1
|
Wu M, Yang J, Tian Z, Sun H, Zhang Z, Luo J, Guan G, Yin H, Niu Q, Hao R. Transcriptome profiling reveals that the host BRD4 protein facilitates African swine fever virus infection and suppresses inflammatory cytokine expression by downregulating transcriptional regulatory signaling pathways. Vet Microbiol 2025; 305:110498. [PMID: 40215802 DOI: 10.1016/j.vetmic.2025.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 05/17/2025]
Abstract
The African swine fever virus (ASFV), a complex DNA virus belonging to the Asfarviridae family, is a significant threat to the global swine industry because of its high mortality rates and impact on international trade. The establishment of a stable and efficient cell culture model of ASFV in vitro is helpful for the development of effective vaccines. Several passaged cell lines supporting ASFV replication have been reported to meet the scientific purpose of serial passage of ASFV to a certain extent, but it remains to be determined whether gene expression is lost or whether immunogenicity changes after serial passage of the virus. It is also unclear these edited cell lines how to affect ASFV replication. In our previous study, 3D4/21 cells were transduced with a lentivirus packaging system to express the BD1/2 domain of bromodomain-containing protein 4 (BRD4-BD1/2) and establish a 3D4/21-BD1/2 cell line, which efficiently increased ASFV replication. In this study, the role of bromodomain-containing protein 4 (BRD4), particularly its BD1/2 domains,in enhancing ASFV replication was investigated using an engineered 3D4/21 cell line. Through RNA-Seq transcriptomic analysis, we revealed that the host BRD4 protein facilitates ASFV infection and suppresses key transcription factors (CDK9 and p-CDK9) and inflammatory cytokine expression by downregulating transcriptional regulatory signaling pathways and suppressing innate immune responses. This dual mechanism of BRD4-BD1/2 in promoting ASFV immune evasion and adaptation underscores the virus's strategic exploitation of host epigenetic factors. These findings provide valuable insights into viral pathogenesis and identify potential therapeutic targets, paving the way for future antiviral strategies.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Hualin Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Zhonghui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China; African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China.
| |
Collapse
|
2
|
Nakato D, Morisada N, Iwatani S, Nishida C, Watanabe D, Yamada M, Suzuki H, Miya F, Kosaki K, Takenouchi T. RHOA-associated disorder can be non-mosaic. Eur J Med Genet 2025:105019. [PMID: 40414526 DOI: 10.1016/j.ejmg.2025.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/14/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Recurrent somatic mosaic pathogenic variants of RHOA have been observed in a newly identified neuroectodermal syndrome, Ectodermal Dysplasia with Facial Dysmorphism and Acral, Ocular, and Brain Anomalies, Somatic Mosaic [EDFAOB]. All 12 previously reported patients had somatic mosaicism for RHOA variants. Conversely, no patients with non-mosaic germline variants of RHOA have been reported. The absence of non-mosaic patients has been explained by the presumed lethal effect of all RHOA variants in non-mosaic status. Here we report an 11-month-old female with EDFAOB-like features but without Blaschko's skin lesions or asymmetry. Characteristic features included hypertelorism, 2-3 toes cutaneous syndactyly, cleft palate and duplicated uterus and kidney malformations. She carried the non-mosaic de novo germline variant RHOA:c.202C>A,p.(Arg68Ser) near the hotspot in the switch II region in peripheral blood and buccal swabs. The documentation of a living patient with a non-mosaic germline variant of RHOA negates the previous notion that patients with RHOA variants are not viable. The differential diagnosis of a "non-mosaic" RHOA-related disorder would include Ectodermal Dysplasia-Ectrodactyly-Clefting syndrome, as both conditions share ectodermal dysplasia, finger anomalies, and clefting. This phenotypic similarity may be explained by the known molecular interaction between TP63, the gene responsible for EEC syndrome, and RHOA. RHOA is a member of the RAC subfamily of small Rho family guanosine triphosphatases, which include RHOA, RAC1, RAC3, and CDC42 (Takenouchi-Kosaki syndrome). The documentation of germline RHOA-associated intellectual disability in the present article establishes that variants in all three genes of the RAC subfamily of small Rho family GTPases are associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daisuke Nakato
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
| | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Sota Iwatani
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Chikako Nishida
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Watanabe
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatric Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Gambardella A, Liu Y, Bennett MF, Green TE, Damiano JA, Fortunato F, Coleman MJ, Cherfils J, Barnier J, Gecz J, Bahlo M, Berkovic SF, Hildebrand MS. PAK3 pathogenic variant associated with sleep-related hypermotor epilepsy in a family with parental mosaicism. Epilepsia Open 2025; 10:593-601. [PMID: 39806575 PMCID: PMC12014923 DOI: 10.1002/epi4.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes. We analyzed an Italian family with sleep-related hypermotor epilepsy, intellectual disability, psychiatric and behavioral problems, and dysmorphic facial features. A novel PAK3 c.342_344del (p.Lys114del) inframe deletion was detected in the family. Protein structure analysis supported deleterious impact of p.Lys114 deletion through loss or partial loss of autoinhibition of PAK3 protein kinase activity. The male proband had drug-resistant hypermotor seizures and moderate intellectual disability. His brother had drug-responsive hypermotor seizures and mild intellectual disability. Both brothers were hemizygous and had psychiatric and behavioral problems as well as dysmorphic facial features. Their mother had never had seizures but was shown to be mosaic for the PAK3 pathogenic variant. She had normal intellect but did have short stature and dysmorphic facial features similar to her sons. This is the first reported association of a PAK3 pathogenic variant with sleep-related hypermotor epilepsy. PAK3 testing should be considered in families with suspected X-linked sleep-related hypermotor epilepsy and intellectual disability, including for mosaicism in mildly affected females. PLAIN LANGUAGE SUMMARY: We studied an Italian family with sleep-related hypermotor epilepsy, intellectual disability, psychiatric and behavioral problems, and dysmorphic facial features. A novel PAK3 c.342_344del (p.Lys114del) inframe deletion was detected in the family. Protein structure analysis supported deleterious impact of p.Lys114 deletion through loss or partial loss of autoinhibition of PAK3 protein kinase activity. This is the first reported association of a PAK3 pathogenic variant with sleep-related hypermotor epilepsy. PAK3 testing should be considered in families with suspected X-linked sleep-related hypermotor epilepsy and intellectual disability, including for mosaicism in mildly affected females.
Collapse
Affiliation(s)
- Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly
| | - Yu‐Chi Liu
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Mark F. Bennett
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Timothy E. Green
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - John A. Damiano
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly
| | - Matthew J. Coleman
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Neuroscience GroupMurdoch Children's Research Institute, Royal Children's HospitalParkvilleVictoriaAustralia
| | - Jacqueline Cherfils
- Université Paris‐Saclay, Ecole Normale Supérieure Paris‐Saclay CNRSGif‐sur‐YvetteFrance
| | - Jean‐Vianney Barnier
- Institut des Neurosciences Paris Saclay, Université Paris‐Saclay, CNRS SaclayParisFrance
| | - Jozef Gecz
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Neurogenetics Research ProgramSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Melanie Bahlo
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Neuroscience GroupMurdoch Children's Research Institute, Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Sugawara R, Hamada K, Ito H, Scala M, Ueda H, Tabata H, Ogata K, Nagata KI. A p.N92K variant of the GTPase RAC3 disrupts cortical neuron migration and axon elongation. J Biol Chem 2025; 301:108346. [PMID: 40015633 PMCID: PMC11968283 DOI: 10.1016/j.jbc.2025.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
RAC3 encodes a small GTPase of the Rho family, crucial for actin cytoskeleton organization and signaling pathways. De novo deleterious variants in RAC3 cause neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (NEDBAF). Disease-causing variants thus far reported are thought to impact key conserved regions within RAC3, such as the P-loop, switch I/II, and G boxes, which are essential for the interaction with regulatory proteins and effectors. Recently, however, a novel variant, c.276T > A, p.N92K, was identified in a prenatal case with complex brain malformations. This variant, located outside the core functional regions, represents a unique class of RAC3 pathogenic mutations. We investigated the variant's effects using in vitro, in silico, and in vivo approaches. Overexpression of RAC3-N92K in primary hippocampal neurons impaired differentiation, leading to round cell shape with lamellipodia, suggesting that RAC3-N92K is active. Biochemical studies showed that RAC3-N92K is (1) resistant to GAP-mediated inactivation, (2) responsive to GEF activation, and (3) capable of interacting with RAC effectors PAK1 and MLK2, as well as Rho-kinase 1, activating gene expression through SRF, NFκB, and AP1 pathways. Structural analyses suggest that N92K disrupts GAP interactions but preserves interactions with GEF, PAK1, and MLK2. In vivo, RAC3-N92K expression in embryonic mouse cortical neurons led to migration defects and periventricular clustering during corticogenesis, along with impaired axon elongation. These findings indicate that RAC3-N92K's activated state significantly disrupts cortical development, expanding the genetic and pathophysiological spectrum of NEDBAF.
Collapse
Affiliation(s)
- Ryota Sugawara
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
5
|
Scala M, Leong NCP, Uyen Le TN, Zhang Y, Wu Y, Severino M, Madia F, Shams Nosrati MS, Dostmohammadi A, Capra V, Paladini D, Buffelli F, Fulcheri E, Cappato S, Menta L, Bocciardi R, Zara F, Nguyen LN. A hypomorphic FLVCR2 variant resulting in moderate transport deficiency causes hydranencephaly syndrome with brain calcifications. Eur J Hum Genet 2025:10.1038/s41431-025-01836-7. [PMID: 40133703 DOI: 10.1038/s41431-025-01836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
FLVCR2 is a highly conserved member of the major facilitator superfamily (MFS), the largest superfamily of solute carriers that are involved in the transport of small molecules across lipid bilayers. The loss of the murine ortholog Mfsd7c, an endothelial transporter in brain blood vessels, causes brain angiogenic growth deficiency and lethality. Recessive FLVCR2 variants cause proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (PVHH), also known as Fowler syndrome. This often-lethal condition features microcephaly, skeletal deformities, and severe cerebrovascular defects. Although a number of cases have been reported, very limited evidence of the pathogenicity of FLVCR2 variants is available. In this study, we thoroughly investigated a new fetal case of Fowler syndrome. Through exome sequencing, we identified two compound heterozygous FLVCR2 variants: the maternal c.1124+3_1124+6del and the paternal p.(Arg492Trp). The effects of the c.1124+3_1124+6del variant were investigated through a minigene assay, which showed impaired splicing of the exon 5 of FLVCR2. To characterize the impact of the p.(Arg492Trp) substitution, we performed protein modeling using Rosetta and DynaMut2, that showed a highly destabilizing effect. Then, based on the very recent evidence that choline is a major FLVCR2 ligand, we performed a radiolabeled-choline or ethanolamine transport assays in HEK 293 cells and found that the p.(Arg492Trp) variant causes a 50-60% reduction of FLVCR2 transport activity, resulting in a net activity of 25-30%. Our findings suggest that FLVCR2 deficiency may be sufficient to cause PVHH even in the absence of a complete loss of transport activity, possibly involving extragenetic factors in the pathophysiology of this complex condition.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università di Genova, Genoa, Italy.
- Medical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy.
| | - Nancy C P Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thanh Nha Uyen Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yichang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Francesca Madia
- Medical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohammad Sadegh Shams Nosrati
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università di Genova, Genoa, Italy
- Medical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Alireza Dostmohammadi
- Department of Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Ezio Fulcheri
- Clinical Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università di Genova, Genoa, Italy
- Medical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Ludovica Menta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università di Genova, Genoa, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università di Genova, Genoa, Italy
- Medical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università di Genova, Genoa, Italy
- Medical Genetics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SLING and Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chen CP, Wang LK, Wu FT, Pan YT, Wu PS, Wang W. Prenatal diagnosis of a de novo 17q25.3 microdeletion encompassing RAC3 and CSNK1D in a fetus associated with partial agenesis of the corpus callosum, small brain volume, micrognathia and total anomalous pulmonary venous return. Taiwan J Obstet Gynecol 2025; 64:345-347. [PMID: 40049823 DOI: 10.1016/j.tjog.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 05/13/2025] Open
Abstract
OBJECTIVE We present prenatal diagnosis of a de novo 17q25.3 microdeletion in a fetus with abnormalities of the brain, heart and face. CASE REPORT A 32-year-old, gravida 2, para 1, woman underwent amniocentesis at 25 weeks of gestation because of fetal abnormalities of partial agenesis of the corpus callosum with absence of the splenium, small brain volume, colpocephaly and micrognathia on fetal magnetic resonance imaging (MRI) and total anomalous pulmonary venous return (TAPVR) and partial agenesis of the corpus callosum on fetal ultrasound at 23 weeks of gestation. Amniocentesis revealed a karyotype of 46,XY, and simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes showed arr [GRCh37 (hg19)] 17q25.3 (79,838,999-80,426,634) × 1.0 with a 587.64-kb 17q25.3 microdeletion encompassing 23 OMIM genes including RAC3 and CSNK1D. The parental bloods did not have such a microdeletion. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism of abnormal head shape, low-set ears, micrognathia, depressed nasal bridge and hypertelorism. aCGH analysis on the cord DNA confirmed the prenatal diagnosis of a 17q25.3 microdeletion. CONCLUSION A 17q25.3 microdeletion encompassing RAC3 and CSNK1D may present abnormalities of the brain, heart and face on fetal imaging.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Liang-Kai Wang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Dainelli A, Nosrati MSS, Romano F, Vercellino F, Mancardi MM, Torella A, Nigro V, Capra V, Zara F, Scala M. Novel De Novo RALA Missense Variants Expand the Genotype Spectrum of Hiatt-Neu-Cooper Neurodevelopmental Syndrome. Mol Genet Genomic Med 2025; 13:e70072. [PMID: 39918382 PMCID: PMC11803908 DOI: 10.1002/mgg3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND RALA is a small GTPase from the RAS superfamily implicated in signal transduction and cytoskeletal dynamics. Recently, de novo variants in RALA have been associated with a neurodevelopmental syndrome characterized by intellectual disability (ID), developmental delay (DD), and seizures. So far, only < 12 patients have been reported. METHODS In this study, we report two novel patients with neurodevelopmental impairment and epilepsy carrying previously unreported RALA variants. We performed a thorough clinical investigation of these patients and performed brain MRI to detect potential abnormalities. Trio-exome sequencing and/or NGS panel testing were conducted to identify the genetic variants. Then, we reviewed previous cases reported in the literature. RESULTS Affected individuals showed a complex neurodevelopmental phenotype consistent with Hiatt-Neu-Cooper neurodevelopmental syndrome. Brain MRI in both subjects showed abnormalities including megalencephaly and ventricular enlargement, previously unreported in RALA patients. Genetic testing revealed two novel de novo missense variants in RALA: c.217G>A, p.(Glu73Lys) in case #1 and c.73G>C, p.(Val25Leu) in case #2. Both variants affect highly conserved residues within the GTP/GDP-binding site of the protein. These changes are predicted to be deleterious by in silico tools, interfering with the GTPase activity of RALA. CONCLUSION Our findings expand the genotype and phenotype spectrum of Hiatt-Neu-Cooper neurodevelopmental syndrome. Our observations also support the important role of variants affecting the GTP/GDP-binding site of the RALA protein in the pathogenesis of Hiatt-Neu-Cooper neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Alice Dainelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Medical Genetics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Mohammad Sadegh Shams Nosrati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Medical Genetics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Ferruccio Romano
- Genomics and Clinical GeneticsIRCCS Istituto Giannina GasliniGenoaItaly
| | - Fabiana Vercellino
- Child Neuropsychiatry UnitSS Antonio e Biagio e Cesare Arrigo HospitalAlessandriaItaly
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina GasliniEpicare Network for Rare DiseaseGenoaItaly
| | - Annalaura Torella
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Vincenzo Nigro
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Valeria Capra
- Genomics and Clinical GeneticsIRCCS Istituto Giannina GasliniGenoaItaly
| | - Federico Zara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Medical Genetics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marcello Scala
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- Medical Genetics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| |
Collapse
|
8
|
Nishikawa M, Hayashi S, Nakayama A, Nishio Y, Shiraki A, Ito H, Maruyama K, Muramatsu Y, Ogi T, Mizuno S, Nagata KI. Pathophysiological significance of the p.E31G variant in RAC1 responsible for a neurodevelopmental disorder with microcephaly. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167520. [PMID: 39307291 DOI: 10.1016/j.bbadis.2024.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RAC1 encodes a Rho family small GTPase that regulates actin cytoskeletal reorganization and intracellular signaling pathways. Pathogenic RAC1 variants lead to a neurodevelopmental disorder with diverse phenotypic manifestations, including abnormalities in brain size and facial dysmorphism. However, the underlying pathophysiological mechanisms have yet to be elucidated. Here, we present the case of a school-aged male who exhibited global developmental delay, intellectual disability, and acquired microcephaly. Through whole exome sequencing, we identified a novel de novo variant in RAC1, (NM_006908.5): c.92 A > G,p.(E31G). We then examined the pathophysiological significance of the p.E31G variant by focusing on brain development. Biochemical analyses revealed that the recombinant RAC1-E31G had no discernible impact on the intrinsic GDP/GTP exchange activity. However, it exhibited a slight inhibitory effect on GTP hydrolysis. Conversely, it demonstrated a typical response to both a guanine-nucleotide exchange factor and a GTPase-activating protein. In transient expression analyses using COS7 cells, RAC1-E31G exhibited minimal interaction with the downstream effector PAK1, even in its GTP-bound state. Additionally, overexpression of RAC1-E31G was observed to exert a weak inhibitory effect on the differentiation of primary cultured hippocampal neurons. Moreover, in vivo studies employing in utero electroporation revealed that acute expression of RAC1-E31G resulted in impairments in axonal elongation and dendritic arborization in the young adult stage. These findings suggest that the p.E31G variant functions as a dominant-negative version in the PAK1-mediated signaling pathway and is responsible for the clinical features observed in the patient under investigation, namely microcephaly and intellectual disability.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsushi Nakayama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nagoya 453-8511, Japan
| | - Yosuke Nishio
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kouichi Maruyama
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan.
| |
Collapse
|
9
|
Nosrati MSS, Doustmohammadi A, Severino M, Romano F, Zafari M, Nemati AH, Velmans C, Netzer C, Breuer J, Broekaert IJ, Joachim A, Almasri N, Kruer MC, Skidmore P, Bisarad P, Hoque J, Bakhtiari S, Torella A, Nigro V, Buffelli F, Fulcheri E, Müller A, Zara F, Capra V, Scala M. Novel KIF26A variants associated with pediatric intestinal pseudo-obstruction (PIPO) and brain developmental defects. Clin Genet 2025; 107:83-90. [PMID: 39305096 PMCID: PMC11608842 DOI: 10.1111/cge.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 04/04/2025]
Abstract
Pediatric intestinal pseudo-obstruction (PIPO) is a rare congenital disorder of the enteric nervous system with distal colon aganglionosis potentially leading to intestinal obstruction. Recently, biallelic variants in KIF26A, encoding a crucial motor protein for the migration and differentiation of enteric neural crest cells, have been associated with a neurodevelopmental condition featuring cortical defects and PIPO-like features, though in absence of aganglionosis. So far, only 10 patients have been reported. In this study, we investigated three subjects with congenital hydrocephalus, neurodevelopmental impairment, and intestinal obstruction megacolon syndrome. Brain MRI revealed malformations within cortical dysplasia spectrum, including polymicrogyria and heterotopia. Pathology study of the intestine revealed aganglionosis and elevated acetylcholinesterase activity in parasympathetic nerve fibers. Through trio-exome sequencing (ES), we detected four novel biallelic KIF26A variants, including two missense changes (#1) and two distinct homozygous truncating variants in (#2 and #3). All variants are rare and predicted to be deleterious according to in silico tools. To characterize the impact of the missense variants, we performed 3D protein modeling using Alphafold3 and YASARA. Mutants exhibited increased energy scores compared to wild-type protein, supporting a significant structural destabilization of the protein. Our study expands the genotype and phenotype spectrum of the emerging KIF26A-related disorder.
Collapse
Affiliation(s)
- Mohammad Sadegh Shams Nosrati
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
- U.O.C. Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Alireza Doustmohammadi
- Department of Bioinformatics and Computational Biophysics, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | | | - Ferruccio Romano
- Genomics and Clinical Genetics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Mahdi Zafari
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Amir Hesam Nemati
- Department of Epidemiology and BiostatisticsPasteur Institute of IranTehranIran
| | - Clara Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Christian Netzer
- Institute of Human Genetics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Jonas Breuer
- Department of Paediatrics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Ilse Julia Broekaert
- Department of Paediatrics, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Alexander Joachim
- Department of Pediatrics, Faculty of HealthHelios University Medical Center Wuppertal, Witten/Herdecke UniversityWittenGermany
| | - Nihad Almasri
- Department of Rehabilitation Sciences College of Health SciencesQatar UniversityDohaQatar
- Department of Physiotherapy School of Rehabilitation SciencesUniversity of JordanAmmanJordan
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Division of Pediatric NeurologyBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine–PhoenixPhoenixArizonaUSA
| | - Peter Skidmore
- Pediatric Movement Disorders Program, Division of Pediatric NeurologyBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine–PhoenixPhoenixArizonaUSA
- College of Health SolutionsArizona State UniversityTempeArizonaUSA
| | - Pritha Bisarad
- Pediatric Movement Disorders Program, Division of Pediatric NeurologyBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine–PhoenixPhoenixArizonaUSA
| | - Jumana Hoque
- Pediatric Movement Disorders Program, Division of Pediatric NeurologyBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine–PhoenixPhoenixArizonaUSA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric NeurologyBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in GeneticsUniversity of Arizona College of Medicine–PhoenixPhoenixArizonaUSA
| | - Annalaura Torella
- Department of Precision MedicineUniversity of Campania "Luigi Vanvitelli"NaplesItaly
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Vincenzo Nigro
- Department of Precision MedicineUniversity of Campania "Luigi Vanvitelli"NaplesItaly
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | | | - Ezio Fulcheri
- Fetal‐Perinatal Pathology UnitIRCCS‐Istituto Giannina GasliniGenoaItaly
| | - Annette Müller
- Pediatric PathologyUniversity Clinic of CologneCologneGermany
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
- U.O.C. Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| | - Valeria Capra
- Genomics and Clinical Genetics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
- U.O.C. Genetica MedicaIRCCS Istituto Giannina GasliniGenoaItaly
| |
Collapse
|
10
|
Solano E, Foksinska A, Crowder CM. Variants in RHOBTB2 associated with cancer and rare developmental and epileptic encephalopathy. Front Pediatr 2024; 12:1448793. [PMID: 39736890 PMCID: PMC11683136 DOI: 10.3389/fped.2024.1448793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
RHOBTB2 is a member of the Rho GTPases subfamily of signaling proteins, known tumor suppressors whose loss of function and decreased expression is associated with cancer onset. Beyond its cancer-related role, RHOBTB2 is implicated in rare neurodevelopmental disorders, specifically RHOBTB2-related disorders, recognized in 2018 as a subtype of developmental and epileptic encephalopathies (DEE). Common symptoms of these disorders include early-onset epilepsy, severe intellectual disability, microcephaly, and movement disorders. Few studies have investigated patient variants associated with RHOBTB2-related disorders, and the impact of these variants on protein function remains unclear. Limited research suggests that the accumulation of RHOBTB2 in neural tissues contributes to the development of DEE. Similarly, preclinical studies indicate that missense variants near or in the BTB domain of RHOBTB2 result in decreased degradation of RHOBTB2 and the onset of DEE, whereas variants in the GTPase domain cause more variable neurodevelopmental symptoms, but do not impair proteasomal degradation of RHOBTB2. However, the exact pathophysiological mechanisms are unclear and may differ across variants. Current treatment approaches for individuals with RHOBTB2-related DEE involve the use of antiseizure medications to decrease seizures; however, no treatments have been identified that address the other symptoms or the underlying pathophysiological mechanisms associated with these disorders. Overall, RHOBTB2 remains an understudied protein with limited information on its function and how it contributes to disease mechanisms. This review provides an overview of the current knowledge of RHOBTB2 function, with an emphasis on its association with neurodevelopmental disorders through an analysis of preclinical studies and case reports that link individual variants with clinical features.
Collapse
Affiliation(s)
- Elaina Solano
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aleksandra Foksinska
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Camerron M. Crowder
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Sugawara R, Ito H, Tabata H, Ueda H, Scala M, Nagata KI. The p.R66W Variant in RAC3 Causes Severe Fetopathy Through Variant-Specific Mechanisms. Cells 2024; 13:2032. [PMID: 39682779 PMCID: PMC11640247 DOI: 10.3390/cells13232032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
RAC3 encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in RAC3, all of which reported thus far affect conserved residues within its functional domains, have been linked to neurodevelopmental disorders characterized by diverse phenotypic features, including structural brain anomalies and facial dysmorphism (NEDBAF). Recently, a novel de novo RAC3 variant (NM_005052.3): c.196C>T, p.R66W was identified in a prenatal case with fetal akinesia deformation sequence (a spectrum of conditions that interfere with the fetus's ability to move), and complex brain malformations featuring corpus callosum agenesis, diencephalosynapsis, kinked brainstem, and vermian hypoplasia. To investigate the mechanisms underlying the association between RAC3 deficiency and this unique, distinct clinical phenotype, we explored the pathophysiological significance of the p.R66W variant in brain development. Biochemical assays revealed a modest enhancement in intrinsic GDP/GTP exchange activity and an inhibitory effect on GTP hydrolysis. Transient expression studies in COS7 cells demonstrated that RAC3-R66W interacts with the downstream effectors PAK1, MLK2, and N-WASP but fails to activate SRF-, AP1-, and NFkB-mediated transcription. Additionally, overexpression of RAC3-R66W significantly impaired differentiation in primary cultured hippocampal neurons. Acute expression of RAC3-R66W in vivo by in utero electroporation resulted in impairments in cortical neuron migration and axonal elongation during corticogenesis. Collectively, these findings suggest that the p.R66W variant may function as an activated version in specific signaling pathways, leading to a distinctive and severe prenatal phenotype through variant-specific mechanisms.
Collapse
Affiliation(s)
- Ryota Sugawara
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (R.S.); (H.I.); (H.T.)
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (R.S.); (H.I.); (H.T.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (R.S.); (H.I.); (H.T.)
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy;
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (R.S.); (H.I.); (H.T.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| |
Collapse
|
12
|
Chelleri C, Brolatti N, De Marco P, Ognibene M, Diana MC, Madia F, Duca MD, Santangelo A, Capra V, Striano P, Zara F, Scala M. Novel causative variants in Legius syndrome: SPRED1 Genotype spectrum expansion. Am J Med Genet A 2024; 194:e63824. [PMID: 39031930 DOI: 10.1002/ajmg.a.63824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.
Collapse
Affiliation(s)
- Cristina Chelleri
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Noemi Brolatti
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia De Marco
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Cristina Diana
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Santangelo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
Ishiguro T, Noda M, Nishikawa M, Nagata KI, Ito H. Variations associated with neurodevelopmental disorders affect ARF1 function and cortical development. J Biochem 2024; 176:347-357. [PMID: 39052890 DOI: 10.1093/jb/mvae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
ADP-ribosylation factors (ARFs) are a family of small GTPases that regulate vesicle trafficking and actin dynamics in cells. Recent genetic analyses have revealed associations between variations in ARF genes and neurodevelopmental disorders, although their pathophysiological significance remains unclear. In this study, we conducted biochemical, cell biological and in vivo analyses of ARF1 variants linked to neurodevelopmental disorders. The mant-GDP dissociation assay revealed that ARF1-p.R19C, -p.F51L, -p.R99C and -p.R99H exhibit higher GDP/GTP exchange activity compared to ARF1 wild type (WT). The GTPase-activating protein (GAP) increased the GTPase activity of WT, p.R19C, p.Y35H, p.F51L, p.P131L and p.P131R, but not of p.Y35D, p.T48I, p.R99C and p.R99H. The transient expression of p.R99C, p.R99H and p.K127E in mammalian cells resulted in the disruption of the Golgi apparatus. In utero electroporation-mediated gene transfer into the cortical neurons of embryonic mice demonstrated that p.R99C, p.R99H and p.K127E cause a migration defect. Expression of these variants resulted in the expansion of the Golgi apparatus in migrating cortical neurons. These findings suggest that the ARF1 variants linked to neurodevelopmental disorders, specifically p.R99C, p.R99H and p.K127E, disrupt the structure of the Golgi apparatus, thereby leading to a developmental defect of cortical neurons.
Collapse
Affiliation(s)
- Tomoki Ishiguro
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
- Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| |
Collapse
|
14
|
Nakayama T, Saito R, Furuya S, Higuchi Y, Matsuoka K, Takahashi K, Maruyama S, Shoda K, Takiguchi K, Shiraishi K, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Suzuki-Inoue K, Ichikawa D. Molecular mechanisms driving the interactions between platelet and gastric cancer cells during peritoneal dissemination. Oncol Lett 2024; 28:498. [PMID: 39211304 PMCID: PMC11358723 DOI: 10.3892/ol.2024.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Platelets (PLTs) facilitate tumor progression and the spread of metastasis. They also interact with cancer cells in various cancer types. Furthermore, PLTs form complexes with gastric cancer (GC) cells via direct contact and promote their malignant behaviors. The objective of the present study was to explore the molecular mechanisms driving these interactions and to evaluate the potential for preventing peritoneal dissemination by inhibiting PLT activation in GC cells. The present study examined the roles of PLT activation pathways in the increased malignancy of GC cells facilitated by PLT-cancer cells. Transforming growth factor-β receptor kinase inhibitor (TRKI), Src family kinase inhibitor (PP2) and Syk inhibitor (R406) were used to identify the molecules influencing these interactions. Their therapeutic effects were verified via cell experiments and validated using a mouse GC peritoneal dissemination model. Notably, only the PLT activation pathway-related inhibitors TRKI and PP2, but not R406, inhibited the PLT-enhanced migration and invasion of GC cells. In vivo analyses revealed that PLT-enhanced peritoneal dissemination was suppressed by PP2. Overall, the present study revealed the important role of the Srk family in the interactions between PLTs and GC cells, suggesting kinase inhibitors as promising therapeutic agents to mitigate the progression of peritoneal metastasis in patients with GC.
Collapse
Affiliation(s)
- Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yudai Higuchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Matsuoka
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazunori Takahashi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Maruyama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Shiraishi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
15
|
Gao H, Qiu Y, Zheng X, Xu T, Liu G. Revealing the mechanisms of RAC3 in tumor aggressiveness, the immunotherapy response, and drug resistance in bladder cancer. Front Oncol 2024; 14:1466319. [PMID: 39351351 PMCID: PMC11441374 DOI: 10.3389/fonc.2024.1466319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Bladder cancer (BLCA) is a prevalent urinary tract malignancy with a high propensity for recurrence and chemoresistance. The molecular mechanisms underlying its progression and response to therapy have not been fully elucidated. Methods We conducted a multifaceted analysis, integrating immunohistochemical (IHC) staining, bioinformatics evaluation using TCGA and CCLE databases, and in vitro assays using the BLCA cell lines 5637 and T24. RAC3 expression was assessed relative to clinical and pathological features. Functional enrichment analyses and gene set enrichment analysis (GSEA) were performed to identify associated biological processes and pathways. The impacts of RAC3 on cell proliferation, migration, invasion, and the immune microenvironment were evaluated using siRNA knockdown, CCK-8, Transwell, wound healing and colony formation assays. Results Elevated RAC3 expression was significantly correlated with an advanced tumor stage, lymph node metastasis, and poor prognosis for BLCA patients. The functional enrichment analysis implicated RAC3 in immune cell infiltration and immune checkpoint mechanisms. Notably, RAC3 knockdown significantly reduced the proliferative, migratory, and invasive capabilities of BLCA cells. These effects were reversed by the overexpression of RAC3. Additionally, RAC3 expression was linked to chemoresistance, with high RAC3 expression predicting resistance to certain therapeutic agents. The TIDE algorithm indicated that RAC3 expression could be a predictive biomarker for the immunotherapy response. Conclusion RAC3 was identified as a potential therapeutic target and biomarker of BLCA, as its expression significantly influenced tumor progression, the immune response, and chemosensitivity. Targeting RAC3 may provide a novel strategy for the management of BLCA, particularly for patients resistant to conventional therapies. Further research is essential to elucidate the detailed mechanisms of RAC3 in BLCA and explore its clinical application in precision medicine.
Collapse
Affiliation(s)
- Hanyuan Gao
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanru Qiu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xueqin Zheng
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Guangjian Liu
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
16
|
Benavides-Nieto M, Adam F, Martin E, Boussard C, Lagresle-Peyrou C, Callebaut I, Kauskot A, Repérant C, Feng M, Bordet JC, Castelle M, Morelle G, Brouzes C, Zarhrate M, Panikulam P, Lambert N, Picard C, Bodet D, Rouger-Gaudichon J, Revy P, de Villartay JP, Moshous D. Somatic RAP1B gain-of-function variant underlies isolated thrombocytopenia and immunodeficiency. J Clin Invest 2024; 134:e169994. [PMID: 39225097 PMCID: PMC11364392 DOI: 10.1172/jci169994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.
Collapse
Affiliation(s)
- Marta Benavides-Nieto
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- General Pediatrics–Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Adam
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Martin
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Charlotte Boussard
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Laboratory Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, AP-HP, Paris, France
- Laboratory Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Isabelle Callebaut
- Sorbonne University, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexandre Kauskot
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christelle Repérant
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Miao Feng
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d’Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Martin Castelle
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Guillaume Morelle
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France, and INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Patricia Panikulam
- Université Paris Cité, Paris, France
- Laboratory “Molecular basis of altered immune homeostasis,” INSERM UMR 1163, Imagine Institute, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Université Paris Cité, Paris, France
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Damien Bodet
- CHU de Caen Normandie, Onco-Immunohématologie Pédiatrique, Caen, France
| | | | - Patrick Revy
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| |
Collapse
|
17
|
Biancotto G, Rosti G, Madia F, Capra V, Scala M, Aleo E, Paladini D. Truncating variants in PAPSS2 gene: A cause of early prenatal onset brachyolmia? Prenat Diagn 2024; 44:1003-1007. [PMID: 38768012 DOI: 10.1002/pd.6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Brachyolmia is a rare form of skeletal dysplasia characterized by a wide genetic and clinical heterogeneity. This condition is usually diagnosed postnatally, and very few cases of prenatal diagnosis have been described so far. Here, we report a case of a pregnant woman at 20 weeks' gestation referred to our center because of fetal short long bones. On targeted ultrasound, mild bowing of the femurs and fibulae and mild micrognathia were also observed. Exome sequencing analysis showed the presence in compound heterozygosity of two pathogenic variants-both truncating variants-in the 3-prime-phosphoadenosine 5-prime-phosphosulfate synthase 2 (PAPSS2) gene, known to cause brachyolmia type 4 (OMIM #612847). Of note, all of the few cases reported prenatally have indeed truncating variants. Hence, we speculate this kind of variant is likely responsible for a complete loss of function of the protein leading to an earlier and more severe phenotype.
Collapse
Affiliation(s)
- Giulia Biancotto
- Fetal Medicine and Surgery Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Giulia Rosti
- Genomics and Clinical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Medical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Elena Aleo
- Radiology Department, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| |
Collapse
|
18
|
Zhao MF, Zhang SL, Xiang Y, Wang Q, Cao GH, Zhang PP, Fan LL, Yu R, Li YL. A de novo Mutation (p.Gln277X) of Cyclin D2 is Responsible for a Child with Megalencephaly-Polymicrogyria-Polydactyly-Hydrocephalus Syndrome. DNA Cell Biol 2024; 43:325-330. [PMID: 38700464 DOI: 10.1089/dna.2023.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH), a type of overgrowth syndrome, is characterized by progressive megalencephaly, cortical brain malformations, and distal limb anomalies. Previous studies have revealed that the overactivity of the phosphatidylinositol 3-kinase-Protein kinase B pathway and the increased cyclin D2 (CCND2) expression were the main factors contributing to this disease. Here, we present the case of a patient who exhibited megalencephaly, polymicrogyria, abnormal neuronal migration, and developmental delay. Serum tandem mass spectrometry and chromosome examination did not detect any metabolic abnormalities or copy number variants. However, whole-exome sequencing and Sanger sequencing revealed a de novo nonsense mutation (NM_001759.3: c.829C>T; p.Gln277X) in the CCND2 gene of the patient. Bioinformatics analysis predicted that this mutation may disrupt the structure and surface charge of the CCND2 protein. This disruption could potentially prevent polyubiquitination of CCND2, leading to its resistance against degradation. Consequently, this could drive cell division and growth by altering the activity of key cell cycle regulatory nodes, ultimately contributing to the development of MPPH. This study not only presents a new case of MPPH and expands the mutation spectrum of CCND2 but also enhances our understanding of the mechanisms connecting CCND2 with overgrowth syndromes.
Collapse
Affiliation(s)
- Mei-Fang Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Republic of China
| | - Song-Lin Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, Republic of China
| | - YangZiYu Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Republic of China
| | - Qian Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Republic of China
| | - Gao-Hui Cao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Republic of China
| | - Ping-Ping Zhang
- Departments of Reproductive Genetics, HeBei General Hospital, Shijiazhuang, Republic of China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Republic of China
| | - Rong Yu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Republic of China
| | - Ya-Li Li
- Departments of Reproductive Genetics, HeBei General Hospital, Shijiazhuang, Republic of China
| |
Collapse
|
19
|
Romano F, Haanpää MK, Pomianowski P, Peraino AR, Pollard JR, Di Feo MF, Traverso M, Severino M, Derchi M, Henzen E, Zara F, Faravelli F, Capra V, Scala M. Expanding the phenotype of UPF3B-related disorder: Case reports and literature review. Am J Med Genet A 2024; 194:e63534. [PMID: 38318947 DOI: 10.1002/ajmg.a.63534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.
Collapse
Affiliation(s)
- Ferruccio Romano
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria K Haanpää
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Pawel Pomianowski
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
| | - Amanda Rose Peraino
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
| | - John R Pollard
- Epilepsy Center, Christiana Care Health System, Newark, Delaware, USA
| | - Maria Francesca Di Feo
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
- Epilepsy Center, Christiana Care Health System, Newark, Delaware, USA
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monica Traverso
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Maria Derchi
- Cardiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo Henzen
- Genomics Facility, Italian Institute of Technology (IIT), Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Faravelli
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Xu Z, Sadleir L, Goel H, Jiao X, Niu Y, Zhou Z, de Valles-Ibáñez G, Poke G, Hildebrand M, Lieffering N, Qin J, Yang Z. Genotype and phenotype correlation of PHACTR1-related neurological disorders. J Med Genet 2024; 61:536-542. [PMID: 38272663 DOI: 10.1136/jmg-2023-109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND PHACTR1 (phosphatase and actin regulators) plays a key role in cortical migration and synaptic activity by binding and regulating G-actin and PPP1CA. This study aimed to expand the genotype and phenotype of patients with de novo variants in PHACTR1 and analyse the impact of variants on protein-protein interaction. METHODS We identified seven patients with PHACTR1 variants by trio-based whole-exome sequencing. Additional two subjects were ascertained from two centres through GeneMatcher. The genotype-phenotype correlation was determined, and AlphaFold-Multimer was used to predict protein-protein interactions and interfaces. RESULTS Eight individuals carried missense variants and one had CNV in the PHACTR1. Infantile epileptic spasms syndrome (IESS) was the unifying phenotype in eight patients with missense variants of PHACTR1. They could present with other types of seizures and often exhibit drug-resistant epilepsy with a poor prognosis. One patient with CNV displayed a developmental encephalopathy phenotype. Using AlphaFold-Multimer, our findings indicate that PHACTR1 and G-actin-binding sequences overlap with PPP1CA at the RPEL3 domain, which suggests possible competition between PPP1CA and G-actin for binding to PHACTR1 through a similar polymerisation interface. In addition, patients carrying missense variants located at the PHACTR1-PPP1CA or PHACTR1-G-actin interfaces consistently exhibit the IESS phenotype. These missense variants are mostly concentrated in the overlapping sequence (RPEL3 domain). CONCLUSIONS Patients with variants in PHACTR1 can have a phenotype of developmental encephalopathy in addition to IESS. Moreover, our study confirmed that the variants affect the binding of PHACTR1 to G-actin or PPP1CA, resulting in neurological disorders in patients.
Collapse
Affiliation(s)
- Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Himanshu Goel
- Hunter Genetics, Waratah, New South Wales, Australia
| | - Xianru Jiao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zongpu Zhou
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Guillem de Valles-Ibáñez
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Gemma Poke
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Michael Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Neuroscience Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, South Brisbane, Queensland, Australia
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
21
|
Meunier C, Cassart M, Kostyla K, Simonis N, Monestier O, Tessier A. An unusual presentation of de novo RAC3 variation in prenatal diagnosis. Childs Nerv Syst 2024; 40:1597-1602. [PMID: 38214746 PMCID: PMC11026260 DOI: 10.1007/s00381-024-06285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Pathogenic variants in RAC3 cause a neurodevelopmental disorder with brain malformations and craniofacial dysmorphism, called NEDBAF. This gene encodes a small GTPase, which plays a critical role in neurogenesis and neuronal migration. We report a 31 weeks of gestation fetus with triventricular dilatation, and temporal and perisylvian polymicrogyria, without cerebellar, brainstem, or callosal anomalies. Trio whole exome sequencing identified a RAC3 (NM_005052.3, GRCh38) probably pathogenic de novo variant c.276 T>A p.(Asn92Lys). Eighteen patients harboring 13 different and essentially de novo missense RAC3 variants were previously reported. All the patients presented with corpus callosum malformations. Gyration disorders, ventriculomegaly (VM), and brainstem and cerebellar malformations have frequently been described. The only previous prenatal case associated with RAC3 variant presented with complex brain malformations, mainly consisting of midline and posterior fossa anomalies. We report the second prenatal case of NEDBAF presenting an undescribed pattern of cerebral anomalies, including VM and polymicrogyria, without callosal, cerebellar, or brainstem malformations. All neuroimaging data were reviewed to clarify the spectrum of cerebral malformations.
Collapse
Affiliation(s)
- Colombine Meunier
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium.
| | - Marie Cassart
- Hôpitaux Iris Sud and CHU Saint-Pierre, Brussels, Belgium
| | | | - Nicolas Simonis
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium
| | - Olivier Monestier
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium
| | - Aude Tessier
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium
| |
Collapse
|
22
|
Donkó Á, Sharapova SO, Kabat J, Ganesan S, Hauck FH, Bergerson JRE, Marois L, Abbott J, Moshous D, Williams KW, Campbell N, Martin PL, Lagresle-Peyrou C, Trojan T, Kuzmenko NB, Deordieva EA, Raykina EV, Abers MS, Abolhassani H, Barlogis V, Milla C, Hall G, Mousallem T, Church J, Kapoor N, Cros G, Chapdelaine H, Franco-Jarava C, Lopez-Lerma I, Miano M, Leiding JW, Klein C, Stasia MJ, Fischer A, Hsiao KC, Martelius T, Sepännen MRJ, Barmettler S, Walter J, Masmas TN, Mukhina AA, Falcone EL, Kracker S, Shcherbina A, Holland SM, Leto TL, Hsu AP. Clinical and functional spectrum of RAC2-related immunodeficiency. Blood 2024; 143:1476-1487. [PMID: 38194689 PMCID: PMC11033590 DOI: 10.1182/blood.2023022098] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Fabian H. Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Louis Marois
- Department of Medicine, Centre Hospitalier Universitaire de Montréal and Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Medecine, Centre Hospitalier Universitaire de Québec, Université de Laval, Québec, QC, Canada
| | - Jordan Abbott
- University of Colorado School of Medicine, Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital of Colorado, Aurora, CO
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris Centre Université de Paris, Paris, France
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, INSERM UMR 1163, Paris, France
| | - Kelli W. Williams
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Paul L. Martin
- Division of Transplant and Cellular Therapy, Duke University Medical School, Durham, NC
| | - Chantal Lagresle-Peyrou
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
| | | | - Natalia B. Kuzmenko
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina A. Deordieva
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena V. Raykina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael S. Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vincent Barlogis
- Pediatric Hematology Unit, La Timone University Hospital, Marseille, France
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey Hall
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Talal Mousallem
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Joseph Church
- Pediatric Allergy/Immunology, Children’s Hospital Los Angeles, Los Angeles, CA
- Clinical Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Guilhem Cros
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Clara Franco-Jarava
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Ingrid Lopez-Lerma
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Maurizio Miano
- Haematology Unit, Scientific Institute for Research, Hospitalization and Healthcare Istituto Giannina Gaslini, Genoa, Italy
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
- Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Centre Diagnostic et Recherche sur la Granulomatose Septique Chronique, Grenoble, France
- Université Grenoble Alpes, Centre National de le Recherche Scientifique, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Kuang-Chih Hsiao
- Department of Immunology, Starship Child Health, Te Whatu Ora, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Timi Martelius
- Inflammation Center/Infectious Diseases, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Mikko R. J. Sepännen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- ERN-RITA Core Center Member, RITAFIN, Helsinki, Finland
- Rare Disease Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Jolan Walter
- University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Tania N. Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Department, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna A. Mukhina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Emilia Liana Falcone
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Sven Kracker
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anna Shcherbina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Thomas L. Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Scala M, Khan K, Beneteau C, Fox RG, von Hardenberg S, Khan A, Joubert M, Fievet L, Musquer M, Le Vaillant C, Holsclaw JK, Lim D, Berking AC, Accogli A, Giacomini T, Nobili L, Striano P, Zara F, Torella A, Nigro V, Cogné B, Salick MR, Kaykas A, Eggan K, Capra V, Bézieau S, Davis EE, Wells MF. Biallelic loss-of-function variants in CACHD1 cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities. Genet Med 2024; 26:101057. [PMID: 38158856 PMCID: PMC11910193 DOI: 10.1016/j.gim.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Claire Beneteau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Rachel G Fox
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Ayaz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Madeleine Joubert
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Marie Musquer
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | | | | | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom; Department of Medicine, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Benjamin Cogné
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Stéphane Bézieau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
24
|
Scala M, Tomati V, Ferla M, Lena M, Cohen JS, Fatemi A, Brokamp E, Bican A, Phillips JA, Koziura ME, Nicouleau M, Rio M, Siquier K, Boddaert N, Musante I, Tamburro S, Baldassari S, Iacomino M, Scudieri P, Rosenfeld JA, Bellus G, Reed S, Al Saif H, Russo RS, Walsh MB, Cantagrel V, Crunk A, Gustincich S, Ruggiero SM, Fitzgerald MP, Helbig I, Striano P, Severino M, Salpietro V, Pedemonte N, Zara F. De novo variants in DENND5B cause a neurodevelopmental disorder. Am J Hum Genet 2024; 111:529-543. [PMID: 38387458 PMCID: PMC10940048 DOI: 10.1016/j.ajhg.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Matteo Ferla
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Mariateresa Lena
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elly Brokamp
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Bican
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A Phillips
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary E Koziura
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Nicouleau
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France
| | - Marlene Rio
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France; Service de Génétique, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Pairs, Paris, France
| | - Karine Siquier
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | | | | | | | - Paolo Scudieri
- UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics Laboratories, Houston, TX, USA
| | - Gary Bellus
- Clinical Genetics, Geisinger Medical Center, Danville, PA 17822, USA
| | - Sara Reed
- Clinical Genetics, Geisinger Medical Center, Danville, PA 17822, USA
| | - Hind Al Saif
- Department of Human and Molecular Genetics, Division of Clinical Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Matthew B Walsh
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Vincent Cantagrel
- Université Paris Cité, Imagine Institute, Developmental Brain Disorders Laboratory, INSERM UMR 1163, 75015 Paris, France
| | | | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark P Fitzgerald
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | | | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; UOC Genetica Medica, IRCCS Giannina Gaslini, Genoa, Italy
| |
Collapse
|
25
|
Traverso M, Baratto S, Iacomino M, Di Duca M, Panicucci C, Casalini S, Grandis M, Falace A, Torella A, Picillo E, Onore ME, Politano L, Nigro V, Innes AM, Barresi R, Bruno C, Zara F, Fiorillo C, Scala M. DAG1 haploinsufficiency is associated with sporadic and familial isolated or pauci-symptomatic hyperCKemia. Eur J Hum Genet 2024; 32:342-349. [PMID: 38177406 PMCID: PMC10923780 DOI: 10.1038/s41431-023-01516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.
Collapse
Affiliation(s)
- Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Casalini
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Esther Picillo
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Luisa Politano
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| |
Collapse
|
26
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
27
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
28
|
Severino M, Tortora D, Scala M. MRI Data Analysis in Malformations of Cortical Development. Methods Mol Biol 2024; 2794:281-292. [PMID: 38630237 DOI: 10.1007/978-1-0716-3810-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Brain magnetic resonance imaging (MRI) is a noninvasive imaging modality that utilizes powerful magnets and radio waves to generate detailed images of the brain, making it a valuable tool for investigating malformations of cortical development (MCD). Various MRI techniques, including 3D T1-weighted, multiplanar thin-sliced T2-weighted, and 3D fluid-attenuated inversion recovery (FLAIR) sequences, can provide high-resolution images with excellent spatial and contrast resolution, allowing for a detailed visualization of cortical anatomy and abnormalities. Almost all MCD can be detected and characterized using MRI. Advanced techniques, such as arterial spin labeling MR perfusion, diffusion tensor imaging (DTI), and functional MRI (fMRI), may be used to improve the detection rate of these malformations and to plan surgery in case of drug-resistant epilepsy. However, there are also limitations related to high cost, relatively low availability, need for sedation or anesthesia, and limited sensitivity for detecting subtle focal cortical malformations. Despite these limitations, brain MRI plays a crucial role in the investigation of MCD, providing valuable information for diagnosis, treatment planning, and patient management.
Collapse
Affiliation(s)
| | - Domenico Tortora
- UO Neuroradiologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Nishikawa M, Nagata KI, Tabata H. Live Imaging of Migrating Neurons and Glial Progenitors Visualized by in Utero Electroporation. Methods Mol Biol 2024; 2794:201-209. [PMID: 38630231 DOI: 10.1007/978-1-0716-3810-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
During cortical development, both neurons and glial cells are generated in the germinal zone near the lateral ventricle, migrate in the correct direction, and settle in their appropriate locations. This developmental process can be clearly visualized by introducing fluorescent protein-expression vectors via in utero electroporation. In this chapter, we describe labeling methods for migrating neurons and glial progenitors, as well as methods for slice culture, and time-lapse imaging.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.
| |
Collapse
|
30
|
Romano F, Amadori E, Madia F, Severino M, Capra V, Rizzo R, Barone R, Corradi B, Maragliano L, Shams Nosrati MS, Falace A, Striano P, Zara F, Scala M. Case Report: Novel biallelic moderately damaging variants in RTTN in a patient with cerebellar dysplasia. Front Pediatr 2023; 11:1326552. [PMID: 38178912 PMCID: PMC10764497 DOI: 10.3389/fped.2023.1326552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Rotatin, encoded by the RTTN gene, is a centrosomal protein with multiple, emerging functions, including left-right specification, ciliogenesis, and neuronal migration. Recessive variants in RTTN are associated with a neurodevelopmental disorder with microcephaly and malformations of cortical development known as "Microcephaly, short stature, and polymicrogyria with seizures" (MSSP, MIM #614833). Affected individuals show a wide spectrum of clinical manifestations like intellectual disability, poor/absent speech, short stature, microcephaly, and congenital malformations. Here, we report a subject showing a distinctive neuroradiological phenotype and harboring novel biallelic variants in RTTN: the c.5500A>G, p.(Asn1834Asp), (dbSNP: rs200169343, ClinVar ID:1438510) and c.19A>G, p.(Ile7Val), (dbSNP: rs201165599, ClinVar ID:1905275) variants. In particular brain magnetic resonance imaging (MRI) showed a peculiar pattern, with cerebellar hypo-dysplasia, and multiple arachnoid cysts in the lateral cerebello-medullary cisterns, in addition to left Meckel cave. Thus, we compare his phenotypic features with current literature, speculating a possible role of newly identified RTTN variants in his clinical picture, and supporting a relevant variability in this emerging condition.
Collapse
Affiliation(s)
- Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Child Neuropsichiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Rizzo
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Beatrice Corradi
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Antonio Falace
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
31
|
Stefaniak U, Malak R, Kaczmarek A, Samborski W, Mojs E. DDX3X Syndrome Behavioral Manifestations with Particular Emphasis on Psycho-Pathological Symptoms-A Review. Biomedicines 2023; 11:3046. [PMID: 38002045 PMCID: PMC10669308 DOI: 10.3390/biomedicines11113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Identification of typical behavioral manifestations in patients with DEAD-Box Helicase 3 X-linked gene (DDX3X) variants plays a crucial role in accurately diagnosing and managing the syndrome. The objective of this paper was to carry out a review of medical and public databases and assess the behavioral features of the DDX3X syndrome (DDX3X), with a particular focus on psycho-pathological symptoms. (2) Methods: An extensive computerized search was conducted in various databases, including PubMed, Medline Complete, Science Direct, Scopus, and Web of Science. Specific keywords and Medical Subject Headings were used to ensure the inclusion of relevant studies. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied to assess the methodological quality of the manuscripts. (3) Results: Only nine papers out of the 272 assessed met the inclusion criteria. These articles revealed various psycho-pathological manifestations in patients with the DDX3X syndrome. Intellectual disability (ID) or developmental disability (DD), speech delay, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), generalized anxiety disorder (GAD), self-injurious behaviors (SIBs), sensory symptoms and sleep disturbance were demonstrated to be the most common psycho-pathological behavior manifestations. (4) Conclusions: Patients with the DDX3X syndrome manifest a wide spectrum of psycho-pathological symptoms. A comprehensive investigation of these symptoms in patients is essential for early diagnosis and effective therapy.
Collapse
Affiliation(s)
- Urszula Stefaniak
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, 61-545 Poznan, Poland; (R.M.); (W.S.)
| | - Ada Kaczmarek
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, 61-545 Poznan, Poland; (R.M.); (W.S.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
32
|
Rani N, Boora N, Rani R, Kumar V, Ahalawat N. Molecular dynamics simulation of RAC1 protein and its de novo variants related to developmental disorders. J Biomol Struct Dyn 2023; 42:13437-13446. [PMID: 37897175 DOI: 10.1080/07391102.2023.2275188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) are conceptualized as childhood disability, but it has increasingly been recognized as lifelong neurological conditions that could notably impact adult functioning and quality of life. About 1%-3% of the general population suffers from NDDs including ADHD, ASD, IDD, communication disorders, motor disorders, etc. Studies suggest that Rho GTPases are key in neuronal development, highlighting the importance of altered GTPase signaling in NDDs. RAC1, a member of the Rho GTPase family, plays a critical role in neurogenesis, migration, synapse formation, axon growth, and regulation of actin cytoskeleton dynamics. We performed 6µs all-atom molecular dynamics simulation of native RAC1 (PDB: 3TH5) and three-point mutations (C18Y, N39S, and Y64D) related to developmental disorders to understand the impact of mutations on protein stability and functional dynamics. Our analysis, which included root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA), revealed that the N39S and Y64D mutations induced significant structural changes in RAC1. These alterations primarily occurred in the functional region adjacent to switch II, a region crucial for complex conformational rearrangements during the GDP and GTP exchange cycle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nigam Rani
- Department of Human Development and Family Studies, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Nisha Boora
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Reena Rani
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Vinay Kumar
- Department of Mathematics and Statistics, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Navjeet Ahalawat
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University Hisar, Hisar, India
| |
Collapse
|
33
|
Tsuneura Y, Kawai T, Yamada K, Aoki S, Nakashima M, Eda S, Matsuki T, Nishikawa M, Nagata KI, Enokido Y, Saitsu H, Nakayama A. A Novel Constitutively Active c.98 G > C, p.(R33P) Variant in RAB11A Associated with Intellectual Disability Promotes Neuritogenesis and Affects Oligodendroglial Arborization. Hum Mutat 2023; 2023:8126544. [PMID: 40225156 PMCID: PMC11918571 DOI: 10.1155/2023/8126544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 04/15/2025]
Abstract
Whole exome sequencing/whole genome sequencing has accelerated the identification of novel genes associated with intellectual disabilities (ID), and RAB11A which encodes an endosomal small GTPase is among them. However, consequent neural abnormalities have not been studied, and pathophysiological mechanisms underlying the ID and other clinical features in patients harboring RAB11A variants remain to be clarified. In this study, we report a novel de novo missense variant in RAB11A, NM_004663.5: c.98G > C, which would result in NP_004654.1: p.(R33P) substitution, in a Japanese boy with severe ID and hypomyelination. Biochemical analyses indicated that the RAB11A-R33P is a gain-of-function, constitutively active variant. Accordingly, the introduction of the RAB11A-R33P promoted neurite extension in neurons like a known constitutively active variant Rab11A-Q70L. In addition, the RAB11A-R33P induced excessive branching with thinner processes in oligodendrocytes. These results indicate that the gain-of-function RAB11A-R33P variant in association with ID and hypomyelination affects neural cells and can be deleterious to them, especially to oligodendrocytes, and strongly suggest the pathogenic role of the RAB11A-R33P variant in neurodevelopmental impairments, especially in the hypomyelination.
Collapse
Affiliation(s)
- Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Taeko Kawai
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Central Hospital, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Shintaro Aoki
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
34
|
Wang H, Yamahashi Y, Riedl M, Amano M, Kaibuchi K. The Evaluation of Rac1 Signaling as a Potential Therapeutic Target of Alzheimer's Disease. Int J Mol Sci 2023; 24:11880. [PMID: 37569255 PMCID: PMC10418761 DOI: 10.3390/ijms241511880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The Small GTPase Rac1 is critical for various fundamental cellular processes, including cognitive functions. The cyclical activation and inactivation of Rac1, mediated by Rac guanine nucleotide exchange factors (RacGEFs) and Rac GTPase-activating proteins (RacGAPs), respectively, are essential for activating intracellular signaling pathways and controlling cellular processes. We have recently shown that the Alzheimer's disease (AD) therapeutic drug donepezil activates the Rac1-PAK pathway in the nucleus accumbens (NAc) for enhanced aversive learning. Also, PAK activation itself in the NAc enhances aversive learning. As aversive learning allows short-term preliminary AD drug screening, here we tested whether sustained Rac1 activation by RacGAP inhibition can be used as an AD therapeutic strategy for improving AD-learning deficits based on aversive learning. We found that the RacGAP domain of breakpoint cluster region protein (Bcr) (Bcr-GAP) efficiently inhibited Rac1 activity in a membrane ruffling assay. We also found that, in striatal/accumbal primary neurons, Bcr knockdown by microRNA mimic-expressing adeno-associated virus (AAV-miRNA mimic) activated Rac1-PAK signaling, while Bcr-GAP-expressing AAV inactivated it. Furthermore, conditional knockdown of Bcr in the NAc of wild-type adult mice enhanced aversive learning, while Bcr-GAP expression in the NAc inhibited it. The findings indicate that Rac1 activation by RacGAP inhibition enhances aversive learning, implying the AD therapeutic potential of Rac1 signaling.
Collapse
Affiliation(s)
- Huanhuan Wang
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Nagoya 466-8550, Japan; (H.W.); (M.A.)
| | - Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Japan; (Y.Y.); (M.R.)
| | - Marcel Riedl
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Japan; (Y.Y.); (M.R.)
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Nagoya 466-8550, Japan; (H.W.); (M.A.)
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Japan; (Y.Y.); (M.R.)
| |
Collapse
|
35
|
Priolo M, Zara E, Radio FC, Ciolfi A, Spadaro F, Bellacchio E, Mancini C, Pantaleoni F, Cordeddu V, Chiriatti L, Niceta M, Africa E, Mammì C, Melis D, Coppola S, Tartaglia M. Clinical profiling of MRD48 and functional characterization of two novel pathogenic RAC1 variants. Eur J Hum Genet 2023; 31:805-814. [PMID: 37059841 PMCID: PMC10326044 DOI: 10.1038/s41431-023-01351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
RAC1 is a member of the Rac/Rho GTPase subfamily within the RAS superfamily of small GTP-binding proteins, comprising 3 paralogs playing a critical role in actin cytoskeleton remodeling, cell migration, proliferation and differentiation. De novo missense variants in RAC1 are associated with a rare neurodevelopmental disorder (MRD48) characterized by DD/ID and brain abnormalities coupled with a wide range of additional features. Structural and functional studies have documented either a dominant negative or constitutively active behavior for a subset of mutations. Here, we describe two individuals with previously unreported de novo missense RAC1 variants. We functionally demonstrate their pathogenicity proving a gain-of-function (GoF) effect for both. By reviewing the clinical features of these two individuals and the previously published MRD48 subjects, we further delineate the clinical profile of the disorder, confirming its phenotypic variability. Moreover, we compare the main features of MRD48 with the neurodevelopmental disease caused by GoF variants in the paralog RAC3, highlighting similarities and differences. Finally, we review all previously reported variants in RAC proteins and in the closely related CDC42, providing an updated overview of the spectrum and hotspots of pathogenic variants affecting these functionally related GTPases.
Collapse
Affiliation(s)
- Manuela Priolo
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy.
| | - Erika Zara
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Biology and Biotechnology, Sapienza University, 00185, Rome, Italy
| | | | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Francesca Pantaleoni
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Luigi Chiriatti
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Emilio Africa
- USD Neuroradiologia, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Corrado Mammì
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Università di Salerno, 84084, Salerno, Italy
| | - Simona Coppola
- National Center for Rare Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
36
|
Seyama R, Nishikawa M, Uchiyama Y, Hamada K, Yamamoto Y, Takeda M, Ochi T, Kishi M, Suzuki T, Hamanaka K, Fujita A, Tsuchida N, Koshimizu E, Misawa K, Miyatake S, Mizuguchi T, Makino S, Yao T, Ito H, Itakura A, Ogata K, Nagata KI, Matsumoto N. A missense variant at the RAC1-PAK1 binding site of RAC1 inactivates downstream signaling in VACTERL association. Sci Rep 2023; 13:9789. [PMID: 37328543 PMCID: PMC10275923 DOI: 10.1038/s41598-023-36381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
RAC1 at 7p22.1 encodes a RAC family small GTPase that regulates actin cytoskeleton organization and intracellular signaling pathways. Pathogenic RAC1 variants result in developmental delay and multiple anomalies. Here, exome sequencing identified a rare de novo RAC1 variant [NM_018890.4:c.118T > C p.(Tyr40His)] in a male patient. Fetal ultrasonography indicated the patient to have multiple anomalies, including persistent left superior vena cava, total anomalous pulmonary venous return, esophageal atresia, scoliosis, and right-hand polydactyly. After birth, craniofacial dysmorphism and esophagobronchial fistula were confirmed and VACTERL association was suspected. One day after birth, the patient died of respiratory failure caused by tracheal aplasia type III. The molecular mechanisms of pathogenic RAC1 variants remain largely unclear; therefore, we biochemically examined the pathophysiological significance of RAC1-p.Tyr40His by focusing on the best characterized downstream effector of RAC1, PAK1, which activates Hedgehog signaling. RAC1-p.Tyr40His interacted minimally with PAK1, and did not enable PAK1 activation. Variants in the RAC1 Switch II region consistently activate downstream signals, whereas the p.Tyr40His variant at the RAC1-PAK1 binding site and adjacent to the Switch I region may deactivate the signals. It is important to accumulate data from individuals with different RAC1 variants to gain a full understanding of their varied clinical presentations.
Collapse
Affiliation(s)
- Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
- Department of Biological Sciences, Nagoya University, Nagoya, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Yamamoto
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masahiro Takeda
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takanori Ochi
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Monami Kishi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Keiai Hospital, Saitama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shintaro Makino
- Department of Obstetrics and Gynecology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya, Japan, 466-8550.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
37
|
Chelleri C, Scala M, De Marco P, Guerriero V, Ognibene M, Madia F, Guerrisi S, Di Duca M, Torre M, Tamburro S, Scudieri P, Piccolo G, Mattioli G, Buffelli F, Uva P, Vozzi D, Fulcheri E, Striano P, Diana MC, Zara F. Somatic Double Inactivation of NF1 Associated with NF1-Related Pectus Excavatum Deformity. Hum Mutat 2023; 2023:3160653. [PMID: 40225171 PMCID: PMC11918561 DOI: 10.1155/2023/3160653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2025]
Abstract
Neurofibromatosis type 1 (NF1) is a neurocutaneous genetic disorder with a broad spectrum of associated signs and symptoms, including skeletal anomalies. The association of NF1 with anterior chest wall deformities has been recently reported, especially the pectus excavatum (PE). Over the years, several authors have suggested loss of heterozygosity (LOH) as the possible pathogenic mechanism underlying the development of the typical NF1 skeletal features. Here, we report a NF1 patient with severe chest deformity and harboring the germline heterozygous pathogenic NF1 variant NM_001042492.3: c.4271delC p.(Ala1424Glufs∗4). Through next-generation sequencing (NGS), we investigated the affected cartilage from the PE deformity and identified the additional frameshift variant NM_001042492.3: c.2953delC p.(Gln985Lysfs∗7), occurring as a somatic NF1 second hit mutation. Exome sequencing confirmed the absence of additional variants of potential pathogenic relevance. Western blot analysis showed the absence of wild-type NF1 protein in the cartilage of the patient, consistent with a somatic double inactivation (SDI) of NF1. Taken together, our findings support the role of SDI in NF1-related PE, widening the spectrum of the pathophysiological mechanisms involved in NF1-related skeletal features.
Collapse
Affiliation(s)
- Cristina Chelleri
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Marcello Scala
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia De Marco
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vittorio Guerriero
- Pediatric Thoracic and Airway Surgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Pediatric Surgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Guerrisi
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Torre
- Pediatric Thoracic and Airway Surgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Pediatric Surgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Tamburro
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Girolamo Mattioli
- Pediatric Thoracic and Airway Surgery Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Paolo Uva
- Genomic Facility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Diego Vozzi
- Unità di Bioinformatica Clinica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ezio Fulcheri
- Clinical Pathology Unit, IRCCS Istituto Giannina Gaslini, Italy
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Cristina Diana
- Pediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
38
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|