonary arterial tree and cardiac function, often leading to right heart failure and death. Despite the urgency, the lack of understanding has limited the development of effective cardiac therapeutic strategies. Our research reveals that MCJ modulates mitochondrial response to chronic hypoxia. MCJ levels elevate under hypoxic conditions, as in lungs of patients affected by COPD, mice exposed to hypoxia, and myocardium from pigs subjected to right ventricular (RV) overload. The absence of MCJ preserves RV function, safeguarding against both cardiac and lung remodeling induced by chronic hypoxia. Cardiac-specific silencing is enough to protect against cardiac dysfunction despite the adverse pulmonary remodeling. Mechanistically, the absence of MCJ triggers a protective preconditioning state mediated by the ROS/mTOR/HIF-1α axis. As a result, it preserves RV systolic function following hypoxia exposure. These discoveries provide a potential avenue to alleviate chronic hypoxia-induced PH, highlighting MCJ as a promising target against this condition.
Collapse
Affiliation(s)
- Ayelén M. Santamans
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Cicuéndez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonso Mora
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - María Villalba-Orero
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Sanela Rajlic
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
- Department of Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
| | - María Crespo
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA 01605
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA 01605
| | - Álvaro Macías
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio López
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel mechanisms of Atherocleroclerosis Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Susana F. Rocha
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta León
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Elena Rodríguez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Leiva
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Aránzazu Pintor Chocano
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Inés García Lunar
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Ana García-Álvarez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Clínic Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor I. Peinado
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberá
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Borja Ibañez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel mechanisms of Atherocleroclerosis Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jessica B. Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA 01605
- UMass Chan Medical School Cancer Center, Worcester MA 01605
| | - Andreas Daiber
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Eduardo Oliver
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Investigaciones biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Guadalupe Sabio
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
12
|
Binek A, Castans C, Jorge I, Bagwan N, Rodríguez JM, Fernández-Jiménez R, Galán-Arriola C, Oliver E, Gómez M, Clemente-Moragón A, Ibanez B, Camafeita E, Vázquez J. Oxidative Post-translational Protein Modifications upon Ischemia/Reperfusion Injury. Antioxidants (Basel) 2024; 13:106. [PMID: 38247530 PMCID: PMC10812827 DOI: 10.3390/antiox13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
While reperfusion, or restoration of coronary blood flow in acute myocardial infarction, is a requisite for myocardial salvage, it can paradoxically induce a specific damage known as ischemia/reperfusion (I/R) injury. Our understanding of the precise pathophysiological molecular alterations leading to I/R remains limited. In this study, we conducted a comprehensive and unbiased time-course analysis of post-translational modifications (PTMs) in the post-reperfused myocardium of two different animal models (pig and mouse) and evaluated the effect of two different cardioprotective therapies (ischemic preconditioning and neutrophil depletion). In pigs, a first wave of irreversible oxidative damage was observed at the earliest reperfusion time (20 min), impacting proteins essential for cardiac contraction. A second wave, characterized by irreversible oxidation on different residues and reversible Cys oxidation, occurred at late stages (6-12 h), affecting mitochondrial, sarcomere, and inflammation-related proteins. Ischemic preconditioning mitigated the I/R damage caused by the late oxidative wave. In the mouse model, the two-phase pattern of oxidative damage was replicated, and neutrophil depletion mitigated the late wave of I/R-related damage by preventing both Cys reversible oxidation and irreversible oxidation. Altogether, these data identify protein PTMs occurring late after reperfusion as an actionable therapeutic target to reduce the impact of I/R injury.
Collapse
Grants
- PGC2018-097019-B-I00, PID2021-122348NB-I00, PID2022-140176OB-I00 Spanish Ministry of Science, Innovation and Universities
- Fondo de Investigación Sanitaria grant PRB3 PT17/0019/0003- ISCIII-SGEFI / ERDF, ProteoRed Instituto de Salud Carlos III
- IMMUNO-VAR, P2022/BMD-7333, and RENIM-CM, P2022/BMD-7403 Comunidad de Madrid
- HR17-00247, HR22-00533 and HR22-00253 "la Caixa" Banking Foundation
- ERC Consolidator Grant "MATRIX", 819775 European Commission
- grant PI22/01560 ISCIII-Fondo de Investigación Sanitaria and European Union
- FP7-PEOPLE-2013-ITN-Cardionext European Union's Seventh Framework Programme
- Formacion del Profesorado Universitario (FPU14/05292) Spanish Ministry of Education, Culture and Sports
- PID2021-133167OB-100, RYC2020-028884-I, CEX2020-001041-S MCIN/AEI/10.13039/501100011033
Collapse
Affiliation(s)
- Aleksandra Binek
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Celia Castans
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Navratan Bagwan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - José Manuel Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Cardiology, Hospital Universitario Clínico San Carlos, Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Mónica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Avenida Reyes Católicos, 2, 28040 Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
13
|
Marín-Vicente C, Calvo E, Rodríguez JM, Villa Del Campo C, Sierra R, Végvári Á, Zubarev RA, Torres M, Vázquez J. A Sample Preparation Procedure for Isobaric Labeling-Based Single-Cell Proteomics. Methods Mol Biol 2024; 2817:33-43. [PMID: 38907145 DOI: 10.1007/978-1-0716-3934-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mass spectrometry-based proteomics has traditionally been limited by the amount of input material for analysis. Single-cell proteomics has emerged as a challenging discipline due to the ultra-high sensitivity required. Isobaric labeling-based multiplex strategies with a carrier proteome offer an approach to overcome the sensitivity limitations. Following this as the basic strategy, we show here the general workflow for preparing cells for single-cell mass spectrometry-based proteomics. This protocol can also be applied to manually isolated cells when large cells, such as cardiomyocytes, are difficult to isolate properly with conventional fluorescence-activated cell sorting (FACS) sorter methods.
Collapse
Affiliation(s)
- Consuelo Marín-Vicente
- Cardiovascular Proteomics Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
| | - Enrique Calvo
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Manuel Rodríguez
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Cristina Villa Del Campo
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Rocío Sierra
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Ákos Végvári
- Division of Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Torres
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Jesús Vázquez
- Cardiovascular Proteomics Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
14
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
15
|
Romero-Becerra R, Cruz FM, Mora A, Lopez JA, Ponce-Balbuena D, Allan A, Ramos-Mondragón R, González-Terán B, León M, Rodríguez ME, Leiva-Vega L, Guerrero-Serna G, Jimenez-Vazquez EN, Filgueiras-Rama D, Vázquez J, Jalife J, Sabio G. p38γ/δ activation alters cardiac electrical activity and predisposes to ventricular arrhythmia. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1204-1220. [PMID: 39196141 DOI: 10.1038/s44161-023-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/19/2023] [Indexed: 08/29/2024]
Abstract
Ventricular fibrillation (VF) is a leading immediate cause of sudden cardiac death. There is a strong association between aging and VF, although the mechanisms are unclear, limiting the availability of targeted therapeutic interventions. Here we found that the stress kinases p38γ and p38δ are activated in the ventricles of old mice and mice with genetic or drug-induced arrhythmogenic conditions. We discovered that, upon activation, p38γ and p38δ cooperatively increase the susceptibility to stress-induced VF. Mechanistically, our data indicate that activated p38γ and p38δ phosphorylate ryanodine receptor 2 (RyR2) disrupt Kv4.3 channel localization, promoting sarcoplasmic reticulum calcium leak, Ito current reduction and action potential duration prolongation. In turn, this led to aberrant intracellular calcium handling, premature ventricular complexes and enhanced susceptibility to VF. Blocking this pathway protected genetically modified animals from VF development and reduced the VF duration in aged animals. These results indicate that p38γ and p38δ are a potential therapeutic target for sustained VF prevention.
Collapse
Affiliation(s)
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Daniela Ponce-Balbuena
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Allan
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Roberto Ramos-Mondragón
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bárbara González-Terán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Gladstone Institutes, San Francisco, CA, USA
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Eric N Jimenez-Vazquez
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
16
|
Santamaría R, Cruz-Caballero J, Gkontra P, Jiménez-Montiel A, Clemente C, López JA, Villalba-Orero M, Vázquez J, Hutloff A, Lara-Pezzi E, Arroyo AG. Capillary pruning couples tissue perfusion and oxygenation with cardiomyocyte maturation in the postnatal mouse heart. Front Cell Dev Biol 2023; 11:1256127. [PMID: 38020883 PMCID: PMC10661946 DOI: 10.3389/fcell.2023.1256127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Removal of poorly perfused capillaries by pruning contributes to remodeling the microvasculature to optimize oxygen and nutrient delivery. Blood flow drives this process by promoting the intravascular migration of endothelial cells in developing networks, such as in the yolk sac, zebrafish brain or postnatal mouse retina. Methods: In this study, we have implemented innovative tools to recognize capillary pruning in the complex 3D coronary microvasculature of the postnatal mouse heart. We have also experimentally tested the impact of decreasing pruning on the structure and function of this network by altering blood flow with two different vasodilators: losartan and prazosin. Results: Although both drugs reduced capillary pruning, a combination of experiments based on ex vivo imaging, proteomics, electron microscopy and in vivo functional approaches showed that losartan treatment resulted in an inefficient coronary network, reduced myocardial oxygenation and metabolic changes that delayed the arrest of cardiomyocyte proliferation, in contrast to the effects of prazosin, probably due to its concomitant promotion of capillary expansion. Discussion: Our work demonstrates that capillary pruning contributes to proper maturation and function of the heart and that manipulation of blood flow may be a novel strategy to refine the microvasculature and improve tissue perfusion after damage.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Polyxeni Gkontra
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
| | | | - Cristina Clemente
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Juan A. López
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Villalba-Orero
- Myocardial Pathology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
- German Rheumatism Research Centre, A Leibniz Institute, Berlin, Germany
| | - Enrique Lara-Pezzi
- Myocardial Pathology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
17
|
Calzada-Fraile D, Iborra S, Ramírez-Huesca M, Jorge I, Dotta E, Hernández-García E, Martín-Cófreces N, Nistal-Villán E, Veiga E, Vázquez J, Pasqual G, Sánchez-Madrid F. Immune synapse formation promotes lipid peroxidation and MHC-I upregulation in licensed dendritic cells for efficient priming of CD8 + T cells. Nat Commun 2023; 14:6772. [PMID: 37880206 PMCID: PMC10600134 DOI: 10.1038/s41467-023-42480-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Antigen cognate dendritic cell (DC)-T cell synaptic interactions drive activation of T cells and instruct DCs. Upon receiving CD4+ T cell help, post-synaptic DCs (psDCs) are licensed to generate CD8+ T cell responses. However, the cellular and molecular mechanisms that enable psDCs licensing remain unclear. Here, we describe that antigen presentation induces an upregulation of MHC-I protein molecules and increased lipid peroxidation on psDCs in vitro and in vivo. We also show that these events mediate DC licensing. In addition, psDC adoptive transfer enhances pathogen-specific CD8+ T responses and protects mice from infection in a CD8+ T cell-dependent manner. Conversely, depletion of psDCs in vivo abrogates antigen-specific CD8+ T cell responses during immunization. Together, our data show that psDCs enable CD8+ T cell responses in vivo during vaccination and reveal crucial molecular events underlying psDC licensing.
Collapse
Affiliation(s)
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Enrico Dotta
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Noa Martín-Cófreces
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Dynamic Video Microscopy Unit, Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006, Madrid, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28668, Madrid, Spain
| | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain.
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006, Madrid, Spain.
| |
Collapse
|
18
|
Pearsall SM, Williamson SC, Humphrey S, Hughes E, Morgan D, García Marqués FJ, Awanis G, Carroll R, Burks L, Shue YT, Bermudez A, Frese KK, Galvin M, Carter M, Priest L, Kerr A, Zhou C, Oliver TG, Humphries JD, Humphries MJ, Blackhall F, Cannell IG, Pitteri SJ, Hannon GJ, Sage J, Dive C, Simpson KL. Lineage Plasticity in SCLC Generates Non-Neuroendocrine Cells Primed for Vasculogenic Mimicry. J Thorac Oncol 2023; 18:1362-1385. [PMID: 37455012 PMCID: PMC10561473 DOI: 10.1016/j.jtho.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin β1-dependent process. CONCLUSIONS We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.
Collapse
Affiliation(s)
- Sarah M Pearsall
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Stuart C Williamson
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Ellyn Hughes
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | | | - Griselda Awanis
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Rebecca Carroll
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Laura Burks
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, Stanford, California; Department of Genetics, Stanford University, Stanford, California
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford, California
| | - Kristopher K Frese
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Cong Zhou
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Trudy G Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Jonathan D Humphries
- Faculty of Biology Medicine and Health, Wellcome Centre for Cell-Matrix Research, University of Manchester, United Kingdom; Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martin J Humphries
- Faculty of Biology Medicine and Health, Wellcome Centre for Cell-Matrix Research, University of Manchester, United Kingdom
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom; Medical Oncology, Christie Hospital National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford, California
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California; Department of Genetics, Stanford University, Stanford, California
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom.
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| |
Collapse
|
19
|
Enríquez-Vázquez D, Quintanilla JG, García-Escolano A, Couselo-Seijas M, Simón-Chica A, Lee P, Alfonso-Almazán JM, Mahía P, Redondo-Rodríguez A, Modrego J, Ortega-Hernández A, Marcos-Alberca P, Magni R, Calvo E, Gómez-Gordo R, Yan P, La Rosa G, Bustamante-Madrión J, Pérez-García CN, Martín-Sánchez FJ, Calvo D, de la Hera JM, García-Torrent MJ, García-Osuna Á, Ordonez-Llanos J, Vázquez J, Pérez-Villacastín J, Pérez-Castellano N, Loew LM, Sánchez-González J, Gómez-Garre D, Filgueiras-Rama D. Non-invasive electromechanical assessment during atrial fibrillation identifies underlying atrial myopathy alterations with early prognostic value. Nat Commun 2023; 14:4613. [PMID: 37542075 PMCID: PMC10403561 DOI: 10.1038/s41467-023-40196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Electromechanical characterization during atrial fibrillation (AF) remains a significant gap in the understanding of AF-related atrial myopathy. This study reports mechanistic insights into the electromechanical remodeling process associated with AF progression and further demonstrates its prognostic value in the clinic. In pigs, sequential electromechanical assessment during AF progression shows a progressive decrease in mechanical activity and early dissociation from its electrical counterpart. Atrial tissue samples from animals with AF reveal an abnormal increase in cardiomyocytes death and alterations in calcium handling proteins. High-throughput quantitative proteomics and immunoblotting analyses at different stages of AF progression identify downregulation of contractile proteins and progressive increase in atrial fibrosis. Moreover, advanced optical mapping techniques, applied to whole heart preparations during AF, demonstrate that AF-related remodeling decreases the frequency threshold for dissociation between transmembrane voltage signals and intracellular calcium transients compared to healthy controls. Single cell simulations of human atrial cardiomyocytes also confirm the experimental results. In patients, non-invasive assessment of the atrial electromechanical relationship further demonstrate that atrial electromechanical dissociation is an early prognostic indicator for acute and long-term rhythm control.
Collapse
Affiliation(s)
- Daniel Enríquez-Vázquez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Servicio de Cardiología, Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge G Quintanilla
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Alba García-Escolano
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marinela Couselo-Seijas
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Peter Lee
- Essel Research and Development Inc., Toronto, ON, Canada
| | - José Manuel Alfonso-Almazán
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Patricia Mahía
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Andrés Redondo-Rodríguez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Modrego
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Adriana Ortega-Hernández
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pedro Marcos-Alberca
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ricardo Magni
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Calvo
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rubén Gómez-Gordo
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Giulio La Rosa
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José Bustamante-Madrión
- Emergency Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carlos Nicolás Pérez-García
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - F Javier Martín-Sánchez
- Emergency Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - David Calvo
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Jesús M de la Hera
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | - Álvaro García-Osuna
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques, IIB Sant Pau, Barcelona, Spain
| | - Jordi Ordonez-Llanos
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universidad Autónoma, Barcelona, Spain
- Foundation for Clinical Biochemistry & Molecular Pathology, Madrid, Spain
| | - Jesús Vázquez
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Julián Pérez-Villacastín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Dulcenombre Gómez-Garre
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Microbiota y Biología Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - David Filgueiras-Rama
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
20
|
Sánchez-Cabo F, Fuster V, Silla-Castro JC, González G, Lorenzo-Vivas E, Alvarez R, Callejas S, Benguría A, Gil E, Núñez E, Oliva B, Mendiguren JM, Cortes-Canteli M, Bueno H, Andrés V, Ordovás JM, Fernández-Friera L, Quesada AJ, Garcia JM, Rossello X, Vázquez J, Dopazo A, Fernández-Ortiz A, Ibáñez B, Fuster JJ, Lara-Pezzi E. Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: a multi-omics study. Eur Heart J 2023:ehad361. [PMID: 37339167 PMCID: PMC10393076 DOI: 10.1093/eurheartj/ehad361] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
AIMS Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association. METHODS AND RESULTS Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification. In healthy individuals, the presence, extension, and progression of subclinical atherosclerosis were associated with a significant acceleration of the Grim epigenetic age, a predictor of health and lifespan, regardless of traditional cardiovascular risk factors. Individuals with an accelerated Grim epigenetic age were characterized by an increased systemic inflammation and associated with a score of low-grade, chronic inflammation. Mediation analysis using transcriptomics and proteomics data revealed key pro-inflammatory pathways (IL6, Inflammasome, and IL10) and genes (IL1B, OSM, TLR5, and CD14) mediating the association between subclinical atherosclerosis and epigenetic age acceleration. CONCLUSION The presence, extension, and progression of subclinical atherosclerosis in middle-aged asymptomatic individuals are associated with an acceleration in the Grim epigenetic age. Mediation analysis using transcriptomics and proteomics data suggests a key role of systemic inflammation in this association, reinforcing the relevance of interventions on inflammation to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai School of Medicine, One Gustave L. Levy. Place, New York, NY 10029, USA
| | - Juan Carlos Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Gema González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Erika Lorenzo-Vivas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rebeca Alvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Sergio Callejas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Alberto Benguría
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Eduardo Gil
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Belén Oliva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | | | - Marta Cortes-Canteli
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Cardiology, IIS-Fundación Jiménez Díaz Hospital, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. de Córdoba, s/n 28041 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Jose María Ordovás
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Precision Nutrition and Obesity Research Program, IMDEA Food Institute, CEI UAM + CSIC, Carr. de Canto Blanco, nº 8 E, 28049 Madrid, Spain
- U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM CIEC, Av. de Montepríncipe, 25, 28660 Boadilla del Monte, Madrid, Spain
| | - Antonio J Quesada
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Jose Manuel Garcia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Hospital Universitario Central de Oviedo, Av. Roma, s/n, 33011 Asturias, Spain
| | - Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Hospital Universitari Son Espases-IDISBA, Carretera de Valldemossa, 79, 07120 Palma de Mallorca, Mallorca, Islas Baleares (Balearic Islands), Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Hospital Clínico San Carlos, Calle del Prof Martín Lagos, S/N, 28040 Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Cardiology, IIS-Fundación Jiménez Díaz Hospital, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Jose Javier Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
21
|
Paredes A, Justo-Méndez R, Jiménez-Blasco D, Núñez V, Calero I, Villalba-Orero M, Alegre-Martí A, Fischer T, Gradillas A, Sant'Anna VAR, Were F, Huang Z, Hernansanz-Agustín P, Contreras C, Martínez F, Camafeita E, Vázquez J, Ruiz-Cabello J, Area-Gómez E, Sánchez-Cabo F, Treuter E, Bolaños JP, Estébanez-Perpiñá E, Rupérez FJ, Barbas C, Enríquez JA, Ricote M. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 2023; 618:365-373. [PMID: 37225978 DOI: 10.1038/s41586-023-06068-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.
Collapse
Affiliation(s)
- Ana Paredes
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Justo-Méndez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Daniel Jiménez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Vanessa Núñez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Calero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Villalba-Orero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Medicina y Cirugía Animal, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB/CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Felipe Were
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carmen Contreras
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Martínez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense Madrid (UCM), Madrid, Spain
| | - Estela Area-Gómez
- Departament of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Department of Neurology, Columbia University Medical Campus, New York, NY, USA
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Francisco Javier Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - José Antonio Enríquez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mercedes Ricote
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
22
|
Fernández-Chacón M, Mühleder S, Regano A, Garcia-Ortega L, Rocha SF, Torroja C, Sanchez-Muñoz MS, Lytvyn M, Casquero-Garcia V, De Andrés-Laguillo M, Muhl L, Orlich MM, Gaengel K, Camafeita E, Vázquez J, Benguría A, Iruela-Arispe ML, Dopazo A, Sánchez-Cabo F, Carter H, Benedito R. Incongruence between transcriptional and vascular pathophysiological cell states. NATURE CARDIOVASCULAR RESEARCH 2023; 2:2023530-549. [PMID: 37745941 PMCID: PMC7615119 DOI: 10.1038/s44161-023-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.
Collapse
Affiliation(s)
- Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alvaro Regano
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lourdes Garcia-Ortega
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana F. Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Maria S. Sanchez-Muñoz
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Verónica Casquero-Garcia
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Macarena De Andrés-Laguillo
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Michael M. Orlich
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ana Dopazo
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
23
|
Sánchez-Castillo C, Cuartero MI, Fernández-Rodrigo A, Briz V, López-García S, Jiménez-Sánchez R, López JA, Graupera M, Esteban JA. Functional specialization of different PI3K isoforms for the control of neuronal architecture, synaptic plasticity, and cognition. SCIENCE ADVANCES 2022; 8:eabq8109. [PMID: 36417513 PMCID: PMC9683729 DOI: 10.1126/sciadv.abq8109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Neuronal connectivity and activity-dependent synaptic plasticity are fundamental properties that support brain function and cognitive performance. Phosphatidylinositol 3-kinase (PI3K) intracellular signaling controls multiple mechanisms mediating neuronal growth, synaptic structure, and plasticity. However, it is still unclear how these pleiotropic functions are integrated at molecular and cellular levels. To address this issue, we used neuron-specific virally delivered Cre expression to delete either p110α or p110β (the two major catalytic isoforms of type I PI3K) from the hippocampus of adult mice. We found that dendritic and postsynaptic structures are almost exclusively supported by p110α activity, whereas p110β controls neurotransmitter release and metabotropic glutamate receptor-dependent long-term depression at the presynaptic terminal. In addition to these separate functions, p110α and p110β jointly contribute to N-methyl-d-aspartate receptor-dependent postsynaptic long-term potentiation. This molecular and functional specialization is reflected in different proteomes controlled by each isoform and in distinct behavioral alterations for learning/memory and sociability in mice lacking p110α or p110β.
Collapse
Affiliation(s)
- Carla Sánchez-Castillo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - María I. Cuartero
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Alba Fernández-Rodrigo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Víctor Briz
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Sergio López-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Jiménez-Sánchez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Juan A. López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Esteban
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
24
|
Izquierdo-Serrano R, Fernández-Delgado I, Moreno-Gonzalo O, Martín-Gayo E, Calzada-Fraile D, Ramírez-Huesca M, Jorge I, Camafeita E, Abián J, Vicente-Manzanares M, Veiga E, Vázquez J, Sánchez-Madrid F. Extracellular vesicles from Listeria monocytogenes-infected dendritic cells alert the innate immune response. Front Immunol 2022; 13:946358. [PMID: 36131943 PMCID: PMC9483171 DOI: 10.3389/fimmu.2022.946358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Communication through cell-cell contacts and extracellular vesicles (EVs) enables immune cells to coordinate their responses against diverse types of pathogens. The function exerted by EVs in this context depends on the proteins and nucleic acids loaded into EVs, which elicit specific responses involved in the resolution of infection. Several mechanisms control protein and nucleic acid loading into EVs; in this regard, acetylation has been described as a mechanism of cellular retention during protein sorting to exosomes. HDAC6 is a deacetylase involved in the control of cytoskeleton trafficking, organelle polarity and cell migration, defense against Listeria monocytogenes (Lm) infection and other immune related functions. Here, we show that the protein content of dendritic cells (DCs) and their secreted EVs (DEVs) vary during Lm infection, is enriched in proteins related to antiviral functions compared to non-infected cells and depends on HDAC6 expression. Analyses of the post-translational modifications revealed an alteration of the acetylation and ubiquitination profiles upon Lm infection both in DC lysates and DEVs. Functionally, EVs derived from infected DCs upregulate anti-pathogenic genes (e.g. inflammatory cytokines) in recipient immature DCs, which translated into protection from subsequent infection with vaccinia virus. Interestingly, absence of Listeriolysin O in Lm prevents DEVs from inducing this anti-viral state. In summary, these data underscore a new mechanism of communication between bacteria-infected DC during infection as they alert neighboring, uninfected DCs to promote antiviral responses.
Collapse
Affiliation(s)
- Raúl Izquierdo-Serrano
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Irene Fernández-Delgado
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Olga Moreno-Gonzalo
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Enrique Martín-Gayo
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Marta Ramírez-Huesca
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Inmaculada Jorge
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Joaquín Abián
- Biological and Environmental Proteomics, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain
| | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Vázquez
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- *Correspondence: Francisco Sánchez-Madrid,
| |
Collapse
|
25
|
Nuñez E, Orera I, Carmona-Rodríguez L, Paño JR, Vázquez J, Corrales FJ. Mapping the Serum Proteome of COVID-19 Patients; Guidance for Severity Assessment. Biomedicines 2022; 10:1690. [PMID: 35884998 PMCID: PMC9313396 DOI: 10.3390/biomedicines10071690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose outbreak in 2019 led to an ongoing pandemic with devastating consequences for the global economy and human health. According to the World Health Organization, COVID-19 has affected more than 481 million people worldwide, with 6 million confirmed deaths. The joint efforts of the scientific community have undoubtedly increased the pace of production of COVID-19 vaccines, but there is still so much uncharted ground to cover regarding the mechanisms of SARS-CoV-2 infection, replication and host response. These issues can be approached by proteomics with unprecedented capacity paving the way for the development of more efficient strategies for patient care. In this study, we present a deep proteome analysis that has been performed on a cohort of 72 COVID-19 patients aiming to identify serum proteins assessing the dynamics of the disease at different age ranges. A panel of 53 proteins that participate in several functions such as acute-phase response and inflammation, blood coagulation, cell adhesion, complement cascade, endocytosis, immune response, oxidative stress and tissue injury, have been correlated with patient severity, suggesting a molecular basis for their clinical stratification. Eighteen protein candidates were further validated by targeted proteomics in an independent cohort of 84 patients including a group of individuals that had satisfactorily resolved SARS-CoV-2 infection. Remarkably, all protein alterations were normalized 100 days after leaving the hospital, which further supports the reliability of the selected proteins as hallmarks of COVID-19 progression and grading. The optimized protein panel may prove its value for optimal severity assessment as well as in the follow up of COVID-19 patients.
Collapse
Affiliation(s)
- Estefanía Nuñez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiovascular Proteomics Laboratory, Centro Nacional de Enfermedades Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain;
| | | | - José Ramón Paño
- Division of Infectious Diseases, Hospital Clínico Universitario, IIS Aragón, Ciberinfec, 50009 Zaragoza, Spain;
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiovascular Proteomics Laboratory, Centro Nacional de Enfermedades Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Fernando J. Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
| |
Collapse
|
26
|
Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, Oller J, Martinez-Lopez D, Nuñez E, Maller SM, Gutierrez-Muñoz C, Mendez-Barbero N, Escola-Gil JC, Michel JB, Mittelbrunn M, Vázquez J, Blanco-Colio LM, Rabinovich GA, Martin-Ventura JL. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. SCIENCE ADVANCES 2022; 8:eabm7322. [PMID: 35294231 PMCID: PMC8926342 DOI: 10.1126/sciadv.abm7322] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a β-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.
Collapse
Affiliation(s)
- Raquel Roldán-Montero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan M. Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Isabel Cerro-Pardo
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
| | - Jorge Oller
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sebastian M. Maller
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | | | - Nerea Mendez-Barbero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Maria Mittelbrunn
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis M. Blanco-Colio
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428AGE Buenos Aires, Argentina
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| | - Jose L. Martin-Ventura
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| |
Collapse
|
27
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
28
|
Lechuga-Vieco AV, Latorre-Pellicer A, Calvo E, Torroja C, Pellico J, Acín-Pérez R, García-Gil ML, Santos A, Bagwan N, Bonzon-Kulichenko E, Magni R, Benito M, Justo-Méndez R, Simon AK, Sánchez-Cabo F, Vázquez J, Ruíz-Cabello J, Enríquez JA. Heteroplasmy of Wild Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation 2022; 145:1084-1101. [PMID: 35236094 PMCID: PMC8969846 DOI: 10.1161/circulationaha.121.056286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is uniparentally transmitted and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of more than one mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent non-pathological mtDNAs heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. Methods: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiological and phenotyping techniques. We focused on in vivo imaging techniques for non-invasive assessment of cardiac and pulmonary energy metabolism. Results: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. Conclusions: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.
Collapse
Affiliation(s)
- Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ana Latorre-Pellicer
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, ISS-Aragon, Zaragoza, Spain
| | - Enrique Calvo
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Carlos Torroja
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Juan Pellico
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rebeca Acín-Pérez
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - María Luisa García-Gil
- Centro Nacional de Microscopia Electrónica (ICTS-CNME), Universidad Complutense de Madrid, Madrid, Spain
| | - Arnoldo Santos
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain; ITC, Ingeniería y Técnicas Clínicas, Madrid, Spain
| | - Navratan Bagwan
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Elena Bonzon-Kulichenko
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Raquel Justo-Méndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | | | - Jesús Vázquez
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Ruíz-Cabello
- CIC biomaGUNE, 2014, Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Spain; Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
29
|
Sastre-Oliva T, Corbacho-Alonso N, Albo-Escalona D, Lopez JA, Lopez-Almodovar LF, Vázquez J, Padial LR, Mourino-Alvarez L, Barderas MG. The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants (Basel) 2022; 11:antiox11020317. [PMID: 35204200 PMCID: PMC8868205 DOI: 10.3390/antiox11020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Diego Albo-Escalona
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Juan A. Lopez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis F. Lopez-Almodovar
- Cardiac Surgery, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis R. Padial
- Department of cardiology, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| |
Collapse
|
30
|
Unbiased plasma proteomics discovery of biomarkers for improved detection of subclinical atherosclerosis. EBioMedicine 2022; 76:103874. [PMID: 35152150 PMCID: PMC8844841 DOI: 10.1016/j.ebiom.2022.103874] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Background Imaging of subclinical atherosclerosis improves cardiovascular risk prediction on top of traditional risk factors. However, cardiovascular imaging is not universally available. This work aims to identify circulating proteins that could predict subclinical atherosclerosis. Methods Hypothesis-free proteomics was used to analyze plasma from 444 subjects from PESA cohort study (222 with extensive atherosclerosis on imaging, and 222 matched controls) at two timepoints (three years apart) for discovery, and from 350 subjects from AWHS cohort study (175 subjects with extensive atherosclerosis on imaging and 175 matched controls) for external validation. A selected three-protein panel was further validated by immunoturbidimetry in the AWHS population and in 2999 subjects from ILERVAS cohort study. Findings PIGR, IGHA2, APOA, HPT and HEP2 were associated with subclinical atherosclerosis independently from traditional risk factors at both timepoints in the discovery and validation cohorts. Multivariate analysis rendered a potential three-protein biomarker panel, including IGHA2, APOA and HPT. Immunoturbidimetry confirmed the independent associations of these three proteins with subclinical atherosclerosis in AWHS and ILERVAS. A machine-learning model with these three proteins was able to predict subclinical atherosclerosis in ILERVAS (AUC [95%CI]:0.73 [0.70–0.74], p < 1 × 10−99), and also in the subpopulation of individuals with low cardiovascular risk according to FHS 10-year score (0.71 [0.69–0.73], p < 1 × 10−69). Interpretation Plasma levels of IGHA2, APOA and HPT are associated with subclinical atherosclerosis independently of traditional risk factors and offers potential to predict this disease. The panel could improve primary prevention strategies in areas where imaging is not available.
Collapse
|
31
|
Aslan M, Hsu EC, Garcia-Marques FJ, Bermudez A, Liu S, Shen M, West M, Zhang CA, Rice MA, Brooks JD, West R, Pitteri SJ, Győrffy B, Stoyanova T. Oncogene-mediated metabolic gene signature predicts breast cancer outcome. NPJ Breast Cancer 2021; 7:141. [PMID: 34711841 PMCID: PMC8553750 DOI: 10.1038/s41523-021-00341-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together, our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.
Collapse
Affiliation(s)
- Merve Aslan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Fernando J Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Michelle Shen
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Meredith West
- Department of Urology, Stanford University, Stanford, CA, USA
| | | | - Meghan A Rice
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Robert West
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Balázs Győrffy
- TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja, 1094, Budapest, Hungary
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Tüzoltó Utca 7-9, 1094, Budapest, Hungary
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
González-Amor M, García-Redondo AB, Jorge I, Zalba G, Becares M, Ruiz-Rodríguez MJ, Rodríguez C, Bermeo H, Rodrigues-Díez R, Rios FJ, Montezano AC, Martínez-González J, Vázquez J, Redondo JM, Touyz RM, Guerra S, Salaices M, Briones AM. Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress. Cardiovasc Res 2021; 118:3250-3268. [PMID: 34672341 PMCID: PMC9799052 DOI: 10.1093/cvr/cvab321] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
AIMS Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that induces a reversible post-translational modification (ISGylation) and can also be secreted as a free form. ISG15 plays an essential role as host-defence response to microbial infection; however, its contribution to vascular damage associated with hypertension is unknown. METHODS AND RESULTS Bioinformatics identified ISG15 as a mediator of hypertension-associated vascular damage. ISG15 expression positively correlated with systolic and diastolic blood pressure and carotid intima-media thickness in human peripheral blood mononuclear cells. Consistently, Isg15 expression was enhanced in aorta from hypertension models and in angiotensin II (AngII)-treated vascular cells and macrophages. Proteomics revealed differential expression of proteins implicated in cardiovascular function, extracellular matrix and remodelling, and vascular redox state in aorta from AngII-infused ISG15-/- mice. Moreover, ISG15-/- mice were protected against AngII-induced hypertension, vascular stiffness, elastin remodelling, endothelial dysfunction, and expression of inflammatory and oxidative stress markers. Conversely, mice with excessive ISGylation (USP18C61A) show enhanced AngII-induced hypertension, vascular fibrosis, inflammation and reactive oxygen species (ROS) generation along with elastin breaks, aortic dilation, and rupture. Accordingly, human and murine abdominal aortic aneurysms showed augmented ISG15 expression. Mechanistically, ISG15 induces vascular ROS production, while antioxidant treatment prevented ISG15-induced endothelial dysfunction and vascular remodelling. CONCLUSION ISG15 is a novel mediator of vascular damage in hypertension through oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Ana B García-Redondo
- Present address. Departamento de Fisiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain. This manuscript was handled by Deputy Editor Dr David G. Harrison
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Guillermo Zalba
- Departamento de Bioquímica y Genética, Instituto de Investigación Sanitaria de Navarra, Facultad de Ciencias, Universidad de Navarra, C/ Irunlarrea, 1, Pamplona 31008 Navarra, Spain
| | - Martina Becares
- Departamento de Medicina Preventiva y Microbiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - María J Ruiz-Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Grupo de Regulación Génica en Remodelado Cardiovascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Institut de Recerca Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí, 77, 08041 Barcelona, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain
| | - Hugo Bermeo
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain,Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), C/ Rosselló, 161, 08036, Barcelona, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Juan Miguel Redondo
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Grupo de Regulación Génica en Remodelado Cardiovascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Susana Guerra
- Departamento de Medicina Preventiva y Microbiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | | |
Collapse
|
33
|
Rodríguez-Carrio J, Cerro-Pardo I, Lindholt JS, Bonzon-Kulichenko E, Martínez-López D, Roldán-Montero R, Escolà-Gil JC, Michel JB, Blanco-Colio LM, Vázquez J, Suárez A, Martín-Ventura JL. Malondialdehyde-modified HDL particles elicit a specific IgG response in abdominal aortic aneurysm. Free Radic Biol Med 2021; 174:171-181. [PMID: 34364980 DOI: 10.1016/j.freeradbiomed.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
High Density Lipoprotein (HDL) plays a protective role in abdominal aortic aneurysm (AAA); however, recent findings suggest that oxidative modifications could lead to dysfunctional HDL in AAA. This study aimed at testing the effect of oxidized HDL on aortic lesions and humoral immune responses in a mouse model of AAA induced by elastase, and evaluating whether antibodies against modified HDL can be found in AAA patients. HDL particles were oxidized with malondialdehyde (HDL-MDA) and the changes were studied by biochemical and proteomics approaches. Experimental AAA was induced in mice by elastase perfusion and then mice were treated with HDL-MDA, HDL or vehicle for 14 days. Aortic lesions were studied by histomorphometric analysis. Levels of anti-HDL-MDA IgG antibodies were measured by an in-house immunoassay in the mouse model, in human tissue-supernatants and in plasma samples from the VIVA cohort. HDL oxidation with MDA was confirmed by enhanced susceptibility to diene formation. Proteomics demonstrated the presence of MDA adducts on Lysine residues of HDL proteins, mainly ApoA-I. MDA-modification of HDL abrogated the protective effect of HDL on cultured endothelial cells as well as on AAA dilation in mice. Exposure to HDL-MDA elicited an anti-HDL-MDA IgG response in mice. Anti-HDL-MDA were also detected in tissue-conditioned media from AAA patients, mainly in intraluminal thrombus. Higher plasma levels of anti-HDL-MDA IgG antibodies were found in AAA patients compared to controls. Anti-HDL-MDA levels were associated with smoking and were independent predictors of overall mortality in AAA patients. Overall, MDA-oxidized HDL trigger a specific humoral immune response in mice. Besides, antibodies against HDL-MDA can be detected in tissue and plasma of AAA patients, suggesting its potential use as surrogate stable biomarkers of oxidative stress in AAA.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | | | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elena Bonzon-Kulichenko
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Joan-Carles Escolà-Gil
- Institut de Investigació Biomédica Sant Pau, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | | | - Luis Miguel Blanco-Colio
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Suárez
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Martín-Ventura
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
34
|
Yuste-Montalvo A, Fernandez-Bravo S, Oliva T, Pastor-Vargas C, Betancor D, Goikoetxea MJ, Laguna JJ, López JA, Alvarez-Llamas G, Cuesta-Herranz J, Martin-Lorenzo M, Esteban V. Proteomic and Biological Analysis of an In Vitro Human Endothelial System in Response to Drug Anaphylaxis. Front Immunol 2021; 12:692569. [PMID: 34248989 PMCID: PMC8269062 DOI: 10.3389/fimmu.2021.692569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Anaphylaxis is a life-threatening systemic hypersensitivity reaction. During anaphylaxis, mediator release by effector cells causes endothelial barrier breakdown, increasing vascular permeability and leakage of fluids, which may lead to tissue edema. Although endothelial cells (ECs) are key players in this context, scant attention has been paid to the molecular analysis of the vascular system, and further analyses of this cell type are necessary, especially in humans. The protein expression pattern of human microvascular ECs was analyzed in response to sera from anaphylactic patients (EC-anaphylaxis) and sera from non-allergic subjects (EC-control) after 2 hours of contact. Firstly, a differential quantitative proteomic analysis of the protein extracts was performed by mass spectrometry using an isobaric labeling method. Second, the coordinated behavior of the identified proteins was analyzed using systems biology analysis (SBA). The proteome of the EC-anaphylaxis system showed 7,707 proteins, of which 1,069 were found to be significantly altered between the EC-control and EC-anaphylaxis groups (p-value < 0.05). Among them, a subproteome of 47 proteins presented a high rate of change (|ΔZq| ≥ 3). This panel offers an endothelial snapshot of the anaphylactic reaction. Those proteins with the highest individual changes in abundance were hemoglobin subunits and structural support proteins. The interacting network analysis of this altered subproteome revealed that the coagulation and complement systems are the main biological processes altered in the EC-anaphylactic system. The comprehensive SBA resulted in 5,512 functional subcategories (biological processes), 57 of which were significantly altered between EC-control and EC-anaphylaxis. The complement system, once again, was observed as the main process altered in the EC system created with serum from anaphylactic patients. Findings of the current study further our understanding of the underlying pathophysiological mechanisms operating in anaphylactic reactions. New target proteins and relevant signaling pathways operating in the in vitro endothelial-serum system have been identified. Interestingly, our results offer a protein overview of the micro-EC-anaphylaxis environment. The relevance of the coagulation, fibrinolytic, contact and complement systems in human anaphylaxis is described. Additionally, the untargeted high-throughput analysis used here is a novel approach that reveals new pathways in the study of the endothelial niche in anaphylaxis.
Collapse
Affiliation(s)
- Alma Yuste-Montalvo
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Tamara Oliva
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Carlos Pastor-Vargas
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Diana Betancor
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - María José Goikoetxea
- Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Department of Allergy and Clinic Immunology, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Julio Laguna
- Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central de la Cruz Roja, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Gloria Alvarez-Llamas
- Inmunoallergy and Proteomics Laboratory, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Cuesta-Herranz
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Martin-Lorenzo
- Inmunoallergy and Proteomics Laboratory, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
35
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
36
|
Martínez-López D, Roldan-Montero R, García-Marqués F, Nuñez E, Jorge I, Camafeita E, Minguez P, Rodriguez de Cordoba S, López-Melgar B, Lara-Pezzi E, Fernández-Ortiz A, Ibáñez B, Valdivielso JM, Fuster V, Michel JB, Blanco-Colio LM, Vázquez J, Martin-Ventura JL. Complement C5 Protein as a Marker of Subclinical Atherosclerosis. J Am Coll Cardiol 2021; 75:1926-1941. [PMID: 32327104 DOI: 10.1016/j.jacc.2020.02.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The mechanisms underlying early atherosclerotic plaque formation are not completely understood. Moreover, plasma biomarkers of subclinical atherosclerosis are lacking. OBJECTIVES The purpose of this study was to analyze the temporal and topologically resolved protein changes taking place in human aortas with early atherosclerosis to find new potential diagnostic and/or therapeutic targets. METHODS The protein composition of healthy aortas (media layer) or with early atheroma (fatty streak and fibrolipidic, media and intima layers) was analyzed by deep quantitative multiplexed proteomics. Further analysis was performed by Western blot, immunohistochemistry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Plasma levels of complement C5 were analyzed in relation to the presence of generalized (>2 plaques) or incipient (0 to 2 plaques) subclinical atherosclerosis in 2 independent clinical cohorts (PESA [Progression of Early Subclinical Atherosclerosis] [n = 360] and NEFRONA [National Observatory of Atherosclerosis in Nephrology] [n = 394]). RESULTS Proteins involved in lipid transport, complement system, immunoglobulin superfamily, and hemostasis are increased in early plaques. Components from the complement activation pathway were predominantly increased in the intima of fibrolipidic plaques. Among them, increased C5 protein levels were further confirmed by Western blot, enzyme-linked immunosorbent assay and immunohistochemistry, and associated with in situ complement activation. Plasma C5 was significantly increased in individuals with generalized subclinical atherosclerosis in both PESA and NEFRONA cohorts, independently of risk factors. Moreover, in the PESA study, C5 plasma levels positively correlated with global plaque volume and coronary calcification. CONCLUSIONS Activation of the complement system is a major alteration in early atherosclerotic plaques and is reflected by increased C5 plasma levels, which have promising value as a novel circulating biomarker of subclinical atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Pablo Minguez
- IIS-Fundación Jiménez Díaz-Universidad Autónoma, and CIBERER, Madrid, Spain
| | | | - Beatriz López-Melgar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain; Hospital Universitario HM Montepríncipe-CIEC and Universidad CEU San Pablo, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain; Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - Borja Ibáñez
- IIS-Fundación Jiménez Díaz-Universidad Autónoma, and CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain; Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain.
| | | |
Collapse
|
37
|
Piñeyro-Ruiz C, Serrano H, Jorge I, Miranda-Valentin E, Pérez-Brayfield MR, Camafeita E, Mesa R, Vázquez J, Jorge JC. A Proteomics Signature of Mild Hypospadias: A Pilot Study. Front Pediatr 2020; 8:586287. [PMID: 33425810 PMCID: PMC7786202 DOI: 10.3389/fped.2020.586287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background and Objective: Mild hypospadias is a birth congenital condition characterized by the relocation of the male urethral meatus from its typical anatomical position near the tip of the glans penis, to a lower ventral position up to the brim of the glans corona, which can also be accompanied by foreskin ventral deficiency. For the most part, a limited number of cases have known etiology. We have followed a high-throughput proteomics approach to study the proteome in mild hypospadias patients. Methods: Foreskin samples from patients with mild hypospadias were collected during urethroplasty, while control samples were collected during elective circumcision (n = 5/group). A high-throughput, quantitative proteomics approach based on multiplexed peptide stable isotope labeling (SIL) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to ascertain protein abundance changes in hypospadias patients when compared to control samples. Results: A total of 4,815 proteins were quantitated (2,522 with at least two unique peptides). One hundred and thirty-three proteins from patients with mild hypospadias showed significant abundance changes with respect to control samples, where 38 proteins were increased, and 95 proteins were decreased. Unbiased functional biological analysis revealed that both mitochondrial energy production and apoptotic signaling pathways were enriched in mild hypospadias. Conclusions: This first comprehensive proteomics characterization of mild hypospadias shows molecular changes associated with essential cellular processes related to energy production and apoptosis. Further evaluation of the proteome may expand the search of novel candidates in the etiology of mild hypospadias and could also lead to the identification of biomarkers for this congenital urogenital condition.
Collapse
Affiliation(s)
- Coriness Piñeyro-Ruiz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Horacio Serrano
- Department of Internal Medicine, School of Medicine, University of Puerto Rico, San Juan, PR, United States
- Clinical Proteomics Laboratory, Internal Medicine Department, Comprehensive Cancer Center (CCC)-Medical Sciences Campus (MSC)-University of Puerto Rico (UPR), San Juan, PR, United States
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eric Miranda-Valentin
- Department of Internal Medicine, School of Medicine, University of Puerto Rico, San Juan, PR, United States
- Clinical Proteomics Laboratory, Internal Medicine Department, Comprehensive Cancer Center (CCC)-Medical Sciences Campus (MSC)-University of Puerto Rico (UPR), San Juan, PR, United States
| | - Marcos R. Pérez-Brayfield
- Department of Surgery, Urology Section, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Raquel Mesa
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Carlos Jorge
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
38
|
Lorenzo C, Delgado P, Busse CE, Sanz-Bravo A, Martos-Folgado I, Bonzon-Kulichenko E, Ferrarini A, Gonzalez-Valdes IB, Mur SM, Roldán-Montero R, Martinez-Lopez D, Martin-Ventura JL, Vázquez J, Wardemann H, Ramiro AR. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 2020; 589:287-292. [PMID: 33268892 DOI: 10.1038/s41586-020-2993-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.
Collapse
Affiliation(s)
- Cristina Lorenzo
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Delgado
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christian E Busse
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Alejandro Sanz-Bravo
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Elena Bonzon-Kulichenko
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alessia Ferrarini
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ileana B Gonzalez-Valdes
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sonia M Mur
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Roldán-Montero
- Vascular Pathology Lab, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Diego Martinez-Lopez
- Vascular Pathology Lab, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Jose L Martin-Ventura
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Vascular Pathology Lab, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Almudena R Ramiro
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
39
|
Lavado-García J, González-Domínguez I, Cervera L, Jorge I, Vázquez J, Gòdia F. Molecular Characterization of the Coproduced Extracellular Vesicles in HEK293 during Virus-Like Particle Production. J Proteome Res 2020; 19:4516-4532. [PMID: 32975947 PMCID: PMC7640977 DOI: 10.1021/acs.jproteome.0c00581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/22/2022]
Abstract
Vaccine therapies based on virus-like particles (VLPs) are currently in the spotlight due to their potential for generating high immunogenic responses while presenting fewer side effects than conventional vaccines. These self-assembled nanostructures resemble the native conformation of the virus but lack genetic material. They are becoming a promising platform for vaccine candidates against several diseases due to the ability of modifying their membrane with antigens from different viruses. The coproduction of extracellular vesicles (EVs) when producing VLPs is a key phenomenon currently still under study. In order to characterize this extracellular environment, a quantitative proteomics approach has been carried out. Three conditions were studied: non-transfected, transfected with an empty plasmid as control, and transfected with a plasmid coding for HIV-1 Gag polyprotein. A shift in EV biogenesis has been detected upon transfection, changing the production from large to small EVs. Another remarkable trait found was the presence of DNA being secreted within vesicles smaller than 200 nm. Studying the protein profile of these biological nanocarriers, it was observed that EVs were reflecting an overall energy homeostasis disruption via mitochondrial protein deregulation. Also, immunomodulatory proteins like ITGB1, ENO3, and PRDX5 were identified and quantified in VLP and EV fractions. These findings provide insight on the nature of the VLP extracellular environment defining the characteristics and protein profile of EVs, with potential to develop new downstream separation strategies or using them as adjuvants in viral therapies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Irene González-Domínguez
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
40
|
Proteomic analysis of plasma proteins of high-flux haemodialysis and on-line haemodiafiltration patients reveals differences in transthyretin levels related with anaemia. Sci Rep 2020; 10:16029. [PMID: 32994444 PMCID: PMC7524835 DOI: 10.1038/s41598-020-72104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/26/2020] [Indexed: 11/08/2022] Open
Abstract
A large proportion of end-stage renal disease (ESRD) patients under long-term haemodialysis, have persistent anaemia and require high doses of recombinant human erythropoietin (rhEPO). However, the underlying mechanisms of renal anaemia have not been fully elucidated in these patients. In this study, we will be focusing on anaemia and plasma proteins in ESRD patients on high-flux haemodialysis (HF) and on-line haemodiafiltration (HDF), to investigate using two proteomic approaches if patients undergoing these treatments develop differences in their plasma protein composition and how this could be related to their anaemia. The demographic and biochemical data revealed that HDF patients had lower anaemia and much lower rhEPO requirements than HF patients. Regarding their plasma proteomes, HDF patients had increased levels of a protein highly similar to serotransferrin, trypsin-1 and immunoglobulin heavy constant chain alpha-1, and lower levels of alpha-1 antitrypsin, transthyretin, apolipoproteins E and C-III, and haptoglobin-related protein. Lower transthyretin levels in HDF patients were further confirmed by transthyretin-peptide quantification and western blot detection. Since ESRD patients have increased transthyretin, a protein that can aggregate and inhibit transferrin endocytosis and erythropoiesis, our finding that HDF patients have lower transthyretin and lower anaemia suggests that the decrease in transthyretin plasma levels would allow an increase in transferrin endocytosis, contributing to erythropoiesis. Thus, transthyretin could be a critical actor for anaemia in ESRD patients and a novel player for haemodialysis adequacy.
Collapse
|
41
|
Fanjul V, Jorge I, Camafeita E, Macías Á, González‐Gómez C, Barettino A, Dorado B, Andrés‐Manzano MJ, Rivera‐Torres J, Vázquez J, López‐Otín C, Andrés V. Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging. Aging Cell 2020; 19:e13203. [PMID: 32729659 PMCID: PMC7511870 DOI: 10.1111/acel.13203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson–Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition. Despite differences in body composition and metabolic markers, prematurely and normally aging mice developed heart failure and similar cardiac electrical abnormalities. High‐throughput proteomics of the hearts of progeric and normally aged mice revealed altered protein oxidation and glycation, as well as dysregulated pathways regulating energy metabolism, proteostasis, gene expression, and cardiac muscle contraction. These results were corroborated in the hearts of progeric pigs, underscoring the translational potential of our findings, which could help in the design of strategies to prevent or slow age‐related cardiometabolic disease.
Collapse
Affiliation(s)
- Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Oncología Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Cristina González‐Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - María Jesús Andrés‐Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - José Rivera‐Torres
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Oncología Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC) Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| |
Collapse
|
42
|
Strippoli R, Sandoval P, Moreno-Vicente R, Rossi L, Battistelli C, Terri M, Pascual-Antón L, Loureiro M, Matteini F, Calvo E, Jiménez-Heffernan JA, Gómez MJ, Jiménez-Jiménez V, Sánchez-Cabo F, Vázquez J, Tripodi M, López-Cabrera M, Del Pozo MÁ. Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death Dis 2020; 11:647. [PMID: 32811813 PMCID: PMC7435273 DOI: 10.1038/s41419-020-02822-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-β1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-β1 signaling. Importantly, TGF-β1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-β1 inhibition. Conversely, CAV1 depletion enhanced both TGF-β1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-β1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy. .,Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.
| | - Pilar Sandoval
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain
| | - Roberto Moreno-Vicente
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Lucia Rossi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Lucía Pascual-Antón
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain
| | - Marta Loureiro
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francesca Matteini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrique Calvo
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Departamento de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), 28006, Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Victor Jiménez-Jiménez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Manuel López-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain.
| | - Miguel Ángel Del Pozo
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.
| |
Collapse
|
43
|
López E, Marinaro F, de Pedro MDLÁ, Sánchez-Margallo FM, Gómez-Serrano M, Ponath V, Pogge von Strandmann E, Jorge I, Vázquez J, Fernández-Pereira LM, Crisóstomo V, Álvarez V, Casado JG. The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling. Front Cell Dev Biol 2020; 8:321. [PMID: 32582685 PMCID: PMC7295954 DOI: 10.3389/fcell.2020.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental data demonstrated that the regenerative potential and immunomodulatory capacity of cardiosphere-derived cells (CDCs) is mediated by paracrine mechanisms. In this process, extracellular vesicles derived from CDCs (EV-CDCs) are key mediators of their therapeutic effect. Considering the future applicability of these vesicles in human diseases, an accurate preclinical-to-clinical translation is needed, as well as an exhaustive molecular characterization of animal-derived therapeutic products. Based on that, the main goal of this study was to perform a comprehensive characterization of proteins and miRNAs in extracellular vesicles from porcine CDCs as a clinically relevant animal model. The analysis was performed by identification and quantification of proteins and miRNA expression profiles. Our results revealed the presence of clusters of immune-related and cardiac-related molecular biomarkers in EV-CDCs. Additionally, considering that priming stem cells with inflammatory stimuli may increase the therapeutic potential of released vesicles, here we studied the dynamic changes that occur in the extracellular vesicles from IFNγ-primed CDCs. These analyses detected statistically significant changes in several miRNAs and proteins. Notably, the increase in interleukin 6 (IL6) protein, as well as the increase in mir-125b (that targets IL6 receptor) was especially relevant. These results suggest a potential involvement of EV-CDCs in the regulation of the IL6/IL6R axis, with implications in inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.,Clinic for Hematology, Oncology, and Immunology, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Verónica Crisóstomo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
44
|
Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y, Rubio-Ponce A, Cilloniz C, Bonzón-Kulichenko E, Calvo E, Rico D, Moro MA, Weber C, Lizasoaín I, Torres A, Ruiz-Cabello J, Vázquez J, Hidalgo A. Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol 2020; 21:135-144. [PMID: 31932813 PMCID: PMC7223223 DOI: 10.1038/s41590-019-0571-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.
Collapse
Affiliation(s)
- Jose M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alejandra Aroca-Crevillén
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Georgiana Crainiciuc
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fernando Ostos
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yeny Rojas-Vega
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Andrea Rubio-Ponce
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Catia Cilloniz
- Department of Pneumology, Institut Clinic de Respiratori, Hospital Clinic of Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Ciber de Enfermedades, Barcelona, Spain
| | - Elena Bonzón-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - María A Moro
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany
- German Cardiovascular Research Centre (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Ignacio Lizasoaín
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Antoni Torres
- Department of Pneumology, Institut Clinic de Respiratori, Hospital Clinic of Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Ciber de Enfermedades, Barcelona, Spain
| | - Jesús Ruiz-Cabello
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Ciber de Enfermedades Respiratorias, Madrid, Spain
- Universidad Complutense Madrid, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany.
| |
Collapse
|
45
|
Lavado-García J, Jorge I, Cervera L, Vázquez J, Gòdia F. Multiplexed Quantitative Proteomic Analysis of HEK293 Provides Insights into Molecular Changes Associated with the Cell Density Effect, Transient Transfection, and Virus-Like Particle Production. J Proteome Res 2020; 19:1085-1099. [DOI: 10.1021/acs.jproteome.9b00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jesús Lavado-García
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Laura Cervera
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
46
|
Rossello X, Rodriguez-Sinovas A, Vilahur G, Crisóstomo V, Jorge I, Zaragoza C, Zamorano JL, Bermejo J, Ordoñez A, Boscá L, Vázquez J, Badimón L, Sánchez-Margallo FM, Fernández-Avilés F, Garcia-Dorado D, Ibanez B. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): A multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci Rep 2019; 9:20290. [PMID: 31889088 PMCID: PMC6937304 DOI: 10.1038/s41598-019-56613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Despite many cardioprotective interventions have shown to protect the heart against ischemia/reperfusion injury in the experimental setting, only few of them have succeeded in translating their findings into positive proof-of-concept clinical trials. Controversial and inconsistent experimental and clinical evidence supports the urgency of a disruptive paradigm shift for testing cardioprotective therapies. There is a need to evaluate experimental reproducibility before stepping into the clinical arena. The CIBERCV (acronym for Spanish network-center for cardiovascular biomedical research) has set up the "Cardioprotection Large Animal Platform" (CIBER-CLAP) to perform experimental studies testing the efficacy and reproducibility of promising cardioprotective interventions based on a pre-specified design and protocols, randomization, blinding assessment and other robust methodological features. Our first randomized, control-group, open-label blinded endpoint experimental trial assessing local ischemic preconditioning (IPC) in a pig model of acute myocardial infarction (n = 87) will be carried out in three separate sets of experiments performed in parallel by three laboratories. Each set aims to assess: (A) CMR-based outcomes; (B) histopathological-based outcomes; and (C) protein-based outcomes. Three core labs will assess outcomes in a blinded fashion (CMR imaging, histopathology and proteomics) and 2 methodological core labs will conduct the randomization and statistical analysis.
Collapse
Affiliation(s)
- Xavier Rossello
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antonio Rodriguez-Sinovas
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Investigación en Enfermedades Cardiovasculares, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Gemma Vilahur
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Programa ICCC-Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Verónica Crisóstomo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Inmaculada Jorge
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Servicio de Cardiologia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - José L Zamorano
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Servicio de Cardiologia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | - Javier Bermejo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Ordoñez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Lisardo Boscá
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Programa ICCC-Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Francisco Fernández-Avilés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - David Garcia-Dorado
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Investigación en Enfermedades Cardiovasculares, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Borja Ibanez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.
| |
Collapse
|
47
|
Bonzon-Kulichenko E, Camafeita E, López JA, Gómez-Serrano M, Jorge I, Calvo E, Núñez E, Trevisan-Herraz M, Bagwan N, Bárcena JA, Peral B, Vázquez J. Improved integrative analysis of the thiol redox proteome using filter-aided sample preparation. J Proteomics 2019; 214:103624. [PMID: 31874222 DOI: 10.1016/j.jprot.2019.103624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
Changes in the oxidation state of protein Cys residues are involved in cell signalling and play a key role in a variety of pathophysiological states. We had previously developed GELSILOX, an in-gel method that enables the large-scale, parallel analysis of dynamic alterations to the redox state of Cys sites and protein abundance changes. Here we present FASILOX, a further development of the GELSILOX approach featuring: i) significantly increased peptide recovery, ii) enhanced sensitivity for the detection of Cys oxidative alterations, and iii) streamlined workflow that results in shortened assay duration. In mitochondria isolated from the adipose tissue of obese, diabetic patients, FASILOX revealed a sexually dimorphic trait of Cys oxidation involving mainly mitochondrial oxidative phosphorylation complexes. These results provide the first evidence for a decreased efficiency in the antioxidant response of men as compared to women.
Collapse
Affiliation(s)
- Elena Bonzon-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Gómez-Serrano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM), Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Estefanía Núñez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marco Trevisan-Herraz
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Navratan Bagwan
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Antonio Bárcena
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Belén Peral
- Instituto de Investigaciones Biomédicas, Alberto Sols, (IIBM), Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
48
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
49
|
Toribio‐Fernández R, Herrero‐Fernandez B, Zorita V, López JA, Vázquez J, Criado G, Pablos JL, Collas P, Sánchez‐Madrid F, Andrés V, Gonzalez‐Granado JM. Lamin A/C deficiency in CD4
+
T‐cells enhances regulatory T‐cells and prevents inflammatory bowel disease. J Pathol 2019; 249:509-522. [DOI: 10.1002/path.5332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
| | - Juan A López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- CIBER de Enfermedades Cardiovasculares Madrid Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- CIBER de Enfermedades Cardiovasculares Madrid Spain
| | - Gabriel Criado
- Instituto de Investigación Hospital 12 de Octubre (imas12) Madrid Spain
| | - Jose L Pablos
- Instituto de Investigación Hospital 12 de Octubre (imas12) Madrid Spain
| | - Philippe Collas
- Institute of Basic Medical SciencesUniversity of Oslo Oslo Norway
| | - Francisco Sánchez‐Madrid
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- CIBER de Enfermedades Cardiovasculares Madrid Spain
- Servicio de Inmunología, Hospital de la PrincesaInstituto de Investigación Sanitaria La Princesa (IIS Princesa) Madrid Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- CIBER de Enfermedades Cardiovasculares Madrid Spain
| | - Jose M Gonzalez‐Granado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Instituto de Investigación Hospital 12 de Octubre (imas12) Madrid Spain
- CIBER de Enfermedades Cardiovasculares Madrid Spain
- Departamento de Fisiología, Facultad de MedicinaUniversidad Autónoma de Madrid (UAM) Madrid Spain
| |
Collapse
|
50
|
Torregrosa-Carrión R, Luna-Zurita L, García-Marqués F, D'Amato G, Piñeiro-Sabarís R, Bonzón-Kulichenko E, Vázquez J, de la Pompa JL. NOTCH Activation Promotes Valve Formation by Regulating the Endocardial Secretome. Mol Cell Proteomics 2019; 18:1782-1795. [PMID: 31249105 PMCID: PMC6731085 DOI: 10.1074/mcp.ra119.001492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/24/2019] [Indexed: 11/06/2022] Open
Abstract
The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-β2 (TGFβ2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfβ2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.
Collapse
Affiliation(s)
- Rebeca Torregrosa-Carrión
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN
| | - Luis Luna-Zurita
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN
| | | | - Gaetano D'Amato
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; ‖Department of Biology, Stanford University, Stanford, CA 94305
| | - Rebeca Piñeiro-Sabarís
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN
| | - Elena Bonzón-Kulichenko
- §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN; **Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN
| | - Jesús Vázquez
- §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN; **Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN
| | - José Luis de la Pompa
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN.
| |
Collapse
|